1
|
Tsourmas KI, Butler CA, Kwang NE, Sloane ZR, Dykman KJG, Maloof GO, Prekopa CA, Krattli RP, El-Khatib SM, Swarup V, Acharya MM, Hohsfield LA, Green KN. Myeloid-derived β-hexosaminidase is essential for neuronal health and lysosome function: implications for Sandhoff disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619538. [PMID: 39484433 PMCID: PMC11526954 DOI: 10.1101/2024.10.21.619538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lysosomal storage disorders (LSDs) are a large disease class involving lysosomal dysfunction, often resulting in neurodegeneration. Sandhoff disease (SD) is an LSD caused by a deficiency in the β subunit of the β-hexosaminidase enzyme ( Hexb ). Although Hexb expression in the brain is specific to microglia, SD primarily affects neurons. To understand how a microglial gene is involved in maintaining neuronal homeostasis, we demonstrated that β-hexosaminidase is secreted by microglia and integrated into the neuronal lysosomal compartment. To assess therapeutic relevance, we treated SD mice with bone marrow transplant and colony stimulating factor 1 receptor inhibition, which broadly replaced Hexb -/- microglia with Hexb -sufficient cells. This intervention reversed apoptotic gene signatures, improved behavior, restored enzymatic activity and Hexb expression, ameliorated substrate accumulation, and normalized neuronal lysosomal phenotypes. These results underscore the critical role of myeloid-derived β- hexosaminidase in neuronal lysosomal function and establish microglial replacement as a potential LSD therapy.
Collapse
|
2
|
Akaaboune SR, Javed A, Bui S, Wierenga A, Wang Y. GRASP55 Regulates Sorting and Maturation of the Lysosomal Enzyme β-Hexosaminidase A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618769. [PMID: 39464054 PMCID: PMC11507844 DOI: 10.1101/2024.10.16.618769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The Golgi apparatus plays a crucial role in the delivery of lysosomal enzymes. Golgi Reassembly Stacking Proteins, GRASP55 and GRASP65, are vital for maintaining Golgi structure and function. GRASP55 depletion results in the missorting and secretion of the lysosomal enzyme Cathepsin D (Xiang et al ., 2013), though the mechanisms remain unclear. In this study, we conducted secretomic analyses of GRASP55 knockout (KO) cells and found a significant increase in lysosome-associated proteins in the extracellular medium. Using the lysosomal beta-hexosaminidase subunit alpha (HEXA) as a model, we found that GRASP55 depletion disrupted normal trafficking and processing of HEXA, resulting in increased secretion of the immature (pro-form) HEXA into the extracellular milieu, along with decreased levels of the mature form and enzymatic activity within the cell. GRASP55 depletion significantly reduced the complex formation between HEXA and mannose-6-phosphate (M6P) receptors (MPR), despite no overall change in MPR expression. And finally, we found there was a notable reduction in the expression of GNPTAB, leading to a reduction in M6P modification of HEXA, hindering its efficient targeting to lysosomes. These findings reveal the role of GRASP55 in regulating lysosomal enzyme dynamics, emphasizing its role in the sorting and trafficking of lysosomal proteins.
Collapse
|
3
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Gu X, Kovacs AS, Myung Y, Ascher DB. Mutations in Glycosyltransferases and Glycosidases: Implications for Associated Diseases. Biomolecules 2024; 14:497. [PMID: 38672513 PMCID: PMC11048727 DOI: 10.3390/biom14040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Glycosylation, a crucial and the most common post-translational modification, coordinates a multitude of biological functions through the attachment of glycans to proteins and lipids. This process, predominantly governed by glycosyltransferases (GTs) and glycoside hydrolases (GHs), decides not only biomolecular functionality but also protein stability and solubility. Mutations in these enzymes have been implicated in a spectrum of diseases, prompting critical research into the structural and functional consequences of such genetic variations. This study compiles an extensive dataset from ClinVar and UniProt, providing a nuanced analysis of 2603 variants within 343 GT and GH genes. We conduct thorough MTR score analyses for the proteins with the most documented variants using MTR3D-AF2 via AlphaFold2 (AlphaFold v2.2.4) predicted protein structure, with the analyses indicating that pathogenic mutations frequently correlate with Beta Bridge secondary structures. Further, the calculation of the solvent accessibility score and variant visualisation show that pathogenic mutations exhibit reduced solvent accessibility, suggesting the mutated residues are likely buried and their localisation is within protein cores. We also find that pathogenic variants are often found proximal to active and binding sites, which may interfere with substrate interactions. We also incorporate computational predictions to assess the impact of these mutations on protein function, utilising tools such as mCSM to predict the destabilisation effect of variants. By identifying these critical regions that are prone to disease-associated mutations, our study opens avenues for designing small molecules or biologics that can modulate enzyme function or compensate for the loss of stability due to these mutations.
Collapse
Affiliation(s)
- Xiaotong Gu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Aaron S. Kovacs
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Yoochan Myung
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4000, Australia; (X.G.); (A.S.K.); (Y.M.)
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| |
Collapse
|
5
|
Xin ZZ, Zhang XT, Zhou M, Chen JY, Zhu ZQ, Zhang JY. Differential molecular responses of hemolymph and hepatopancreas of swimming crab, Portunus trituberculatus, infected with Ameson portunus (Microsporidia). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109324. [PMID: 38134977 DOI: 10.1016/j.fsi.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Ameson portunus (Microsporidia) has caused serious economic losses to the aquaculture industry of swimming crab, Portunus trituberculatus. The hemolymph and hepatopancreas are the main immune organs of P. trituberculatus, and the main sites of A. portunus infection. Elucidating the response characteristics of hemolymph and hepatopancreas to microsporidian infection facilitates the development of microsporidiosis prevention and control strategy. This study performed comparative transcriptomic analysis of hemolymph (PTX/PTXA) and hepatopancreas (PTG/PTGA) of P. trituberculatus uninfected and infected with A. portunus. The results showed that there were 223 and 1309 differentially expressed genes (DEGs) in PTX/PTXA and PTG/PTGA, respectively. The lysosome pathway was significantly enriched after the invasion of the hemolymph by A. portunus. Also, immune-related genes were all significantly up-regulated in the hemolymph and hepatopancreas, suggesting that the invasion by A. portunus may activate host immune responses. Unlike hemolymph, antioxidant and detoxification-related genes were also significantly up-regulated in the hepatopancreas. Moreover, metabolism-related genes were significantly down-regulated in the hepatopancreas, suggesting that energy synthesis, resistance to pathogens, and regulation of oxidative stress were suppressed in the hepatopancreas. Hemolymph and hepatopancreas have similarity and tissue specificity to microsporidian infection. The differential genes and pathways identified in this study can provide references for the prevention and control of microsporidiosis.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xin-Tong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Min Zhou
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jiu-Yang Chen
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhi-Qiang Zhu
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jin-Yong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
7
|
Voicu V, Tataru CP, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Corlatescu AD, Ciurea AV. Decoding Neurodegeneration: A Comprehensive Review of Molecular Mechanisms, Genetic Influences, and Therapeutic Innovations. Int J Mol Sci 2023; 24:13006. [PMID: 37629187 PMCID: PMC10455143 DOI: 10.3390/ijms241613006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders often acquire due to genetic predispositions and genomic alterations after exposure to multiple risk factors. The most commonly found pathologies are variations of dementia, such as frontotemporal dementia and Lewy body dementia, as well as rare subtypes of cerebral and cerebellar atrophy-based syndromes. In an emerging era of biomedical advances, molecular-cellular studies offer an essential avenue for a thorough recognition of the underlying mechanisms and their possible implications in the patient's symptomatology. This comprehensive review is focused on deciphering molecular mechanisms and the implications regarding those pathologies' clinical advancement and provides an analytical overview of genetic mutations in the case of neurodegenerative disorders. With the help of well-developed modern genetic investigations, these clinically complex disturbances are highly understood nowadays, being an important step in establishing molecularly targeted therapies and implementing those approaches in the physician's practice.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Calin Petre Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (L.A.G.); (B.-G.B.); (H.P.C.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
8
|
Majid N, Khan RH. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int J Biol Macromol 2023; 242:125123. [PMID: 37270122 DOI: 10.1016/j.ijbiomac.2023.125123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Proteins play a major role in the regulation of various cellular functions including the synthesis of structural components. But proteins are stable under physiological conditions only. A slight variation in environmental conditions can cost them huge in terms of conformational stability ultimately leading to aggregation. Under normal conditions, aggregated proteins are degraded or removed from the cell by a quality control system including ubiquitin-proteasomal machinery and autophagy. But they are burdened under diseased conditions or are impaired by the aggregated proteins leading to the generation of toxicity. The misfolding and aggregation of protein such as amyloid-β, α-synuclein, human lysozyme etc., are responsible for certain diseases including Alzheimer, Parkinson, and non- neuropathic systemic amyloidosis respectively. Extensive research has been done to find the therapeutics for such diseases but till now we have got only symptomatic treatment that will reduce the disease severity but will not target the initial formation of nucleus responsible for disease progression and propagation. Hence there is an urgent need to develop the drugs targeting the cause of the disease. For this, a wide knowledge related to misfolding and aggregation under the same heading is required as described in this review alongwith the strategies hypothesized and implemented till now. This will contribute a lot to the work of researchers in the field of neuroscience.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
9
|
CRISPR/nCas9-Based Genome Editing on GM2 Gangliosidoses Fibroblasts via Non-Viral Vectors. Int J Mol Sci 2022; 23:ijms231810672. [PMID: 36142595 PMCID: PMC9505638 DOI: 10.3390/ijms231810672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the β-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the β-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay–Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the β-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the β-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.
Collapse
|
10
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
González-Cuesta M, Herrera-González I, García-Moreno MI, Ashmus RA, Vocadlo DJ, García Fernández JM, Nanba E, Higaki K, Ortiz Mellet C. sp 2-Iminosugars targeting human lysosomal β-hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease. J Enzyme Inhib Med Chem 2022; 37:1364-1374. [PMID: 35575117 PMCID: PMC9126592 DOI: 10.1080/14756366.2022.2073444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The late-onset form of Tay-Sachs disease displays when the activity levels of human β-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Roger A Ashmus
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David J Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, Sevilla, Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| |
Collapse
|
12
|
Alvarado-Fernández AM, Rodríguez-López EA, Espejo-Mojica AJ, Mosquera-Arévalo AR, Alméciga-Díaz CJ, Trespalacios-Rangel AA. Effect of two preservation methods on the viability and enzyme production of a recombinant Komagataella phaffii (Pichia pastoris) strain. Cryobiology 2021; 105:32-40. [PMID: 34951975 DOI: 10.1016/j.cryobiol.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
The methylotrophic yeast Komagataella phaffii, previously known as Pichia pastoris, has been reported as a host for producing human recombinant lysosomal enzymes intended for enzyme replacement therapy. K. phaffii has advantages such as easy genetic handling, rapid growth, cost-effective mediums, and the ability to develop mammalian-like post-translational modifications. To maintain cell viability and enzyme activity over time, it is important to consider the bioprocess optimization and the proper selection and preservation of clones. In this study, we evaluated the effect of glycerol and skim milk in cryopreservation at -80 °C, as well as the use of skim milk or its combination with NaCl, disaccharides or sorbitol in freeze-drying on the cell viability and activity of a recombinant lysosomal enzyme (i.e., human β-hexosaminidase-A) produced in K. phaffii GS115 strain. The results showed that cryopreservation with glycerol and skim milk, as well as freeze-drying using disaccharides and sorbitol with skim milk, maintained the viability above 80%. Although variations in enzyme activity among treatments were found, the use of disaccharides had a positive effect on the enzymatic activity levels. This is the first report of the evaluation of two suitable methods to preserve a recombinant K. phaffii strain, preventing the loss of viability and maintaining the activity of the recombinant protein.
Collapse
Affiliation(s)
| | - Edwin Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism. Faculty of Sciences. Pontificia Universidad Javeriana. Bogotá D.C., Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC). Bogotá D.C., Colombia.
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism. Faculty of Sciences. Pontificia Universidad Javeriana. Bogotá D.C., Colombia.
| | | | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism. Faculty of Sciences. Pontificia Universidad Javeriana. Bogotá D.C., Colombia.
| | | |
Collapse
|
13
|
Matsuhisa K, Imaizumi K. Loss of Function of Mutant IDS Due to Endoplasmic Reticulum-Associated Degradation: New Therapeutic Opportunities for Mucopolysaccharidosis Type II. Int J Mol Sci 2021; 22:ijms222212227. [PMID: 34830113 PMCID: PMC8618218 DOI: 10.3390/ijms222212227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) results from the dysfunction of a lysosomal enzyme, iduronate-2-sulfatase (IDS). Dysfunction of IDS triggers the lysosomal accumulation of its substrates, glycosaminoglycans, leading to mental retardation and systemic symptoms including skeletal deformities and valvular heart disease. Most patients with severe types of MPS II die before the age of 20. The administration of recombinant IDS and transplantation of hematopoietic stem cells are performed as therapies for MPS II. However, these therapies either cannot improve functions of the central nervous system or cause severe side effects, respectively. To date, 729 pathogenetic variants in the IDS gene have been reported. Most of these potentially cause misfolding of the encoded IDS protein. The misfolded IDS mutants accumulate in the endoplasmic reticulum (ER), followed by degradation via ER-associated degradation (ERAD). Inhibition of the ERAD pathway or refolding of IDS mutants by a molecular chaperone enables recovery of the lysosomal localization and enzyme activity of IDS mutants. In this review, we explain the IDS structure and mechanism of activation, and current findings about the mechanism of degradation-dependent loss of function caused by pathogenetic IDS mutation. We also provide a potential therapeutic approach for MPS II based on this loss-of-function mechanism.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| | - Kazunori Imaizumi
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| |
Collapse
|
14
|
Neupane B, Fendereski M, Nazneen F, Guo YL, Bai F. Murine Trophoblast Stem Cells and Their Differentiated Cells Attenuate Zika Virus In Vitro by Reducing Glycosylation of the Viral Envelope Protein. Cells 2021; 10:3085. [PMID: 34831310 PMCID: PMC8619372 DOI: 10.3390/cells10113085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can cause devastating fetal neuropathological abnormalities, including microcephaly. Most studies of ZIKV infection in pregnancy have focused on post-implantation stage embryos. Currently, we have limited knowledge about how a pre-implantation stage embryo deals with a viral infection. This study investigates ZIKV infection on mouse trophoblast stem cells (TSCs) and their in vitro differentiated TSCs (DTSCs), which resemble the cellular components of the trophectoderm layer of the blastocyst that later develops into the placenta. We demonstrate that TSCs and DTSCs are permissive to ZIKV infection; however, ZIKV propagated in TSCs and DTSCs exhibit substantially lower infectivity, as shown in vitro and in a mouse model compared to ZIKV that was generated in Vero cells or mouse embryonic fibroblasts (MEFs). We further show that the low infectivity of ZIKV propagated in TSCs and DTSCs is associated with a reduced level of glycosylation on the viral envelope (E) proteins, which are essential for ZIKV to establish initial attachment by binding to cell surface glycosaminoglycans (GAGs). The decreased level of glycosylation on ZIKV E is, at least, partially due to the low-level expression of a glycosylation-related gene, Hexa, in TSCs and DTSCs. Furthermore, this finding is not limited to ZIKV since similar observations have been made as to the chikungunya virus (CHIKV) and West Nile virus (WNV) propagated in TSCs and DTSCs. In conclusion, our results reveal a novel phenomenon suggesting that murine TSCs and their differentiated cells may have adapted a cellular glycosylation system that can limit viral infectivity by altering the glycosylation of viral envelope proteins, therefore serving as a unique, innate anti-viral mechanism in the pre-implantation stage embryo.
Collapse
Affiliation(s)
| | | | | | | | - Fengwei Bai
- Department of Cell and Molecular Biology, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA; (B.N.); (M.F.); (F.N.); (Y.-L.G.)
| |
Collapse
|
15
|
Serum Cytokine Profile, Beta-Hexosaminidase A Enzymatic Activity and GM 2 Ganglioside Levels in the Plasma of a Tay-Sachs Disease Patient after Cord Blood Cell Transplantation and Curcumin Administration: A Case Report. Life (Basel) 2021; 11:life11101007. [PMID: 34685379 PMCID: PMC8539434 DOI: 10.3390/life11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder that occurs due to a deficiency of a β hexosaminidase A (HexA) enzyme, resulting in the accumulation of GM2 gangliosides. In this work, we analyzed the effect of umbilical cord blood cell transplantation (UCBCT) and curcumin administration on the course of the disease in a patient with adult TSD. The patient’s serum cytokine profile was determined using multiplex analysis. The level of GM2 gangliosides in plasma was determined using mass spectrometry. The enzymatic activity of HexA in the plasma of the patient was assessed using a fluorescent substrate assay. The HexA α-subunit (HexA) concentration was determined using ELISA. It was shown that both UCBCT and curcumin administration led to a change in the patient’s cytokine profile. The UCBCT resulted in an increase in the concentration of HexA in the patient’s serum and in an improvement in the patient’s neurological status. However, neither UCBCT nor curcumin were able to alter HexA activity and the level of GM2 in patient’s plasma. The data obtained indicate that UCBCT and curcumin administration can alter the immunity of a patient with TSD, reduce the level of inflammatory cytokines and thereby improve the patient’s condition.
Collapse
|
16
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
17
|
Park JH, Ko JM, Kim MS, Kim MJ, Seong MW, Yoo T, Lim BC, Chae JH. Novel HEXA variants in Korean children with Tay-Sachs disease with regression of neurodevelopment from infancy. Mol Genet Genomic Med 2021; 9:e1677. [PMID: 33811753 PMCID: PMC8222837 DOI: 10.1002/mgg3.1677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/23/2023] Open
Abstract
Background Tay–Sachs disease (TSD) is a lysosomal storage disease caused by mutations in the HEXA gene that encodes the HexosaminidaseA (HEXA) enzyme. As HEXA normally functions to degrade the protein GM2‐ganglioside in lysosomes, decreased levels of HEXAcauses an accumulation of the protein and leads to neurological toxicity. Typical clinical manifestations of TSD include neurodevelopmental regression, muscle weakness, hypotonia, hyperreflexia, ataxia, seizures, and other neurological symptoms. It is quite rare in Asian populations, wherein only two cases have been reported in Korea to date. Methods Clinical records, radiological assessments, and laboratory findings, such as plasma hexosaminidase assay and HEXA analysis, were extracted from the medical records of three (1 male and 2 female) independent Korean children with infantile form of Tay–Sachs disease. Results All three children presented with neurodevelopmental regression and strabismus at around 8 months of age. Presence of cherry‐red spots in the macula led to conduction of biochemical and genetic studies for TSD confirmation. The plasma hexosaminidase assay revealed decreased HEXA activity and low to normal total hexosaminidase activity. Similarly, genetic analysis revealed 4 variants from 6 alleles, including 2 previously reported and 2 novel variants, in the HEXA gene. Conclusion We presented three Korean children, who were recently diagnosed with infantile‐type TSDvia enzyme assay and genetic analysis. Furthermore, results showed that fundus examination can be helpful for early diagnosis of children with neurodevelopmental regression.
Collapse
Affiliation(s)
- Ji Hong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| | - Min Sun Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea
| | - Man Jin Kim
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Moon-Woo Seong
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
18
|
Ab Ghani NS, Emrizal R, Makmur H, Firdaus-Raih M. Side chain similarity comparisons for integrated drug repositioning and potential toxicity assessments in epidemic response scenarios: The case for COVID-19. Comput Struct Biotechnol J 2020; 18:2931-2944. [PMID: 33101604 PMCID: PMC7575501 DOI: 10.1016/j.csbj.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Structures of protein-drug-complexes provide an atomic level profile of drug-target interactions. In this work, the three-dimensional arrangements of amino acid side chains in known drug binding sites (substructures) were used to search for similarly arranged sites in SARS-CoV-2 protein structures in the Protein Data Bank for the potential repositioning of approved compounds. We were able to identify 22 target sites for the repositioning of 16 approved drug compounds as potential therapeutics for COVID-19. Using the same approach, we were also able to investigate the potentially promiscuous binding of the 16 compounds to off-target sites that could be implicated in toxicity and side effects that had not been provided by any previous studies. The investigations of binding properties in disease-related proteins derived from the comparison of amino acid substructure arrangements allows for effective mechanism driven decision making to rank and select only the compounds with the highest potential for success and safety to be prioritized for clinical trials or treatments. The intention of this work is not to explicitly identify candidate compounds but to present how an integrated drug repositioning and potential toxicity pipeline using side chain similarity searching algorithms are of great utility in epidemic scenarios involving novel pathogens. In the case of the COVID-19 pandemic caused by the SARS-CoV-2 virus, we demonstrate that the pipeline can identify candidate compounds quickly and sustainably in combination with associated risk factors derived from the analysis of potential off-target site binding by the compounds to be repurposed.
Collapse
Affiliation(s)
- Nur Syatila Ab Ghani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Reeki Emrizal
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Haslina Makmur
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
19
|
In silico analysis of the effects of disease-associated mutations of β-hexosaminidase A in Tay‒Sachs disease. J Genet 2020. [DOI: 10.1007/s12041-020-01208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
21
|
Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Gazali L, Al-Dirbashi O, Al-Jasmi F, Ali BR. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Hum Genet 2020; 139:657-673. [PMID: 32219518 DOI: 10.1007/s00439-020-02153-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 02/05/2023]
Abstract
GM1-gangliosidosis, a lysosomal storage disorder, is associated with ~ 161 missense variants in the GLB1 gene. Affected patients present with β-galactosidase (β-Gal) deficiency in lysosomes. Loss of function in ER-retained misfolded enzymes with missense variants is often due to subcellular mislocalization. Deoxygalactonojirimycin (DGJ) and its derivatives are pharmaceutical chaperones that directly bind to mutated β-Gal in the ER promoting its folding and trafficking to lysosomes and thus enhancing its activity. An Emirati child has been diagnosed with infantile GM1-gangliosidosis carrying the reported p.D151Y variant. We show that p.D151Y β-Gal in patient's fibroblasts retained < 1% residual activity due to impaired processing and trafficking. The amino acid substitution significantly affected the enzyme conformation; however, p.D151Y β-Gal was amenable for partial rescue in the presence of glycerol or at reduced temperature where activity was enhanced with ~ 2.3 and 7 folds, respectively. The butyl (NB-DGJ) and nonyl (NN-DGJ) derivatives of DGJ chaperoning function were evaluated by measuring their IC50s and ability to stabilize the wild-type β-Gal against thermal degradation. Although NN-DGJ showed higher affinity to β-Gal, it did not show a significant enhancement in p.D151Y β-Gal activity. However, NB-DGJ promoted p.D151Y β-Gal maturation and enhanced its activity up to ~ 4.5% of control activity within 24 h which was significantly increased to ~ 10% within 6 days. NB-DGJ enhancement effect was sustained over 3 days after washing it out from culture media. We therefore conclude that NB-DGJ might be a promising therapeutic chemical chaperone in infantile GM1 amenable variants and therefore warrants further analysis for its clinical applications.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad Al Sorkhy
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Mohammad A Ghattas
- Department of Pharmacology, Al Ain University, Al Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osama Al-Dirbashi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. .,Department of Genetics and Genomics College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. .,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
22
|
Tran AP, Warren PM, Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp Neurol 2020; 328:113276. [PMID: 32145250 DOI: 10.1016/j.expneurol.2020.113276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs), extracellular matrix molecules that increase dramatically following a variety of CNS injuries or diseases, have long been known for their potent capacity to curtail cell migrations as well as axon regeneration and sprouting. The inhibition can be conferred through binding to their major cognate receptor, Protein Tyrosine Phosphatase Sigma (PTPσ). However, the precise mechanisms downstream of receptor binding that mediate growth inhibition have remained elusive. Recently, CSPGs/PTPσ interactions were found to regulate autophagic flux at the axon growth cone by dampening the autophagosome-lysosomal fusion step. Because of the intense interest in autophagic phenomena in the regulation of a wide variety of critical cellular functions, we summarize here what is currently known about dysregulation of autophagy following spinal cord injury, and highlight this critical new mechanism underlying axon regeneration failure. Furthermore, we review how CSPGs/PTPσ interactions influence plasticity through autophagic regulation and how PTPσ serves as a switch to execute either axon outgrowth or synaptogenesis. This has exciting implications for the role CSPGs play not only in axon regeneration failure after spinal cord injury, but also in neurodegenerative diseases where, again, inhibitory CSPGs are upregulated.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Seattle Children's Hospital Research Institute, Integrative Center for Brain Research, Seattle, Washington, USA
| | - Philippa Mary Warren
- King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, UK
| | - Jerry Silver
- Case Western Reserve University, School of Medicine, Department of Neurosciences, Cleveland, OH, USA.
| |
Collapse
|
23
|
Wumaier M, Yao TM, Hu XC, Hu ZA, Shi S. Luminescent Ru(ii)-thiol modified silver nanoparticles for lysosome targeted theranostics. Dalton Trans 2020; 48:10393-10397. [PMID: 31162516 DOI: 10.1039/c9dt00878k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles (AgNPs) modified by luminescent Ru(ii) complexes not only possess bright red fluorescence but also can target lysosomes. Cell imaging and a cytotoxicity study suggest that Ru1-2·AgNPs may act as a potential theranostic agent.
Collapse
Affiliation(s)
- Maierhaba Wumaier
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Tian-Ming Yao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Xiao-Chun Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhi-An Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Shuo Shi
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China. and Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
24
|
Abstract
Introduction: Lysosomal storage disease is caused by the deficiency of a single hydrolase (lysosomal enzymes). GM2 gangliosidoses are autosomal recessive disorders caused by deficiency of β-hexosaminidase and Tay-Sachs disease (TSD) is one of its three forms.Objective: To perform a review of the state of the art on TSD describing its definition, epidemiology, etiology, physiopathology, clinical manifestations and news in diagnosis and treatment.Materials and methods: A literature search was carried out in PubMed using the MeSH terms “Tay-Sachs Disease”.Results: 1 233 results were retrieved in total, of which 53 articles were selected. TSD is caused by the deficiency of the lysosomal enzyme β-hexosaminidase A (HexA), and is characterized by neurodevelopmental regression, hypotonia, hyperacusis and cherry-red spots in the macula. Research on molecular pathogenesis and the development of possible treatments has been limited, consequently there is no treatment established to date.Conclusion: TSD is an autosomal recessive neurodegenerative disorder. Death usually occurs before the age of five. More research and studies on this type of gangliosidosis are needed in order to find an adequate treatment.
Collapse
|
25
|
Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Chakrabarti L, Rizvanov AA. New Approaches to Tay-Sachs Disease Therapy. Front Physiol 2018; 9:1663. [PMID: 30524313 PMCID: PMC6256099 DOI: 10.3389/fphys.2018.01663] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by β-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the “infantile form,” which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and β HexA subunit genes. Effectiveness of this approach is evaluated in α or β HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
26
|
Chen Y, Jian J, Hettinghouse A, Zhao X, Setchell KDR, Sun Y, Liu CJ. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J Mol Med (Berl) 2018; 96:1359-1373. [PMID: 30341570 DOI: 10.1007/s00109-018-1703-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 02/05/2023]
Abstract
Tay-Sachs disease (TSD) is a lethal lysosomal storage disease (LSD) caused by mutations in the HexA gene, which can lead to deficiency of β-hexosaminidase A (HexA) activity and consequent accumulation of its substrate, GM2 ganglioside. Recent reports that progranulin (PGRN) functions as a chaperone of lysosomal enzymes and its deficiency is associated with LSDs, including Gaucher disease and neuronal ceroid lipofuscinosis, prompted us to screen the effects of recombinant PGRN on lysosomal storage in fibroblasts from 11 patients affected by various LSDs, which led to the isolation of TSD in which PGRN demonstrated the best effects in reducing lysosomal storage. Subsequent in vivo studies revealed significant GM2 accumulation and the existence of typical TSD cells containing zebra bodies in both aged and ovalbumin-challenged adult PGRN-deficient mice. In addition, HexA, but not HexB, was aggregated in PGRN-deficient cells. Furthermore, recombinant PGRN significantly reduced GM2 accumulation and lysosomal storage in these animal models. Mechanistic studies indicated that PGRN bound to HexA through granulins G and E domain and increased the enzymatic activity and lysosomal delivery of HexA. More importantly, Pcgin, an engineered PGRN derivative bearing the granulin E domain, also effectively bound to HexA and reduced the GM2 accumulation. Collectively, these studies not only provide new insights into the pathogenesis of TSD but may also have implications for developing PGRN-based therapy for this life-threatening disorder. KEY MESSAGES: GM2 accumulation and the existence of typical TSD cells containing zebra bodies are detected in both aged and ovalbumin-challenged adult PGRN deficient mice. Recombinant PGRN significantly reduces GM2 accumulation and lysosomal storage both in vivo and in vitro, which works through increasing the expression and lysosomal delivery of HexA. Pcgin, an engineered PGRN derivative bearing the granulin E domain, also effectively binds to to HexA and reduces GM2 accumulation.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, 301 East 17th Street, New York, NY, 10003, USA.,Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Medical Center, 301 East 17th Street, New York, NY, 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, 301 East 17th Street, New York, NY, 10003, USA
| | - Xueheng Zhao
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kenneth D R Setchell
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, 301 East 17th Street, New York, NY, 10003, USA. .,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
27
|
Kato A, Nakagome I, Nakagawa S, Kinami K, Adachi I, Jenkinson SF, Désiré J, Blériot Y, Nash RJ, Fleet GWJ, Hirono S. In silico analyses of essential interactions of iminosugars with the Hex A active site and evaluation of their pharmacological chaperone effects for Tay-Sachs disease. Org Biomol Chem 2018; 15:9297-9304. [PMID: 28959811 DOI: 10.1039/c7ob02281f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The affinity of a series of iminosugar-based inhibitors exhibiting various ring sizes toward Hex A and their essential interactions with the enzyme active site were investigated. All the Hex A-inhibiting iminosugars tested formed hydrogen bonds with Arg178, Asp322, Tyr421 and Glu462 and had the favorable cation-π interaction with Trp460. Among them, DMDP amide (6) proved to be the most potent competitive inhibitor with a Ki value of 0.041 μM. We analyzed the dynamic properties of both DMDP amide (6) and DNJNAc (1) in aqueous solution using molecular dynamics (MD) calculations; the distance of the interaction between Asp322 and 3-OH and Glu323 and 6-OH was important for stable interactions with Hex A, reducing fluctuations in the plasticity of the active site. DMDP amide (6) dose-dependently increased intracellular Hex A activity in the G269S mutant cells and restored Hex A activity up to approximately 43% of the wild type level; this effect clearly exceeded the border line treatment for Tay-Sachs disease, which is regarded as 10-15% of the wild type level. This is a significantly greater effect than that of pyrimethamine, which is currently in Phase 2 clinical trials. DMDP amide (6), therefore, represents a new promising pharmacological chaperone candidate for the treatment of Tay-Sachs disease.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Yao H, Zhuang Z, Yao J, Zhou J, Zhao Z. Photostable and biocompatible AIE-active conjugated polyelectrolytes for efficient heparin detection and specific lysosome labelling. J Mater Chem B 2018; 6:6360-6364. [DOI: 10.1039/c8tb02053a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of new conjugated polyelectrolytes (CPEs) with emissive tetraphenylethene-containing backbones and specific targeting pendants are synthesized and characterized.
Collapse
Affiliation(s)
- Yinan Wang
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Hongming Yao
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Zeyan Zhuang
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Jinya Yao
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Zujin Zhao
- Center for Aggregation-Induced Emission
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
29
|
Kumari P, Verma SK, Mobin SM. Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids. Chem Commun (Camb) 2018; 54:539-542. [DOI: 10.1039/c7cc07812a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schematic representation of the proposed work.
Collapse
Affiliation(s)
- Pratibha Kumari
- Centre for Biosciences and Bio-Medical Engineering
- Indore
- India
| | | | - Shaikh M. Mobin
- Centre for Biosciences and Bio-Medical Engineering
- Indore
- India
- Discipline of Chemistry
- Indore
| |
Collapse
|
30
|
Cachón-González MB, Zaccariotto E, Cox TM. Genetics and Therapies for GM2 Gangliosidosis. Curr Gene Ther 2018; 18:68-89. [PMID: 29618308 PMCID: PMC6040173 DOI: 10.2174/1566523218666180404162622] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
Tay-Sachs disease, caused by impaired β-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from diseasecausing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches have been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses.
Collapse
Affiliation(s)
| | - Eva Zaccariotto
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
31
|
Škerlová J, Bláha J, Pachl P, Hofbauerová K, Kukačka Z, Man P, Pompach P, Novák P, Otwinowski Z, Brynda J, Vaněk O, Řezáčová P. Crystal structure of native β‐
N
‐acetylhexosaminidase isolated from
Aspergillus oryzae
sheds light onto its substrate specificity, high stability, and regulation by propeptide. FEBS J 2017; 285:580-598. [DOI: 10.1111/febs.14360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jana Škerlová
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics The Czech Academy of Sciences Prague Czech Republic
| | - Jan Bláha
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
| | - Kateřina Hofbauerová
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
- Institute of Physics Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Zdeněk Kukačka
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | - Petr Man
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | - Petr Pompach
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | - Petr Novák
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
- Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic
| | | | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics The Czech Academy of Sciences Prague Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry The Czech Academy of Sciences Prague Czech Republic
- Institute of Molecular Genetics The Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
32
|
Mohamed FE, Al-Gazali L, Al-Jasmi F, Ali BR. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Front Pharmacol 2017; 8:448. [PMID: 28736525 PMCID: PMC5500627 DOI: 10.3389/fphar.2017.00448] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Different approaches have been utilized or proposed for the treatment of lysosomal storage disorders (LSDs) including enzyme replacement and hematopoietic stem cell transplant therapies, both aiming to compensate for the enzymatic loss of the underlying mutated lysosomal enzymes. However, these approaches have their own limitations and therefore the vast majority of LSDs are either still untreatable or their treatments are inadequate. Missense mutations affecting enzyme stability, folding and cellular trafficking are common in LSDs resulting often in low protein half-life, premature degradation, aggregation and retention of the mutant proteins in the endoplasmic reticulum. Small molecular weight compounds such as pharmaceutical chaperones (PCs) and proteostasis regulators have been in recent years to be promising approaches for overcoming some of these protein processing defects. These compounds are thought to enhance lysosomal enzyme activity by specific binding to the mutated enzyme or by manipulating components of the proteostasis pathways promoting protein stability, folding and trafficking and thus enhancing and restoring some of the enzymatic activity of the mutated protein in lysosomes. Multiple compounds have already been approved for clinical use to treat multiple LSDs like migalastat in the treatment of Fabry disease and others are currently under research or in clinical trials such as Ambroxol hydrochloride and Pyrimethamine. In this review, we are presenting a general overview of LSDs, their molecular and cellular bases, and focusing on recent advances on targeting and manipulation proteostasis, including the use of PCs and proteostasis regulators, as therapeutic targets for some LSDs. In addition, we present the successes, limitations and future perspectives in this field.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates UniversityAl-Ain, United Arab Emirates
| |
Collapse
|
33
|
Christensen CL, Choy FYM. A Prospective Treatment Option for Lysosomal Storage Diseases: CRISPR/Cas9 Gene Editing Technology for Mutation Correction in Induced Pluripotent Stem Cells. Diseases 2017; 5:E6. [PMID: 28933359 PMCID: PMC5456334 DOI: 10.3390/diseases5010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Ease of design, relatively low cost and a multitude of gene-altering capabilities have all led to the adoption of the sophisticated and yet simple gene editing system: clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The CRISPR/Cas9 system holds promise for the correction of deleterious mutations by taking advantage of the homology directed repair pathway and by supplying a correction template to the affected patient's cells. Currently, this technique is being applied in vitro in human-induced pluripotent stem cells (iPSCs) to correct a variety of severe genetic diseases, but has not as of yet been used in iPSCs derived from patients affected with a lysosomal storage disease (LSD). If adopted into clinical practice, corrected iPSCs derived from cells that originate from the patient themselves could be used for therapeutic amelioration of LSD symptoms without the risks associated with allogeneic stem cell transplantation. CRISPR/Cas9 editing in a patient's cells would overcome the costly, lifelong process associated with currently available treatment methods, including enzyme replacement and substrate reduction therapies. In this review, the overall utility of the CRISPR/Cas9 gene editing technique for treatment of genetic diseases, the potential for the treatment of LSDs and methods currently employed to increase the efficiency of this re-engineered biological system will be discussed.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|