1
|
Proksch K, Werner F, Keller-Findeisen J, Ta H, Munk A. Toward quantitative super-resolution microscopy: molecular maps with statistical guarantees. Microscopy (Oxf) 2024; 73:287-300. [PMID: 37986580 DOI: 10.1093/jmicro/dfad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Quantifying the number of molecules from fluorescence microscopy measurements is an important topic in cell biology and medical research. In this work, we present a consecutive algorithm for super-resolution (stimulated emission depletion (STED)) scanning microscopy that provides molecule counts in automatically generated image segments and offers statistical guarantees in form of asymptotic confidence intervals. To this end, we first apply a multiscale scanning procedure on STED microscopy measurements of the sample to obtain a system of significant regions, each of which contains at least one molecule with prescribed uniform probability. This system of regions will typically be highly redundant and consists of rectangular building blocks. To choose an informative but non-redundant subset of more naturally shaped regions, we hybridize our system with the result of a generic segmentation algorithm. The diameter of the segments can be of the order of the resolution of the microscope. Using multiple photon coincidence measurements of the same sample in confocal mode, we are then able to estimate the brightness and number of molecules and give uniform confidence intervals on the molecule counts for each previously constructed segment. In other words, we establish a so-called molecular map with uniform error control. The performance of the algorithm is investigated on simulated and real data.
Collapse
Affiliation(s)
- Katharina Proksch
- Faculty of Electrical Engineering, Mathematics and Computer Science, Universiteit Twente, Zilverling 2098, Enschede 7500, The Netherlands
| | - Frank Werner
- Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 30, Würzburg 97074, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, Am Fassberg 11, Göttingen 37077, Germany
| | - Haisen Ta
- Center for Hybrid Nanostructures, Universität Hamburg, Luruper Chaussee 149, Hamburg 22607, Germany
| | - Axel Munk
- Institute for Mathematical Stochastics, University of Göttingen, Goldschmidtstraße 7, Göttingen 37077, Germany
- Felix Bernstein Institute for Mathematical Statistics in the Bioscience, University of Göttingen, Goldschmidtstraße 7, Göttingen 37077, Germany
| |
Collapse
|
2
|
Bestsennaia E, Maslov I, Balandin T, Alekseev A, Yudenko A, Abu Shamseye A, Zabelskii D, Baumann A, Catapano C, Karathanasis C, Gordeliy V, Heilemann M, Gensch T, Borshchevskiy V. Channelrhodopsin-2 Oligomerization in Cell Membrane Revealed by Photo-Activated Localization Microscopy. Angew Chem Int Ed Engl 2024; 63:e202307555. [PMID: 38226794 DOI: 10.1002/anie.202307555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/μm2 . Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.
Collapse
Affiliation(s)
- Ekaterina Bestsennaia
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ivan Maslov
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and the Biomedical Research Institute, Hasselt University, B3590, Diepenbeek, Belgium
- Laboratory for Photochemistry and Spectroscopy, Division for Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Taras Balandin
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Alexey Alekseev
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Anna Yudenko
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Assalla Abu Shamseye
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dmitrii Zabelskii
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
- European XFEL, 22869, Schenefeld, Germany
| | - Arnd Baumann
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Claudia Catapano
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Valentin Gordeliy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing 1, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing 7, IBI-7 (Structural Biochemistry), Forschungszentrum Jülich, 52428, Jülich, Germany
| |
Collapse
|
3
|
Abraham BG, Haikarainen T, Vuorio J, Girych M, Virtanen AT, Kurttila A, Karathanasis C, Heilemann M, Sharma V, Vattulainen I, Silvennoinen O. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. SCIENCE ADVANCES 2024; 10:eadl2097. [PMID: 38457493 PMCID: PMC10923518 DOI: 10.1126/sciadv.adl2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.
Collapse
Affiliation(s)
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Chen X, Li Y, Li X, Sun J, Czajkowsky DM, Shao Z. Quasi-equilibrium state based quantification of biological macromolecules in single-molecule localization microscopy. Methods Appl Fluoresc 2023; 11:047001. [PMID: 37647910 DOI: 10.1088/2050-6120/acf546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometryin vitro, it is presently challenging to precisely quantify this propertyin vivo,especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.
Collapse
Affiliation(s)
- Xuecheng Chen
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yaqian Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiaowei Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Daniel M Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
5
|
Basumatary J, Baro N, Zanacchi FC, Mondal PP. Temporally resolved SMLM (with large PAR shift) enabled visualization of dynamic HA cluster formation and migration in a live cell. Sci Rep 2023; 13:12561. [PMID: 37532749 PMCID: PMC10397235 DOI: 10.1038/s41598-023-39096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
The blinking properties of a single molecule are critical for single-molecule localization microscopy (SMLM). Typically, SMLM techniques involve recording several frames of diffraction-limited bright spots of single-molecules with a detector exposure time close to the blinking period. This sets a limit on the temporal resolution of SMLM to a few tens of milliseconds. Realizing that a substantial fraction of single molecules emit photons for time scales much shorter than the average blinking period, we propose accelerating data collection to capture these fast emitters. Here, we put forward a short exposure-based SMLM (shortSMLM) method powered by sCMOS detector for understanding dynamical events (both at single molecule and ensemble level). The technique is demonstrated on an Influenza-A disease model, where NIH3T3 cells (both fixed and live cells) were transfected by Dendra2-HA plasmid DNA. Analysis shows a 2.76-fold improvement in the temporal resolution that comes with a sacrifice in spatial resolution, and a particle resolution shift PAR-shift (in terms of localization precision) of [Formula: see text] 11.82 nm compared to standard SMLM. We visualized dynamic HA cluster formation in transfected cells post 24 h of DNA transfection. It is noted that a reduction in spatial resolution does not substantially alter cluster characteristics (cluster density, [Formula: see text] molecules/cluster, cluster spread, etc.) and, indeed, preserves critical features. Moreover, the time-lapse imaging reveals the dynamic formation and migration of Hemagglutinin (HA) clusters in a live cell. This suggests that [Formula: see text] using a synchronized high QE sCMOS detector (operated at short exposure times) is excellent for studying temporal dynamics in cellular system.
Collapse
Affiliation(s)
- Jigmi Basumatary
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Neptune Baro
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | | | - Partha Pratim Mondal
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
6
|
Scalisi S, Pisignano D, Cella Zanacchi F. Single-molecule localization microscopy goes quantitative. Microsc Res Tech 2023; 86:494-504. [PMID: 36601697 DOI: 10.1002/jemt.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
In the last few years, single-molecule localization (SMLM) techniques have been used to address biological questions in different research fields. More recently, super-resolution has also been proposed as a quantitative tool for quantifying protein copy numbers at the nanoscale level. In this scenario, quantitative approaches, mainly based on stepwise photobleaching and quantitative SMLM assisted by calibration standards, offer an exquisite tool for investigating protein complexes. This primer focuses on the basic concepts behind quantitative super-resolution microscopy, also providing strategies to overcome the technical hurdles that could limit their application.
Collapse
Affiliation(s)
- Silvia Scalisi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Pisa, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Pisa, Italy
| |
Collapse
|
7
|
An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14:1394. [PMID: 36914633 PMCID: PMC10011572 DOI: 10.1038/s41467-023-37029-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Collapse
|
8
|
Laitenberger O, Aspelmeier T, Staudt T, Geisler C, Munk A, Egner A. Towards Unbiased Fluorophore Counting in Superresolution Fluorescence Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:459. [PMID: 36770420 PMCID: PMC9921631 DOI: 10.3390/nano13030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
With the advent of fluorescence superresolution microscopy, nano-sized structures can be imaged with a previously unprecedented accuracy. Therefore, it is rapidly gaining importance as an analytical tool in the life sciences and beyond. However, the images obtained so far lack an absolute scale in terms of fluorophore numbers. Here, we use, for the first time, a detailed statistical model of the temporal imaging process which relies on a hidden Markov model operating on two timescales. This allows us to extract this information from the raw data without additional calibration measurements. We show this on the basis of added data from experiments on single Alexa 647 molecules as well as GSDIM/dSTORM measurements on DNA origami structures with a known number of labeling positions.
Collapse
Affiliation(s)
- Oskar Laitenberger
- Department of Optical Nanoscopy, Institut für Nanophotonik e.V., 37077 Göttingen, Germany
| | - Timo Aspelmeier
- Institute for Mathematical Stochastics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | - Thomas Staudt
- Institute for Mathematical Stochastics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Claudia Geisler
- Department of Optical Nanoscopy, Institut für Nanophotonik e.V., 37077 Göttingen, Germany
| | - Axel Munk
- Institute for Mathematical Stochastics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Egner
- Department of Optical Nanoscopy, Institut für Nanophotonik e.V., 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Ebert V, Eiring P, Helmerich DA, Seifert R, Sauer M, Doose S. Convex hull as diagnostic tool in single-molecule localization microscopy. Bioinformatics 2022; 38:5421-5429. [PMID: 36315073 DOI: 10.1093/bioinformatics/btac700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Single-molecule localization microscopy resolves individual fluorophores or fluorescence-labeled biomolecules. Data are provided as a set of localizations that distribute normally around the true fluorophore position with a variance determined by the localization precision. Characterizing the spatial fluorophore distribution to differentiate between resolution-limited localization clusters, which resemble individual biomolecules, and extended structures, which represent aggregated molecular complexes, is a common challenge. RESULTS We demonstrate the use of the convex hull and related hull properties of localization clusters for diagnostic purposes, as a parameter for cluster selection or as a tool to determine localization precision. AVAILABILITY AND IMPLEMENTATION https://github.com/super-resolution/Ebert-et-al-2022-supplement. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vincent Ebert
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Rick Seifert
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Julius-Maximilians University, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Jensen LG, Williamson DJ, Hahn U. Semiparametric point process modeling of blinking artifacts in PALM. Ann Appl Stat 2022. [DOI: 10.1214/21-aoas1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Ute Hahn
- Department of Mathematics, Aarhus University
| |
Collapse
|
11
|
Helmerich DA, Beliu G, Taban D, Meub M, Streit M, Kuhlemann A, Doose S, Sauer M. Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nat Methods 2022; 19:986-994. [PMID: 35915194 PMCID: PMC9349044 DOI: 10.1038/s41592-022-01548-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
Advances in super-resolution microscopy have demonstrated single-molecule localization precisions of a few nanometers. However, translation of such high localization precisions into sub-10-nm spatial resolution in biological samples remains challenging. Here we show that resonance energy transfer between fluorophores separated by less than 10 nm results in accelerated fluorescence blinking and consequently lower localization probabilities impeding sub-10-nm fluorescence imaging. We demonstrate that time-resolved fluorescence detection in combination with photoswitching fingerprint analysis can be used to determine the number and distance even of spatially unresolvable fluorophores in the sub-10-nm range. In combination with genetic code expansion with unnatural amino acids and bioorthogonal click labeling with small fluorophores, photoswitching fingerprint analysis can be used advantageously to reveal information about the number of fluorophores present and their distances in the sub-10-nm range in cells.
Collapse
Affiliation(s)
- Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Danush Taban
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Mara Meub
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Alexander Kuhlemann
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
Vega-Lugo J, da Rocha-Azevedo B, Dasgupta A, Jaqaman K. Analysis of conditional colocalization relationships and hierarchies in three-color microscopy images. J Cell Biol 2022; 221:e202106129. [PMID: 35552363 PMCID: PMC9111757 DOI: 10.1083/jcb.202106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Colocalization analysis of multicolor microscopy images is a cornerstone approach in cell biology. It provides information on the localization of molecules within subcellular compartments and allows the interrogation of known molecular interactions in their cellular context. However, almost all colocalization analyses are designed for two-color images, limiting the type of information that they reveal. Here, we describe an approach, termed "conditional colocalization analysis," for analyzing the colocalization relationships between three molecular entities in three-color microscopy images. Going beyond the question of whether colocalization is present or not, it addresses the question of whether the colocalization between two entities is influenced, positively or negatively, by their colocalization with a third entity. We benchmark the approach and showcase its application to investigate receptor-downstream adaptor colocalization relationships in the context of functionally relevant plasma membrane locations. The software for conditional colocalization analysis is available at https://github.com/kjaqaman/conditionalColoc.
Collapse
Affiliation(s)
- Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
13
|
Danial JSH, Quintana Y, Ros U, Shalaby R, Margheritis EG, Chumpen Ramirez S, Ungermann C, Garcia-Saez AJ, Cosentino K. Systematic Assessment of the Accuracy of Subunit Counting in Biomolecular Complexes Using Automated Single-Molecule Brightness Analysis. J Phys Chem Lett 2022; 13:822-829. [PMID: 35044771 PMCID: PMC8802318 DOI: 10.1021/acs.jpclett.1c03835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Analysis of single-molecule brightness allows subunit counting of high-order oligomeric biomolecular complexes. Although the theory behind the method has been extensively assessed, systematic analysis of the experimental conditions required to accurately quantify the stoichiometry of biological complexes remains challenging. In this work, we develop a high-throughput, automated computational pipeline for single-molecule brightness analysis that requires minimal human input. We use this strategy to systematically quantify the accuracy of counting under a wide range of experimental conditions in simulated ground-truth data and then validate its use on experimentally obtained data. Our approach defines a set of conditions under which subunit counting by brightness analysis is designed to work optimally and helps in establishing the experimental limits in quantifying the number of subunits in a complex of interest. Finally, we combine these features into a powerful, yet simple, software that can be easily used for the analysis of the stoichiometry of such complexes.
Collapse
Affiliation(s)
- John S. H. Danial
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- UK Dementia
Research Institute, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Yuri Quintana
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
| | - Uris Ros
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Raed Shalaby
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Eleonora G. Margheritis
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| | - Sabrina Chumpen Ramirez
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| | - Christian Ungermann
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| | - Ana J. Garcia-Saez
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Institute
for Genetics and Cologne Excellence Cluster on Cellular Stress Responses
in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Katia Cosentino
- Interfaculty
Institute of Biochemistry, University of
Tübingen, Tübingen 72076, Germany
- Department
of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück 49076, Germany
| |
Collapse
|
14
|
Stein J, Stehr F, Jungmann R, Schwille P. Calibration-free counting of low molecular copy numbers in single DNA-PAINT localization clusters. BIOPHYSICAL REPORTS 2021; 1:100032. [PMID: 36425461 PMCID: PMC9680712 DOI: 10.1016/j.bpr.2021.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized light microscopy by enabling optical resolution down to a few nanometer. Yet, localization precision commonly does not suffice to visually resolve single subunits in molecular assemblies or multimeric complexes. Because each targeted molecule contributes localizations during image acquisition, molecular counting approaches to reveal the target copy numbers within localization clusters have been persistently proposed since the early days of SMLM, most of which rely on preliminary knowledge of the dye photophysics or on a calibration to a reference. Previously, we developed localization-based fluorescence correlation spectroscopy (lbFCS) as an absolute ensemble counting approach for the SMLM-variant DNA-PAINT (points accumulation for imaging in nanoscale topography), for the first time, to our knowledge, circumventing the necessity for reference calibrations. Here, we present an extended concept termed lbFCS+, which allows absolute counting of copy numbers for individual localization clusters in a single DNA-PAINT image. In lbFCS+, absolute counting of fluorescent loci contained in individual nanoscopic volumes is achieved via precise measurement of the local hybridization rates of the fluorescently labeled oligonucleotides ("imagers") employed in DNA-PAINT imaging. In proof-of-principle experiments on DNA origami nanostructures, we demonstrate the ability of lbFCS+ to truthfully determine molecular copy numbers and imager association and dissociation rates in well-separated localization clusters containing up to 10 docking strands. For N ≤ 4 target molecules, lbFCS+ is even able to resolve integers, providing the potential to study the composition of up to tetrameric molecular complexes. Furthermore, we show that lbFCS+ allows resolving heterogeneous binding dynamics, enabling the distinction of stochastically generated and a priori indistinguishable DNA assemblies. Beyond advancing quantitative DNA-PAINT imaging, we believe that lbFCS+ could find promising applications ranging from biosensing to DNA computing.
Collapse
Affiliation(s)
- Johannes Stein
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Stehr
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
15
|
Gabitto MI, Marie-Nelly H, Pakman A, Pataki A, Darzacq X, Jordan MI. A Bayesian nonparametric approach to super-resolution single-molecule localization. Ann Appl Stat 2021. [DOI: 10.1214/21-aoas1441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Herve Marie-Nelly
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley
| | - Ari Pakman
- Department of Statistics and Center for Theretical Neuroscience, Columbia University
| | - Andras Pataki
- Center for Computational Biology, Flatiron Institute, Simons Foundation
| | - Xavier Darzacq
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley
| | | |
Collapse
|
16
|
Mancebo A, Mehra D, Banerjee C, Kim DH, Puchner EM. Efficient Cross-Correlation Filtering of One- and Two-Color Single Molecule Localization Microscopy Data. FRONTIERS IN BIOINFORMATICS 2021; 1:739769. [PMID: 36303727 PMCID: PMC9581065 DOI: 10.3389/fbinf.2021.739769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Single molecule localization microscopy has become a prominent technique to quantitatively study biological processes below the optical diffraction limit. By fitting the intensity profile of single sparsely activated fluorophores, which are often attached to a specific biomolecule within a cell, the locations of all imaged fluorophores are obtained with ∼20 nm resolution in the form of a coordinate table. While rendered super-resolution images reveal structural features of intracellular structures below the optical diffraction limit, the ability to further analyze the molecular coordinates presents opportunities to gain additional quantitative insights into the spatial distribution of a biomolecule of interest. For instance, pair-correlation or radial distribution functions are employed as a measure of clustering, and cross-correlation analysis reveals the colocalization of two biomolecules in two-color SMLM data. Here, we present an efficient filtering method for SMLM data sets based on pair- or cross-correlation to isolate localizations that are clustered or appear in proximity to a second set of localizations in two-color SMLM data. In this way, clustered or colocalized localizations can be separately rendered and analyzed to compare other molecular properties to the remaining localizations, such as their oligomeric state or mobility in live cell experiments. Current matrix-based cross-correlation analyses of large data sets quickly reach the limitations of computer memory due to the space complexity of constructing the distance matrices. Our approach leverages k-dimensional trees to efficiently perform range searches, which dramatically reduces memory needs and the time for the analysis. We demonstrate the versatile applications of this method with simulated data sets as well as examples of two-color SMLM data. The provided MATLAB code and its description can be integrated into existing localization analysis packages and provides a useful resource to analyze SMLM data with new detail.
Collapse
Affiliation(s)
- Angel Mancebo
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| | - Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Chiranjib Banerjee
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Elias M. Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
18
|
Estimating the dynamic range of quantitative single-molecule localization microscopy. Biophys J 2021; 120:3901-3910. [PMID: 34437847 DOI: 10.1016/j.bpj.2021.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023] Open
Abstract
In recent years, there have been significant advances in quantifying molecule copy number and protein stoichiometry with single-molecule localization microscopy (SMLM). However, as the density of fluorophores per diffraction-limited spot increases, distinguishing between detection events from different fluorophores becomes progressively more difficult, affecting the accuracy of such measurements. Although essential to the design of quantitative experiments, the dynamic range of SMLM counting techniques has not yet been studied in detail. Here, we provide a working definition of the dynamic range for quantitative SMLM in terms of the relative number of missed localizations or blinks and explore the photophysical and experimental parameters that affect it. We begin with a simple two-state model of blinking fluorophores, then extend the model to incorporate photobleaching and temporal binning by the detection camera. From these models, we first show that our estimates of the dynamic range agree with realistic simulations of the photoswitching. We find that the dynamic range scales inversely with the duty cycle when counting both blinks and localizations. Finally, we validate our theoretical approach on direct stochastic optical reconstruction microscopy (dSTORM) data sets of photoswitching Alexa Fluor 647 dyes. Our results should help guide researchers in designing and implementing SMLM-based molecular counting experiments.
Collapse
|
19
|
Sanchez CP, Patra P, Chang SYS, Karathanasis C, Hanebutte L, Kilian N, Cyrklaff M, Heilemann M, Schwarz US, Kudryashev M, Lanzer M. KAHRP dynamically relocalizes to remodeled actin junctions and associates with knob spirals in Plasmodium falciparum-infected erythrocytes. Mol Microbiol 2021; 117:274-292. [PMID: 34514656 DOI: 10.1111/mmi.14811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
The knob-associated histidine-rich protein (KAHRP) plays a pivotal role in the pathophysiology of Plasmodium falciparum malaria by forming membrane protrusions in infected erythrocytes, which anchor parasite-encoded adhesins to the membrane skeleton. The resulting sequestration of parasitized erythrocytes in the microvasculature leads to severe disease. Despite KAHRP being an important virulence factor, its physical location within the membrane skeleton is still debated, as is its function in knob formation. Here, we show by super-resolution microscopy that KAHRP initially associates with various skeletal components, including ankyrin bridges, but eventually colocalizes with remnant actin junctions. We further present a 35 Å map of the spiral scaffold underlying knobs and show that a KAHRP-targeting nanoprobe binds close to the spiral scaffold. Single-molecule localization microscopy detected ~60 KAHRP molecules/knob. We propose a dynamic model of KAHRP organization and a function of KAHRP in attaching other factors to the spiral scaffold.
Collapse
Affiliation(s)
- Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Pintu Patra
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Shih-Ying Scott Chang
- Max Planck Institute for Biophysics and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt, Frankfurt, Germany
| | - Christos Karathanasis
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Lukas Hanebutte
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Nicole Kilian
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Mike Heilemann
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.,Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt, Frankfurt, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Bohrer CH, Yang X, Thakur S, Weng X, Tenner B, McQuillen R, Ross B, Wooten M, Chen X, Zhang J, Roberts E, Lakadamyali M, Xiao J. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 2021; 18:669-677. [PMID: 34059826 PMCID: PMC9040192 DOI: 10.1038/s41592-021-01154-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.
Collapse
Affiliation(s)
- Christopher H. Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Tenner
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Melike Lakadamyali
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Bohrer CH, Yang X, Thakur S, Weng X, Tenner B, McQuillen R, Ross B, Wooten M, Chen X, Zhang J, Roberts E, Lakadamyali M, Xiao J. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat Methods 2021. [PMID: 34059826 DOI: 10.1101/768051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) relies on the blinking behavior of a fluorophore, which is the stochastic switching between fluorescent and dark states. Blinking creates multiple localizations belonging to the same fluorophore, confounding quantitative analyses and interpretations. Here we present a method, termed distance distribution correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on obtaining the true pairwise distance distribution of different fluorophores naturally from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that, using the true pairwise distribution, we can define and maximize the likelihood, obtaining a set of localizations void of blinking artifacts. DDC results in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications, enabling accurate reconstruction and quantification of SMLM images.
Collapse
Affiliation(s)
- Christopher H Bohrer
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Tenner
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Brian Ross
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Matthew Wooten
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Nienhaus K, Nienhaus GU. Fluorescent proteins of the EosFP clade: intriguing marker tools with multiple photoactivation modes for advanced microscopy. RSC Chem Biol 2021; 2:796-814. [PMID: 34458811 PMCID: PMC8341165 DOI: 10.1039/d1cb00014d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Optical fluorescence microscopy has taken center stage in the exploration of biological structure and dynamics, especially on live specimens, and super-resolution imaging methods continue to deliver exciting new insights into the molecular foundations of life. Progress in the field, however, crucially hinges on advances in fluorescent marker technology. Among these, fluorescent proteins (FPs) of the GFP family are advantageous because they are genetically encodable, so that live cells, tissues or organisms can produce these markers all by themselves. A subclass of them, photoactivatable FPs, allow for control of their fluorescence emission by light irradiation, enabling pulse-chase imaging and super-resolution microscopy. In this review, we discuss FP variants of the EosFP clade that have been optimized by amino acid sequence modification to serve as markers for various imaging techniques. In general, two different modes of photoactivation are found, reversible photoswitching between a fluorescent and a nonfluorescent state and irreversible green-to red photoconversion. First, we describe their basic structural and optical properties. We then summarize recent research aimed at elucidating the photochemical processes underlying photoactivation. Finally, we briefly introduce various advanced imaging methods facilitated by specific EosFP variants, and show some exciting sample applications.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology 76049 Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology 76021 Karlsruhe Germany
- Department of Physics, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
23
|
Saguy A, Baldering TN, Weiss LE, Nehme E, Karathanasis C, Dietz MS, Heilemann M, Shechtman Y. Automated Analysis of Fluorescence Kinetics in Single-Molecule Localization Microscopy Data Reveals Protein Stoichiometry. J Phys Chem B 2021; 125:5716-5721. [PMID: 34042461 DOI: 10.1021/acs.jpcb.1c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the function of protein complexes requires information on their molecular organization, specifically, their oligomerization level. Optical super-resolution microscopy can localize single protein complexes in cells with high precision, however, the quantification of their oligomerization level, remains a challenge. Here, we present a Quantitative Algorithm for Fluorescent Kinetics Analysis (QAFKA), that serves as a fully automated workflow for quantitative analysis of single-molecule localization microscopy (SMLM) data by extracting fluorophore "blinking" events. QAFKA includes an automated localization algorithm, the extraction of emission features per localization cluster, and a deep neural network-based estimator that reports the ratios of cluster types within the population. We demonstrate molecular quantification of protein monomers and dimers on simulated and experimental SMLM data. We further demonstrate that QAFKA accurately reports quantitative information on the monomer/dimer equilibrium of membrane receptors in single immobilized cells, opening the door to single-cell single-protein analysis.
Collapse
Affiliation(s)
- Alon Saguy
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Tim N Baldering
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| | - Lucien E Weiss
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Elias Nehme
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.,Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| | - Yoav Shechtman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
24
|
Ganji M, Schlichthaerle T, Eklund AS, Strauss S, Jungmann R. Quantitative Assessment of Labeling Probes for Super-Resolution Microscopy Using Designer DNA Nanostructures. Chemphyschem 2021; 22:911-914. [PMID: 33720501 PMCID: PMC8251534 DOI: 10.1002/cphc.202100185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Improving labeling probes for state-of-the-art super-resolution microscopy is becoming of major importance. However, there is currently a lack of tools to quantitatively evaluate probe performance regarding efficiency, precision, and achievable resolution in an unbiased yet modular fashion. Herein, we introduce designer DNA origami structures combined with DNA-PAINT to overcome this issue and evaluate labeling efficiency, precision, and quantification using antibodies and nanobodies as exemplary labeling probes. Whereas current assessment of binders is mostly qualitative, e. g. based on an expected staining pattern, we herein present a quantitative analysis platform of the antigen labeling efficiency and achievable resolution, allowing researchers to choose the best performing binder. The platform can furthermore be readily adapted for discovery and precise quantification of a large variety of additional labeling probes.
Collapse
Affiliation(s)
- Mahipal Ganji
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Current Address: Department of Biochemistry, Indian Institute of Science, CV Raman Road, 560012, Bengaluru, India
| | - Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Current Address: Department of Biochemistry, Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexandra S Eklund
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
25
|
Sample Preparation and Imaging Conditions Affect mEos3.2 Photophysics in Fission Yeast Cells. Biophys J 2021; 120:21-34. [PMID: 33217381 PMCID: PMC7820738 DOI: 10.1016/j.bpj.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023] Open
Abstract
Photoconvertible fluorescent proteins (PCFPs) are widely used in super-resolution microscopy and studies of cellular dynamics. However, our understanding of their photophysics is still limited, hampering their quantitative application. For example, we do not know the optimal sample preparation methods or imaging conditions to count protein molecules fused to PCFPs by single-molecule localization microscopy in live and fixed cells. We also do not know how the behavior of PCFPs in live cells compares with fixed cells. Therefore, we investigated how formaldehyde fixation influences the photophysical properties of the popular green-to-red PCFP mEos3.2 in fission yeast cells under a wide range of imaging conditions. We estimated photophysical parameters by fitting a three-state model of photoconversion and photobleaching to the time course of fluorescence signal per yeast cell expressing mEos3.2. We discovered that formaldehyde fixation makes the fluorescence signal, photoconversion rate, and photobleaching rate of mEos3.2 sensitive to the buffer conditions likely by permeabilizing the yeast cell membrane. Under some imaging conditions, the time-integrated mEos3.2 signal per yeast cell is similar in live cells and fixed cells imaged in buffer at pH 8.5 with 1 mM DTT, indicating that light chemical fixation does not destroy mEos3.2 molecules. We also discovered that 405-nm irradiation drove some red-state mEos3.2 molecules to enter an intermediate dark state, which can be converted back to the red fluorescent state by 561-nm illumination. Our findings provide a guide to quantitatively compare conditions for imaging mEos3.2-tagged molecules in yeast cells. Our imaging assay and mathematical model are easy to implement and provide a simple quantitative approach to measure the time-integrated signal and the photoconversion and photobleaching rates of fluorescent proteins in cells.
Collapse
|
26
|
Baldering TN, Karathanasis C, Harwardt MLIE, Freund P, Meurer M, Rahm JV, Knop M, Dietz MS, Heilemann M. CRISPR/Cas12a-mediated labeling of MET receptor enables quantitative single-molecule imaging of endogenous protein organization and dynamics. iScience 2020; 24:101895. [PMID: 33364584 PMCID: PMC7753144 DOI: 10.1016/j.isci.2020.101895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/12/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) reports on protein organization in cells with near-molecular resolution and in combination with stoichiometric labeling enables protein counting. Fluorescent proteins allow stoichiometric labeling of cellular proteins; however, most methods either lead to overexpression or are complex and time demanding. We introduce CRISPR/Cas12a for simple and efficient tagging of endogenous proteins with a photoactivatable protein for quantitative SMLM and single-particle tracking. We constructed a HEK293T cell line with the receptor tyrosine kinase MET tagged with mEos4b and demonstrate full functionality. We determine the oligomeric state of MET with quantitative SMLM and find a reorganization from monomeric to dimeric MET upon ligand stimulation. In addition, we measured the mobility of single MET receptors in vivo in resting and ligand-treated cells. The combination of CRISPR/Cas12a-assisted endogenous protein labeling and super-resolution microscopy represents a powerful tool for cell biological research with molecular resolution. CRISPR/Cas12a enables endogenous protein labeling for super-resolution microscopy HEK293T cells were generated with MET endogenously labeled with mEos4b Quantitative PALM microscopy reports efficient dimerization of MET receptor Single-particle tracking shows increased MET immobilization upon ligand treatment
Collapse
Affiliation(s)
- Tim N Baldering
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Christos Karathanasis
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Marie-Lena I E Harwardt
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Petra Freund
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Matthias Meurer
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Johanna V Rahm
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
27
|
Platzer R, Rossboth BK, Schneider MC, Sevcsik E, Baumgart F, Stockinger H, Schütz GJ, Huppa JB, Brameshuber M. Unscrambling fluorophore blinking for comprehensive cluster detection via photoactivated localization microscopy. Nat Commun 2020; 11:4993. [PMID: 33020470 PMCID: PMC7536177 DOI: 10.1038/s41467-020-18726-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Determining nanoscale protein distribution via Photoactivated Localization Microscopy (PALM) mandates precise knowledge of the applied fluorophore's blinking properties to counteract overcounting artifacts that distort the resulting biomolecular distributions. Here, we present a readily applicable methodology to determine, optimize and quantitatively account for the blinking behavior of any PALM-compatible fluorophore. Using a custom-designed platform, we reveal complex blinking of two photoswitchable fluorescence proteins (PS-CFP2 and mEOS3.2) and two photoactivatable organic fluorophores (PA Janelia Fluor 549 and Abberior CAGE 635) with blinking cycles on time scales of several seconds. Incorporating such detailed information in our simulation-based analysis package allows for robust evaluation of molecular clustering based on individually recorded single molecule localization maps.
Collapse
Affiliation(s)
- René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
28
|
Möller J, Isbilir A, Sungkaworn T, Osberg B, Karathanasis C, Sunkara V, Grushevskyi EO, Bock A, Annibale P, Heilemann M, Schütte C, Lohse MJ. Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nat Chem Biol 2020; 16:946-954. [PMID: 32541966 DOI: 10.1038/s41589-020-0566-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. Using single-molecule microscopy combined with super-resolution techniques on intact cells, we describe here a dynamic monomer-dimer equilibrium of µ-opioid receptors (µORs), where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates both temporally and in its agonist- and phosphorylation-dependence with β-arrestin2 binding to the receptors. This dimerization is independent from, but may precede, µOR internalization. These data suggest a new level of GPCR regulation that links dimer formation to specific agonists and their downstream signals.
Collapse
Affiliation(s)
- Jan Möller
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Ali Isbilir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Brendan Osberg
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Bioinformatics and Omics Data Science Platform, Berlin, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Eugene O Grushevskyi
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christof Schütte
- Zuse Institute Berlin, Berlin, Germany.,Free University of Berlin, Berlin, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,Free University of Berlin, Berlin, Germany. .,ISAR Bioscience Institute, Munich/Planegg, Germany.
| |
Collapse
|
29
|
Weinelt N, Karathanasis C, Smith S, Medler J, Malkusch S, Fulda S, Wajant H, Heilemann M, van Wijk SJL. Quantitative single-molecule imaging of TNFR1 reveals zafirlukast as antagonist of TNFR1 clustering and TNFα-induced NF-ĸB signaling. J Leukoc Biol 2020; 109:363-371. [PMID: 32401398 DOI: 10.1002/jlb.2ab0420-572rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
TNFR1 is a crucial regulator of NF-ĸB-mediated proinflammatory cell survival responses and programmed cell death (PCD). Deregulation of TNFα- and TNFR1-controlled NF-ĸB signaling underlies major diseases, like cancer, inflammation, and autoimmune diseases. Therefore, although being routinely used, antagonists of TNFα might also affect TNFR2-mediated processes, so that alternative approaches to directly antagonize TNFR1 are beneficial. Here, we apply quantitative single-molecule localization microscopy (SMLM) of TNFR1 in physiologic cellular settings to validate and characterize TNFR1 inhibitory substances, exemplified by the recently described TNFR1 antagonist zafirlukast. Treatment of TNFR1-mEos2 reconstituted TNFR1/2 knockout mouse embryonic fibroblasts (MEFs) with zafirlukast inhibited both ligand-independent preligand assembly domain (PLAD)-mediated TNFR1 dimerization as well as TNFα-induced TNFR1 oligomerization. In addition, zafirlukast-mediated inhibition of TNFR1 clustering was accompanied by deregulation of acute and prolonged NF-ĸB signaling in reconstituted TNFR1-mEos2 MEFs and human cervical carcinoma cells. These findings reveal the necessity of PLAD-mediated, ligand-independent TNFR1 dimerization for NF-ĸB activation, highlight the PLAD as central regulator of TNFα-induced TNFR1 oligomerization, and demonstrate that TNFR1-mEos2 MEFs can be used to investigate TNFR1-antagonizing compounds employing single-molecule quantification and functional NF-ĸB assays at physiologic conditions.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auverahaus, Würzburg, Germany
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner site Frankfurt am Main, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auverahaus, Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Arnold AM, Schneider MC, Hüsson C, Sablatnig R, Brameshuber M, Baumgart F, Schütz GJ. Verifying molecular clusters by 2-color localization microscopy and significance testing. Sci Rep 2020; 10:4230. [PMID: 32144344 PMCID: PMC7060173 DOI: 10.1038/s41598-020-60976-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
While single-molecule localization microscopy (SMLM) offers the invaluable prospect to visualize cellular structures below the diffraction limit of light microscopy, its potential has not yet been fully capitalized due to its inherent susceptibility to blinking artifacts. Particularly, overcounting of single molecule localizations has impeded a reliable and sensitive detection of biomolecular nanoclusters. Here we introduce a 2-Color Localization microscopy And Significance Testing Approach (2-CLASTA), providing a parameter-free statistical framework for the qualitative analysis of two-dimensional SMLM data via significance testing methods. 2-CLASTA yields p-values for the null hypothesis of random biomolecular distributions, independent of the blinking behavior of the chosen fluorescent labels. The method is parameter-free and does not require any additional measurements nor grouping of localizations. We validated the method both by computer simulations as well as experimentally, using protein concatemers as a mimicry of biomolecular clustering. As the new approach is not affected by overcounting artifacts, it is able to detect biomolecular clustering of various shapes at high sensitivity down to a level of dimers.
Collapse
Affiliation(s)
- Andreas M Arnold
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna, Austria
| | | | - Christoph Hüsson
- Institute of Visual Computing and Human-Centered Technology, TU Wien, Favoritenstrasse 9-11, A-1040, Vienna, Austria
| | - Robert Sablatnig
- Institute of Visual Computing and Human-Centered Technology, TU Wien, Favoritenstrasse 9-11, A-1040, Vienna, Austria
| | - Mario Brameshuber
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna, Austria
| | - Florian Baumgart
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna, Austria.
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060, Vienna, Austria.
| |
Collapse
|
31
|
Staudt T, Aspelmeier T, Laitenberger O, Geisler C, Egner A, Munk A. Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy. Stat Sci 2020. [DOI: 10.1214/19-sts753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Karathanasis C, Medler J, Fricke F, Smith S, Malkusch S, Widera D, Fulda S, Wajant H, van Wijk SJL, Dikic I, Heilemann M. Single-molecule imaging reveals the oligomeric state of functional TNFα-induced plasma membrane TNFR1 clusters in cells. Sci Signal 2020; 13:13/614/eaax5647. [PMID: 31937565 DOI: 10.1126/scisignal.aax5647] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ligand-induced tumor necrosis factor receptor 1 (TNFR1) activation controls nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling, cell proliferation, programmed cell death, and survival and is crucially involved in inflammation, autoimmune disorders, and cancer progression. Despite the relevance of TNFR1 clustering for signaling, oligomerization of ligand-free and ligand-activated TNFR1 remains controversial. At present, models range from ligand-independent receptor predimerization to ligand-induced oligomerization. Here, we used quantitative, single-molecule superresolution microscopy to study TNFR1 assembly directly in native cellular settings and at physiological cell surface abundance. In the absence of its ligand TNFα, TNFR1 assembled into monomeric and dimeric receptor units. Upon binding of TNFα, TNFR1 clustered predominantly not only into trimers but also into higher-order oligomers. A functional mutation in the preligand assembly domain of TNFR1 resulted in only monomeric TNFR1, which exhibited impaired ligand binding. In contrast, a form of TNFR1 with a mutation in the ligand-binding CRD2 subdomain retained the monomer-to-dimer ratio of the unliganded wild-type TNFR1 but exhibited no ligand binding. These results underscore the importance of ligand-independent TNFR1 dimerization in NF-κB signaling.
Collapse
Affiliation(s)
- Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auverahaus, Grombühlstrasse 12, 97080 Würzburg, Germany
| | - Franziska Fricke
- Institute of Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Sonja Smith
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Komturstrasse 3a, 60528 Frankfurt am Main, Germany
| | - Sebastian Malkusch
- Institute of Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, RG6 6UB Reading, UK
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Komturstrasse 3a, 60528 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Auverahaus, Grombühlstrasse 12, 97080 Würzburg, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Komturstrasse 3a, 60528 Frankfurt am Main, Germany.
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Stein J, Stehr F, Schueler P, Blumhardt P, Schueder F, Mücksch J, Jungmann R, Schwille P. Toward Absolute Molecular Numbers in DNA-PAINT. NANO LETTERS 2019; 19:8182-8190. [PMID: 31535868 PMCID: PMC6856960 DOI: 10.1021/acs.nanolett.9b03546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/16/2019] [Indexed: 05/17/2023]
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized optical microscopy, extending resolution down to the level of individual molecules. However, the actual counting of molecules relies on preliminary knowledge of the blinking behavior of individual targets or on a calibration to a reference. In particular for biological applications, great care has to be taken because a plethora of factors influence the quality and applicability of calibration-dependent approaches to count targets in localization clusters particularly in SMLM data obtained from heterogeneous samples. Here, we present localization-based fluorescence correlation spectroscopy (lbFCS) as the first absolute molecular counting approach for DNA-points accumulation for imaging in nanoscale topography (PAINT) microscopy and, to our knowledge, for SMLM in general. We demonstrate that lbFCS overcomes the limitation of previous DNA-PAINT counting and allows the quantification of target molecules independent of the localization cluster density. In accordance with the promising results of our systematic proof-of-principle study on DNA origami structures as idealized targets, lbFCS could potentially also provide quantitative access to more challenging biological targets featuring heterogeneous cluster sizes in the future.
Collapse
Affiliation(s)
- Johannes Stein
- Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Florian Stehr
- Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Patrick Schueler
- Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - Florian Schueder
- Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty
of Physics, Ludwig Maximilian University, 80539 Munich, Germany
| | - Jonas Mücksch
- Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ralf Jungmann
- Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty
of Physics, Ludwig Maximilian University, 80539 Munich, Germany
| | - Petra Schwille
- Max
Planck Institute of Biochemistry, 82152 Martinsried, Germany
- E-mail:
| |
Collapse
|
34
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
35
|
Dietz MS, Heilemann M. Optical super-resolution microscopy unravels the molecular composition of functional protein complexes. NANOSCALE 2019; 11:17981-17991. [PMID: 31573593 DOI: 10.1039/c9nr06364a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Optical super-resolution microscopy has revolutionized our understanding of cell biology. Next to visualizing cellular structures with near-molecular spatial resolution, an additional benefit is the molecular characterization of biomolecular complexes directly in an intact cell. Single-molecule localization microscopy, as one technology out of the toolbox of super-resolution methods, generates images by detecting the position of single fluorophore labels and is particularly suited for molecular quantification. We review imaging and analysis methods employing single-molecule localization microscopy and extract molecule numbers.
Collapse
Affiliation(s)
- Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.
| | | |
Collapse
|
36
|
Frahm L, Keller-Findeisen J, Alt P, Schnorrenberg S, Del Álamo Ruiz M, Aspelmeier T, Munk A, Jakobs S, Hell SW. Molecular contribution function in RESOLFT nanoscopy. OPTICS EXPRESS 2019; 27:21956-21987. [PMID: 31510262 DOI: 10.1364/oe.27.021956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
The ultimate objective of a microscope of the highest resolution is to map the molecules of interest in the sample. Traditionally, linear imaging systems are characterized by their spatial frequency transfer function, which is given, in real space, by the point spread function (PSF). By extending the concept of the PSF towards the molecular contribution function (MCF), that quantifies the average contribution of a single fluorophore to the image, a straightforward concept for counting fluorophores is obtained. Using reversible saturable optical fluorescence transitions (RESOLFT), fluorophores are effectively activated only in a small, subdiffraction-sized volume before they are read out. During readout the signal exhibits an increased variance due to the stochastic nature of prior activation, which scales quadratically with the brightness of the active fluorophores while the mean of the signal scales only linearly with it. Using a two-state Markov model for the activation, showing comparable behavior to the switching kinetics of the switchable fluorescent protein rsEGFP2, we can approximate quantitatively the MCF of RESOLFT nanoscopy allowing to count the number of fluorophores within a subdiffraction-sized region of the sample. The method is validated on measurements of tubulin structures in Drosophila melagonaster larvae. Modeling and estimation of the MCF is a promising approach to quantitative microscopy.
Collapse
|
37
|
Böger C, Hafner AS, Schlichthärle T, Strauss MT, Malkusch S, Endesfelder U, Jungmann R, Schuman EM, Heilemann M. Super-resolution imaging and estimation of protein copy numbers at single synapses with DNA-point accumulation for imaging in nanoscale topography. NEUROPHOTONICS 2019; 6:035008. [PMID: 31637284 PMCID: PMC6795074 DOI: 10.1117/1.nph.6.3.035008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/31/2019] [Indexed: 05/25/2023]
Abstract
In the brain, the strength of each individual synapse is defined by the complement of proteins present or the "local proteome." Activity-dependent changes in synaptic strength are the result of changes in this local proteome and posttranslational protein modifications. Although most synaptic proteins have been identified, we still know little about protein copy numbers in individual synapses and variations between synapses. We use DNA-point accumulation for imaging in nanoscale topography as a single-molecule super-resolution imaging technique to visualize and quantify protein copy numbers in single synapses. The imaging technique provides near-molecular spatial resolution, is unaffected by photobleaching, enables imaging of large field of views, and provides quantitative molecular information. We demonstrate these benefits by accessing copy numbers of surface AMPA-type receptors at single synapses of rat hippocampal neurons along dendritic segments.
Collapse
Affiliation(s)
- Carolin Böger
- Goethe University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | | | - Thomas Schlichthärle
- Ludwig Maximilian University, Center for Nanoscience, Faculty of Physics, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maximilian T. Strauss
- Ludwig Maximilian University, Center for Nanoscience, Faculty of Physics, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Malkusch
- Goethe University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| | | | - Ralf Jungmann
- Ludwig Maximilian University, Center for Nanoscience, Faculty of Physics, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Mike Heilemann
- Goethe University, Institute of Physical and Theoretical Chemistry, Frankfurt, Germany
| |
Collapse
|
38
|
Baldering TN, Dietz MS, Gatterdam K, Karathanasis C, Wieneke R, Tampé R, Heilemann M. Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM. Mol Biol Cell 2019; 30:1369-1376. [PMID: 30969885 PMCID: PMC6724688 DOI: 10.1091/mbc.e18-10-0661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
How membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy. We identified mEos3.2 and mMaple3 to be suitable for molecular quantification through blinking histogram analysis. We designed synthetic and genetic dimers of mEos3.2 as well as fusion proteins of monomeric and dimeric membrane proteins as reference structures, and we demonstrate their versatile use for quantitative superresolution imaging in vitro and in situ. We further found that the blinking behavior of mEos3.2 and mMaple3 is modified by a reducing agent, offering the possibility to adjust blinking parameters according to experimental needs.
Collapse
Affiliation(s)
- Tim N Baldering
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Karl Gatterdam
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Christos Karathanasis
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
39
|
Post RAJ, van der Zwaag D, Bet G, Wijnands SPW, Albertazzi L, Meijer EW, van der Hofstad RW. A stochastic view on surface inhomogeneity of nanoparticles. Nat Commun 2019; 10:1663. [PMID: 30971686 PMCID: PMC6458121 DOI: 10.1038/s41467-019-09595-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
The interactions between and with nanostructures can only be fully understood when the functional group distribution on their surfaces can be quantified accurately. Here we apply a combination of direct stochastic optical reconstruction microscopy (dSTORM) imaging and probabilistic modelling to analyse molecular distributions on spherical nanoparticles. The properties of individual fluorophores are assessed and incorporated into a model for the dSTORM imaging process. Using this tailored model, overcounting artefacts are greatly reduced and the locations of dye labels can be accurately estimated, revealing their spatial distribution. We show that standard chemical protocols for dye attachment lead to inhomogeneous functionalization in the case of ubiquitous polystyrene nanoparticles. Moreover, we demonstrate that stochastic fluctuations result in large variability of the local group density between particles. These results cast doubt on the uniform surface coverage commonly assumed in the creation of amorphous functional nanoparticles and expose a striking difference between the average population and individual nanoparticle coverage.
Collapse
Affiliation(s)
- R A J Post
- Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - D van der Zwaag
- Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- DSM Coating Resins, P.O. Box 123, 5145 PE, Waalwijk, The Netherlands
| | - G Bet
- Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Mathematics and Computer Science 'Ulisse Dini', University of Florence, 50134, Florence, Italy
| | - S P W Wijnands
- Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - L Albertazzi
- Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - E W Meijer
- Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - R W van der Hofstad
- Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
40
|
van Wijk SJ, Fulda S, Dikic I, Heilemann M. Visualizing ubiquitination in mammalian cells. EMBO Rep 2019; 20:embr.201846520. [PMID: 30665942 DOI: 10.15252/embr.201846520] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Covalent modification of proteins with ubiquitin is essential for the majority of biological processes in mammalian cells. Numerous proteins are conjugated with single or multiple ubiquitin molecules or chains in a dynamic fashion, often determining protein half-lives, localization or function. Experimental approaches to study ubiquitination have been dominated by genetic and biochemical analysis of enzyme structure-function relationships, reaction mechanisms and physiological relevance. Here, we provide an overview of recent developments in microscopy-based imaging of ubiquitination, available reagents and technologies. We discuss the progress in direct and indirect imaging of differentially linked ubiquitin chains in fixed and living cells using confocal fluorescence microscopy and super-resolution microscopy, illustrated by the role of ubiquitin in antibacterial autophagy and pro-inflammatory signalling. Finally, we speculate on future developments and forecast a transition from qualitative to quantitative super-resolution approaches to understand fundamental aspects of ubiquitination and the formation and distribution of functional E3 ligase protein complexes in their native environment.
Collapse
Affiliation(s)
- Sjoerd Jl van Wijk
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Gruβmayer KS, Yserentant K, Herten DP. Photons in - numbers out: perspectives in quantitative fluorescence microscopy for in situ protein counting. Methods Appl Fluoresc 2019; 7:012003. [DOI: 10.1088/2050-6120/aaf2eb] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Baumgart F, Arnold AM, Rossboth BK, Brameshuber M, Schütz GJ. What we talk about when we talk about nanoclusters. Methods Appl Fluoresc 2018; 7:013001. [PMID: 30412469 DOI: 10.1088/2050-6120/aaed0f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superresolution microscopy results have sparked the idea that many membrane proteins are not randomly distributed across the plasma membrane but are instead arranged in nanoclusters. Frequently, these new results seemed to confirm older data based on biochemical and electron microscopy experiments. Recently, however, it was recognized that multiple countings of the very same fluorescently labeled protein molecule can be easily confused with true protein clusters. Various strategies have been developed, which are intended to solve the problem of discriminating true protein clusters from imaging artifacts. We believe that there is currently no perfect algorithm for this problem; instead, different approaches have different strengths and weaknesses. In this review, we discuss single molecule localization microscopy in view of its ability to detect nanoclusters of membrane proteins. To capture the different views on nanoclustering, we chose an unconventional style for this article: we placed its scientific content in the setting of a fictive conference, where five researchers from different fields discuss the problem of detecting and quantifying nanoclusters. Using this style, we feel that the different approaches common for different research areas can be well illustrated. Similarities to a short story by Raymond Carver are not unintentional.
Collapse
|
43
|
Golfetto O, Wakefield DL, Cacao EE, Avery KN, Kenyon V, Jorand R, Tobin SJ, Biswas S, Gutierrez J, Clinton R, Ma Y, Horne DA, Williams JC, Jovanović-Talisman T. A Platform To Enhance Quantitative Single Molecule Localization Microscopy. J Am Chem Soc 2018; 140:12785-12797. [PMID: 30256630 PMCID: PMC6187371 DOI: 10.1021/jacs.8b04939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative single molecule localization microscopy (qSMLM) is a powerful approach to study in situ protein organization. However, uncertainty regarding the photophysical properties of fluorescent reporters can bias the interpretation of detected localizations and subsequent quantification. Furthermore, strategies to efficiently detect endogenous proteins are often constrained by label heterogeneity and reporter size. Here, a new surface assay for molecular isolation (SAMI) was developed for qSMLM and used to characterize photophysical properties of fluorescent proteins and dyes. SAMI-qSMLM afforded robust quantification. To efficiently detect endogenous proteins, we used fluorescent ligands that bind to a specific site on engineered antibody fragments. Both the density and nano-organization of membrane-bound epidermal growth factor receptors (EGFR, HER2, and HER3) were determined by a combination of SAMI, antibody engineering, and pair-correlation analysis. In breast cancer cell lines, we detected distinct differences in receptor density and nano-organization upon treatment with therapeutic agents. This new platform can improve molecular quantification and can be developed to study the local protein environment of intact cells.
Collapse
Affiliation(s)
- Ottavia Golfetto
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Devin L Wakefield
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Eliedonna E Cacao
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Kendra N Avery
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Victor Kenyon
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Raphael Jorand
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Steven J Tobin
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Sunetra Biswas
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Jennifer Gutierrez
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Ronald Clinton
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Yuelong Ma
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - David A Horne
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - John C Williams
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| | - Tijana Jovanović-Talisman
- Department of Molecular Medicine , Beckman Research Institute, City of Hope , 1500 East Duarte Road , Duarte , California 91010 , United States
| |
Collapse
|
44
|
Baddeley D, Bewersdorf J. Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. Annu Rev Biochem 2018; 87:965-989. [PMID: 29272143 DOI: 10.1146/annurev-biochem-060815-014801] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Super-resolution optical imaging based on the switching and localization of individual fluorescent molecules [photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), etc.] has evolved remarkably over the last decade. Originally driven by pushing technological limits, it has become a tool of biological discovery. The initial demand for impressive pictures showing well-studied biological structures has been replaced by a need for quantitative, reliable data providing dependable evidence for specific unresolved biological hypotheses. In this review, we highlight applications that showcase this development, identify the features that led to their success, and discuss remaining challenges and difficulties. In this context, we consider the complex topic of defining resolution for this imaging modality and address some of the more common analytical methods used with this data.
Collapse
Affiliation(s)
- David Baddeley
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA; , .,Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA; , .,Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
45
|
Krüger CL, Zeuner MT, Cottrell GS, Widera D, Heilemann M. Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Sci Signal 2017; 10:10/503/eaan1308. [DOI: 10.1126/scisignal.aan1308] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Danial JSH, García-Sáez AJ. Improving certainty in single molecule imaging. Curr Opin Struct Biol 2017; 46:24-30. [DOI: 10.1016/j.sbi.2017.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/06/2017] [Accepted: 04/16/2017] [Indexed: 11/30/2022]
|
47
|
Thédié D, Berardozzi R, Adam V, Bourgeois D. Photoswitching of Green mEos2 by Intense 561 nm Light Perturbs Efficient Green-to-Red Photoconversion in Localization Microscopy. J Phys Chem Lett 2017; 8:4424-4430. [PMID: 28850784 DOI: 10.1021/acs.jpclett.7b01701] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) such as mEos2 and its derivatives are widely used in PhotoActivated Localization Microscopy (PALM). However, the complex photophysics of these genetically encoded markers complicates the quantitative analysis of PALM data. Here, we show that intense 561 nm light (∼1 kW/cm2) typically used to localize single red molecules considerably affects the green-state photophysics of mEos2 by populating at least two reversible dark states. These dark states retard green-to-red photoconversion through a shelving effect, although one of them is rapidly depopulated by 405 nm light illumination. Multiple mEos2 switching and irreversible photobleaching is thus induced by yellow/green and violet photons before green-to-red photoconversion occurs, contributing to explain the apparent limited signaling efficiency of this PCFP. Our data reveals that the photophysics of PCFPs of anthozoan origin is substantially more complex than previously thought, and suggests that intense 561 nm laser light should be used with care, notably for quantitative or fast PALM approaches.
Collapse
Affiliation(s)
- Daniel Thédié
- Institut de Biologie Structurale, CNRS, Université Grenoble Alpes, CEA, IBS, 38044 Grenoble, France
| | - Romain Berardozzi
- Institut de Biologie Structurale, CNRS, Université Grenoble Alpes, CEA, IBS, 38044 Grenoble, France
| | - Virgile Adam
- Institut de Biologie Structurale, CNRS, Université Grenoble Alpes, CEA, IBS, 38044 Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, CNRS, Université Grenoble Alpes, CEA, IBS, 38044 Grenoble, France
| |
Collapse
|
48
|
Abstract
Fluorescence nanoscopy uniquely combines minimally invasive optical access to the internal nanoscale structure and dynamics of cells and tissues with molecular detection specificity. While the basic physical principles of 'super-resolution' imaging were discovered in the 1990s, with initial experimental demonstrations following in 2000, the broad application of super-resolution imaging to address cell-biological questions has only more recently emerged. Nanoscopy approaches have begun to facilitate discoveries in cell biology and to add new knowledge. One current direction for method improvement is the ambition to quantitatively account for each molecule under investigation and assess true molecular colocalization patterns via multi-colour analyses. In pursuing this goal, the labelling of individual molecules to enable their visualization has emerged as a central challenge. Extending nanoscale imaging into (sliced) tissue and whole-animal contexts is a further goal. In this Review we describe the successes to date and discuss current obstacles and possibilities for further development.
Collapse
|
49
|
Molecular Counting with Localization Microscopy: A Bayesian Estimate Based on Fluorophore Statistics. Biophys J 2017; 112:1777-1785. [PMID: 28494949 DOI: 10.1016/j.bpj.2017.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
Superresolved localization microscopy has the potential to serve as an accurate, single-cell technique for counting the abundance of intracellular molecules. However, the stochastic blinking of single fluorophores can introduce large uncertainties into the final count. Here we provide a theoretical foundation for applying superresolved localization microscopy to the problem of molecular counting based on the distribution of blinking events from a single fluorophore. We also show that by redundantly tagging single molecules with multiple, blinking fluorophores, the accuracy of the technique can be enhanced by harnessing the central limit theorem. The coefficient of variation then, for the number of molecules M estimated from a given number of blinks B, scales like ∼1/Nl, where Nl is the mean number of labels on a target. As an example, we apply our theory to the challenging problem of quantifying the cell-to-cell variability of plasmid copy number in bacteria.
Collapse
|
50
|
Zanacchi FC, Manzo C, Alvarez AS, Derr ND, Garcia-Parajo MF, Lakadamyali M. A DNA origami platform for quantifying protein copy number in super-resolution. Nat Methods 2017. [PMID: 28650478 PMCID: PMC5534338 DOI: 10.1038/nmeth.4342] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Single-molecule-based super-resolution microscopy offers a unique opportunity for quantifying protein copy-number with nanoscale resolution. However, while fluorescent proteins have been characterized for quantitative imaging using calibration standards, similar calibration tools for immunofluorescence with small organic fluorophores are lacking. Here, we show that DNA origami in combination with GFP antibodies is a versatile platform for calibrating fluorophore and antibody labeling efficiency to quantify protein copy-number in cellular contexts using super-resolution microscopy.
Collapse
Affiliation(s)
- Francesca Cella Zanacchi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.,Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Angel S Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Nathan D Derr
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA.,Center for Microscopy and Imaging, Smith College, Northampton, Massachusetts, USA
| | - Maria F Garcia-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.,ICREA, Barcelona, Spain
| | - Melike Lakadamyali
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|