1
|
Bian X, Liu X, Zhou M, Tang H, Wang R, Ma L, He G, Xu S, Wang Y, Tan J, Tang K, Guo L. Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon-bone insertion healing: CCN2 plays an important regulatory role. BURNS & TRAUMA 2024; 12:tkae028. [PMID: 39429645 PMCID: PMC11491146 DOI: 10.1093/burnst/tkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/22/2024]
Abstract
Background We previously confirmed that mechanical stimulation is an important factor in the repair of tendon-bone insertion (TBI) injuries and that mechanoreceptors such as transient receptor potential ion-channel subfamily V member 4 (TRPV4; also known as transient receptor potential vanilloid 4) are key to transforming mechanical stimulation into intracellular biochemical signals. This study aims to elucidate the mechanism of mechanical stimulation regulating TRPV4. Methods Immunohistochemical staining and western blotting were used to evaluate cartilage repair at the TBI after injury. The RNA expression and protein expression of mechanoreceptors and key pathway molecules regulating cartilage proliferation were analyzed. TBI samples were collected for transcriptome sequencing to detect gene expression. Calcium-ion imaging and flow cytometry were used to evaluate the function of TPRV4 and cellular communication network factor 2 (CCN2) after the administration of siRNA, recombinant adenovirus and agonists. Results We found that treadmill training improved the quality of TBI healing and enhanced fibrochondrocyte proliferation. The transcriptome sequencing results suggested that the elevated expression of the mechanistically stimulated regulator CCN2 and the exogenous administration of recombinant human CCN2 significantly promoted TRPV4 protein expression and fibrochondrocyte proliferation. In vitro, under mechanical stimulation conditions, small interfering RNA (siRNA)-CCN2 not only inhibited the proliferation of primary fibrochondrocytes but also suppressed TRPV4 protein expression and activity. Subsequently, primary fibrochondrocytes were treated with the TRPV4 agonist GSK1016790A and the recombinant adenovirus TRPV4 (Ad-TRPV4), and GSK1016790A partially reversed the inhibitory effect of siRNA-CCN2. The phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) signaling pathway participated in the above process. Conclusions Mechanical stimulation promoted fibrochondrocyte proliferation and TBI healing by activating TRPV4 channels and the PI3K/AKT signaling pathway, and CCN2 may be a key regulatory protein in maintaining TRPV4 activation.
Collapse
Affiliation(s)
- Xuting Bian
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiao Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Mei Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rui Wang
- Chongqing Institute of Bio-Intelligent Manufacturing, No. 60, Xingguang Avenue, Yubei District, Chongqing, 400000, China
| | - Lin Ma
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Gang He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shibo Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yunjiao Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jindong Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Kanglai Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lin Guo
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
2
|
Wang M, Zhong H, Li Y, Li J, Zhang X, He F, Wei P, Wang HH, Nie Z. Advances in Bioinspired Artificial System Enabling Biomarker-Driven Therapy. Chemistry 2024; 30:e202401593. [PMID: 38923644 DOI: 10.1002/chem.202401593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Bioinspired molecular engineering strategies have emerged as powerful tools that significantly enhance the development of novel therapeutics, improving efficacy, specificity, and safety in disease treatment. Recent advancements have focused on identifying and utilizing disease-associated biomarkers to optimize drug activity and address challenges inherent in traditional therapeutics, such as frequent drug administrations, poor patient adherence, and increased risk of adverse effects. In this review, we provide a comprehensive overview of the latest developments in bioinspired artificial systems (BAS) that use molecular engineering to tailor therapeutic responses to drugs in the presence of disease-specific biomarkers. We examine the transition from open-loop systems, which rely on external cues, to closed-loop feedback systems capable of autonomous self-regulation in response to disease-associated biomarkers. We detail various BAS modalities designed to achieve biomarker-driven therapy, including activatable prodrug molecules, smart drug delivery platforms, autonomous artificial cells, and synthetic receptor-based cell therapies, elucidating their operational principles and practical in vivo applications. Finally, we discuss the current challenges and future perspectives in the advancement of BAS-enabled technology and envision that ongoing advancements toward more programmable and customizable BAS-based therapeutics will significantly enhance precision medicine.
Collapse
Affiliation(s)
- Meixia Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huan Zhong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yangbing Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xinxin Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fang He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Tiberio F, Coda ARD, Tosi DD, Luzi D, Polito L, Liso A, Lattanzi W. Mechanobiology and Primary Cilium in the Pathophysiology of Bone Marrow Myeloproliferative Diseases. Int J Mol Sci 2024; 25:8860. [PMID: 39201546 PMCID: PMC11354938 DOI: 10.3390/ijms25168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Federica Tiberio
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Domiziano Dario Tosi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Debora Luzi
- S.C. Oncoematologia, Azienda Ospedaliera di Terni, 05100 Terni, Italy;
| | - Luca Polito
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Arcangelo Liso
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Niraula G, Pyne A, Wang X. Develop Tandem Tension Sensor to Gauge Integrin-Transmitted Molecular Forces. ACS Sens 2024; 9:3660-3670. [PMID: 38968930 PMCID: PMC11287754 DOI: 10.1021/acssensors.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
DNA-based tension sensors have innovated the imaging and calibration of mechanosensitive receptor-transmitted molecular forces, such as integrin tensions. However, these sensors mainly serve as binary reporters, only indicating if molecular forces exceed one predefined threshold. Here, we have developed tandem tension sensor (TTS), which comprises two consecutive force-sensing units, each with unique force detection thresholds and distinct fluorescence spectra, thereby enabling the quantification of molecular forces with dual reference levels. With TTS, we revealed that vinculin is not required for transmitting integrin tensions at approximately 10 pN (piconewtons) but is essential for elevating integrin tensions beyond 20 pN in focal adhesions (FAs). Such high tensions have emerged during the early stage of FA formation. TTS also successfully detected changes in integrin tensions in response to disrupted actin formation, inhibited myosin activity, and tuned substrate elasticity. We also applied TTS to examine integrin tensions in platelets and revealed two force regimes, with integrin tensions surpassing 20 pN at cell central regions and 13-20 pN integrin tensions at the cell edge. Overall, TTS, especially the construct consisting of a hairpin DNA (13 pN opening force) and a shearing DNA (20 pN opening force), stands as a valuable tool for the quantification of receptor-transmitted molecular forces within living cells.
Collapse
Affiliation(s)
- Gopal Niraula
- Department
of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Arghajit Pyne
- Research
Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45219, United States
| | - Xuefeng Wang
- Research
Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45219, United States
| |
Collapse
|
6
|
Abdal Dayem A, Yan E, Do M, Kim Y, Lee Y, Cho SG, Kim DH. Engineering extracellular vesicles for ROS scavenging and tissue regeneration. NANO CONVERGENCE 2024; 11:24. [PMID: 38922501 PMCID: PMC11208369 DOI: 10.1186/s40580-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress-an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ellie Yan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeongseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin- gu, Seoul, 05029, Republic of Korea.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Fu X, Kim HS. Dentin Mechanobiology: Bridging the Gap between Architecture and Function. Int J Mol Sci 2024; 25:5642. [PMID: 38891829 PMCID: PMC11171917 DOI: 10.3390/ijms25115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
It is remarkable how teeth maintain their healthy condition under exceptionally high levels of mechanical loading. This suggests the presence of inherent mechanical adaptation mechanisms within their structure to counter constant stress. Dentin, situated between enamel and pulp, plays a crucial role in mechanically supporting tooth function. Its intermediate stiffness and viscoelastic properties, attributed to its mineralized, nanofibrous extracellular matrix, provide flexibility, strength, and rigidity, enabling it to withstand mechanical loading without fracturing. Moreover, dentin's unique architectural features, such as odontoblast processes within dentinal tubules and spatial compartmentalization between odontoblasts in dentin and sensory neurons in pulp, contribute to a distinctive sensory perception of external stimuli while acting as a defensive barrier for the dentin-pulp complex. Since dentin's architecture governs its functions in nociception and repair in response to mechanical stimuli, understanding dentin mechanobiology is crucial for developing treatments for pain management in dentin-associated diseases and dentin-pulp regeneration. This review discusses how dentin's physical features regulate mechano-sensing, focusing on mechano-sensitive ion channels. Additionally, we explore advanced in vitro platforms that mimic dentin's physical features, providing deeper insights into fundamental mechanobiological phenomena and laying the groundwork for effective mechano-therapeutic strategies for dentinal diseases.
Collapse
Affiliation(s)
- Xiangting Fu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Mechanobiology Dental Medicine Research Center, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
8
|
Yang S, Wang M, Tian D, Zhang X, Cui K, Lü S, Wang HH, Long M, Nie Z. DNA-functionalized artificial mechanoreceptor for de novo force-responsive signaling. Nat Chem Biol 2024:10.1038/s41589-024-01572-x. [PMID: 38448735 DOI: 10.1038/s41589-024-01572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Synthetic signaling receptors enable programmable cellular responses coupling with customized inputs. However, engineering a designer force-sensing receptor to rewire mechanotransduction remains largely unexplored. Herein, we introduce nongenetically engineered artificial mechanoreceptors (AMRs) capable of reprogramming non-mechanoresponsive receptor tyrosine kinases (RTKs) to sense user-defined force cues, enabling de novo-designed mechanotransduction. AMR is a modular DNA-protein chimera comprising a mechanosensing-and-transmitting DNA nanodevice grafted on natural RTKs via aptameric anchors. AMR senses intercellular tensile force via an allosteric DNA mechano-switch with tunable piconewton-sensitive force tolerance, actuating a force-triggered dynamic DNA assembly to manipulate RTK dimerization and activate intracellular signaling. By swapping the force-reception ligands, we demonstrate the AMR-mediated activation of c-Met, a representative RTK, in response to the cellular tensile forces mediated by cell-adhesion proteins (integrin, E-cadherin) or membrane protein endocytosis (CI-M6PR). Moreover, AMR also allows the reprogramming of FGFR1, another RTK, to customize mechanobiological function, for example, adhesion-mediated neural stem cell maintenance.
Collapse
Affiliation(s)
- Sihui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Miao Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Dawei Tian
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiqing Cui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
9
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
10
|
Chen Y, Li Z, Kong F, Ju LA, Zhu C. Force-Regulated Spontaneous Conformational Changes of Integrins α 5β 1 and α Vβ 3. ACS NANO 2024; 18:299-313. [PMID: 38105535 PMCID: PMC10786158 DOI: 10.1021/acsnano.3c06253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Integrins are cell surface nanosized receptors crucial for cell motility and mechanosensing of the extracellular environment, which are often targeted for the development of biomaterials and nanomedicines. As a key feature of integrins, their activity, structure and behavior are highly mechanosensitive, which are regulated by mechanical forces down to pico-Newton scale. Using single-molecule biomechanical approaches, we compared the force-modulated ectodomain bending/unbending conformational changes of two integrin species, α5β1 and αVβ3. It was found that the conformation of integrin α5β1 is determined by a threshold head-to-tail tension. By comparison, integrin αVβ3 exhibits bistability even without force and can spontaneously transition between the bent and extended conformations with an apparent transition time under a wide range of forces. Molecular dynamics simulations observed almost concurrent disruption of ∼2 hydrogen bonds during integrin α5β1 unbending, but consecutive disruption of ∼7 hydrogen bonds during integrin αVβ3 unbending. Accordingly, we constructed a canonical energy landscape for integrin α5β1 with a single energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to allow the conformational transition. In contrast, the energy landscape of integrin αVβ3 conformational changes was constructed with hexa-stable intermediate states and intermediate energy barriers that segregate the conformational change process into multiple small steps. Our study elucidates the different biomechanical inner workings of integrins α5β1 and αVβ3 at the submolecular level, helps understand their mechanosignaling processes and how their respective functions are facilitated by their distinctive mechanosensitivities, and provides useful design principles for the engineering of protein-based biomechanical nanomachines.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Biochemistry and Molecular Biology and Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhenhai Li
- Shanghai
Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute
of Applied Mathematics and Mechanics, School of Mechanics and Engineering
Science, Shanghai University, Shanghai 200072, China
| | - Fang Kong
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Biological Science, Nanyang Technological
University, Singapore 637551, Singapore
| | - Lining Arnold Ju
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Biomedical Engineering, The University
of Sydney, Darlington, New South Wales 2008, Australia
- Charles
Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Mierke CT. Magnetic tweezers in cell mechanics. Methods Enzymol 2024; 694:321-354. [PMID: 38492957 DOI: 10.1016/bs.mie.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute for Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
12
|
Schrangl L, Göhring J, Kellner F, Huppa JB, Schütz GJ. Measurement of Forces Acting on Single T-Cell Receptors. Methods Mol Biol 2024; 2800:147-165. [PMID: 38709483 DOI: 10.1007/978-1-0716-3834-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.
Collapse
Affiliation(s)
| | - Janett Göhring
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Austria
| | - Florian Kellner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Wien, Austria
| | | |
Collapse
|
13
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Elenbaas JS, Jung IH, Coler-Reilly A, Lee PC, Alisio A, Stitziel NO. The emerging Janus face of SVEP1 in development and disease. Trends Mol Med 2023; 29:939-950. [PMID: 37673700 PMCID: PMC10592172 DOI: 10.1016/j.molmed.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Sushi, von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) is a large extracellular matrix protein that is also detected in circulation. Recent plasma proteomic and genomic studies have revealed a large number of associations between SVEP1 and human traits, particularly chronic disease. These include associations with cardiac death and disease, diabetes, platelet traits, glaucoma, dementia, and aging; many of these are causal. Animal models demonstrate that SVEP1 is critical in vascular development and disease, but its molecular and cellular mechanisms remain poorly defined. Future studies should aim to characterize these mechanisms and determine the diagnostic, prognostic, and therapeutic value of measuring or intervening on this enigmatic protein.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ariella Coler-Reilly
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Paul C Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
15
|
Mandal S, Melo M, Gordiichuk P, Acharya S, Poh YC, Li N, Aung A, Dane EL, Irvine DJ, Kumari S. WASP facilitates tumor mechanosensitivity in T lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560434. [PMID: 37873483 PMCID: PMC10592916 DOI: 10.1101/2023.10.02.560434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) carry out immunosurveillance by scanning target cells of diverse physical properties for the presence of antigens. While the recognition of cognate antigen by the T cell receptor is the primary signal for CTL activation, it has become increasingly clear that the mechanical stiffness of target cells plays an important role in antigen-triggered T cell responses. However, the molecular machinery within CTLs that transduces the mechanical information of tumor cells remains unclear. We find that CTL's mechanosensitive ability requires the activity of the actin-organizing protein Wiskott-Aldrich Syndrome Protein (WASP). WASP activation is modulated by the mechanical properties of antigen-presenting contexts across a wide range of target cell stiffnesses and activated WASP then mediates mechanosensitive activation of early TCR signaling markers in the CTL. Our results provide a molecular link between antigen mechanosensing and CTL immune response and suggest that CTL-intrinsic cytoskeletal organizing principles enable the processing of mechanical information from diverse target cells.
Collapse
Affiliation(s)
| | - Mariane Melo
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | | | | | - Yeh-Chuin Poh
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Na Li
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Aereas Aung
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Eric L. Dane
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Darrell J. Irvine
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
- Department of Biological Engineering, MIT, Cambridge, USA
- Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sudha Kumari
- Indian Institute of Science, Bengaluru, India
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| |
Collapse
|
16
|
Li R, Feng D, Han S, Zhai X, Yu X, Fu Y, Jin F. Macrophages and fibroblasts in foreign body reactions: How mechanical cues drive cell functions? Mater Today Bio 2023; 22:100783. [PMID: 37701130 PMCID: PMC10494263 DOI: 10.1016/j.mtbio.2023.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Biomaterials, when implanted in the human body, can induce a series of cell- and cytokine-related reactions termed foreign body reactions (FBRs). In the progression of FBRs, macrophages regulate inflammation and healing by polarizing to either a pro-inflammatory or pro-healing phenotype and recruit fibroblasts by secreting cytokines. Stimulated by the biomaterials, fibrotic capsule is formed eventually. The implant, along with its newly formed capsule, introduces various mechanical cues that influence cellular functions. Mechanosensing proteins, such as integrins or ion channels, transduce extracellular mechanical signals into cytoplasm biochemical signals in response to mechanical stimuli. Consequently, the morphology, migration mode, function, and polarization state of the cells are affected. Modulated by different intracellular signaling pathways and their crosstalk, the expression of fibrotic genes increases with fibroblast activation and fibroblast to myofibroblast transition under stiff or force stimuli. However, summarized in most current studies, the outcomes of macrophage polarization in the effect of different mechanical cues are inconsistent. The underlying mechanisms should be investigated with more advanced technology and considering more interfering aspects. Further research is needed to determine how to modulate the progression of fibrotic capsule formation in FBR artificially.
Collapse
Affiliation(s)
- Rihan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Dongdong Feng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Siyuan Han
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Xinmiao Yu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
- Department of Breast and Reconstructive Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuanyuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110000, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
17
|
Lana D, Magni G, Landucci E, Wenk GL, Pellegrini-Giampietro DE, Giovannini MG. Phenomic Microglia Diversity as a Druggable Target in the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13668. [PMID: 37761971 PMCID: PMC10531074 DOI: 10.3390/ijms241813668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA;
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| |
Collapse
|
18
|
Moldovan L, Song CH, Chen YC, Wang HJ, Ju LA. Biomembrane force probe (BFP): Design, advancements, and recent applications to live-cell mechanobiology. EXPLORATION (BEIJING, CHINA) 2023; 3:20230004. [PMID: 37933233 PMCID: PMC10624387 DOI: 10.1002/exp.20230004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/18/2023] [Indexed: 11/08/2023]
Abstract
Mechanical forces play a vital role in biological processes at molecular and cellular levels, significantly impacting various diseases such as cancer, cardiovascular disease, and COVID-19. Recent advancements in dynamic force spectroscopy (DFS) techniques have enabled the application and measurement of forces and displacements with high resolutions, providing crucial insights into the mechanical pathways underlying these diseases. Among DFS techniques, the biomembrane force probe (BFP) stands out for its ability to measure bond kinetics and cellular mechanosensing with pico-newton and nano-meter resolutions. Here, a comprehensive overview of the classical BFP-DFS setup is presented and key advancements are emphasized, including the development of dual biomembrane force probe (dBFP) and fluorescence biomembrane force probe (fBFP). BFP-DFS allows us to investigate dynamic bond behaviors on living cells and significantly enhances the understanding of specific ligand-receptor axes mediated cell mechanosensing. The contributions of BFP-DFS to the fields of cancer biology, thrombosis, and inflammation are delved into, exploring its potential to elucidate novel therapeutic discoveries. Furthermore, future BFP upgrades aimed at improving output and feasibility are anticipated, emphasizing its growing importance in the field of cell mechanobiology. Although BFP-DFS remains a niche research modality, its impact on the expanding field of cell mechanobiology is immense.
Collapse
Affiliation(s)
- Laura Moldovan
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
| | - Caroline Haoran Song
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
- Sydney Nano Institute (Sydney Nano)The University of SydneyCamperdownNew South WalesAustralia
| | - Yiyao Catherine Chen
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
| | - Haoqing Jerry Wang
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
- Sydney Nano Institute (Sydney Nano)The University of SydneyCamperdownNew South WalesAustralia
| | - Lining Arnold Ju
- School of Biomedical EngineeringThe University of SydneyDarlingtonNew South WalesAustralia
- Charles Perkins CentreThe University of SydneyCamperdownNew South WalesAustralia
- Heart Research InstituteNewtownNew South WalesAustralia
- Sydney Nano Institute (Sydney Nano)The University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
19
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
20
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Wang YK, Weng HK, Mo FE. The regulation and functions of the matricellular CCN proteins induced by shear stress. J Cell Commun Signal 2023:10.1007/s12079-023-00760-z. [PMID: 37191841 DOI: 10.1007/s12079-023-00760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Shear stress is a frictional drag generated by the flow of fluid, such as blood or interstitial fluid, and plays a critical role in regulating cellular gene expression and functional phenotype. The matricellular CCN family proteins are dynamically regulated by shear stress of different flow patterns, and their expression significantly alters the microenvironment of cells. Secreted CCN proteins mainly bind to several cell surface integrin receptors to mediate their diverse functions in regulating cell survival, function, and behavior. Gene-knockout studies indicate major functions of CCN proteins in the cardiovascular and skeletal systems, the two primary systems in which CCN expressions are regulated by shear stress. In the cardiovascular system, the endothelium is directly exposed to vascular shear stress. Unidirectional laminar blood flow generates laminar shear stress, which promotes a mature endothelial phenotype and upregulates anti-inflammatory CCN3 expression. In contrast, disturbed flow generates oscillatory shear stress, which induces endothelial dysfunction through the induction of CCN1 and CCN2. Shear-induced CCN1 binds to integrin α6β1 and promotes superoxide production, NF-κB activation, and inflammatory gene expression in endothelial cells. Although the interaction between shear stress and CCN4-6 is not clear, CCN 4 exhibits a proinflammatory property and CCN5 inhibits vascular cell growth and migration. The crucial roles of CCN proteins in cardiovascular development, homeostasis, and disease are evident but not fully understood. In the skeletal system, mechanical loading on bone generates shear stress from interstitial fluid in the lacuna-canalicular system and promotes osteoblast differentiation and bone formation. CCN1 and CCN2 are induced and potentially mediate fluid shear stress mechanosensing in osteocytes. However, the exact roles of interstitial shear stress-induced CCN1 and CCN2 in bone are still not clear. In contrast to other CCN family proteins, CCN3 inhibits osteoblast differentiation, although its regulation by interstitial shear stress in osteocytes has not been reported. The induction of CCN proteins by shear stress in bone and their functions remain largely unknown and merit further investigation. This review discusses the expression and functions of CCN proteins regulated by shear stress in physiological conditions, diseases, and cell culture models. The roles between CCN family proteins can be compensatory or counteractive in tissue remodeling and homeostasis.
Collapse
Affiliation(s)
- Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hung-Kai Weng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Fan-E Mo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
22
|
Melo-Fonseca F, Carvalho O, Gasik M, Miranda G, Silva FS. Mechanical stimulation devices for mechanobiology studies: a market, literature, and patents review. Biodes Manuf 2023. [DOI: 10.1007/s42242-023-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractSignificant advancements in various research and technological fields have contributed to remarkable findings on the physiological dynamics of the human body. To more closely mimic the complex physiological environment, research has moved from two-dimensional (2D) culture systems to more sophisticated three-dimensional (3D) dynamic cultures. Unlike bioreactors or microfluidic-based culture models, cells are typically seeded on polymeric substrates or incorporated into 3D constructs which are mechanically stimulated to investigate cell response to mechanical stresses, such as tensile or compressive. This review focuses on the working principles of mechanical stimulation devices currently available on the market or custom-built by research groups or protected by patents and highlights the main features still open to improvement. These are the features which could be focused on to perform, in the future, more reliable and accurate mechanobiology studies.
Graphic abstract
Collapse
|
23
|
Liu L, Huang T, Xie Z, Ye Z, Zhang J, Liao H, Yang S, Yang K, Tu M. Liquid crystalline matrix-induced viscoelastic mechanical stimulation modulates activation and phenotypes of macrophage. J Biomater Appl 2023; 37:1568-1581. [PMID: 36917676 DOI: 10.1177/08853282221136580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Accumulating evidence indicates that the mechanical microenvironment exerts profound influences on inflammation and immune modulation, which are likely to be key factors in successful tissue regeneration. The elastic modulus (Em) of the matrix may be a useful adjustable property to control macrophage activation and the overall inflammatory response. This study constituted a series of Em-tunable liquid crystalline cell model (HpCEs) resembling the viscoelastic characteristic of ECM and explored how mechanical microenvironment induced by liquid crystalline soft matter matrix affected macrophage activation and phenotypes. We have shown that HpCEs prepared in this work exhibited typical cholesteric liquid crystal phase and distinct viscoelastic rheological characteristics. All liquid crystalline HpCE matrices facilitated macrophages growth and maintained cell activity. Macrophages in lower-Em HpCE matrices were more likely to polarize toward the pro-inflammatory M1 phenotype. Conversely, the higher-Em HpCEs induced macrophages into an elongated shape and upregulated M2-related markers. Furthermore, the higher-Em HpCEs (HpCE-O1, HpCE-H2, HpCE-H1) could coax sequential polarization states of RAW264.7 from a classically activated "M1" state toward alternatively activated "M2" state in middle and later stage of cell culture (within 3-7 days in this work), suggesting that the HpCE-based strategies could manipulate the local immune microenvironment and promote the dominance of the pro-inflammatory signals in early stages, while M2 macrophages in later stages. The liquid crystalline soft mode fabricated in this work maybe offer a new design guideline for in vitro cell models and applications.
Collapse
Affiliation(s)
- Lichu Liu
- Institute of Orthopedics and Traumatology, 593063Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Tao Huang
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Zheng Xie
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Zhangyao Ye
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Jiaqing Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, 47885Jinan University, Guangzhou, China
| | - Honghong Liao
- Institute of Orthopedics and Traumatology, 593063Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Shenyu Yang
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| | - Kuangyang Yang
- Institute of Orthopedics and Traumatology, 593063Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Mei Tu
- College of Chemistry and Materials Science, 47885Jinan University, Huangpu Road 601, Guangzhou, 510632, P. R. China
| |
Collapse
|
24
|
Park J, Nguyen TTC, Lee SJ, Wang S, Heo D, Kang DH, Tipan-Quishpe A, Lee WJ, Lee J, Yang SY, Yoon MH. Instant formation of horizontally ordered nanofibrous hydrogel films and direct investigation of peculiar neuronal cell behaviors atop. Biomater Res 2023; 27:19. [PMID: 36907873 PMCID: PMC10009932 DOI: 10.1186/s40824-023-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/25/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Hydrogels have been widely used in many research fields owing to optical transparency, good biocompatibility, tunable mechanical properties, etc. Unlike typical hydrogels in the form of an unstructured bulk material, we developed aqueous dispersions of fiber-shaped hydrogel structures with high stability under ambient conditions and their application to various types of transparent soft cell culture interfaces with anisotropic nanoscale topography. METHOD Nanofibers based on the polyvinyl alcohol and polyacrylic acid mixture were prepared by electrospinning and hydrogelified to nano-fibrous hydrogels (nFHs) after thermal crosslinking and sulfuric acid treatment. By modifying various material surfaces with positively-charged polymers, negatively-charged superabsorbent nFHs could be selectively patterned by employing micro-contact printing or horizontally aligned by applying shear force with a wired bar coater. RESULTS The angular distribution of bar-coated nFHs was dramatically reduced to ± 20° along the applied shear direction unlike the drop-coated nFHs which exhibit random orientations. Next, various types of cells were cultured on top of transparent soft nFHs which showed good viability and attachment while their behaviors could be easily monitored by both upright and inverted optical microscopy. Particularly, neuronal lineage cells such as PC 12 cells and embryonic hippocampal neurons showed highly stretched morphology along the overall fiber orientation with aspect ratios ranging from 1 to 14. Furthermore, the resultant neurite outgrowth and migration behaviors could be effectively controlled by the horizontal orientation and the three-dimensional arrangement of underlying nFHs, respectively. CONCLUSION We expect that surface modifications with transparent soft nFHs will be beneficial for various biological/biomedical studies such as fundamental cellular studies, neuronal/stem cell and/or organoid cultures, implantable probe/device coatings, etc.
Collapse
Affiliation(s)
- Jaeil Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Thi Thuy Chau Nguyen
- Department of Polymer Science and Engineering, Graduate School of Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Su-Jin Lee
- Department of Polymer Science and Engineering, Graduate School of Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Sungrok Wang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Dongmi Heo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Dong-Hee Kang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Alexander Tipan-Quishpe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Won-June Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Jongwon Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Sung Yun Yang
- Department of Polymer Science and Engineering, Graduate School of Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-Ro, Buk-Gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
25
|
Urushima H, Matsubara T, Miyakoshi M, Kimura S, Yuasa H, Yoshizato K, Ikeda K. Hypo-osmolarity induces apoptosis resistance via TRPV2-mediated AKT-Bcl-2 pathway. Am J Physiol Gastrointest Liver Physiol 2023; 324:G219-G230. [PMID: 36719093 PMCID: PMC9988531 DOI: 10.1152/ajpgi.00138.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
In cirrhosis, several molecular alterations such as resistance to apoptosis could accelerate carcinogenesis. Recently, mechanotransduction has been attracting attention as one of the causes of these disturbances. In patients with cirrhosis, the serum sodium levels progressively decrease in the later stage of cirrhosis, and hyponatremia leads to serum hypo-osmolality. Since serum sodium levels in patients with cirrhosis with liver cancer are inversely related to cancer's number, size, stage, and cumulative survival, we hypothesized that hypo-osmolality-induced mechanotransduction under cirrhotic conditions might contribute to oncogenesis and/or progression of hepatocellular carcinoma (HCC). In this study, we adjusted osmosis of culture medium by changing the sodium chloride concentration and investigated the influence of hypotonic conditions on the apoptosis resistance of an HCC cell line, HepG2, using a serum-deprivation-induced apoptosis model. By culturing the cells in a serum-free medium, the levels of an antiapoptotic protein Bcl-2 were downregulated. In contrast, the hypotonic conditions caused apoptosis resistance by upregulation of Bcl-2. Next, we examined which pathway was involved in the apoptosis resistance. Hypotonic conditions enhanced AKT signaling, and constitutive activation of AKT in HepG2 cells led to upregulation of Bcl-2. Moreover, we revealed that the enhancement of AKT signaling was caused by intracellular calcium influx via a mechanosensor, TRPV2. Our findings suggested that hyponatremia-induced serum hypotonic in patients with cirrhosis promoted the progression of hepatocellular carcinoma.NEW & NOTEWORTHY Our study first revealed that hypo-osmolarity-induced mechanotransduction enhanced calcium-mediated AKT signaling via TRPV2 activation, resulting in contributing to apoptosis resistance. The finding indicates a possible view that liver cirrhosis-induced hyponatremia promotes hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masaaki Miyakoshi
- Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences Field of Oncology, Kagoshima University, Kagoshima, Japan
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Katsutoshi Yoshizato
- Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
26
|
ANTXR1 as a potential sensor of extracellular mechanical cues. Acta Biomater 2023; 158:80-86. [PMID: 36638946 DOI: 10.1016/j.actbio.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Cell adhesion molecules mediate cell-cell or cell-matrix interactions, some of which are mechanical sensors, such as integrins. Emerging evidence indicates that anthrax toxin receptor 1 (ANTXR1), a newly identified cell adhesion molecule, can also sense extracellular mechanical signals such as hydrostatic pressure and extracellular matrix (ECM) rigidity. ANTXR1 can interact with ECM through connecting intracellular cytoskeleton and ECM molecules (just like integrins) to regulate numerous biological processes, such as cell adhesion, cell migration or ECM homeostasis. Although with high structural similarity to integrins, its functions and downstream signal transduction are independent from those of integrins. In this perspective, based on existing evidence in literature, we analyzed the structural and functional evidence that ANTXR1 can act as a potential sensor for extracellular mechanical cues. To our knowledge, this is the first in-depth overview of ANTXR1 from the perspective of mechanobiology. STATEMENT OF SIGNIFICANCE: An overview of ANTXR1 from the perspective of mechanobiology; An analysis of mechanical sensitivity of ANTXR1 in structure and function; A summary of existing evidence of ANTXR1 as a potential mechanosensor.
Collapse
|
27
|
Sánchez MF, Tampé R. Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm. Trends Biochem Sci 2023; 48:156-171. [PMID: 36115755 DOI: 10.1016/j.tibs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Cell-surface receptors mediate communication between cells and their environment. Lateral membrane organization and dynamic receptor cluster formation are fundamental in signal transduction and cell signaling. However, it is not yet fully understood how receptor clustering modulates a wide variety of physiologically relevant processes. Recent growing evidence indicates that biological responses triggered by membrane receptors can be modulated even in the absence of the natural receptor ligand. We review the most recent findings on how ligand-independent receptor clustering can regulate transmembrane signaling. We discuss the latest technologies to control receptor assembly, such as DNA nanotechnology, optogenetics, and optochemistry, focusing on the biological relevance and unraveling of ligand-independent signaling.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Chen Y, Kong F, Li Z, Ju LA, Zhu C. Force-regulated spontaneous conformational changes of integrins α 5 β 1 and α V β 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523308. [PMID: 36712101 PMCID: PMC9881988 DOI: 10.1101/2023.01.09.523308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Force can modulate the properties and functions of macromolecules by inducing conformational changes, such as coiling/uncoiling, zipping/unzipping, and folding/unfolding. Here we compared force-modulated bending/unbending of two purified integrin ectodomains, α 5 β 1 and α V β 3 , using single-molecule approaches. Similar to previously characterized mechano-sensitive macromolecules, the conformation of α 5 β 1 is determined by a threshold head-to-tail tension, suggesting a canonical energy landscape with a deep energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to accelerate transition to the extended state. By comparison, α V β 3 exhibits bi-stability even without force and can spontaneously transition between the bent and extended conformations in a wide range of forces without energy supplies. Molecular dynamics simulations revealed consecutive formation and disruption of 7 hydrogen bonds during α V β 3 bending and unbending, respectively. Accordingly, we constructed an energy landscape with hexa-stable intermediate states to break down the energy barrier separating the bent and extended states into smaller ones, making it possible for the thermal agitation energy to overcome them sequentially and to be accumulated and converted into mechanical work required for α V β 3 to bend against force. Our study elucidates the different inner workings of α 5 β 1 and α V β 3 at the sub-molecular level, sheds lights on how their respectively functions are facilitated by their distinctive mechano-sensitivities, helps understand their signal initiation processes, and provides critical concepts and useful design principles for engineering of protein-based biomechanical nanomachines.
Collapse
|
29
|
Wang Y, Jin J, Wang HJ, Ju LA. Acoustic Force-Based Cell-Matrix Avidity Measurement in High Throughput. BIOSENSORS 2023; 13:95. [PMID: 36671930 PMCID: PMC9855465 DOI: 10.3390/bios13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Cancer cells interacting with the extracellular matrix (ECM) in the tumor microenvironment is pivotal for tumorigenesis, invasion, and metastasis. Cell-ECM adhesion has been intensively studied in cancer biology in the past decades to understand the molecular mechanisms underlying the adhesion events and extracellular mechanosensing, as well as develop therapeutic strategies targeting the cell adhesion molecules. Many methods have been established to measure the cell-ECM adhesion strength and correlate it with the metastatic potential of certain cancer types. However, those approaches are either low throughput, not quantitative, or with poor sensitivity and reproducibility. Herein, we developed a novel acoustic force spectroscopy based method to quantify the cell-ECM adhesion strength during adhesion maturation process using the emerging z-Movi® technology. This can be served as a fast, simple, and high-throughput platform for functional assessment of cell adhesion molecules in a highly predictive and reproducible manner.
Collapse
Affiliation(s)
- Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Jasmine Jin
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Haoqing Jerry Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
30
|
Haage A, Dhasarathy A. Working a second job: Cell adhesion proteins that moonlight in the nucleus. Front Cell Dev Biol 2023; 11:1163553. [PMID: 37169022 PMCID: PMC10164977 DOI: 10.3389/fcell.2023.1163553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Cells are adept at sensing changes in their environment, transmitting signals internally to coordinate responses to external stimuli, and thereby influencing adaptive changes in cell states and behavior. Often, this response involves modulation of gene expression in the nucleus, which is seen largely as a physically separated process from the rest of the cell. Mechanosensing, whereby a cell senses physical stimuli, and integrates and converts these inputs into downstream responses including signaling cascades and gene regulatory changes, involves the participation of several macromolecular structures. Of note, the extracellular matrix (ECM) and its constituent macromolecules comprise an essential part of the cellular microenvironment, allowing cells to interact with each other, and providing both structural and biochemical stimuli sensed by adhesion transmembrane receptors. This highway of information between the ECM, cell adhesion proteins, and the cytoskeleton regulates cellular behavior, the disruption of which results in disease. Emerging evidence suggests a more direct role for some of these adhesion proteins in chromatin structure and gene regulation, RNA maturation and other non-canonical functions. While many of these discoveries were previously limited to observations of cytoplasmic-nuclear transport, recent advances in microscopy, and biochemical, proteomic and genomic technologies have begun to significantly enhance our understanding of the impact of nuclear localization of these proteins. This review will briefly cover known cell adhesion proteins that migrate to the nucleus, and their downstream functions. We will outline recent advances in this very exciting yet still emerging field, with impact ranging from basic biology to disease states like cancer.
Collapse
Affiliation(s)
- Amanda Haage
- *Correspondence: Amanda Haage, ; Archana Dhasarathy,
| | | |
Collapse
|
31
|
Ouyang Z, Zhong J, Shen J, Zeng Y. The cell origins of foam cell and lipid metabolism regulated by mechanical stress in atherosclerosis. Front Physiol 2023; 14:1179828. [PMID: 37123258 PMCID: PMC10133704 DOI: 10.3389/fphys.2023.1179828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Atherosclerosis is an inflammatory disease initiated by endothelial activation, in which lipoprotein, cholesterol, extracellular matrix, and various types of immune and non-immune cells are accumulated and formed into plaques on the arterial wall suffering from disturbed flow, characterized by low and oscillating shear stress. Foam cells are a major cellular component in atherosclerotic plaques, which play an indispensable role in the occurrence, development and rupture of atherosclerotic plaques. It was previously believed that foam cells were derived from macrophages or smooth muscle cells, but recent studies have suggested that there are other sources of foam cells. Many studies have found that the distribution of atherosclerotic plaques is not random but distributed at the bend and bifurcation of the arterial tree. The development and rupture of atherosclerotic plaque are affected by mechanical stress. In this review, we reviewed the advances in foam cell formation in atherosclerosis and the regulation of atherosclerotic plaque and lipid metabolism by mechanical forces. These findings provide new clues for investigating the mechanisms of atherosclerotic plaque formation and progression.
Collapse
|
32
|
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11:1110765. [PMID: 36911202 PMCID: PMC9995824 DOI: 10.3389/fbioe.2023.1110765] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.
Collapse
Affiliation(s)
- Qian Hu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qihui Bian
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Leiyun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hsuan-Shun Huang
- Department of Research, Center for Prevention and Therapy of Gynecological Cancers, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Dmochowski M, Jałowska M, Bowszyc-Dmochowska M. Issues occupying our minds: Nomenclature of autoimmune blistering diseases requires updating, pemphigus vulgaris propensity to affect areas adjacent to natural body orifices unifies seemingly diverse clinical features of this disease. Front Immunol 2022; 13:1103375. [PMID: 36601117 PMCID: PMC9806572 DOI: 10.3389/fimmu.2022.1103375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
In this conceptual analysis, we present our concepts on two issues regarding autoimmune bullous diseases (AIBD), namely (i) current nomenclature of AIBD requires updating by incorporating molecular data and (ii) pemphigus vulgaris (PV) "likes" areas adjacent to natural body orifices. The problem of inadequacy of the currently used nomenclature was noticed recently by Zillikens, who proposed to form a group with the task of updating it. The early efforts by Dmochowski to update this nomenclature happened to be a daunting task. Nevertheless, the ideal nomenclature should retain the bulk of clinical data, which generations of dermatologists are accustomed to, including triggers if known, and incorporate molecular data revealing targets of autoimmune response and immunoglobulin isotypes involved. The natural body orifices affected by PV were previously described in numerous publications. However, these openings are described separately in these publications. Here, Dmochowski comes up with an intellectual concept that this propensity of PV unifies seemingly diverse clinical features of this disease.
Collapse
Affiliation(s)
- Marian Dmochowski
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Marian Dmochowski,
| | - Magdalena Jałowska
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Bowszyc-Dmochowska
- Section of Cutaneous Histopathology and Immunopathology, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
34
|
Zhang Z, Sha B, Zhao L, Zhang H, Feng J, Zhang C, Sun L, Luo M, Gao B, Guo H, Wang Z, Xu F, Lu TJ, Genin GM, Lin M. Programmable integrin and N-cadherin adhesive interactions modulate mechanosensing of mesenchymal stem cells by cofilin phosphorylation. Nat Commun 2022; 13:6854. [PMID: 36369425 PMCID: PMC9652405 DOI: 10.1038/s41467-022-34424-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
During mesenchymal development, the sources of mechanical forces transduced by cells transition over time from predominantly cell-cell interactions to predominantly cell-extracellular matrix (ECM) interactions. Transduction of the associated mechanical signals is critical for development, but how these signals converge to regulate human mesenchymal stem cells (hMSCs) mechanosensing is not fully understood, in part because time-evolving mechanical signals cannot readily be presented in vitro. Here, we established a DNA-driven cell culture platform that could be programmed to present the RGD peptide from fibronectin, mimicking cell-ECM interactions, and the HAVDI peptide from N-cadherin, mimicking cell-cell interactions, through DNA hybridization and toehold-mediated strand displacement reactions. The platform could be programmed to mimic the evolving cell-ECM and cell-cell interactions during mesenchymal development. We applied this platform to reveal that RGD/integrin ligation promoted cofilin phosphorylation, while HAVDI/N-cadherin ligation inhibited cofilin phosphorylation. Cofilin phosphorylation upregulated perinuclear apical actin fibers, which deformed the nucleus and thereby induced YAP nuclear localization in hMSCs, resulting in subsequent osteogenic differentiation. Our programmable culture platform is broadly applicable to the study of dynamic, integrated mechanobiological signals in development, healing, and tissue engineering.
Collapse
Affiliation(s)
- Zheng Zhang
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Baoyong Sha
- grid.508540.c0000 0004 4914 235XSchool of Basic Medical Science, Xi’an Medical University, Xi’an, 710021 P.R. China
| | - Lingzhu Zhao
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Huan Zhang
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Jinteng Feng
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.452438.c0000 0004 1760 8119Department of Medical Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 P.R. China
| | - Cheng Zhang
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Lin Sun
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Meiqing Luo
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi’an, 710038 P.R. China
| | - Hui Guo
- grid.452438.c0000 0004 1760 8119Department of Medical Oncology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 P.R. China
| | - Zheng Wang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 P.R. China
| | - Feng Xu
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| | - Tian Jian Lu
- grid.64938.300000 0000 9558 9911State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P.R. China ,grid.64938.300000 0000 9558 9911MIIT Key Laboratory for Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 P.R. China
| | - Guy M. Genin
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130 MO USA ,grid.4367.60000 0001 2355 7002NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130 MO USA
| | - Min Lin
- grid.43169.390000 0001 0599 1243The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 P.R. China ,grid.43169.390000 0001 0599 1243Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P.R. China
| |
Collapse
|
35
|
Dupuy A, Ju LA, Chiu J, Passam FH. Mechano-Redox Control of Integrins in Thromboinflammation. Antioxid Redox Signal 2022; 37:1072-1093. [PMID: 35044225 DOI: 10.1089/ars.2021.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: How mechanical forces and biochemical cues are coupled remains a miracle for many biological processes. Integrins, well-known adhesion receptors, sense changes in mechanical forces and reduction-oxidation reactions (redox) in their environment to mediate their adhesive function. The coupling of mechanical and redox function is a new area of investigation. Disturbance of normal mechanical forces and the redox balance occurs in thromboinflammatory conditions; atherosclerotic plaques create changes to the mechanical forces in the circulation. Diabetes induces redox changes in the circulation by the production of reactive oxygen species and vascular inflammation. Recent Advances: Integrins sense changes in the blood flow shear stress at the level of focal adhesions and respond to flow and traction forces by increased signaling. Talin, the integrin-actin linker, is a traction force sensor and adaptor. Oxidation and reduction of integrin disulfide bonds regulate their adhesion. A conserved disulfide bond in integrin αlpha IIb beta 3 (αIIbβ3) is directly reduced by the thiol oxidoreductase endoplasmic reticulum protein 5 (ERp5) under shear stress. Critical Issues: The coordination of mechano-redox events between the extracellular and intracellular compartments is an active area of investigation. Another fundamental issue is to determine the spatiotemporal arrangement of key regulators of integrins' mechanical and redox interactions. How thromboinflammatory conditions lead to mechanoredox uncoupling is relatively unexplored. Future Directions: Integrated approaches, involving disulfide bond biochemistry, microfluidic assays, and dynamic force spectroscopy, will aid in showing that cell adhesion constitutes a crossroad of mechano- and redox biology, within the same molecule, the integrin. Antioxid. Redox Signal. 37, 1072-1093.
Collapse
Affiliation(s)
- Alexander Dupuy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| | - Lining Arnold Ju
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Australia
| | - Joyce Chiu
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, Australia
| | - Freda H Passam
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| |
Collapse
|
36
|
TNS1: Emerging Insights into Its Domain Function, Biological Roles, and Tumors. BIOLOGY 2022; 11:biology11111571. [PMID: 36358270 PMCID: PMC9687257 DOI: 10.3390/biology11111571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Tensins are a family of cellular-adhesion constituents that have been extensively studied. They have instrumental roles in the pathogenesis of numerous diseases. The mammalian tensin family comprises four members: tensin1 (TNS1), tensin2, tensin3, and tensin4. Among them, TNS1 has recently received attention from researchers because of its structural properties. TNS1 engages in various biological processes, such as cell adhesion, polarization, migration, invasion, proliferation, apoptosis, and mechano-transduction, by interacting with various partner proteins. Moreover, the abnormal expression of TNS1 in vivo is associated with the development of various diseases, especially tumors. Interestingly, the role of TNS1 in different tumors is still controversial. Here, we systematically summarize three aspects of TNS1: the gene structure, the biological processes underlying its action, and the dual regulatory role of TNS1 in different tumors through different mechanisms, of which we provide the first overview.
Collapse
|
37
|
Malmi-Kakkada AN, Sinha S, Li X, Thirumalai D. Adhesion strength between cells regulate nonmonotonic growth by a biomechanical feedback mechanism. Biophys J 2022; 121:3719-3729. [PMID: 35505608 PMCID: PMC9617137 DOI: 10.1016/j.bpj.2022.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
We determine how intercellular interactions and mechanical pressure experienced by single cells regulate cell proliferation using a minimal computational model for three-dimensional multicellular spheroid (MCS) growth. We discover that emergent spatial variations in the cell division rate, depending on the location of the cells either at the core or periphery within the MCS, is regulated by intercellular adhesion strength (fad). Varying fad results in nonmonotonic proliferation of cells in the MCS. A biomechanical feedback mechanism coupling the fad and microenvironment-dependent pressure fluctuations relative to a threshold value (pc) determines the onset of a dormant phase, and explains the nonmonotonic proliferation response. Increasing fad from low values enhances cell proliferation because pressure on individual cells is smaller compared with pc. However, at high fad, cells readily become dormant and cannot rearrange effectively in spacetime, leading to arrested cell proliferation. Utilizing our theoretical predictions, we explain experimental data on the impact of adhesion strength on cell proliferation and find good agreement. Our work, which shows that proliferation is regulated by pressure-adhesion feedback mechanism, may be a general feature of multicellular growth.
Collapse
Affiliation(s)
| | - Sumit Sinha
- Department of Physics, University of Texas at Austin, Austin, Texas
| | - Xin Li
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
38
|
A bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation. Nat Methods 2022; 19:1295-1305. [PMID: 36064771 DOI: 10.1038/s41592-022-01592-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Adaptive immunity relies on T lymphocytes that use αβ T cell receptors (TCRs) to discriminate among peptides presented by major histocompatibility complex molecules (pMHCs). Identifying pMHCs capable of inducing robust T cell responses will not only enable a deeper understanding of the mechanisms governing immune responses but could also have broad applications in diagnosis and treatment. T cell recognition of sparse antigenic pMHCs in vivo relies on biomechanical forces. However, in vitro screening methods test potential pMHCs without force and often at high (nonphysiological) pMHC densities and thus fail to predict potent agonists in vivo. Here, we present a technology termed BATTLES (biomechanically assisted T cell triggering for large-scale exogenous-pMHC screening) that uses biomechanical force to initiate T cell triggering for peptides and cells in parallel. BATTLES displays candidate pMHCs on spectrally encoded beads composed of a thermo-responsive polymer capable of applying shear loads to T cells, facilitating exploration of the force- and sequence-dependent landscape of T cell responses. BATTLES can be used to explore basic T cell mechanobiology and T cell-based immunotherapies.
Collapse
|
39
|
Grundy TJ, Orcheston-Findlay L, de Silva E, Jegathees T, Prior V, Sarker FA, O'Neill GM. Mechanosensitive expression of the mesenchymal subtype marker connective tissue growth factor in glioblastoma. Sci Rep 2022; 12:14982. [PMID: 36056123 PMCID: PMC9440209 DOI: 10.1038/s41598-022-19175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mechanical forces created by the extracellular environment regulate biochemical signals that modulate the inter-related cellular phenotypes of morphology, proliferation, and migration. A stiff microenvironment induces glioblastoma (GBM) cells to develop prominent actin stress fibres, take on a spread morphology and adopt trapezoid shapes, when cultured in 2D, which are phenotypes characteristic of a mesenchymal cell program. The mesenchymal subtype is the most aggressive among the molecular GBM subtypes. Recurrent GBM have been reported to transition to mesenchymal. We therefore sought to test the hypothesis that stiffer microenvironments-such as those found in different brain anatomical structures and induced following treatment-contribute to the expression of markers characterising the mesenchymal subtype. We cultured primary patient-derived cell lines that reflect the three common GBM subtypes (mesenchymal, proneural and classical) on polyacrylamide (PA) hydrogels with controlled stiffnesses spanning the healthy and pathological tissue range. We then assessed the canonical mesenchymal markers Connective Tissue Growth Factor (CTGF) and yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) expression, via immunofluorescence. Replating techniques and drug-mediated manipulation of the actin cytoskeleton were utilised to ascertain the response of the cells to differing mechanical environments. We demonstrate that CTGF is induced rapidly following adhesion to a rigid substrate and is independent of actin filament formation. Collectively, our data suggest that microenvironmental rigidity can stimulate expression of mesenchymal-associated molecules in GBM.
Collapse
Affiliation(s)
- Thomas James Grundy
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Louise Orcheston-Findlay
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Eshana de Silva
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Thuvarahan Jegathees
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia
| | - Victoria Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia
| | - Farhana Amy Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia
| | - Geraldine Margaret O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
40
|
Liu Z, Jin Q, Yan T, Wo Y, Liu H, Wang Y. Exosome-mediated transduction of mechanical force regulates prostate cancer migration via microRNA. Biochem Biophys Rep 2022; 31:101299. [PMID: 35812347 PMCID: PMC9257336 DOI: 10.1016/j.bbrep.2022.101299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022] Open
Abstract
Physical cues in the extracellular microenvironment regulate cancer cell metastasis. Functional microRNA (miRNA) carried by cancer derived exosomes play a critical role in extracellular communication between cells and the extracellular microenvironment. However, little is known about the role of exosomes loaded miRNAs in the mechanical force transmission between cancer cells and extracellular microenvironment. Herein, our results suggest that stiff extracellular matrix (ECM) induced exosomes promote cancer cell migration. The ECM mechanical force regulated the exosome miRNA cargo of prostate cancer cells. Exosome miRNAs regulated by the ECM mechanical force modulated cancer cell metastasis by regulating cell motility, ECM remodeling and the interaction between cancer cells and nerves. Focal adhesion kinase mediated-ECM mechanical force regulated the intracellular miRNA expression, and F-actin mediate-ECM mechanical force regulated miRNA packaging into exosomes. The above results demonstrated that the exosome miRNA cargo promoted cancer metastasis by transmitting the ECM mechanical force. The ECM mechanical force may play multiple roles in maintaining the microenvironment of cancer metastasis through the exosome miRNA cargo. ECM mechanical force-induced exosomes regulate cancer cell migration. ECM mechanical forces regulate the cancer cell exosomes miRNA cargo. ECM mechanical forces regulated exosomes miRNAs modulate cancer metastasis by remodeling extracellular microenvironment.
Collapse
|
41
|
Colasurdo M, Nieves EB, Fernández-Yagüe MA, Franck C, García AJ. Adhesive peptide and polymer density modulate 3D cell traction forces within synthetic hydrogels. Biomaterials 2022; 288:121710. [PMID: 35999082 DOI: 10.1016/j.biomaterials.2022.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
Abstract
Cell-extracellular matrix forces provide pivotal signals regulating diverse physiological and pathological processes. Although mechanobiology has been widely studied in two-dimensional configurations, limited research has been conducted in three-dimensional (3D) systems due to the complex nature of mechanics and cellular behaviors. In this study, we established a platform integrating a well-defined synthetic hydrogel system (PEG-4MAL) with 3D traction force microscopy (TFM) methodologies to evaluate deformation and force responses within synthetic microenvironments, providing insights that are not tractable using biological matrices because of the interdependence of biochemical and biophysical properties and complex mechanics. We dissected the contributions of adhesive peptide density and polymer density, which determines hydrogel stiffness, to 3D force generation for fibroblasts. A critical threshold of adhesive peptide density at a constant matrix elasticity is required for cells to generate 3D forces. Furthermore, matrix displacements and strains decreased with matrix stiffness whereas stresses, and tractions increased with matrix stiffness until reaching constant values at higher stiffness values. Finally, Rho-kinase-dependent contractility and vinculin expression are required to generate significant 3D forces in both collagen and synthetic hydrogels. This research establishes a tunable platform for the study of mechanobiology and provides new insights into how cells sense and transmit forces in 3D.
Collapse
Affiliation(s)
- Mark Colasurdo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Elisa B Nieves
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marc A Fernández-Yagüe
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
42
|
Kwak D, Olsen PA, Danielsen A, Jensenius AR. A trio of biological rhythms and their relevance in rhythmic mechanical stimulation of cell cultures. Front Psychol 2022; 13:867191. [PMID: 35967633 PMCID: PMC9374063 DOI: 10.3389/fpsyg.2022.867191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The primary aim of this article is to provide a biological rhythm model based on previous theoretical and experimental findings to promote more comprehensive studies of rhythmic mechanical stimulation of cell cultures, which relates to tissue engineering and regenerative medicine fields. Through an interdisciplinary approach where different standpoints from biology and musicology are combined, we explore some of the core rhythmic features of biological and cellular rhythmic processes and present them as a trio model that aims to afford a basic but fundamental understanding of the connections between various biological rhythms. It is vital to highlight such links since rhythmic mechanical stimulation and its effect on cell cultures are vastly underexplored even though the cellular response to mechanical stimuli (mechanotransduction) has been studied widely and relevant experimental evidence suggests mechanotransduction processes are rhythmic.
Collapse
Affiliation(s)
- Dongho Kwak
- Department of Musicology, RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub-Centre for Organ on a Chip-Technology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Anne Danielsen
- Department of Musicology, RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Alexander Refsum Jensenius
- Department of Musicology, RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Sharaf A, Roos B, Timmerman R, Kremers GJ, Bajramovic JJ, Accardo A. Two-Photon Polymerization of 2.5D and 3D Microstructures Fostering a Ramified Resting Phenotype in Primary Microglia. Front Bioeng Biotechnol 2022; 10:926642. [PMID: 35979173 PMCID: PMC9376863 DOI: 10.3389/fbioe.2022.926642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
Microglia are the resident macrophages of the central nervous system and contribute to maintaining brain’s homeostasis. Current 2D “petri-dish” in vitro cell culturing platforms employed for microglia, are unrepresentative of the softness or topography of native brain tissue. This often contributes to changes in microglial morphology, exhibiting an amoeboid phenotype that considerably differs from the homeostatic ramified phenotype in healthy brain tissue. To overcome this problem, multi-scale engineered polymeric microenvironments are developed and tested for the first time with primary microglia derived from adult rhesus macaques. In particular, biomimetic 2.5D micro- and nano-pillar arrays (diameters = 0.29–1.06 µm), featuring low effective shear moduli (0.25–14.63 MPa), and 3D micro-cages (volume = 24 × 24 × 24 to 49 × 49 × 49 μm3) with and without micro- and nano-pillar decorations (pillar diameters = 0.24–1 µm) were fabricated using two-photon polymerization (2PP). Compared to microglia cultured on flat substrates, cells growing on the pillar arrays exhibit an increased expression of the ramified phenotype and a higher number of primary branches per ramified cell. The interaction between the cells and the micro-pillar-decorated cages enables a more homogenous 3D cell colonization compared to the undecorated ones. The results pave the way for the development of improved primary microglia in vitro models to study these cells in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Brian Roos
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
- *Correspondence: Angelo Accardo,
| |
Collapse
|
44
|
Zhao YC, Li Z, Ju LA. The soluble N-terminal autoinhibitory module of the A1 domain in von Willebrand factor partially suppresses its catch bond with glycoprotein Ibα in a sandwich complex. Phys Chem Chem Phys 2022; 24:14857-14865. [PMID: 35698887 DOI: 10.1039/d2cp01581a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
von Willebrand factor (VWF) senses and responds to the hemodynamic forces to interact with the circulatory system and platelets in hemostasis and thrombosis. The dark side of this mechanobiology is implicated in atherothrombosis, stroke, and, more recently, the COVID-19 thrombotic symptoms. The force-responsive element controlling VWF activation predominantly resides in the N terminal auto-inhibitory module (N-AIM) flanking its A1 domain. Nevertheless, the detailed mechano-chemistry of soluble VWF N-AIM is poorly understood at the sub-molecular level as it is assumed to be unstructured loops. Using the free molecular dynamics (MD) simulations, we first predicted a hairpin-like structure of the soluble A1 N-AIM derived polypeptide (Lp; sequences Q1238-E1260). Then we combined molecular docking and steered molecular dynamics (SMD) simulations to examine how Lp regulates the A1-GPIbα interaction under tensile forces. Our simulation results indicate that Lp suppresses the catch bond in a sandwich complex of A1-Lp-GPIbα yet contributes an additional catch-bond residue D1249. To experimentally benchmark the binding kinetics for A1-GPIbα in the absence or presence of Lp, we conducted the force spectroscopy-biomembrane force probe (BFP) assays. We found similar suppression on the A1-GPIbα catch bond with soluble Lp in presence. Clinically, as more and more therapeutic candidates targeting the A1-GPIbα axis have entered clinical trials to treat patients with TTP and acute coronary syndrome, our work represents an endeavor further towards an effective anti-thrombotic approach without severe bleeding side effects as most existing drugs suffer.
Collapse
Affiliation(s)
- Yunduo Charles Zhao
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Zhenhai Li
- School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia. .,Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.,Heart Research Institute, Newtown, NSW 2042, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
45
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|
46
|
Watson VE, Faniel ML, Kamili NA, Krueger LD, Zhu C. Immune-mediated alopecias and their mechanobiological aspects. Cells Dev 2022; 170:203793. [PMID: 35649504 PMCID: PMC10681075 DOI: 10.1016/j.cdev.2022.203793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Alopecia is a non-specific term for hair loss clinically diagnosed by the hair loss pattern and histological analysis of patient scalp biopsies. The immune-mediated alopecia subtypes, including alopecia areata, lichen planopilaris, frontal fibrosing alopecia, and central centrifugal cicatricial alopecia, are common, significant forms of alopecia subtypes. For example, alopecia areata is the most common autoimmune disease with a lifetime incidence of approximately 2% of the world's population. In this perspective, we discuss major results from studies of immune-mediated alopecia subtypes. These studies suggest the key event in disease onset as the collapse in immune privilege, which alters the hair follicle microenvironment, e.g., upregulation of major histocompatibility complex molecules and increase of cytokine production, and results in immune cell infiltration, inflammatory responses, and damage of hair follicles. We note that previous studies have established that the hair follicle has a complex mechanical microenvironment, which may regulate the function of not only tissue cells but also immune cell infiltrates. This suggests a potential for mechanobiology to contribute to alopecia research by adding new methods, new approaches, and new ways of thinking, which is missing in the existing literature. To fill this a gap in the alopecia research space, we develop a mechanobiological hypothesis that alterations in the hair follicle microenvironment, specifically in the mechanically responsive tissues and cells, partially due to loss of immune privilege, may be contributors to disease pathology. We further focus our discussion on the potential for applying mechanoimmunology to the study of T cell infiltrates in the hair follicle, as they are considered primary contributors to alopecia pathology. To establish the connection between the mechanoimmunological hypothesis and immune-mediated alopecia subtypes, we discuss what is known about the role of T cells in immune-mediated alopecia subtypes, using the most extensively studied AA as our model.
Collapse
Affiliation(s)
- Valencia E Watson
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Makala L Faniel
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Loren D Krueger
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
47
|
Sun H, Lagarrigue F, Ginsberg MH. The Connection Between Rap1 and Talin1 in the Activation of Integrins in Blood Cells. Front Cell Dev Biol 2022; 10:908622. [PMID: 35721481 PMCID: PMC9198492 DOI: 10.3389/fcell.2022.908622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023] Open
Abstract
Integrins regulate the adhesion and migration of blood cells to ensure the proper positioning of these cells in the environment. Integrins detect physical and chemical stimuli in the extracellular matrix and regulate signaling pathways in blood cells that mediate their functions. Integrins are usually in a resting state in blood cells until agonist stimulation results in a high-affinity conformation ("integrin activation"), which is central to integrins' contribution to blood cells' trafficking and functions. In this review, we summarize the mechanisms of integrin activation in blood cells with a focus on recent advances understanding of mechanisms whereby Rap1 regulates talin1-integrin interaction to trigger integrin activation in lymphocytes, platelets, and neutrophils.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Frederic Lagarrigue
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Mark H. Ginsberg
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
48
|
Rayat Pisheh H, Ansari M, Eslami H. How is mechanobiology involved in bone regenerative medicine? Tissue Cell 2022; 76:101821. [DOI: 10.1016/j.tice.2022.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
49
|
The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa. J Bacteriol 2022; 204:e0008422. [PMID: 35612303 PMCID: PMC9210963 DOI: 10.1128/jb.00084-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most microbes in the biosphere are attached to surfaces, where they experience mechanical forces due to hydrodynamic flow and cell-to-substratum interactions. These forces likely serve as mechanical cues that influence bacterial physiology and eventually drive environmental adaptation and fitness. Mechanosensors are cellular components capable of sensing a mechanical input and serve as part of a larger system for sensing and transducing mechanical signals. Two cellular components in bacteria that have emerged as candidate mechanosensors are the type IV pili (TFP) and the flagellum. Current models posit that bacteria transmit and convert TFP- and/or flagellum-dependent mechanical force inputs into biochemical signals, including cAMP and c-di-GMP, to drive surface adaptation. Here, we discuss the impact of force-induced changes on the structure and function of two eukaryotic proteins, titin and the human von Willebrand factor (vWF), and these proteins’ relevance to bacteria. Given the wealth of understanding about these eukaryotic mechanosensors, we can use them as a framework to understand the effect of force on Pseudomonas aeruginosa during the early stages of biofilm formation, with a particular emphasis on TFP and the documented surface-sensing mechanosensors PilY1 and FimH. We also discuss the importance of disulfide bonds in mediating force-induced conformational changes, which may modulate mechanosensing and downstream biochemical signaling. We conclude by sharing our perspective on the state of the field and what we deem exciting frontiers in studying bacterial mechanosensing to better understand the mechanisms whereby bacteria transition from a planktonic to a biofilm lifestyle.
Collapse
|
50
|
Cai N, Lai ACK, Liao K, Corridon PR, Graves DJ, Chan V. Recent Advances in Fluorescence Recovery after Photobleaching for Decoupling Transport and Kinetics of Biomacromolecules in Cellular Physiology. Polymers (Basel) 2022; 14:1913. [PMID: 35567083 PMCID: PMC9105003 DOI: 10.3390/polym14091913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Among the new molecular tools available to scientists and engineers, some of the most useful include fluorescently tagged biomolecules. Tools, such as green fluorescence protein (GFP), have been applied to perform semi-quantitative studies on biological signal transduction and cellular structural dynamics involved in the physiology of healthy and disease states. Such studies focus on drug pharmacokinetics, receptor-mediated endocytosis, nuclear mechanobiology, viral infections, and cancer metastasis. In 1976, fluorescence recovery after photobleaching (FRAP), which involves the monitoring of fluorescence emission recovery within a photobleached spot, was developed. FRAP allowed investigators to probe two-dimensional (2D) diffusion of fluorescently-labelled biomolecules. Since then, FRAP has been refined through the advancements of optics, charged-coupled-device (CCD) cameras, confocal microscopes, and molecular probes. FRAP is now a highly quantitative tool used for transport and kinetic studies in the cytosol, organelles, and membrane of a cell. In this work, the authors intend to provide a review of recent advances in FRAP. The authors include epifluorescence spot FRAP, total internal reflection (TIR)/FRAP, and confocal microscope-based FRAP. The underlying mathematical models are also described. Finally, our understanding of coupled transport and kinetics as determined by FRAP will be discussed and the potential for future advances suggested.
Collapse
Affiliation(s)
- Ning Cai
- Wuhan Institute of Technology, School of Chemical Engineering and Pharmacy, Wuhan 430073, China;
| | - Alvin Chi-Keung Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China;
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Peter R. Corridon
- Department of Physiology and Immunology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - David J. Graves
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|