1
|
Dadvand A, Yavari A, Teimourpour A, Farzad-Mohajeri S. Influential factors on stem cell therapy success in canine model of spinal cord Injury: A systematic review and meta-analysis. Brain Res 2024; 1839:148997. [PMID: 38795792 DOI: 10.1016/j.brainres.2024.148997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Spinal cord injury (SCI) is a serious medical condition. The search for an effective cure remains a persistent challenge. Current treatments, unfortunately, are unable to sufficiently improve neurological function, often leading to lifelong disability. This systematic review and meta-analysis evaluated the effectiveness of stem cell therapy for SCI using canine models. It also explored the optimal protocol for implementing stem cell therapy. A comprehensive search of studies was conducted from 2000 to October 2022. This study focused on five outcomes: motor function score, histopathology, IHC, western blot, and SEP. The results demonstrated a significant improvement in locomotion post-SCI in dogs treated with stem cell therapy. The therapy also led to an average increase of 3.15 points in the Olby score of the treated dogs compared to the control group. These findings highlights stem cell therapy's potential as a promising SCI treatment. The meta-analysis suggests that using bone marrow stem cells, undergoing neural differentiation in vitro, applying a surgical implantation or intrathecal route of administration, associating matrigel in combination with stem cells, and a waiting period of two weeks before starting treatment can enhance SCI treatment effectiveness.
Collapse
Affiliation(s)
- Avin Dadvand
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Alimohammad Yavari
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Teimourpour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Department of Regenerative Medicine, Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Choudhary P, Gupta A, Gupta SK, Dwivedi S, Singh S. Comparative evaluation of divergent concoction of NGF, BDNF, EGF, and FGF growth factor's role in enhancing neuronal differentiation of adipose-derived mesenchymal stem cells. Int J Biol Macromol 2024; 260:129561. [PMID: 38246449 DOI: 10.1016/j.ijbiomac.2024.129561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
MSCs (Mesenchymal Stem Cells) can differentiate into various lineages, including neurons and glial cells. In the past few decades, MSCs have been well explored in the context of neuronal differentiation and have been reported to have the immense potential to form distinct kinds of neurons. The distinguishing features of MSCs make them among the most desired cell sources for stem cell therapy. This study involved the trans-differentiation of Adipose-derived human Mesenchymal Stem Cells (ADMSCs) into neurons. The protocol employs a cocktail of chemical inducers in different combinations, including Brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), and Nerve growth factor (NGF) Fibroblastic growth factor (FGF), in induction media. Both types have been successfully differentiated into neurons, confirmed by morphological aspects and the presence of neural-specific markers through RT-PCR (Reverse transcription polymerase chain reaction) studies and immunocytochemistry assay. They have shown excellent morphology with long neurites, synaptic connections, and essential neural markers to validate their identity. The results may significantly contribute to cell replacement therapy for neurological disorders.
Collapse
Affiliation(s)
- Princy Choudhary
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Ayushi Gupta
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Saurabh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Shrey Dwivedi
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Sangeeta Singh
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India.
| |
Collapse
|
3
|
Rosety I, Zagare A, Saraiva C, Nickels S, Antony P, Almeida C, Glaab E, Halder R, Velychko S, Rauen T, Schöler HR, Bolognin S, Sauter T, Jarazo J, Krüger R, Schwamborn JC. Impaired neuron differentiation in GBA-associated Parkinson's disease is linked to cell cycle defects in organoids. NPJ Parkinsons Dis 2023; 9:166. [PMID: 38110400 PMCID: PMC10728202 DOI: 10.1038/s41531-023-00616-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
The mechanisms underlying Parkinson's disease (PD) etiology are only partially understood despite intensive research conducted in the field. Recent evidence suggests that early neurodevelopmental defects might play a role in cellular susceptibility to neurodegeneration. To study the early developmental contribution of GBA mutations in PD we used patient-derived iPSCs carrying a heterozygous N370S mutation in the GBA gene. Patient-specific midbrain organoids displayed GBA-PD relevant phenotypes such as reduction of GCase activity, autophagy impairment, and mitochondrial dysfunction. Genome-scale metabolic (GEM) modeling predicted changes in lipid metabolism which were validated with lipidomics analysis, showing significant differences in the lipidome of GBA-PD. In addition, patient-specific midbrain organoids exhibited a decrease in the number and complexity of dopaminergic neurons. This was accompanied by an increase in the neural progenitor population showing signs of oxidative stress-induced damage and premature cellular senescence. These results provide insights into how GBA mutations may lead to neurodevelopmental defects thereby predisposing to PD pathology.
Collapse
Affiliation(s)
- Isabel Rosety
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Alise Zagare
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Nickels
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Almeida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Thomas Rauen
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, MPG White Paper Group - Animal Testing in the Max Planck Society, Muenster, Germany
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, 4367, Luxembourg
| | - Javier Jarazo
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- OrganoTherapeutics SARL-S, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversial Translational Medicine, Luxembourg Institute of Health (LIH), 1 A-B rue Thomas Ediison, L-1445, Strassen, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Roth JG, Huang MS, Navarro RS, Akram JT, LeSavage BL, Heilshorn SC. Tunable hydrogel viscoelasticity modulates human neural maturation. SCIENCE ADVANCES 2023; 9:eadh8313. [PMID: 37862423 PMCID: PMC10588948 DOI: 10.1126/sciadv.adh8313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have emerged as a promising in vitro model system for studying neurodevelopment. However, current models remain limited in their ability to incorporate tunable biomechanical signaling cues imparted by the extracellular matrix (ECM). The native brain ECM is viscoelastic and stress-relaxing, exhibiting a time-dependent response to an applied force. To recapitulate the remodelability of the neural ECM, we developed a family of protein-engineered hydrogels that exhibit tunable stress relaxation rates. hiPSC-derived neural progenitor cells (NPCs) encapsulated within these gels underwent relaxation rate-dependent maturation. Specifically, NPCs within hydrogels with faster stress relaxation rates extended longer, more complex neuritic projections, exhibited decreased metabolic activity, and expressed higher levels of genes associated with neural maturation. By inhibiting actin polymerization, we observed decreased neuritic projections and a concomitant decrease in neural maturation gene expression. Together, these results suggest that microenvironmental viscoelasticity is sufficient to bias human NPC maturation.
Collapse
Affiliation(s)
- Julien G. Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Complex in Vitro Systems, Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Michelle S. Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jason T. Akram
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Bauer L. LeSavage
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Hasan MM, Konishi S, Tanaka M, Izawa T, Yamate J, Kuwamura M. Disrupted neurogenesis, gliogenesis, and ependymogenesis in the Ccdc85c knockout rat for hydrocephalus model. Cells Dev 2023; 175:203858. [PMID: 37271245 DOI: 10.1016/j.cdev.2023.203858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Coil-coiled domain containing 85c (Ccdc85c) is a causative gene for congenital hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. We established Ccdc85c knockout (KO) rats and investigated the roles of CCDC85C and intermediate filament protein expression, including nestin, vimentin, GFAP, and cytokeratin AE1/AE3 during the lateral ventricle development in KO rats to evaluate the role of this gene. We found altered and ectopic expression of nestin and vimentin positive cells in the wall of the dorso-lateral ventricle in the KO rats during development from the age of postnatal day (P) 6, whereas both protein expression became faint in the wild-type rats. In the KO rats, there was a loss of cytokeratin expression on the surface of the dorso-lateral ventricle with ectopic expression and maldevelopment of ependymal cells. Our data also revealed disturbed GFAP expression at postnatal ages. These findings indicate that lack of CCDC85C disrupts the proper expression of intermediate filament proteins (nestin, vimentin, GFAP, and cytokeratin), and CCDC85C is necessary for normal neurogenesis, gliogenesis, and ependymogenesis.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan.
| | - Shizuka Konishi
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan.
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan.
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan.
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan.
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
6
|
Javidi H, Ramazani Saadatabadi A, Sadrnezhaad SK, Najmoddin N. Conductive nerve conduit with piezoelectric properties for enhanced PC12 differentiation. Sci Rep 2023; 13:12004. [PMID: 37491480 PMCID: PMC10368663 DOI: 10.1038/s41598-023-38456-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023] Open
Abstract
Restoration of nerve tissue remains highly challenging, mainly due to the limited regeneration capacity of the nervous system and the development of fibrosis. This limitation necessitates designing new nerve guidance channel to promote nerve repairing. In this study, we developed a novel core/shell conduit to induce PC12 differentiation. Co-electrospinning method was utilized to produce a fibrous shell containing polycaprolactone/polyvinylidene fluoride PCL/PVDF, gelatin and polyaniline/graphene (PAG) nanocomposite. The core section of the conduit was filled with chitosan-gelatin hydrogel containing PAG and ZnO nanoparticles. Such conduit shows antibacterial activity, electrical conductivity and piezoelectric property. The effect of such engineered conduit on PC12 differentiation was investigated by analyzing differentiation markers Nestin and microtubule-associated protein 2 (MAP2) through immunocytochemistry and PCR-RT techniques. The result revealed that such conduit could significantly induce Nestin and MAP2 gene expression in the PC12 cells and, thus, it is a viable option for effective cell differentiation and nerve regeneration.
Collapse
Affiliation(s)
- Hamideh Javidi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - S K Sadrnezhaad
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Piccirilli G, Gabrielli L, Bonasoni MP, Chiereghin A, Turello G, Borgatti EC, Simonazzi G, Felici S, Leone M, Salfi NCM, Santini D, Lazzarotto T. Fetal Brain Damage in Human Fetuses with Congenital Cytomegalovirus Infection: Histological Features and Viral Tropism. Cell Mol Neurobiol 2023; 43:1385-1399. [PMID: 35933637 PMCID: PMC10006254 DOI: 10.1007/s10571-022-01258-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
Human cytomegalovirus (HCMV) causes congenital neurological lifelong disabilities. To date, the neuropathogenesis of brain injury related to congenital HCMV (cCMV) infection is poorly understood. This study evaluates the characteristics and pathogenetic mechanisms of encephalic damage in cCMV infection. Ten HCMV-infected human fetuses at 21 weeks of gestation were examined. Specifically, tissues from different brain areas were analyzed by: (i) immunohistochemistry (IHC) to detect HCMV-infected cell distribution, (ii) hematoxylin-eosin staining to evaluate histological damage and (iii) real-time PCR to quantify tissue viral load (HCMV-DNA). The differentiation stage of HCMV-infected neural/neuronal cells was assessed by double IHC to detect simultaneously HCMV-antigens and neural/neuronal markers: nestin (a marker of neural stem/progenitor cells), doublecortin (DCX, marker of cells committed to the neuronal lineage) and neuronal nuclei (NeuN, identifying mature neurons). HCMV-positive cells and viral DNA were found in the brain of 8/10 (80%) fetuses. For these cases, brain damage was classified as mild (n = 4, 50%), moderate (n = 3, 37.5%) and severe (n = 1, 12.5%) based on presence and frequency of pathological findings (necrosis, microglial nodules, microglial activation, astrocytosis, and vascular changes). The highest median HCMV-DNA level was found in the hippocampus (212 copies/5 ng of human DNA [hDNA], range: 10-7,505) as well as the highest mean HCMV-infected cell value (2.9 cells, range: 0-23), followed by that detected in subventricular zone (1.7 cells, range: 0-19). These findings suggested a preferential viral tropism for both neural stem/progenitor cells and neuronal committed cells, residing in these regions, confirmed by the expression of DCX and nestin in 94% and 63.3% of HCMV-positive cells, respectively. NeuN was not found among HCMV-positive cells and was nearly absent in the brain with severe damage, suggesting HCMV does not infect mature neurons and immature neural/neuronal cells do not differentiate into neurons. This could lead to known structural and functional brain defects from cCMV infection.
Collapse
Affiliation(s)
- Giulia Piccirilli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Liliana Gabrielli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Angela Chiereghin
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele Turello
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eva Caterina Borgatti
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Giuliana Simonazzi
- Department of Obstetrics and Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Felici
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marta Leone
- Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Donatella Santini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Section of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
9
|
Michel N, Young HMR, Atkin ND, Arshad U, Al-Humadi R, Singh S, Manukyan A, Gore L, Burbulis IE, Wang YH, McConnell MJ. Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. Sci Rep 2022; 12:12156. [PMID: 35840793 PMCID: PMC9287420 DOI: 10.1038/s41598-022-16516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Neurons are overproduced during cerebral cortical development. Neural progenitor cells (NPCs) divide rapidly and incur frequent DNA double-strand breaks (DSBs) throughout cortical neurogenesis. Although half of the neurons born during neurodevelopment die, many neurons with inaccurate DNA repair survive leading to brain somatic mosaicism. Recurrent DNA DSBs during neurodevelopment are associated with both gene expression level and gene length. We used imaging flow cytometry and a genome-wide DNA DSB capture approach to quantify and map DNA DSBs during human induced pluripotent stem cell (hiPSC)-based neurogenesis. Reduced p53 signaling was brought about by knockdown (p53KD); p53KD led to elevated DNA DSB burden in neurons that was associated with gene expression level but not gene length in neural progenitor cells (NPCs). Furthermore, DNA DSBs incurred from transcriptional, but not replicative, stress lead to p53 activation in neurotypical NPCs. In p53KD NPCs, DNA DSBs accumulate at transcription start sites of genes that are associated with neurological and psychiatric disorders. These findings add to a growing understanding of how neuronal genome dynamics are engaged by high transcriptional or replicative burden during neurodevelopment.
Collapse
Affiliation(s)
- Nadine Michel
- Neuroscience Graduate Program, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Umar Arshad
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Reem Al-Humadi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Lana Gore
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Sede de la Patagonia, Facultad de Medicina y Ciencias, Universidad San Sebastián, Puerto Montt, Chile
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Stanwick M, Barkley C, Serra R, Kruggel A, Webb A, Zhao Y, Pietrzak M, Ashman C, Staats A, Shahid S, Peters SB. Tgfbr2 in Dental Pulp Cells Guides Neurite Outgrowth in Developing Teeth. Front Cell Dev Biol 2022; 10:834815. [PMID: 35265620 PMCID: PMC8901236 DOI: 10.3389/fcell.2022.834815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor β (TGFβ) plays an important role in tooth morphogenesis and mineralization. During postnatal development, the dental pulp (DP) mesenchyme secretes neurotrophic factors that guide trigeminal nerve fibers into and throughout the DP. This process is tightly linked with dentin formation and mineralization. Our laboratory established a mouse model in which Tgfbr2 was conditionally deleted in DP mesenchyme using an Osterix promoter-driven Cre recombinase (Tgfbr2 cko ). These mice survived postnatally with significant defects in bones and teeth, including reduced mineralization and short roots. Hematoxylin and eosin staining revealed reduced axon-like structures in the mutant mice. Reporter imaging demonstrated that Osterix-Cre activity within the tooth was active in the DP and derivatives, but not in neuronal afferents. Immunofluorescence staining for β3 tubulin (neuronal marker) was performed on serial cryosections from control and mutant molars on postnatal days 7 and 24 (P7, P24). Confocal imaging and pixel quantification demonstrated reduced innervation in Tgfbr2 cko first molars at both stages compared to controls, indicating that signals necessary to promote neurite outgrowth were disrupted by Tgfbr2 deletion. We performed mRNA-Sequence (RNA-Seq) and gene onotology analyses using RNA from the DP of P7 control and mutant mice to investigate the pathways involved in Tgfbr2-mediated tooth development. These analyses identified downregulation of several mineralization-related and neuronal genes in the Tgfbr2 cko DP compared to controls. Select gene expression patterns were confirmed by quantitative real-time PCR and immunofluorescence imaging. Lastly, trigeminal neurons were co-cultured atop Transwell filters overlying primary Tgfbr2 f/f DP cells. Tgfbr2 in the DP was deleted via Adenovirus-expressed Cre recombinase. Confocal imaging of axons through the filter pores showed increased axonal sprouting from neurons cultured with Tgfbr2-positive DP cells compared to neurons cultured alone. Axon sprouting was reduced when Tgfbr2 was knocked down in the DP cells. Immunofluorescence of dentin sialophosphoprotein in co-cultured DP cells confirmed reduced mineralization potential in cells with Tgfbr2 deletion. Both our proteomics and RNA-Seq analyses indicate that axonal guidance cues, particularly semaphorin signaling, were disrupted by Tgfbr2 deletion. Thus, Tgfbr2 in the DP mesenchyme appears to regulate differentiation and the cells' ability to guide neurite outgrowth during tooth mineralization and innervation.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Courtney Barkley
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rosa Serra
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew Kruggel
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Chandler Ashman
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Allie Staats
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Shifa Shahid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Sarah B. Peters
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States,Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Sarah B. Peters,
| |
Collapse
|
11
|
Ninou E, Michail A, Politis PK. Long Non-Coding RNA Lacuna Regulates Neuronal Differentiation of Neural Stem Cells During Brain Development. Front Cell Dev Biol 2021; 9:726857. [PMID: 34900989 PMCID: PMC8653915 DOI: 10.3389/fcell.2021.726857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Although long non-coding RNAs (lncRNAs) is one of the most abundant classes of RNAs encoded within the mammalian genome and are highly expressed in the adult brain, they remain poorly characterized and their roles in the brain development are not well understood. Here we identify the lncRNA Lacuna (also catalogued as NONMMUT071331.2 in NONCODE database) as a negative regulator of neuronal differentiation in the neural stem/progenitor cells (NSCs) during mouse brain development. In particular, we show that Lacuna is transcribed from a genomic locus near to the Tbr2/Eomes gene, a key player in the transition of intermediate progenitor cells towards the induction of neuronal differentiation. Lacuna RNA expression peaks at the developmental time window between E14.5 and E16.5, consistent with a role in neural differentiation. Overexpression experiments in ex vivo cultured NSCs from murine cortex suggest that Lacuna is sufficient to inhibit neuronal differentiation, induce the number of Nestin+ and Olig2+ cells, without affecting proliferation or apoptosis of NSCs. CRISPR/dCas9-KRAB mediated knockdown of Lacuna gene expression leads to the opposite phenotype by inducing neuronal differentiation and suppressing Nestin+ and Olig2+ cells, again without any effect on proliferation or apoptosis of NSCs. Interestingly, despite the negative action of Lacuna on neurogenesis, its knockdown inhibits Eomes transcription, implying a simultaneous, but opposite, role in facilitating the Eomes gene expression. Collectively, our observations indicate a critical function of Lacuna in the gene regulation networks that fine tune the neuronal differentiation in the mammalian NSCs.
Collapse
Affiliation(s)
- Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Artemis Michail
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Biology, University of Patras, Patras, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
12
|
Hasan MM, Konishi S, Tanaka M, Izawa T, Yamate J, Kuwamura M. Expression of CCDC85C, a causative protein for hydrocephalus, and intermediate filament proteins during lateral ventricle development in rats. Exp Anim 2021; 71:100-108. [PMID: 34657927 PMCID: PMC8828401 DOI: 10.1538/expanim.21-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Coiled-coil domain containing 85c (Ccdc85c) is a causative gene for genetic hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. In the present study,
we examined the expression pattern of CCDC85C protein and intermediate filament proteins, such as nestin, vimentin, GFAP, and cytokeratin AE1/AE3, during lateral ventricle development in
rats. CCDC85C was expressed in the neuroepithelial cells of the dorsal lateral ventricle wall, diminishing with development and almost disappearing at postnatal day 20. By immunoelectron
microscopy, CCDC85C was localized in the cell-cell junction and apical membrane. The expression of nestin and vimentin was decreased in the wall of the lateral ventricle in manner similar to
CCDC85C, but GFAP expression started immediately after birth and became stronger with age. Moreover, cytokeratin expression was found at postnatal day 13 and increased at postnatal day 20 in
conjunction with the disappearance of CCDC85C expression. Taken together, CCDC85C is expressed in the cell-cell junctions lining the wall of the lateral ventricle and plays a role in neural
development with other intermediate filaments in the embryonic and postnatal periods. Our chronological study will help to relate CCDC85C protein with intermediate filaments to elucidate the
detailed role of CCDC85C protein during neurogenesis.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Laboratory of Veterinary Pathology, Osaka Prefecture University
| | - Shizuka Konishi
- Laboratory of Veterinary Pathology, Osaka Prefecture University
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Prefecture University
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Prefecture University
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Prefecture University
| | | |
Collapse
|
13
|
Varentsov VE, Rumyanceva TA, Verzilina AD, Pshenisnov KK, Rudenko EE, Nikolenko VN, Shevchuk IV, Sinelnikov MY. Effect of a neurostimulator on postnatal neurogenesis in rodent olfactory bulbs. Neuropeptides 2021; 89:102181. [PMID: 34271452 DOI: 10.1016/j.npep.2021.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022]
Abstract
The aim of the study was to reveal the effect of neurostimulation with the TKPRPGP neuropeptide on the expression intensity of Doublecortin and Nestin in the olfactory bulb of white Wistar rats using immunohistochemical and computer analysis methods. An isolated assessment of early progenitor differentiation by the density of nestin-positive structures showed that stimulation from birth to 14 days preserves the level of nestin expression, preventing its decrease. When the administration of the neuropeptide is stopped, the expression of nestin decreases sharply, starting from the central zones of the bulb, and after three weeks it is no longer present. The dynamics of doublecortin positive structure density reflects an increase upon neuropeptide administration. Each course of neuropeptide administration caused an increase in the density of the marker, but the degree of effectiveness decreased with age, and the duration of the effect decreased. In conclusion, administration of the neuropeptide TKPRPGP to rats at an early age prolongs the expression of nestin and doublecortin in the olfactory bulbs of rats up to 35 days and up to 74 days of observation, respectively. The administration of the neuropeptide in adulthood does not lead to re-expression of these markers.
Collapse
Affiliation(s)
| | | | | | | | - Ekaterina E Rudenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Ivan V Shevchuk
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mikhail Y Sinelnikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
| |
Collapse
|
14
|
Zou T, Jiang S, Yi B, Chen Q, Heng BC, Zhang C. Gelatin methacrylate hydrogel loaded with brain-derived neurotrophic factor enhances small molecule-induced neurogenic differentiation of stem cells from apical papilla. J Biomed Mater Res A 2021; 110:623-634. [PMID: 34590393 DOI: 10.1002/jbm.a.37315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
The limited neurogenic potential of adult stem cells and their non-specific lineage differentiation pose major challenges in cell-replacement therapy for neurological disorders. In our previous study, we demonstrated that the neurogenic potential of stem cells from apical papilla (SCAPs) was significantly improved upon induction with a small molecule cocktail. This study attempted to investigate whether neuronal differentiation of SCAPs induced by a small molecule cocktail can be further enhanced in a three-dimensional gelatin methacrylate hydrogel loaded with brain-derived neurotrophic factor (BDNF-GelMA). The physiological properties and neural differentiation of SCAPs treated with a combination of small molecules and BDNF-GelMA were evaluated by CCK8, Live/Dead assay, quantitative reverse transcription-polymerase chain reaction, western blot and immunocytochemistry. SCAPs embedded in BDNF-GelMA displayed superior morphological characteristics when induced by a small molecule cocktail, similar to neuronal phenotypes as compared to pure GelMA. There was significant upregulation of neural markers including Tuj1 and MAP2 by SCAPs embedded in BDNF-GelMA, as compared to pure GelMA. Hence, GelMA hydrogel loaded with a potent neurotrophic factor (BDNF) provides a conducive scaffold that can further enhance the differentiation of small molecule-treated SCAPs into neuronal-like cells, which may provide a therapeutic platform for the management of neurological disorders.
Collapse
Affiliation(s)
- Ting Zou
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Shan Jiang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Baicheng Yi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qixin Chen
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Li H, Li QQ, Hong Y. Global gene expression signatures in response to citrate-coated silver nanoparticles exposure. Toxicology 2021; 461:152898. [PMID: 34403730 DOI: 10.1016/j.tox.2021.152898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in medical and commercial products for their unique antibacterial functions. However, the impact of AgNPs on human neural development is not well understood. To investigate the effect of AgNPs on human neural development, various doses of 20 nm citrate-coated AgNP (AgSC) were administered to human embryonic stem cell derived neural progenitors during the neuronal differentiation. Immunofluorescence staining with neuronal progenitor markers SOX2 (sex determining region Y-box 2) and Nestin (VI intermediate filament protein) showed that AgSC inhibited rosette formation, neuronal progenitor proliferation, and neurite outgrowth. Furthermore, AgSC promoted astrocyte activation and neuronal apoptosis. These adverse effects can be partially recovered with ascorbic acid. A genome-wide transcriptome analysis of both AgSC treated and untreated samples indicated that the most up-graduated genes were a group of Metallothionein (1F, 1E, 2A) proteins, a metal-binding protein that plays an essential role in metal homeostasis, heavy metal detoxification, and cellular anti-oxidative defence. The most significantly down-regulated genes were neuronal differentiation 6 (NEUROD6) and fork head box G1 (FOXG1). GO analyse indicated that the regulation of cholesterol biosynthetic process, neuron differentiation, synapse organization and pattern specification, oliogenesis, and neuronal apoptosis were the most impacted biological processes. KEGG pathway analyse showed that the most significantly impacted pathways were C5 isoprenoid, axon guidance, Notch, WNT, RAS-MAPK signalling pathways, lysosome, and apoptosis. Our data suggests that AgSCs interfered with metal homeostasis and cholesterol biosynthesis which induced oxidative stress, inhibited neurogenesis, axon guidance, and promoted apoptosis. Supplementation with ascorbic acid could act as an antioxidant to prevent AgSC-mediated neurotoxicity.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766-1854, USA
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
16
|
Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021; 22:ijms22158344. [PMID: 34361110 PMCID: PMC8347220 DOI: 10.3390/ijms22158344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.
Collapse
|
17
|
Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Front Cell Dev Biol 2021; 9:702404. [PMID: 34336853 PMCID: PMC8322698 DOI: 10.3389/fcell.2021.702404] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
18
|
Di Paolo A, Farias J, Garat J, Macklin A, Ignatchenko V, Kislinger T, Sotelo Silveira J. Rat Sciatic Nerve Axoplasm Proteome Is Enriched with Ribosomal Proteins during Regeneration Processes. J Proteome Res 2021; 20:2506-2520. [PMID: 33793244 DOI: 10.1021/acs.jproteome.0c00980] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Axons are complex subcellular compartments that are extremely long in relation to cell bodies, especially in peripheral nerves. Many processes are required and regulated during axon injury, including anterograde and retrograde transport, glia-to-axon macromolecular transfer, and local axonal protein synthesis. Many in vitro omics approaches have been used to gain insight into these processes, but few have been applied in vivo. Here we adapted the osmotic ex vivo axoplasm isolation method and analyzed the adult rat sciatic-nerve-extruded axoplasm by label-free quantitative proteomics before and after injury. 2087 proteins groups were detected in the axoplasm, revealing translation machinery and microtubule-associated proteins as the most overrepresented biological processes. Ribosomal proteins (73) were detected in the uninjured axoplasm and increased their levels after injury but not within whole sciatic nerves. Meta-analysis showed that detected ribosomal proteins were present in in vitro axonal proteomes. Because local protein synthesis is important for protein localization, we were interested in detecting the most abundant newly synthesized axonal proteins in vivo. With an MS/MS-BONCAT approach, we detected 42 newly synthesized protein groups. Overall, our work indicates that proteomics profiling is useful for local axonal interrogation and suggests that ribosomal proteins may play an important role, especially during injury.
Collapse
Affiliation(s)
- Andres Di Paolo
- Departamento de Proteínas y Ácidos Nucleicos, IIBCE, 11600 Montevideo, Uruguay.,Departamento de Genómica, IIBCE, 11600 Montevideo, Uruguay
| | | | - Joaquin Garat
- Departamento de Genómica, IIBCE, 11600 Montevideo, Uruguay
| | - Andrew Macklin
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - José Sotelo Silveira
- Departamento de Genómica, IIBCE, 11600 Montevideo, Uruguay.,Departamento de Biología Celular y Molecular, Facultad de Ciencias, 11400 Montevideo, Uruguay
| |
Collapse
|
19
|
Solomon E, Davis-Anderson K, Hovde B, Micheva-Viteva S, Harris JF, Twary S, Iyer R. Global transcriptome profile of the developmental principles of in vitro iPSC-to-motor neuron differentiation. BMC Mol Cell Biol 2021; 22:13. [PMID: 33602141 PMCID: PMC7893891 DOI: 10.1186/s12860-021-00343-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00343-z.
Collapse
Affiliation(s)
- Emilia Solomon
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | - Blake Hovde
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | | | | | - Scott Twary
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA
| | - Rashi Iyer
- Los Alamos National Laboratory, Analytics, Intelligence, and Technology Division, Los Alamos, NM, USA.
| |
Collapse
|
20
|
Okawa ER, Gupta MK, Kahraman S, Goli P, Sakaguchi M, Hu J, Duan K, Slipp B, Lennerz JK, Kulkarni RN. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab 2021; 47:101164. [PMID: 33453419 PMCID: PMC7890209 DOI: 10.1016/j.molmet.2021.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
The insulin and insulin-like growth factor-1 (IGF-1) receptors are important for the growth and development of embryonic tissues. To directly define their roles in the maintenance of pluripotency and differentiation of stem cells, we knocked out both receptors in induced pluripotent stem cells (iPSCs). iPSCs lacking both insulin and IGF-1 receptors (double knockout, DKO) exhibited preserved pluripotency potential despite decreased expression of transcription factors Lin28a and Tbx3 compared to control iPSCs. While embryoid body and teratoma assays revealed an intact ability of DKO iPSCs to form all three germ layers, the latter were composed of primitive neuroectodermal tumor-like cells in the DKO group. RNA-seq analyses of control vs DKO iPSCs revealed differential regulation of pluripotency, developmental, E2F1, and apoptosis pathways. Signaling analyses pointed to downregulation of the AKT/mTOR pathway and upregulation of the STAT3 pathway in DKO iPSCs in the basal state and following stimulation with insulin/IGF-1. Directed differentiation toward the three lineages was dysregulated in DKO iPSCs, with significant downregulation of key markers (Cebpα, Fas, Pparγ, and Fsp27) in adipocytes and transcription factors (Ngn3, Isl1, Pax6, and Neurod1) in pancreatic endocrine progenitors. Furthermore, differentiated pancreatic endocrine progenitor cells from DKO iPSCs showed increased apoptosis. We conclude that insulin and insulin-like growth factor-1 receptors are indispensable for normal lineage development and perturbations in the function and signaling of these receptors leads to upregulation of alternative compensatory pathways to maintain pluripotency. Insulin and IGF-1 receptor signaling regulate the expression of pluripotency genes Lin28 and Tbx3. The STAT3 pathway is upregulated in DKO iPSCs. RNA-seq analyses revealed key developmental and apoptosis pathways regulated by insulin and IGF-1 receptors. Lineage development was dysregulated in DKO iPSCs with downregulation of key mesoderm and endodermal markers.
Collapse
Affiliation(s)
- Erin R Okawa
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Division of Endocrinology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Manoj K Gupta
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sevim Kahraman
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Praneeth Goli
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Masaji Sakaguchi
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jiang Hu
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Kaiti Duan
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brittany Slipp
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Lee J, Cho Y. Potential roles of stem cell marker genes in axon regeneration. Exp Mol Med 2021; 53:1-7. [PMID: 33446881 PMCID: PMC8080715 DOI: 10.1038/s12276-020-00553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Axon regeneration is orchestrated by many genes that are differentially expressed in response to injury. Through a comparative analysis of gene expression profiling, injury-responsive genes that are potential targets for understanding the mechanisms underlying regeneration have been revealed. As the efficiency of axon regeneration in both the peripheral and central nervous systems can be manipulated, we suggest that identifying regeneration-associated genes is a promising approach for developing therapeutic applications in vivo. Here, we review the possible roles of stem cell marker- or stemness-related genes in axon regeneration to gain a better understanding of the regeneration mechanism and to identify targets that can enhance regenerative capacity.
Collapse
Affiliation(s)
- Jinyoung Lee
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongcheol Cho
- Laboratory of Axon Regeneration & Degeneration, Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
22
|
Lorenzen K, Mathy NW, Whiteford ER, Eischeid A, Chen J, Behrens M, Chen XM, Shibata A. Microglia induce neurogenic protein expression in primary cortical cells by stimulating PI3K/AKT intracellular signaling in vitro. Mol Biol Rep 2021; 48:563-584. [PMID: 33387198 PMCID: PMC7884585 DOI: 10.1007/s11033-020-06092-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Emerging evidence suggests that microglia can support neurogenesis. Little is known about the mechanisms by which microglia regulate the cortical environment and stimulate cortical neurogenesis. We used an in vitro co-culture model system to investigate the hypothesis that microglia respond to soluble signals from cortical cells, particularly following mechanical injury, to alter the cortical environment and promote cortical cell proliferation, differentiation, and survival. Analyses of cortical cell proliferation, cell death, neurogenic protein expression, and intracellular signaling were performed on uninjured and injured cortical cells in co-culture with microglial cell lines. Microglia soluble cues enhanced cortical cell viability and proliferation cortical cells. Co-culture of injured cortical cells with microglia significantly reduced cell death of cortical cells. Microglial co-culture significantly increased Nestin + and α-internexin + cortical cells. Multiplex ELISA and RT-PCR showed decreased pro-inflammatory cytokine production by microglia co-cultured with injured cortical cells. Inhibition of AKT phosphorylation in cortical cells blocked microglial-enhanced cortical cell viability and expression of neurogenic markers in vitro. This in vitro model system allows for assessment of the effect of microglial-derived soluble signals on cortical cell viability, proliferation, and stages of differentiation during homeostasis or following mechanical injury. These data suggest that microglia cells can downregulate inflammatory cytokine production following activation by mechanical injury to enhance proliferation of new cells capable of neurogenesis via activation of AKT intracellular signaling. Increasing our understanding of the mechanisms that drive microglial-enhanced cortical neurogenesis during homeostasis and following injury in vitro will provide useful information for future primary cell and in vivo studies.
Collapse
Affiliation(s)
- Kristi Lorenzen
- Biology Department, Creighton University, Omaha, NE, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicholas W Mathy
- Biology Department, Creighton University, Omaha, NE, USA
- Pediatric Medicine, St. Joseph Heritage Healthcare, Chino Hills, CA, USA
| | - Erin R Whiteford
- Biology Department, Creighton University, Omaha, NE, USA
- Pediatric Medicine, St. Joseph Heritage Healthcare, Chino Hills, CA, USA
| | - Alex Eischeid
- Biology Department, Creighton University, Omaha, NE, USA
- Stanford Hospital and Clinics, 300 Pasteur Dr, Stanford, CA, USA
| | - Jing Chen
- Biology Department, Creighton University, Omaha, NE, USA
- Pediatric Medicine, St. Joseph Heritage Healthcare, Chino Hills, CA, USA
| | - Matthew Behrens
- Biology Department, Creighton University, Omaha, NE, USA
- University of Nebraska College of Medicine, Omaha, NE, USA
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Creighton University, Omaha, NE, USA
| | | |
Collapse
|
23
|
Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential. Int J Mol Sci 2020; 22:ijms22010365. [PMID: 33396468 PMCID: PMC7794764 DOI: 10.3390/ijms22010365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.
Collapse
|
24
|
Optimized culture of retinal ganglion cells and amacrine cells from adult mice. PLoS One 2020; 15:e0242426. [PMID: 33284815 PMCID: PMC7721191 DOI: 10.1371/journal.pone.0242426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023] Open
Abstract
Cell culture is widely utilized to study the cellular and molecular biology of different neuronal cell populations. Current techniques to study enriched neurons in vitro are primarily limited to embryonic/neonatal animals and induced pluripotent stem cells (iPSCs). Although the use of these cultures is valuable, the accessibility of purified primary adult neuronal cultures would allow for improved assessment of certain neurological diseases and pathways at the cellular level. Using a modified 7-step immunopanning technique to isolate for retinal ganglion cells (RGCs) and amacrine cells (ACs) from adult mouse retinas, we have successfully developed a model of neuronal culture that maintains for at least one week. Isolations of Thy1.2+ cells are enriched for RGCs, with the isolation cell yield being congruent to the theoretical yield of RGCs in a mouse retina. ACs of two different populations (CD15+ and CD57+) can also be isolated. The populations of these three adult neurons in culture are healthy, with neurite outgrowths in some cases greater than 500μm in length. Optimization of culture conditions for RGCs and CD15+ cells revealed that neuronal survival and the likelihood of neurite outgrowth respond inversely to different culture media. Serially diluted concentrations of puromycin decreased cultured adult RGCs in a dose-dependent manner, demonstrating the potential usefulness of these adult neuronal cultures in screening assays. This novel culture system can be used to model in vivo neuronal behaviors. Studies can now be expanded in conjunction with other methodologies to study the neurobiology of function, aging, and diseases.
Collapse
|
25
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
26
|
Gupta MK, Vethe H, Softic S, Rao TN, Wagh V, Shirakawa J, Barsnes H, Vaudel M, Takatani T, Kahraman S, Sakaguchi M, Martinez R, Hu J, Bjørlykke Y, Raeder H, Kulkarni RN. Leptin Receptor Signaling Regulates Protein Synthesis Pathways and Neuronal Differentiation in Pluripotent Stem Cells. Stem Cell Reports 2020; 15:1067-1079. [PMID: 33125875 PMCID: PMC7664055 DOI: 10.1016/j.stemcr.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023] Open
Abstract
The role of leptin receptor (OB-R) signaling in linking pluripotency with growth and development and the consequences of dysfunctional leptin signaling on progression of metabolic disease is poorly understood. Using a global unbiased proteomics approach we report that embryonic fibroblasts (MEFs) carrying the db/db mutation exhibit metabolic abnormalities, while their reprogrammed induced pluripotent stem cells (iPSCs) show altered expression of proteins involved in embryonic development. An upregulation in expression of eukaryotic translation initiation factor 4e (Eif4e) and Stat3 binding to the Eif4e promoter was supported by enhanced protein synthesis in mutant iPSCs. Directed differentiation of db/db iPSCs toward the neuronal lineage showed defects. Gene editing to correct the point mutation in db/db iPSCs using CRISPR-Cas9, restored expression of neuronal markers and protein synthesis while reversing the metabolic defects. These data imply a direct role for OB-R in regulating metabolism in embryonic fibroblasts and key developmental pathways in iPSCs. Pluripotency markers are decreased in db/db iPSCs (lacking functional OB-R) Mouse db/db iPSCs exhibit higher protein synthesis mediated by the Stat3/Eif4e axis OB-R signaling regulates neuronal development markers—NOGGIN, NESTIN, GFAP CRISPR correction reverses defects in db/db iPSCs
Collapse
Affiliation(s)
- Manoj K Gupta
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Heidrun Vethe
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway
| | - Samir Softic
- Department of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA; Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tata Nageswara Rao
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; University Clinic of Hematology, Department of Biomedical Research, Inselspital Bern and University of Bern, Bern, Switzerland
| | - Vilas Wagh
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jun Shirakawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Harald Barsnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
| | - Marc Vaudel
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Proteomics Unit, Department of Biomedicine, University of Bergen, Norway
| | - Tomozumi Takatani
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Sevim Kahraman
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Masaji Sakaguchi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rachael Martinez
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yngvild Bjørlykke
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Department of Pediatrics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Helge Raeder
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, University of Bergen, Bergen 5009, Norway; Department of Pediatrics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
27
|
Wilson E, Rudisill T, Kirk B, Johnson C, Kemper P, Newell-Litwa K. Cytoskeletal regulation of synaptogenesis in a model of human fetal brain development. J Neurosci Res 2020; 98:2148-2165. [PMID: 32713041 DOI: 10.1002/jnr.24692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Excitatory synapse formation begins in mid-fetal gestation. However, due to our inability to image fetal synaptogenesis, the initial formation of synapses remains understudied. The recent development of human fetal brain spheroids provides access to this critical period of synapse formation. Using human neurons and brain spheroids, we address how altered actin regulation impacts the formation of excitatory synapses during fetal brain development. Prior to synapse formation, inhibition of RhoA kinase (ROCK) signaling promotes neurite elongation and branching. In addition to increasing neural complexity, ROCK inhibition increases the length of protrusions along the neurite, ultimately promoting excitatory synapse formation in human cortical brain spheroids. A corresponding increase in Rac1-driven actin polymerization drives this increase in excitatory synaptogenesis. Using STORM super-resolution microscopy, we demonstrate that actomyosin regulators, including the Rac1 regulator, α-PIX, and the RhoA regulator, p115-RhoGEF, localize to nascent excitatory synapses, where they preferentially localize to postsynaptic compartments. These results demonstrate that coordinated RhoGTPase activities underlie the initial formation of excitatory synapses and identify critical cytoskeletal regulators of early synaptogenic events.
Collapse
Affiliation(s)
- Emily Wilson
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Taylor Rudisill
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Brenna Kirk
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Colin Johnson
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Paige Kemper
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Karen Newell-Litwa
- Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, NC, USA
| |
Collapse
|
28
|
Keshavarz M, Wales DJ, Seichepine F, Abdelaziz MEMK, Kassanos P, Li Q, Temelkuran B, Shen H, Yang GZ. Induced neural stem cell differentiation on a drawn fiber scaffold-toward peripheral nerve regeneration. ACTA ACUST UNITED AC 2020; 15:055011. [PMID: 32330920 DOI: 10.1088/1748-605x/ab8d12] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To achieve regeneration of long sections of damaged nerves, restoration methods such as direct suturing or autologous grafting can be inefficient. Solutions involving biohybrid implants, where neural stem cells are grown in vitro on an active support before implantation, have attracted attention. Using such an approach, combined with recent advancements in microfabrication technology, the chemical and physical environment of cells can be tailored in order to control their behaviors. Herein, a neural stem cell polycarbonate fiber scaffold, fabricated by 3D printing and thermal drawing, is presented. The combined effect of surface microstructure and chemical functionalization using poly-L-ornithine (PLO) and double-walled carbon nanotubes (DWCNTs) on the biocompatibility of the scaffold, induced differentiation of the neural stem cells (NSCs) and channeling of the neural cells was investigated. Upon treatment of the fiber scaffold with a suspension of DWCNTs in PLO (0.039 g l-1) and without recombinants a high degree of differentiation of NSCs into neuronal cells was confirmed by using nestin, galactocerebroside and doublecortin immunoassays. These findings illuminate the potential use of this biohybrid approach for the realization of future nerve regenerative implants.
Collapse
Affiliation(s)
- Meysam Keshavarz
- Hamlyn Centre for Robotic Surgery, Faculty of Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
He YQ, Shi XX, Chen L, Zhao WB, Shan J, Lin ZL, Yang LL, Li Q. Cerebrospinal fluid-contacting neurons affect the expression of endogenous neural progenitor cells and the recovery of neural function after spinal cord injury. Int J Neurosci 2020; 131:615-624. [PMID: 32363983 DOI: 10.1080/00207454.2020.1750396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the relationship between cerebrospinal fluid-contacting neurons (CSF-cNs) and endogenous neural progenitor cells (ENPCs) and whether CSF-cNs are involved in nerve repair after spinal cord injury (SCI). METHODS Cholera toxin B-horseradish peroxidase complex (CB-HRP) and cholera toxin B conjugated with saporin (CB-SAP) were injected into the lateral ventricles of spinal cord injured rats to mark and destroy the CSF-cNs. Then the rats in the experimental group were injured by SCI. Observe the content and co-expression of CSF-cNs and ENPCs in rats of each group, and observe the recovery of motor function after SCI in each group. RESULTS After the destruction of CSF-cNs, the number of ENPCs decreased significantly in the long term after the surgery, and the recovery of motor function also deteriorated as compared to the group with intact CSF-cNs. Meanwhile some cells in the spinal cord express both the biological marker of CSF-cNs and ENPCs. CONCLUSION This study shows that the population of ENPCs and motor function recovery in SCI rats declined after the destruction of CSF-cNs, suggesting that CSF-cNs affect the ENPCs population and may be involved in the recovery of neural function after SCI.
Collapse
Affiliation(s)
- Yu-Qi He
- School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China.,Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Xue-Xing Shi
- Department of Orthopedics, Affiliated Baiyun Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Li Chen
- Department of Orthopedics, Dazhou Central Hospital, Dazhou, P.R. China
| | - Wen-Bo Zhao
- Department of first Orthopedics, Fifth Affiliated (zhuhai) Hospital, Zunyi Medical University, Zhuhai, P.R. China
| | - Jing Shan
- Department of Orthopedics, First Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| | - Zong-Long Lin
- School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China.,Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Lei-Luo Yang
- Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Qing Li
- Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
30
|
McNeely KC, Dwyer ND. Cytokinesis and postabscission midbody remnants are regulated during mammalian brain development. Proc Natl Acad Sci U S A 2020; 117:9584-9593. [PMID: 32273386 PMCID: PMC7197019 DOI: 10.1073/pnas.1919658117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Building a brain of the proper size and structure requires neural stem cells (NSCs) to divide with tight temporal and spatial control to produce different daughter cell types in proper numbers and sequence. Mammalian NSCs in the embryonic cortex must maintain their polarized epithelial structure as they undergo both early proliferative divisions and later neurogenic divisions. To do this, they undergo a polarized form of cytokinesis at the apical membrane that is not well understood. Here, we investigate whether polarized furrowing and abscission in mouse NSCs are regulated differently at earlier and later stages and in a cytokinesis mutant, Kif20b This mutant was previously shown to have microcephaly and elevated apoptosis of NSCs. We developed methods to live image furrow ingression and midbody abscission in NSCs within cortical explants. We find that polarized furrow ingression occurs at a steady rate and completes in ∼15 min at two different ages. However, ingression is slower in a subset of Kif20b mutant NSCs. Abscission is usually observed on both sides of the midbody and takes 65 to 75 min to complete. Surprisingly, abscission is accelerated in the Kif20b mutant NSCs. Postabscission midbody remnants are observed at the apical membranes of daughter cells and are much more abundant in early-stage cortices. After NSC divisions in vitro, midbody remnants are more often retained on the daughter cells of early proliferative divisions. Altogether, these results suggest that regulation of abscission timing and midbody remnants in embryonic NSCs may influence proper brain growth and structure.
Collapse
Affiliation(s)
- Katrina C McNeely
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908;
| |
Collapse
|
31
|
Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons. J Neurosci 2020; 40:3720-3740. [PMID: 32273484 DOI: 10.1523/jneurosci.2471-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 11/21/2022] Open
Abstract
Nestin, an intermediate filament protein widely used as a marker of neural progenitors, was recently found to be expressed transiently in developing cortical neurons in culture and in developing mouse cortex. In young cortical cultures, nestin regulates axonal growth cone morphology. In addition, nestin, which is known to bind the neuronal cdk5/p35 kinase, affects responses to axon guidance cues upstream of cdk5, specifically, to Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, and changes in microtubules and actin filaments are well studied. In contrast, the roles of intermediate filament proteins in this process are poorly understood, even in cultured neurons. Here, we investigate the molecular mechanism by which nestin affects growth cone morphology and Sema3a sensitivity. We find that nestin selectively facilitates the phosphorylation of the lissencephaly-linked protein doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected by nestin. We uncover that this substrate selectivity is based on the ability of nestin to interact with DCX, but not with other cdk5 substrates. Nestin thus creates a selective scaffold for DCX with activated cdk5/p35. Last, we use cortical cultures derived from Dcx KO mice to show that the effects of nestin on growth cone morphology and on Sema3a sensitivity are DCX-dependent, thus suggesting a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating the intracellular kinase signaling environment in developing neurons. The sex of animal subjects is unknown.SIGNIFICANCE STATEMENT Nestin, an intermediate filament protein highly expressed in neural progenitors, was recently identified in developing neurons where it regulates growth cone morphology and responsiveness to the guidance cue Sema3a. Changes in growth cone morphology require rearrangements of cytoskeletal networks, but the roles of intermediate filaments in this process are poorly understood. We now report that nestin selectively facilitates phosphorylation of the lissencephaly-linked doublecortin (DCX) by cdk5/p35, but the phosphorylation of other cdk5 substrates is not affected. This substrate selectivity is based on preferential scaffolding of DCX, cdk5, and p35 by nestin. Additionally, we demonstrate a functional role for the DCX-nestin complex in neurons. We propose that nestin changes growth cone behavior by regulating intracellular kinase signaling in developing neurons.
Collapse
|
32
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
33
|
von Kügelgen N, Chekulaeva M. Conservation of a core neurite transcriptome across neuronal types and species. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1590. [PMID: 32059075 DOI: 10.1002/wrna.1590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
The intracellular localization of mRNAs allows neurons to control gene expression in neurite extensions (axons and dendrites) and respond rapidly to local stimuli. This plays an important role in diverse processes including neuronal growth and synaptic plasticity, which in turn serves as a foundation for learning and memory. Recent high-throughput analyses have revealed that neurites contain hundreds to thousands of mRNAs, but an analysis comparing the transcriptomes derived from these studies has been lacking. Here we analyze 20 datasets pertaining to neuronal mRNA localization across species and neuronal types and identify a conserved set of mRNAs that had robustly localized to neurites in a high number of the studies. The set includes mRNAs encoding for ribosomal proteins and other components of the translation machinery, mitochondrial proteins, cytoskeletal components, and proteins associated with neurite formation. Our combinatorial analysis provides a unique resource for future hypothesis-driven research. This article is categorized under: RNA Export and Localization > RNA Localization RNA Evolution and Genomics > Computational Analyses of RNA RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Nicolai von Kügelgen
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marina Chekulaeva
- Non-coding RNAs and Mechanisms of Cytoplasmic Gene Regulation, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
34
|
McCormick LE, Gupton SL. Mechanistic advances in axon pathfinding. Curr Opin Cell Biol 2020; 63:11-19. [PMID: 31927278 DOI: 10.1016/j.ceb.2019.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
The development of a functional nervous system entails establishing connectivity between appropriate synaptic partners. During axonal pathfinding, the developing axon navigates through the extracellular environment, extending toward postsynaptic targets. In the early 1900s, Ramon y Cajal suggested that the growth cone, a specialized, dynamic, and cytoskeletal-rich structure at the tip of the extending axon, is guided by chemical cues in the extracellular environment. A century of work supports this hypothesis and introduced myriad guidance cues and receptors that promote a variety of growth cone behaviors including extension, pause, collapse, retraction, turning, and branching. Here, we highlight research from the last two years regarding pathways implicated in axon pathfinding.
Collapse
Affiliation(s)
- Laura E McCormick
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Stephanie L Gupton
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, 115 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Lineberger Comprehensive Cancer Center, 101 Manning Dr, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
35
|
Zhong X, Wu J, Ke W, Yu Y, Ji D, Kang J, Qiu J, Wang C, Yu P, Wei Y. Neonatal exposure to organophosphorus flame retardant TDCPP elicits neurotoxicity in mouse hippocampus via microglia-mediated inflammation in vivo and in vitro. Arch Toxicol 2020; 94:541-552. [PMID: 31894355 DOI: 10.1007/s00204-019-02635-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is a phosphorus-based flame retardant common in consumer goods and baby products. Concerns have been raised about TDCPP exposure and neurodevelopmental toxicity. However, the mechanism and early response for TDCPP-induced neurotoxicity are poorly understood. This study investigates the role of microglia-mediated neuroinflammation in TDCPP-induced neurotoxicity in mice and primary cells. TDCPP was administered to C57BL/6 pups (0, 5, or 50 mg/kg/day) via an oral gavage from postnatal days 10-38 (28 days). The results showed that TDCPP exposure for 28 days altered the gene expression of neuronal markers Tubb3, Nefh, and Nes, and led to apoptosis in the hippocampus. The mRNA levels of pro-inflammatory factors Il-1β, Tnfα and Ccl2 dose dependently increased in the hippocampus at both 24 h and 28 days following exposure, accompanied by microglia activation characterized by an amoeboid-like phenotype. In in vitro studies using the primary microglia isolated from neonatal mice, exposure to TDCPP (0-100 μM) for 24 h resulted in cellular activation. It also increased the expression of genes responsible for inflammatory responses including surface markers and pro-inflammatory cytokines. These changes occurred in a dose-dependent fashion. Neurite outgrowth of primary mouse hippocampal neurons was inhibited by treatment with the conditioned medium harvested from microglia exposed to TDCPP. These results reveal that neonatal exposure to TDCPP induces neuronal damage through microglia-mediated inflammation. This provides insight into the mechanism of TDCPP's neurodevelopmental toxicity, and suggests that microglial cell is a sensitive responder for OPFRs exposure.
Collapse
Affiliation(s)
- Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jingwei Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Yuejin Yu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jianmeng Kang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jiahuang Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|