1
|
Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Neural Mechanisms of Resting-State Networks and the Amygdala Underlying the Cognitive and Emotional Effects of Psilocybin. Biol Psychiatry 2024; 96:57-66. [PMID: 38185235 DOI: 10.1016/j.biopsych.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Serotonergic psychedelics, such as psilocybin, alter perceptual and cognitive systems that are functionally integrated with the amygdala. These changes can alter cognition and emotions that are hypothesized to contribute to their therapeutic utility. However, the neural mechanisms of cognitive and subcortical systems altered by psychedelics are not well understood. METHODS We used resting-state functional magnetic resonance images collected during a randomized, double-blind, placebo-controlled clinical trial of 24 healthy adults under 0.2 mg/kg psilocybin to estimate the directed (i.e., effective) changes between the amygdala and 3 large-scale resting-state networks involved in cognition. These networks are the default mode network, the salience network, and the central executive network. RESULTS We found a pattern of decreased top-down effective connectivity from these resting-state networks to the amygdala. Effective connectivity decreased within the default mode network and salience network but increased within the central executive network. These changes in effective connectivity were statistically associated with behavioral measures of altered cognition and emotion under the influence of psilocybin. CONCLUSIONS Our findings suggest that temporary amygdala signal attenuation is associated with mechanistic changes to resting-state network connectivity. These changes are significant for altered cognition and perception and suggest targets for research investigating the efficacy of psychedelic therapy for internalizing psychiatric disorders. More broadly, our study suggests the value of quantifying the brain's hierarchical organization using effective connectivity to identify important mechanisms for basic cognitive function and how they are integrated to give rise to subjective experiences.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Modlin NL, Creed M, Sarang M, Maggio C, Rucker JJ, Williamson V. Trauma-Informed Care in Psychedelic Therapy Research: A Qualitative Literature Review of Evidence-Based Psychotherapy Interventions in PTSD and Psychedelic Therapy Across Conditions. Neuropsychiatr Dis Treat 2024; 20:109-135. [PMID: 38268571 PMCID: PMC10807282 DOI: 10.2147/ndt.s432537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Post-traumatic stress disorder (PTSD) is associated with significant patient burden. While pharmacotherapies and evidence-based psychotherapy interventions (EBPI) are effective, studies consistently highlight inadequate outcomes and high treatment dropout. Psychedelic therapy (PT) has shown preliminary promise across difficult-to-treat conditions, including MDMA-assisted therapy for PTSD, however trials of classical psychedelics in PTSD are lacking. Understanding patients' experiences of EBPI could help promote safety in PT. Aim To systematically review qualitative research on patients' subjective experience of EBPI for PTSD, and of PT, and examine areas of overlap and divergence between them. Methods Systematic literature searches for studies published between 2010 and 2023 were conducted on OVID, PubMed, Web of Science, and PsycInfo. Included were original studies in English that presented qualitative data of patient experiences of EBPI in PTSD, or PT for any indication. Extracted data from included studies were analysed using thematic synthesis. Syntheses were completed separately for EBPI and PT, before similarities and differences between the therapies were identified. Results 40 research articles were included for review: 26 studies on EBPI for PTSD, and 14 studies on PT. EBPI studied were CBT, EMDR, CPT and PE. Psychedelic compounds studied were psilocybin, ibogaine, LSD, MDMA and ketamine, for treatment of substance use disorders, anxiety relating to physical illness, depression, and PTSD. Core themes from patient experiences of EBPI: 1) patient burden in PTSD treatment; 2) readiness; 3) key mechanisms of change; 4) psychological safety and trust. Themes identified in the review of PT: 1) indirect trauma processing; 2) reorganisation of self-narratives via processes of relatedness and identification; 3) key treatment characteristics. Conclusion This study suggests overlap between patients' experience of EBPI and PT in terms of key mechanisms of change, the importance of psychological safety and readiness to engage in treatment. Trauma-informed care paradigms and practices may improve safety and acceptability of PT research.
Collapse
Affiliation(s)
- Nadav Liam Modlin
- The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
| | - Michael Creed
- The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK
| | - Maria Sarang
- The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
| | - Carolina Maggio
- The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
| | - James J Rucker
- The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK
| | - Victoria Williamson
- King’s Centre for Military Health Research, King’s College London, London, SE5 9RJ, UK
- Department of Experimental Psychology, Anna Watts Building, University of Oxford, Oxford, OX2 6 GG, UK
| |
Collapse
|
3
|
Zaretsky TG, Jagodnik KM, Barsic R, Antonio JH, Bonanno PA, MacLeod C, Pierce C, Carney H, Morrison MT, Saylor C, Danias G, Lepow L, Yehuda R. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr Neuropharmacol 2024; 22:636-735. [PMID: 38284341 PMCID: PMC10845102 DOI: 10.2174/1570159x22666231027111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 01/30/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental health condition that can occur following exposure to a traumatic experience. An estimated 12 million U.S. adults are presently affected by this disorder. Current treatments include psychological therapies (e.g., exposure-based interventions) and pharmacological treatments (e.g., selective serotonin reuptake inhibitors (SSRIs)). However, a significant proportion of patients receiving standard-of-care therapies for PTSD remain symptomatic, and new approaches for this and other trauma-related mental health conditions are greatly needed. Psychedelic compounds that alter cognition, perception, and mood are currently being examined for their efficacy in treating PTSD despite their current status as Drug Enforcement Administration (DEA)- scheduled substances. Initial clinical trials have demonstrated the potential value of psychedelicassisted therapy to treat PTSD and other psychiatric disorders. In this comprehensive review, we summarize the state of the science of PTSD clinical care, including current treatments and their shortcomings. We review clinical studies of psychedelic interventions to treat PTSD, trauma-related disorders, and common comorbidities. The classic psychedelics psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT) and DMT-containing ayahuasca, as well as the entactogen 3,4-methylenedioxymethamphetamine (MDMA) and the dissociative anesthetic ketamine, are reviewed. For each drug, we present the history of use, psychological and somatic effects, pharmacology, and safety profile. The rationale and proposed mechanisms for use in treating PTSD and traumarelated disorders are discussed. This review concludes with an in-depth consideration of future directions for the psychiatric applications of psychedelics to maximize therapeutic benefit and minimize risk in individuals and communities impacted by trauma-related conditions.
Collapse
Affiliation(s)
- Tamar Glatman Zaretsky
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen M. Jagodnik
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Barsic
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Josimar Hernandez Antonio
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip A. Bonanno
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn MacLeod
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlotte Pierce
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hunter Carney
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgan T. Morrison
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Saylor
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Danias
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, New York, NY, USA
- The Center for Psychedelic Psychotherapy and Trauma Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Winkelman MJ, Szabo A, Frecska E. The potential of psychedelics for the treatment of Alzheimer's disease and related dementias. Eur Neuropsychopharmacol 2023; 76:3-16. [PMID: 37451163 DOI: 10.1016/j.euroneuro.2023.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's Disease (AD) is a currently incurable but increasingly prevalent fatal and progressive neurodegenerative disease, demanding consideration of therapeutically relevant natural products and their synthetic analogues. This paper reviews evidence for effectiveness of natural and synthetic psychedelics in the treatment of AD causes and symptoms. The plastogenic effects of serotonergic psychedelics illustrate that they have efficacy for addressing multiple facets of AD pathology. We review findings illustrating neuroplasticity mechanisms of classic (serotonergic) and non-classic psychedelics that indicate their potential as treatments for AD and related dementias. Classic psychedelics modulate glutamatergic neurotransmission and stimulate synaptic and network remodeling that facilitates synaptic, structural and behavioral plasticity. Up-regulation of neurotrophic factors enable psychedelics to promote neuronal survival and glutamate-driven neuroplasticity. Muscimol modulation of GABAAR reduces Aβ-induced neurotoxicity and psychedelic Sig-1R agonists provide protective roles in Aβ toxicity. Classic psychedelics also activate mTOR intracellular effector pathways in brain regions that show atrophy in AD. The potential of psychedelics to treat AD involves their ability to induce structural and functional neural plasticity in brain circuits and slow or reverse brain atrophy. Psychedelics stimulate neurotrophic pathways, increase neurogenesis and produce long-lasting neural changes through rewiring pathological neurocircuitry. Psychedelic effects on 5-HT receptor target genes and induction of synaptic, structural, and functional changes in neurons and networks enable them to promote and enhance brain functional connectivity and address diverse mechanisms underlying degenerative neurological disorders. These findings provide a rationale for immediate investigation of psychedelics as treatments for AD patients.
Collapse
Affiliation(s)
- Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| | - Attila Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| | - Ede Frecska
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. BIOLOGY 2023; 12:1380. [PMID: 37997979 PMCID: PMC10669348 DOI: 10.3390/biology12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Psychedelic substances have gained significant attention in recent years for their potential therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the global burden of mental illness. It focuses on contemporary research into the pharmacological and molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signaling and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory agents. Overall, this research represents a significant development in biomedical sciences with the potential to transform mental health treatments.
Collapse
Affiliation(s)
- Blerida Banushi
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
6
|
Gold ND, Mallard AJ, Hermann JC, Zeifman RJ, Pagni BA, Bogenschutz MP, Ross S. Exploring the Potential Utility of Psychedelic Therapy for Patients With Amyotrophic Lateral Sclerosis. J Palliat Med 2023; 26:1408-1418. [PMID: 37167080 DOI: 10.1089/jpm.2022.0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an aggressive, terminal neurodegenerative disease that causes death of motor neurons and has an average survival time of 3-4 years. ALS is the most common motor neuron degenerative disease and is increasing in prevalence. There is a pressing need for more effective ALS treatments as available pharmacotherapies do not reverse disease progression or provide substantial clinical benefit. Furthermore, despite psychological distress being highly prevalent in ALS patients, psychological treatments remain understudied. Psychedelics (i.e., serotonergic psychedelics and related compounds like ketamine) have seen a resurgence of research into therapeutic applications for treating a multitude of neuropsychiatric conditions, including psychiatric and existential distress in life-threatening illnesses. Methods: We conducted a narrative review to examine the potential of psychedelic assisted-psychotherapy (PAP) to alleviate psychiatric and psychospiritual distress in ALS. We also discussed the safety of using psychedelics in this population and proposed putative neurobiological mechanisms that may therapeutically intervene on ALS neuropathology. Results: PAP has the potential to treat psychological dimensions and may also intervene on neuropathological dimensions of ALS. Robust improvements in psychiatric and psychospiritual distress from PAP in other populations provide a strong rationale for utilizing this therapy to treat ALS-related psychiatric and existential distress. Furthermore, relevant neuroprotective properties of psychedelics warrant future preclinical trials to investigate this area in ALS models. Conclusion: PAP has the potential to serve as an effective treatment in ALS. Given the lack of effective treatment options, researchers should rigorously explore this therapy for ALS in future trials.
Collapse
Affiliation(s)
- Noah D Gold
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Austin J Mallard
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Jacob C Hermann
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Richard J Zeifman
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Broc A Pagni
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael P Bogenschutz
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Stephen Ross
- Department of Psychiatry, NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Meling D, Scheidegger M. Not in the drug, not in the brain: Causality in psychedelic experiences from an enactive perspective. Front Psychol 2023; 14:1100058. [PMID: 37077857 PMCID: PMC10106622 DOI: 10.3389/fpsyg.2023.1100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Psychedelics are psychoactive substances that receive renewed interest from science and society. Increasing empirical evidence shows that the effects of psychedelics are associated with alterations in biochemical processes, brain activity, and lived experience. Still, how these different levels relate remains subject to debate. The current literature presents two influential views on the relationship between the psychedelic molecule, neural events, and experience: The integration view and the pluralistic view. The main aim of this article is to contribute a promising complementary view by re-evaluating the psychedelic molecule-brain-experience relationship from an enactive perspective. We approach this aim via the following main research questions: (1) What is the causal relationship between the psychedelic drug and brain activity? (2) What is the causal relationship between brain activity and the psychedelic experience? In exploring the first research question, we apply the concept of autonomy to the psychedelic molecule-brain relationship. In exploring the second research question, we apply the concept of dynamic co-emergence to the psychedelic brain-experience relationship. Addressing these two research questions from an enactive position offers a perspective that emphasizes interdependence and circular causality on multiple levels. This enactive perspective not only supports the pluralistic view but enriches it through a principled account of how multi-layered processes come to interact. This renders the enactive view a promising contribution to questions around causality in the therapeutic effects of psychedelics with important implications for psychedelic therapy and psychedelic research.
Collapse
Affiliation(s)
- Daniel Meling
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
- *Correspondence: Daniel Meling,
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes. Mol Psychiatry 2023; 28:59-67. [PMID: 35931756 DOI: 10.1038/s41380-022-01721-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
Psychotic symptoms are a cross-sectional dimension affecting multiple diagnostic categories, despite schizophrenia represents the prototype of psychoses. Initially, dopamine was considered the most involved molecule in the neurobiology of schizophrenia. Over the next years, several biological factors were added to the discussion helping to constitute the concept of schizophrenia as a disease marked by a deficit of functional integration, contributing to the formulation of the Dysconnection Hypothesis in 1995. Nowadays the notion of dysconnection persists in the conceptualization of schizophrenia enriched by neuroimaging findings which corroborate the hypothesis. At the same time, in recent years, psychedelics received a lot of attention by the scientific community and astonishing findings emerged about the rearrangement of brain networks under the effect of these compounds. Specifically, a global decrease in functional connectivity was found, highlighting the disintegration of preserved and functional circuits and an increase of overall connectivity in the brain. The aim of this paper is to compare the biological bases of dysconnection in schizophrenia with the alterations of neuronal cyto-architecture induced by psychedelics and the consequent state of cerebral hyper-connection. These two models of psychosis, despite diametrically opposed, imply a substantial deficit of integration of neural signaling reached through two opposite paths.
Collapse
|
9
|
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology 2023; 48:104-112. [PMID: 36123427 PMCID: PMC9700802 DOI: 10.1038/s41386-022-01389-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/20/2022]
Abstract
Classic psychedelics, such as LSD, psilocybin, and the DMT-containing beverage ayahuasca, show some potential to treat depression, anxiety, and addiction. Importantly, clinical improvements can last for months or years after treatment. It has been theorized that these long-term improvements arise because psychedelics rapidly and lastingly stimulate neuroplasticity. The focus of this review is on answering specific questions about the effects of psychedelics on neuroplasticity. Firstly, we review the evidence that psychedelics promote neuroplasticity and examine the cellular and molecular mechanisms behind the effects of different psychedelics on different aspects of neuroplasticity, including dendritogenesis, synaptogenesis, neurogenesis, and expression of plasticity-related genes (e.g., brain-derived neurotrophic factor and immediate early genes). We then examine where in the brain psychedelics promote neuroplasticity, particularly discussing the prefrontal cortex and hippocampus. We also examine what doses are required to produce this effect (e.g., hallucinogenic doses vs. "microdoses"), and how long purported changes in neuroplasticity last. Finally, we discuss the likely consequences of psychedelics' effects on neuroplasticity for both patients and healthy people, and we identify important research questions that would further scientific understanding of psychedelics' effects on neuroplasticity and its potential clinical applications.
Collapse
Affiliation(s)
- Abigail E Calder
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| | - Gregor Hasler
- University Center for Psychiatric Research, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
10
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
11
|
Cavarra M, Falzone A, Ramaekers JG, Kuypers KPC, Mento C. Psychedelic-Assisted Psychotherapy-A Systematic Review of Associated Psychological Interventions. Front Psychol 2022; 13:887255. [PMID: 35756295 PMCID: PMC9226617 DOI: 10.3389/fpsyg.2022.887255] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Modern clinical research on psychedelics is generating interesting outcomes in a wide array of clinical conditions when psychedelic-assisted psychotherapy is delivered to appropriately screened participants and in controlled settings. Still, a number of patients relapse or are less responsive to such treatments. Individual and contextual factors (i.e., set and setting) seem to play a role in shaping the psychedelic experience and in determining clinical outcomes. These findings, coupled with data from literature on the effectiveness of psychotherapy, frame the therapeutic context as a potential moderator of clinical efficacy, highlighting the need to investigate how to functionally employ environmental and relational factors. In this review, we performed a structured search through two databases (i.e., PubMed/Medline and Scopus) to identify records of clinical studies on psychedelics which used and described a structured associated psychotherapeutic intervention. The aim is to construct a picture of what models of psychedelic-assisted psychotherapy are currently adopted in clinical research and to report on their clinical outcomes. Ad-hoc and adapted therapeutic methods were identified. Common principles, points of divergence and future directions are highlighted and discussed with special attention toward therapeutic stance, degree of directiveness and the potential suggestive effects of information provided to patients.
Collapse
Affiliation(s)
- Mauro Cavarra
- Department of Cognitive, Psychological Science and Cultural Studies, University of Messina, Messina, Italy.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alessandra Falzone
- Department of Cognitive, Psychological Science and Cultural Studies, University of Messina, Messina, Italy
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Carmela Mento
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Abstract
In addition to producing profound subjective effects following acute administration, psychedelic compounds can induce beneficial behavioral changes relevant to the treatment of neuropsychiatric disorders that last long after the compounds have been cleared from the body. One hypothesis with the potential to explain the remarkable enduring effects of psychedelics is related to their abilities to promote structural and functional neuroplasticity in the prefrontal cortex (PFC). A hallmark of many stress-related neuropsychiatric diseases, including depression, post-traumatic stress disorder (PTSD), and addiction, is the atrophy of neurons in the PFC. Psychedelics appear to be particularly effective catalysts for the growth of these key neurons, ultimately leading to restoration of synaptic connectivity in this critical brain region. Furthermore, evidence suggests that the hallucinogenic effects of psychedelics are not directly linked to their ability to promote structural and functional neuroplasticity. If we are to develop improved alternatives to psychedelics for treating neuropsychiatric diseases, we must fully characterize the molecular mechanisms that give rise to psychedelic-induced neuroplasticity. Here, I review our current understanding of the biochemical signaling pathways activated by psychedelics and related neuroplasticity-promoting molecules, with an emphasis on key unanswered questions.
Collapse
Affiliation(s)
- David E. Olson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, 2700 Stockton Blvd, Suite 2102, Sacramento, CA 95817, USA,Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, CA 95618, USA,Corresponding Author: David E. Olson,
| |
Collapse
|
13
|
Van Court R, Wiseman M, Meyer K, Ballhorn D, Amses K, Slot J, Dentinger B, Garibay-Orijel R, Uehling J. Diversity, biology, and history of psilocybin-containing fungi: Suggestions for research and technological development. Fungal Biol 2022; 126:308-319. [DOI: 10.1016/j.funbio.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022]
|
14
|
Vollenweider FX, Smallridge JW. Classic Psychedelic Drugs: Update on Biological
Mechanisms. PHARMACOPSYCHIATRY 2022; 55:121-138. [PMID: 35079988 PMCID: PMC9110100 DOI: 10.1055/a-1721-2914] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Renewed interest in the effects of psychedelics in the treatment of psychiatric
disorders warrants a better understanding of the neurobiological mechanisms
underlying the effects of these substances. During the past two decades,
state-of-the-art studies of animals and humans have yielded new important
insights into the molecular, cellular, and systems-level actions of psychedelic
drugs. These efforts have revealed that psychedelics affect primarily
serotonergic receptor subtypes located in cortico-thalamic and cortico-cortical
feedback circuits of information processing. Psychedelic drugs modulate
excitatory-inhibitory balance in these circuits and can participate in
neuroplasticity within brain structures critical for the integration of
information relevant to sensation, cognition, emotions, and the narrative of
self. Neuroimaging studies showed that characteristic dimensions of the
psychedelic experience obtained through subjective questionnaires as well as
alterations in self-referential processing and emotion regulation obtained
through neuropsychological tasks are associated with distinct changes in brain
activity and connectivity patterns at multiple-system levels. These recent
results suggest that changes in self-experience, emotional processing, and
social cognition may contribute to the potential therapeutic effects of
psychedelics.
Collapse
Affiliation(s)
- Franz X. Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry,
Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich,
Zurich, Switzerland
| | - John W. Smallridge
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry,
Psychotherapy and Psychosomatics, University Hospital for Psychiatry Zurich,
Zurich, Switzerland
| |
Collapse
|
15
|
Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B, Ghai U, Gur T, Blendy JA, Vaidya VA. The Hallucinogenic Serotonin 2A Receptor Agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent Neocortex. Front Mol Neurosci 2022; 14:790213. [PMID: 35002622 PMCID: PMC8739224 DOI: 10.3389/fnmol.2021.790213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Psychedelic compounds that target the 5-HT2A receptor are reported to evoke psychoplastogenic effects, including enhanced dendritic arborization and synaptogenesis. Transcriptional regulation of neuronal plasticity-associated genes is implicated in the cytoarchitectural effects of serotonergic psychedelics, however, the transcription factors that drive this regulation are poorly elucidated. Here, we addressed the contribution of the transcription factor cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in the regulation of neuronal plasticity-associated genes by the hallucinogenic 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). In vitro studies with rat cortical neurons indicated that DOI enhances the phosphorylation of CREB (pCREB) through mitogen-activated protein (MAP) kinase and calcium/calmodulin dependent kinase II (CaMKII) pathways, with both cascades contributing to the DOI-evoked upregulation of Arc, Bdnf1, Cebpb, and Egr2 expression, whilst the upregulation of Egr1 and cFos mRNA involved the MAP kinase and CaMKII pathway respectively. We observed a robust DOI-evoked increase in the expression of several neuronal plasticity-associated genes in the rat neocortex in vivo. This DOI-evoked upregulation of neuronal plasticity-associated genes was completely blocked by the 5-HT2A receptor antagonist MDL100,907 in vitro and was also abrogated in the neocortex of 5-HT2A receptor deficient mice. Further, 5-HT2A receptor stimulation enhanced pCREB enrichment at putative cAMP response element (CRE) binding sites in the Arc, Bdnf1, Cebpb, cFos, but not Egr1 and Egr2, promoters in the rodent neocortex. The DOI-mediated transcriptional induction of Arc, cFos and Cebpb was significantly attenuated in the neocortex of CREB deficient/knockout (CREBαδ KO) mice. Collectively, these results indicate that the hallucinogenic 5-HT2A receptor agonist DOI leads to a rapid transcriptional upregulation of several neuronal plasticity-associated genes, with a subset of them exhibiting a CREB-dependent regulation. Our findings raise the intriguing possibility that similar to slow-acting classical antidepressants, rapid-action serotonergic psychedelics that target the 5-HT2A receptor may also recruit the transcription factor CREB to enhance the expression of neuronal plasticity-associated genes in the neocortex, which could in turn contribute to the rapid psychoplastogenic changes evoked by these compounds.
Collapse
Affiliation(s)
- Lynette A Desouza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Madhurima Benekareddy
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Farhan Mohammad
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Utkarsha Ghai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Tamar Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
16
|
van den Berg M, Magaraggia I, Schreiber R, Hillhouse TM, Porter JH. How to account for hallucinations in the interpretation of the antidepressant effects of psychedelics: a translational framework. Psychopharmacology (Berl) 2022; 239:1853-1879. [PMID: 35348806 PMCID: PMC9166823 DOI: 10.1007/s00213-022-06106-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023]
Abstract
RATIONALE Recent trials with psychedelics in major depressive disorder and treatment-resistant depression showed remarkable improvements in depressive symptoms that can last for up to several months after even a single administration. The lack of an appropriate placebo control group-as patients are often able to discriminate the subjective effects of the drug-and an incomplete understanding of the role of the hallucinogenic and mystical experience, hampers the interpretation of these therapeutic effects. OBJECTIVES To control for these factors, we developed a translational framework based on establishing pharmacokinetic/pharmacodynamic (PK/PD) relationships in rodents and humans for hallucinogenic (i.e., discriminative stimulus effects in rodents and humans; head twitch responses in rodents; questionnaires in humans) and therapeutic effects. For the latter, we selected the pattern separation and attentional set-shifting tasks as measures for cognitive flexibility because of their high translational value. We predict that these PK/PD analyses will lead to a more objective evaluation of improvements in patients compared to relying only on the currently used self-reported questionnaires. We hypothesize that-if the role of the hallucinogenic experience is not central in the antidepressant effects of psychedelics-the ED50's for the therapeutic effects will be significantly lower than for the hallucinogenic and mystical effects. CONCLUSION Our framework will help to inform future studies that aim at the elucidation of the mechanism(s) of action of psychedelics in depression, and the role of the acute subjective and/or hallucinogenic experience in their effects.
Collapse
Affiliation(s)
- Manon van den Berg
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands ,Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Igor Magaraggia
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands ,Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| | - Todd M. Hillhouse
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, WI USA
| | - Joseph H. Porter
- Department of Psychology, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
17
|
Saeger HN, Olson DE. Psychedelic-inspired approaches for treating neurodegenerative disorders. J Neurochem 2021; 162:109-127. [PMID: 34816433 DOI: 10.1111/jnc.15544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Psychedelics are increasingly being recognized for their potential to treat a wide range of brain disorders including depression, post-traumatic stress disorder (PTSD), and substance use disorder. Their broad therapeutic potential might result from an ability to rescue cortical atrophy common to many neuropsychiatric and neurodegenerative diseases by impacting neurotrophic factor gene expression, activating neuronal growth and survival mechanisms, and modulating the immune system. While the therapeutic potential of psychedelics has not yet been extended to neurodegenerative disorders, we provide evidence suggesting that approaches based on psychedelic science might prove useful for treating these diseases. The primary target of psychedelics, the 5-HT2A receptor, plays key roles in cortical neuron health and is dysregulated in Alzheimer's disease. Moreover, evidence suggests that psychedelics and related compounds could prove useful for treating the behavioral and psychological symptoms of dementia (BPSD). While more research is needed to probe the effects of psychedelics in models of neurodegenerative diseases, the robust effects of these compounds on structural and functional neuroplasticity and inflammation clearly warrant further investigation.
Collapse
Affiliation(s)
- Hannah N Saeger
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, California, USA
| | - David E Olson
- Department of Chemistry, University of California, Davis, Davis, California, USA.,Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA.,Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|