1
|
Shi Z, Gao X, Zhang W, Chen B, Wang M, Liao K, Wang Z, Ren L, Zhai Y, Qiu Y, Wang X, Lin Y. Novel Bimolecular Fluorescence Complementation (BiFC) Assay for Visualization of the Protein-Protein Interactions and Cellular Protein Complex Localizations. Mol Biotechnol 2024; 66:2548-2557. [PMID: 37751129 DOI: 10.1007/s12033-023-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Investigations of protein-protein interactions (PPIs) are of paramount importance for comprehending cellular processes within biological systems. The bimolecular fluorescence complementation (BiFC) assay presents a convenient methodology for visualizing PPIs within live cells. While a range of fluorescent proteins have been introduced into the BiFC system, there is a growing demand for new fluorescent proteins to accommodate the expanding requirements of researchers. This study describes the introduction of Tagged blue fluorescent protein 2 (TagBFP2) into the BiFC assay to verify the interaction between two proteins, with Enhanced yellow fluorescent protein (EYFP) employed as a positive control. Both fluorescent proteins demonstrated optimal performance in this study. Compared to EYFP, the BiFC system utilizing TagBFP2 yielded a higher signal-to-noise ratio, which facilitated differentiation of the signal of PPIs from noise and enabled employment of other fluorescent proteins within the BiFC assay. Notably, the utilization of a fluorescent secondary antibody in immunofluorescence applications or the tagging of an interest protein with a fluorescent protein occupied the green or yellow channel. Overall, the present article introduces a BiFC assay that is highly straightforward, reliable, and replicable, with the ability to be completed within 1 week. This method requires neither expensive instrumentation nor technical skills of a high order.
Collapse
Affiliation(s)
- Zhonggang Shi
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Xing Gao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, People's Republic of China
| | - Wenrui Zhang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Binghong Chen
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Mengying Wang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Keman Liao
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People's Republic of China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People's Republic of China
| | - Yujia Zhai
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China
| | - Yongming Qiu
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, People's Republic of China.
- Department of Neurosurgery, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 202150, People's Republic of China.
| | - Yingying Lin
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160 Pujian Road, Pudong District, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
2
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
3
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2024. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Tam C, Zhang KYJ. FPredX: Interpretable models for the prediction of spectral maxima, brightness, and oligomeric states of fluorescent proteins. Proteins 2021; 90:732-746. [PMID: 34676905 DOI: 10.1002/prot.26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
Fluorescent protein (FP) design is among the challenging protein design problems due to the tradeoffs among multiple properties to be optimized. Despite the accumulated efforts in design and characterization, progress has been slow in gaining a full understanding of sequence-property relationships to tackle the multiobjective design problem in FPs. In this study, we approach this problem by developing FPredX, a collection of gradient-boosted decision tree models, which mapped FP sequences to four major design targets of FPs, including excitation maximum, emission maximum, brightness, and oligomeric state. By training using one-hot encoded multiple aligned sequences with hyperparameters optimization in each model, FPredX models showed excellent prediction performance for all target properties compared with existing methods. We further interpreted the FPredX models by comparing the importance of positions along the aligned FP sequence to the predictive performance and suggested positions, which showed differential importance deemed by FPredX models to the prediction of each target property.
Collapse
Affiliation(s)
- Chunlai Tam
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
5
|
Schoeters F, Van Dijck P. Protein-Protein Interactions in Candida albicans. Front Microbiol 2019; 10:1792. [PMID: 31440220 PMCID: PMC6693483 DOI: 10.3389/fmicb.2019.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Despite being one of the most important human fungal pathogens, Candida albicans has not been studied extensively at the level of protein-protein interactions (PPIs) and data on PPIs are not readily available in online databases. In January 2018, the database called "Biological General Repository for Interaction Datasets (BioGRID)" that contains the most PPIs for C. albicans, only documented 188 physical or direct PPIs (release 3.4.156) while several more can be found in the literature. Other databases such as the String database, the Molecular INTeraction Database (MINT), and the Database for Interacting Proteins (DIP) database contain even fewer interactions or do not even include C. albicans as a searchable term. Because of the non-canonical codon usage of C. albicans where CUG is translated as serine rather than leucine, it is often problematic to use the yeast two-hybrid system in Saccharomyces cerevisiae to study C. albicans PPIs. However, studying PPIs is crucial to gain a thorough understanding of the function of proteins, biological processes and pathways. PPIs can also be potential drug targets. To aid in creating PPI networks and updating the BioGRID, we performed an exhaustive literature search in order to provide, in an accessible format, a more extensive list of known PPIs in C. albicans.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Viita T, Kyheröinen S, Prajapati B, Virtanen J, Frilander MJ, Varjosalo M, Vartiainen MK. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J Cell Sci 2019; 132:jcs226852. [PMID: 30890647 PMCID: PMC6503952 DOI: 10.1242/jcs.226852] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
In addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin. Common high-confidence interactions highlight the role of actin in chromatin-remodeling complexes and identify the histone-modifying complex human Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex. Actin binds directly to the hATAC subunit KAT14, and modulates its histone acetyl transferase activity in vitro and in cells. Transient interactions detected through BioID link actin to several steps of transcription as well as to RNA processing. Alterations in nuclear actin levels disturb alternative splicing in minigene assays, likely by affecting the transcription elongation rate. This interactome analysis thus identifies both novel direct binding partners and functional roles for nuclear actin, as well as forms a platform for further mechanistic studies on how actin operates during essential nuclear processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiina Viita
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Bina Prajapati
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Jori Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Proteomics Unit, University of Helsinki, Helsinki 00014, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
7
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
8
|
Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays. Cell Mol Life Sci 2019; 76:1185-1199. [PMID: 30623207 PMCID: PMC6675780 DOI: 10.1007/s00018-018-03003-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/28/2018] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in various aspects of
cell biology, including cell-to-cell communication, proliferation and
differentiation, survival, and tissue homeostasis, and have been implicated in
various diseases including cancer and neurodevelopmental disorders. Ligand-activated
RTKs recruit adapter proteins through a phosphotyrosine (p-Tyr) motif that is
present on the RTK and a p-Tyr-binding domain, like the Src homology 2 (SH2) domain
found in adapter proteins. Notably, numerous combinations of RTK/adapter
combinations exist, making it challenging to compare receptor activities in
standardised assays. In cell-based assays, a regulated adapter recruitment can be
investigated using genetically encoded protein–protein interaction detection
methods, such as the split TEV biosensor assay. Here, we applied the split TEV
technique to robustly monitor the dynamic recruitment of both naturally occurring
full-length adapters and artificial adapters, which are formed of clustered SH2
domains. The applicability of this approach was tested for RTKs from various
subfamilies including the epidermal growth factor (ERBB) family, the insulin
receptor (INSR) family, and the hepatocyte growth factor receptor (HGFR) family.
Best signal-to-noise ratios of ligand-activated RTK receptor activation was obtained
when clustered SH2 domains derived from GRB2 were used as adapters. The sensitivity
and robustness of the RTK recruitment assays were validated in dose-dependent
inhibition assays using the ERBB family-selective antagonists lapatinib and WZ4002.
The RTK split TEV recruitment assays also qualify for high-throughput screening
approaches, suggesting that the artificial adapter may be used as universal adapter
in cell-based profiling assays within pharmacological intervention studies.
Collapse
|
9
|
Watanabe M, Sakamoto Y, Matsunaga S. Imaging with Split Fluorescent Proteins Based on the Reconstruction of Separated Asymmetric Protein Fragments. CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Minato Watanabe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Yuki Sakamoto
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science
| |
Collapse
|
10
|
Bischof J, Duffraisse M, Furger E, Ajuria L, Giraud G, Vanderperre S, Paul R, Björklund M, Ahr D, Ahmed AW, Spinelli L, Brun C, Basler K, Merabet S. Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live Drosophila. eLife 2018; 7:38853. [PMID: 30247122 PMCID: PMC6177257 DOI: 10.7554/elife.38853] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
Transcription factors achieve specificity by establishing intricate interaction networks that will change depending on the cell context. Capturing these interactions in live condition is however a challenging issue that requires sensitive and non-invasive methods. We present a set of fly lines, called ‘multicolor BiFC library’, which covers most of the Drosophila transcription factors for performing Bimolecular Fluorescence Complementation (BiFC). The multicolor BiFC library can be used to probe two different binary interactions simultaneously and is compatible for large-scale interaction screens. The library can also be coupled with established Drosophila genetic resources to analyze interactions in the developmentally relevant expression domain of each protein partner. We provide proof of principle experiments of these various applications, using Hox proteins in the live Drosophila embryo as a case study. Overall this novel collection of ready-to-use fly lines constitutes an unprecedented genetic toolbox for the identification and analysis of protein-protein interactions in vivo.
Collapse
Affiliation(s)
- Johannes Bischof
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Edy Furger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | | | | | | | - Christine Brun
- INSERM, Aix-Marseille Université, Marseille, France.,TAGC, Centre National de la Recherche Scientifique, Marseille, France
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
11
|
A novel orange-colored bimolecular fluorescence complementation (BiFC) assay using monomeric Kusabira-Orange protein. Biotechniques 2018; 64:153-161. [DOI: 10.2144/btn-2017-0121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The bimolecular fluorescence complementation (BiFC) assay was developed as a tool for the visualization of protein–protein interactions in living cells. To date, many types of BiFC systems with distinct colors have been developed. Most of the colors in the visible spectrum have been used in BiFC assays, with the exception of orange. In this study, we developed an orange-colored BiFC system using the Kusabira-Orange (KO) protein from the stony coral Fungia concinna. To obtain bright BiFC fluorescence, we compared fluorescence intensities of two monomeric KO variants (mKO1 and mKO2) and identified mKO2 as brighter than mKO1. The optimal split site for mKO2-based BiFC was defined by a comparative analysis of complementation efficiency and a signal-to-noise ratio. The resulting mKO2-based BiFC system successfully demonstrated protein dimerization in plant cells as a model experiment. The novel mKO2-based BiFC system will expand the possibility of multicolor BiFC analysis.
Collapse
|
12
|
Wehr MC, Rossner MJ. Split protein biosensor assays in molecular pharmacological studies. Drug Discov Today 2015; 21:415-29. [PMID: 26610415 DOI: 10.1016/j.drudis.2015.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/14/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Cellular signalling is commonly mediated through dynamic protein-protein interactions (PPIs). When pivotal PPIs are deregulated, cellular signalling can be altered; it is therefore attractive to monitor regulated PPIs to understand their role in health and disease. Genetically encoded biosensors that rely on protein fragment complementation have made it feasible to monitor PPIs in living cells precisely and robustly. In particular, split protein biosensors using fluorescent proteins or luciferases are frequently applied. Further, split TEV and split ubiquitin biosensor platforms flexibly allow using readouts of choice, including transcriptional barcode reporters that are amenable to multiplexed high-throughput formats and next-generation sequencing. Combining these technologies will enable assessing drug target activities and cellular response profiles in parallel, thereby opening up new avenues in drug discovery.
Collapse
Affiliation(s)
- Michael C Wehr
- Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr. 7, D-80336 Munich, Germany.
| | - Moritz J Rossner
- Department of Psychiatry, Ludwig Maximilian University of Munich, Nussbaumstr. 7, D-80336 Munich, Germany; Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| |
Collapse
|
13
|
Abstract
Bimolecular fluorescence complementation (BiFC) is a powerful method for studying protein-protein interactions in different cell types and organisms. This method was recently developed in the fruit fly Drosophila melanogaster, allowing analyzing protein interaction properties in a physiologically relevant developing context. Here we present a detailed protocol for performing BiFC with the Venus fluorescent protein in live Drosophila embryos, taking the Hox-PBC partnership as an illustrative test case. This protocol applies to any transcription factor and split fluorescent protein in general.
Collapse
|
14
|
Miller KE, Kim Y, Huh WK, Park HO. Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies. J Mol Biol 2015; 427:2039-2055. [PMID: 25772494 DOI: 10.1016/j.jmb.2015.03.005] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/09/2022]
Abstract
Complex protein networks are involved in nearly all cellular processes. To uncover these vast networks of protein interactions, various high-throughput screening technologies have been developed. Over the last decade, bimolecular fluorescence complementation (BiFC) assay has been widely used to detect protein-protein interactions (PPIs) in living cells. This technique is based on the reconstitution of a fluorescent protein in vivo. Easy quantification of the BiFC signals allows effective cell-based high-throughput screenings for protein binding partners and drugs that modulate PPIs. Recently, with the development of large screening libraries, BiFC has been effectively applied for genome-wide PPI studies and has uncovered novel protein interactions, providing new insight into protein functions. In this review, we describe the development of reagents and methods used for BiFC-based screens in yeast, plants, and mammalian cells. We also discuss the advantages and drawbacks of these methods and highlight the application of BiFC in large-scale studies.
Collapse
Affiliation(s)
- Kristi E Miller
- Molecular Cellular Developmental Biology Program, Ohio State University, OH, USA
| | - Yeonsoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program, Ohio State University, OH, USA
| |
Collapse
|
15
|
Gookin TE, Assmann SM. Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:553-67. [PMID: 25187041 PMCID: PMC4260091 DOI: 10.1111/tpj.12639] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 05/17/2023]
Abstract
Protein networks and signaling cascades are key mechanisms for intra- and intercellular signal transduction. Identifying the interacting partners of a protein can provide vital clues regarding its physiological role. The bimolecular fluorescence complementation (BiFC) assay has become a routine tool for in vivo analysis of protein-protein interactions and their subcellular location. Although the BiFC system has improved since its inception, the available options for in planta analysis are still subject to very low signal-to-noise ratios, and a systematic comparison of BiFC confounding background signals has been lacking. Background signals can obscure weak interactions, provide false positives, and decrease confidence in true positives. To overcome these problems, we performed an extensive in planta analysis of published BiFC fragments used in metazoa and plants, and then developed an optimized single vector BiFC system which utilizes monomeric Venus (mVenus) split at residue 210, and contains an integrated mTurquoise2 marker to precisely identify transformed cells in order to distinguish true negatives. Here we provide our streamlined double ORF expression (pDOE) BiFC system, and show that our advance in BiFC methodology functions even with an internally fused mVenus210 fragment. We illustrate the efficacy of the system by providing direct visualization of Arabidopsis MLO1 interacting with a calmodulin-like (CML) protein, and by showing that heterotrimeric G-protein subunits Gα (GPA1) and Gβ (AGB1) interact in plant cells. We further demonstrate that GPA1 and AGB1 each physically interact with PLDα1 in planta, and that mutation of the so-called PLDα1 'DRY' motif abolishes both of these interactions.
Collapse
Affiliation(s)
- Timothy E Gookin
- Department of Biology, The Pennsylvania State UniversityUniversity Park, PA, 16802, USA
| | - Sarah M Assmann
- Department of Biology, The Pennsylvania State UniversityUniversity Park, PA, 16802, USA
| |
Collapse
|
16
|
Waadt R, Schlücking K, Schroeder JI, Kudla J. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations. Methods Mol Biol 2014; 1062:629-58. [PMID: 24057390 PMCID: PMC4073779 DOI: 10.1007/978-1-62703-580-4_33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The analyses of protein-protein interactions are crucial for understanding cellular processes including signal transduction, protein trafficking, and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further, we discuss different BiFC applications and provide examples for proper BiFC analyses in planta.
Collapse
Affiliation(s)
- Rainer Waadt
- University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive #0116, La Jolla, CA 92093-0116, USA
| | - Kathrin Schlücking
- Universität Münster, Molekulargenetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| | - Julian I. Schroeder
- University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive #0116, La Jolla, CA 92093-0116, USA
| | - Jörg Kudla
- Universität Münster, Molekulargenetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| |
Collapse
|
17
|
Poulsen CP, Vereb G, Geshi N, Schulz A. Inhibition of cytoplasmic streaming by cytochalasin D is superior to paraformaldehyde fixation for measuring FRET between fluorescent protein-tagged Golgi components. Cytometry A 2013; 83:830-8. [PMID: 23520174 DOI: 10.1002/cyto.a.22282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/05/2013] [Accepted: 02/21/2013] [Indexed: 12/13/2022]
Abstract
Protein-protein interaction at the organelle level can be analyzed by using tagged proteins and assessing Förster resonance energy transfer (FRET) between fluorescent donor and acceptor proteins. Such studies are able to uncover partners in the regulation of proteins and enzymes. However, any organelle movement is an issue for live FRET microscopy, as the observed organelle must not change position during measurement. One of the mobile organelles in plants is the Golgi apparatus following cytoplasmic streaming. It is involved in the decoration of proteins and processing of complex glycan structures for the cell wall. Understanding of these processes is still limited, but evidence is emerging that protein-protein interaction plays a key role in the function of this organelle. In the past, mobile organelles were usually immobilized with paraformaldehyde (PFA) for FRET-based interaction studies. Here, we show that the actin inhibitor Cytochalasin D (CytD) is superior to PFA for immobilization of Golgi stacks in plant cells. Two glycosyltransferases known to interact were tagged with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), respectively, coexpressed in Nicotiana benthamiana leaves and analyzed using confocal microscopy and spectral imaging. Fixation with PFA leads to reduced emission intensity when compared to CytD treatment. Furthermore, the calculated FRET efficiency was significantly higher with CytD than with PFA. The documented improvements are beneficial for all methods measuring FRET, where immobilization of the investigated molecules is necessary. It can be expected that FRET measurement in organelles of animal cells will also benefit from the use of inhibitors acting on the cytoskeleton.
Collapse
Affiliation(s)
- Christian Peter Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
18
|
Kodama Y, Hu CD. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 2013; 53:285-98. [PMID: 23148879 DOI: 10.2144/000113943] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/28/2012] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, bimolecular fluorescence complementation (BiFC) has emerged as a key technique to visualize protein-protein interactions in a variety of model organisms. The BiFC assay is based on reconstitution of an intact fluorescent protein when two complementary non-fluorescent fragments are brought together by a pair of interacting proteins. While the originally reported BiFC method has enabled the study of many protein-protein interactions, increasing demands to visualize protein-protein interactions under various physiological conditions have not only prompted a series of recent BiFC technology improvements, but also stimulated interest in developing completely new approaches. Here we review current BiFC technology, focusing on the development and improvement of BiFC systems, the understanding of split sites in fluorescent proteins, and enhancements in the signal-to-noise ratio. In addition, we provide perspectives on possible future improvements of the technique.
Collapse
Affiliation(s)
- Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
| | | |
Collapse
|
19
|
Ejendal KFK, Conley JM, Hu CD, Watts VJ. Bimolecular fluorescence complementation analysis of G protein-coupled receptor dimerization in living cells. Methods Enzymol 2013; 521:259-79. [PMID: 23351744 DOI: 10.1016/b978-0-12-391862-8.00014-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that G protein-coupled receptor (GPCR) signaling is mediated by receptor-receptor interactions at multiple levels. Thus, understanding the biochemistry and pharmacology of those receptor complexes is an important part of delineating the fundamental processes associated with GPCR-mediated signaling in human disease. A variety of experimental approaches have been used to explore these complexes, including bimolecular fluorescence complementation (BiFC) and multicolor BiFC (mBiFC). BiFC approaches have recently been used to explore the composition, cellular localization, and drug modulation of GPCR complexes. The basic methods for applying BiFC and mBiFC to study GPCRs in living cells are the subject of the present chapter.
Collapse
Affiliation(s)
- Karin F K Ejendal
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
20
|
Dammeyer T, Tinnefeld P. Engineered fluorescent proteins illuminate the bacterial periplasm. Comput Struct Biotechnol J 2012; 3:e201210013. [PMID: 24688673 PMCID: PMC3962181 DOI: 10.5936/csbj.201210013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/02/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP), remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat) pathway, but actively fold in the periplasm following general secretory pathway (Sec) and signal recognition particle (SRP) mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins.
Collapse
Affiliation(s)
- Thorben Dammeyer
- Institut für Physikalische und Theoretische Chemie, NanoBioSciences, Technische Universität Braunschweig, Hans Sommer Str. 10, 38106 Braunschweig, Germany
| | - Philip Tinnefeld
- Institut für Physikalische und Theoretische Chemie, NanoBioSciences, Technische Universität Braunschweig, Hans Sommer Str. 10, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
22
|
Chumakov SP, Kravchenko YE, Chumakov PM. Protein complementation as tool for studying protein-protein interactions in living cells. Mol Biol 2012. [DOI: 10.1134/s0026893312050020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|