1
|
Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells 2022; 11:cells11233773. [PMID: 36497032 PMCID: PMC9738281 DOI: 10.3390/cells11233773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Collapse
|
2
|
Cucchiara F, Ferraro S, Luci G, Bocci G. Relevant pharmacological interactions between alkylating agents and antiepileptic drugs: Preclinical and clinical data. Pharmacol Res 2021; 175:105976. [PMID: 34785318 DOI: 10.1016/j.phrs.2021.105976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/01/2023]
Abstract
Seizures are relatively common in cancer patients, and co-administration of chemotherapeutic and antiepileptic drugs (AEDs) is highly probable and necessary in many cases. Nonetheless, clinically relevant interactions between chemotherapeutic drugs and AEDs are rarely summarized and pharmacologically described. These interactions can cause insufficient tumor and seizure control or lead to unforeseen toxicity. This review focused on pharmacokinetic and pharmacodynamic interactions between alkylating agents and AEDs, helping readers to make a rational choice of treatment optimization, and thus improving patients' quality of life. As an example, phenobarbital, phenytoin, and carbamazepine, by increasing the hepatic metabolism of cyclophosphamide, ifosfamide and busulfan, yield smaller peak concentrations and a reduced area under the plasma concentration-time curve (AUC) of the prodrugs; alongside, the maximum concentration and AUC of their active products were increased with the possible onset of severe adverse drug reactions. On the other side, valproic acid, acting as histone deacetylase inhibitor, showed synergistic effects with temozolomide when tested in glioblastoma. The present review is aimed at providing evidence that may offer useful suggestions for rational pharmacological strategies in patients with seizures symptoms undertaking alkylating agents. Firstly, clinicians should avoid the use of enzyme-inducing AEDs in combination with alkylating agents and prefer the use of AEDs, such as levetiracetam, that have a low or no impact on hepatic metabolism. Secondly, a careful therapeutic drug monitoring of both alkylating agents and AEDs (and their active metabolites) is necessary to maintain therapeutic ranges and to avoid serious adverse reactions.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Luci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy.
| |
Collapse
|
3
|
Ramezani M, Hasani M, Ramezani F, Karimi Abdolmaleki M. Cucurbitacins: A Focus on Cucurbitacin E As A Natural Product and Their Biological Activities. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For the last years, different types of cucurbitacins have been extracted from various species of Cucurbitaceae family. For this review, all related papers were accumulated by searching electronic databases in the English language, including PubMed, Scopus, and Google Scholar. The keywords of cucurbitacin, cucumber anticancer therapy, cytotoxic effects, chemotherapy, and inhibitor effect were searched until February 2020. According to the result of this review, cucurbitacin E as a tetracyclic triterpenes compound, has been exhibited cell cycle arrest, anti-inflammatory and anticancer activities. It showed tumor proliferation prevention, induction of apoptosis or synergistically acts with other established antitumor compounds and cytokines throughout many molecular mechanisms. In a function-structure association manner, cucurbitacin E can inhibit Janus kinas2 (JAK2) phosphorylation, the signal transducer activator of transcription 3 (STAT3) and subsequently block these pathways, which seems to be the main mechanism of its activity. Future studies could target its detection in uninvestigated sources, subsequently its derivatives to improve their anticancer activity.
Collapse
Affiliation(s)
| | | | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
4
|
Association of Valproic Acid Use, a Potent Histone Deacetylase Inhibitor, and Melanoma Risk. J Invest Dermatol 2020; 140:2353-2358. [PMID: 32353448 DOI: 10.1016/j.jid.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Histone deacetylase inhibitors, including valproic acid, selectively induce cellular differentiation and apoptosis in melanoma cells. No published pharmacoepidemiologic studies have explored the association between valproic acid use and melanoma risk. We conducted a retrospective cohort study of adult white Kaiser Permanente Northern California members (n = 2,213,845) from 1997 to 2012 to examine the association between valproic acid use and melanoma risk. Melanoma hazard ratios (HRs) and 95% CIs were estimated using Cox proportional hazards models, adjusted for age, sex, calendar year, and healthcare use. Melanoma incidence was lower among exposed individuals (64.0 exposed vs. 96.2 unexposed per 100,000 person-years, P < 0.001). Exposed individuals had a lower incident melanoma risk (HR = 0.64; 95% CI = 0.51-0.79) in unadjusted analysis, and the estimate was attenuated but significant in adjusted analysis (HR = 0.76, 95% CI = 0.61-0.94). Cumulative exposure based on the number of fills revealed a biologically implausible inverse dose-effect. Exposed individuals were more likely to present with local than regional or distant disease at diagnosis (80/82; 97.6% exposed vs. 12,940/13,971; 92.6% unexposed). Our findings suggest that valproic acid exposure may be associated with decreased melanoma risk and progression, but the cumulative exposure analyses suggest that the observation may be owing to residual confounding.
Collapse
|
5
|
Cucchiara F, Pasqualetti F, Giorgi FS, Danesi R, Bocci G. Epileptogenesis and oncogenesis: An antineoplastic role for antiepileptic drugs in brain tumours? Pharmacol Res 2020; 156:104786. [PMID: 32278037 DOI: 10.1016/j.phrs.2020.104786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The first description of epileptic seizures due to brain tumours occurred in 19th century. Nevertheless, after over one hundred years, scientific literature is still lacking on how epilepsy and its treatment can affect tumour burden, progression and clinical outcomes. In patients with brain tumours, epilepsy dramatically impacts their quality of life (QoL). Even antiepileptic therapy seems to affect tumor lesion development. Numerous studies suggest that certain actors involved in epileptogenesis (inflammatory changes, glutamate and its ionotropic and metabotropic receptors, GABA-A and its GABA-AR receptor, as well as certain ligand- and voltage-gated ion channel) may also contribute to tumorigenesis. Although some antiepileptic drugs (AEDs) are known operating on such mechanisms underlying epilepsy and tumor development, few preclinical and clinical studies have tried to investigate them as targets of pharmacological tools acting to control both phenomena. The primary aim of this review is to summarize known determinants and pathophysiological mechanisms of seizures, as well as of cell growth and spread, in patients with brain tumors. Therefore, a special focus will be provided on the anticancer effects of commonly prescribed AEDs (including levetiracetam, valproic acid, oxcarbazepine and others), with an overview of both preclinical and clinical data. Potential clinical applications of this finding are discussed.
Collapse
Affiliation(s)
- Federico Cucchiara
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Francesco Pasqualetti
- U.O. Radioterapia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Italy
| | - Filippo Sean Giorgi
- U.O. Neurologia, Azienda Ospedaliera Universitaria Pisana, Università di Pisa, Pisa, Italy; Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Romano Danesi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy; Scuola di Specializzazione in Farmacologia e Tossicologia Clinica, Università di Pisa, Pisa, Italy.
| |
Collapse
|
6
|
Chang X, Dong R. Transcriptional regulation of autophagy-lysosomal pathway in cancer. Thorac Cancer 2020; 11:216-223. [PMID: 31912667 PMCID: PMC6996975 DOI: 10.1111/1759-7714.13287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 12/15/2022] Open
Abstract
The transcriptional regulation of autophagy‐lysosomal pathway adapts to cellular stress and enables advanced cancer cells survive. This pathway plays an oncopromoting or oncosuppressing role, depending on context‐dependent stresses and treatment resistance. It remains controversial whether this pathway represents a target for drugs, although autophagy‐lysosomal inducers and inhibitors have been tested in clinical trials for cancer treatment. Therefore, identifying the transcriptional regulators of autophagy‐lysosomal pathway may lead to the development of effective cancer treatment and the improvement of the existing targeted cancer therapies. In this review, we summarize findings from several published studies on transcriptional regulation of autophagy‐lysosomal pathway in cancer biology, and evaluate its functional role as a therapeutic target.
Collapse
Affiliation(s)
- Xinzhong Chang
- The First Surgical Department of Breast Cancer, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Ruihua Dong
- Oncology department, Weifang People's Hospital, Weifang, China
| |
Collapse
|
7
|
Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). Int J Oncol 2017; 52:19-37. [PMID: 29138804 DOI: 10.3892/ijo.2017.4203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the most important healthcare matters, with the worst prognosis but the best possibilities for scientific development. It is likely to increase in the future and cause global havoc designating it as an epidemic. Cancer development requires urgent intervention. Past few decades have witnessed extensive research to challenge carcinogenesis. Treatment involving synthetic discipline is often associated with severe adverse effects, or even worsened prognosis. Accordingly, newer economic and patient friendly molecules are warranted. Many natural substances have proved their potential so far. Cucurbitacin B against cancer and other diseases has achieved towering popularity among the researchers around the world, as detailed in the below sections with summarized tables. In line with the fascinating role of cucurbitacin B against various types of cancers, through various molecular signaling pathways, it is justifiable to propose cucurbitacin B as a mainline chemotherapy before the onset and after the diagnosis of cancer.
Collapse
Affiliation(s)
- Sukant Garg
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Sunil C Kaul
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Renu Wadhwa
- Drug Discovery and Assets Innovation Lab, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
8
|
PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4313204. [PMID: 28042385 PMCID: PMC5155108 DOI: 10.1155/2016/4313204] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023]
Abstract
Cucurbitacin B (Cuc B), a natural product, induced both protective autophagy and DNA damage mediated by ROS while the detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B decreased cell viability in concentration- and time-dependent manners. Cuc B caused long comet tails and increased expression of γ-H2AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC) staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which was inhibited by N-acetyl-L-cysteine (NAC). NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy, and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA), chloroquine (CQ), and silencing phosphatase and tensin homolog (PTEN). 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition, Cuc B increased PTEN phosphorylation and silence PTEN restored Cuc B-induced autophagic protein expressions without affecting DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation in response to DNA damage bridged DNA damage and prosurvival autophagy.
Collapse
|
9
|
Law BYK, Mok SWF, Wu AG, Lam CWK, Yu MXY, Wong VKW. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016; 21:359. [PMID: 26999089 PMCID: PMC6274228 DOI: 10.3390/molecules21030359] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Margaret Xin Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
10
|
Ethanol enhances cucurbitacin B-induced apoptosis by inhibiting cucurbitacin B-induced autophagy in LO2 hepatocytes. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Abstract
Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the classic autophagy model and also into cancer therapy, especially for the emerging targeted therapy, because a series of targeted agents execute antitumor activities via blocking STAT3 signaling, which inevitably affects the autophagy pathway. Here, we review several of the representative studies and the current understanding in this particular field.
Collapse
Key Words
- ALK, anaplastic lymphoma receptor tyrosine kinase
- ATF4, activating transcription factor 4
- BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3
- CNTF, ciliary neurotrophic factor
- COX8, cytochrome c oxidase subunit VIII
- CTSB, cathepsin B
- CTSL, cathepsin L
- CYCS, cytochrome c, somatic
- ConA, concanavalin A
- CuB, cucurbitacin B
- EGF, epidermal growth factor
- EIF2A, eukaryotic initiation factor 2A, 65kDa
- EIF2AK2, eukaryotic translation initiation factor 2-α kinase 2
- ER, endoplasmic reticulum
- ETC, electron transport chain
- FOXO1/3, forkhead box O1/3
- HDAC3, histone deacetylase 3
- HIF1A, hypoxia inducible factor 1, α subunit (basic helix-loop-helix transcription factor)
- IL6, interleukin 6
- IMM, inner mitochondrial membrane
- KDR, kinase insert domain receptor
- LMP, lysosomal membrane permeabilization
- MAP1LC3A, microtubule-associated protein 1 light chain 3 α
- MAPK1, mitogen-activated protein kinase 1
- MLS, mitochondrial localization sequence
- MMP14, matrix metallopeptidase 14 (membrane-inserted)
- NDUFA13, NADH dehydrogenase (ubiquinone) 1 α subcomplex, 13
- NES, nuclear export signal
- NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
- NLS, nuclear localization signal
- PDGFRB, platelet-derived growth factor receptor, β polypeptide
- PRKAA2, protein kinase, AMP-activated, α 2 catalytic subunit
- PTPN11, protein tyrosine phosphatase, non-receptor type 11
- PTPN2, protein tyrosine phosphatase, non-receptor type 2
- PTPN6, protein tyrosine phosphatase, non-receptor type 6
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinases
- SH2, src homology 2
- STAT3
- STAT3, signal transducer and activator of transcription 3 (acute-phase response factor)
- VHL, von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase
- XPO1, exportin 1
- autophagy
- cancer
- miRNA, microRNA
- mitoSTAT3, mitochondrial STAT3
- mitophagy
- receptor tyrosine kinases
- targeted therapy
Collapse
Affiliation(s)
- Liangkun You
- a Department of Medical Oncology; Zhejiang University ; Hangzhou , Zhejiang , China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cai Y, Fang X, He C, Li P, Xiao F, Wang Y, Chen M. Cucurbitacins: A Systematic Review of the Phytochemistry and Anticancer Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:1331-50. [PMID: 26503558 DOI: 10.1142/s0192415x15500755] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cucurbitacins are highly oxidized tetracyclic triterpenoids that are widely present in traditional Chinese medicines (Cucurbitaceae family), possess strong anticancer activity, and are divided into 12 classes from A to T with over 200 derivatives. The eight most active cucurbitacin components against cancer are cucurbitacin B, D, E, I, IIa, L glucoside, Q, and R. Their mechanisms of action include antiproliferation, inhibition of migration and invasion, proapoptosis, and cell cycle arrest promotion. Cucurbitacins are also found to be the inhibitors of JAK-STAT3, Wnt, PI3K/Akt, and MAPK signaling pathways, which play important roles in the apoptosis and survival of cancer cells. Recently, new studies have discovered synergistic anticancer effects by using cucurbitacins together with clinically approved chemotherapeutic drugs, such as docetaxel and methotrexate. This paper provides a summary of recent research progress on the anticancer property of cucurbitacins and the various intracellular signaling pathways involved in the regulation of cancer cell proliferation, death, invasion, and migration. Therefore, cucurbitacins are a class of promising anticancer drugs to be used alone or be intergraded in current chemotherapies and radiotherapies to treat many types of cancers.
Collapse
Affiliation(s)
- Yuee Cai
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Xiefan Fang
- † Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengwei He
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Peng Li
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Fei Xiao
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China.,‡ Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, P.R. China
| | - Yitao Wang
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| | - Meiwan Chen
- * State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, P.R. China
| |
Collapse
|
13
|
Sui X, Zhu J, Zhou J, Wang X, Li D, Han W, Fang Y, Pan H. Epigenetic modifications as regulatory elements of autophagy in cancer. Cancer Lett 2015; 360:106-13. [DOI: 10.1016/j.canlet.2015.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 12/16/2022]
|
14
|
Junco JJ, Mancha-Ramirez A, Malik G, Wei SJ, Kim DJ, Liang H, Slaga TJ. Ursolic acid and resveratrol synergize with chloroquine to reduce melanoma cell viability. Melanoma Res 2015; 25:103-12. [PMID: 25647735 DOI: 10.1097/cmr.0000000000000137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Malignant melanoma is associated with a 5-year survival rate of less than 20% once metastasized. Malignant melanoma cells exhibit increased levels of autophagy, a process of intracellular digestion that allows cells to survive various stresses including chemotherapies, resulting in reduced patient survival. Autophagy can be inhibited by chemicals like chloroquine (CQ), which prevents fusion of autophagosomes to lysosomes, resulting in autophagosome accumulation in most systems. Here, we describe how tested CQ to see whether it could sensitize B16F10 metastatic mouse melanoma cells to the anticancer activities of the natural compounds ursolic acid (UA) and resveratrol (RES). CQ with UA or RES strongly and synergistically reduced the viability of B16F10 mouse melanoma and A375 human melanoma cells. Surprisingly, flow cytometry of acridine orange-stained cells showed that UA or RES in combination with CQ significantly reduced autophagosome levels. Western blotting analysis revealed that CQ plus UA or RES paradoxically increased LC3II, indicative of autophagosome accumulation. In addition, CQ plus RES synergistically decreased the levels of both autophagy initiator beclin-1 and autophagy supporter p62. These results indicate that CQ with UA or RES strongly and synergistically reduces the viability of B16F10 and A375 melanoma cells. However, studies on B16F10 cells have shown that the synergistic effect was not mediated by inhibition of autophagy induced by UA or RES. These compounds are well-tolerated in humans, and CQ has shown promise as an adjuvant therapy. These combinations may be valuable treatment strategies for melanoma.
Collapse
Affiliation(s)
- Jacob J Junco
- aDepartment of Pharmacology bEdinburg Regional Academic Health Center, Medical Research Division, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Zhao GX, Xu LH, Liu KP, Pan H, He J, Cai JY, Ouyang DY, He XH. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes. PLoS One 2014; 9:e89751. [PMID: 24587010 PMCID: PMC3934946 DOI: 10.1371/journal.pone.0089751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/23/2014] [Indexed: 12/15/2022] Open
Abstract
Cucurbitacin IIb (CuIIb) is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A)-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1) and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+) T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65), it blocked the nuclear translocation of NF-κB (p65). In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response.
Collapse
Affiliation(s)
- Yao Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kun-Peng Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jian He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ji-Ye Cai
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Egger ME, Huang JS, Yin W, McMasters KM, McNally LR. Inhibition of autophagy with chloroquine is effective in melanoma. J Surg Res 2013; 184:274-81. [PMID: 23706562 DOI: 10.1016/j.jss.2013.04.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/04/2013] [Accepted: 04/24/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cancer cells adapt to the stress resulting from accelerated cell growth and a lack of nutrients by activation of the autophagy pathway. Two proteins that allow cell growth in the face of metabolic stress and hypoxia are hypoxia-inducible factor-1α (HIF-1α) and heat shock protein 90 (Hsp 90). We hypothesize that chloroquine (CQ), an antimalarial drug that inhibits autophagosome function, in combination with either echinomycin, a HIF-1α inhibitor, or 17-dimethylaminoethylamino-17-dimethoxygeldanamycin (17-DMAG), an Hsp 90 inhibitor, will result in cytotoxicity in melanoma. MATERIALS AND METHODS Multiple human melanoma cell lines (BRAF wild-type and mutant) were tested in vitro with CQ in combination with echinomycin or 17-DMAG. These treatments were performed in hypoxic (5% O2) and normoxic (18% O2) conditions. Mechanism of action was determined through Western blot of autophagy-associated proteins HIF-1α and Hsp 90. RESULTS Chloroquine, echinomycin, and 17-DMAG each induced cytotoxicity in multiple human melanoma cell lines, in both normoxia and hypoxia. Chloroquine combined with echinomycin achieved synergistic cytotoxicity under hypoxic conditions in multiple melanoma cell lines (BRAF wild-type and mutant). Western blot analysis indicated that echinomycin reduced HIF-1α levels, both alone and in combination with CQ. Changes in LC3 flux indicated inhibition of autophagy at the level of the autophagosome by CQ therapy. CONCLUSIONS Targeting autophagy with the antimalarial drug CQ may be an effective cancer therapy in melanoma. Sensitivity to chloroquine is independent of BRAF mutational status. Combining CQ with the HIF-1α inhibitor echinomycin improves cytotoxicity in hypoxic conditions.
Collapse
Affiliation(s)
- Michael E Egger
- Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | |
Collapse
|
17
|
Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation. Inflamm Res 2013; 62:461-9. [DOI: 10.1007/s00011-013-0598-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/31/2012] [Accepted: 01/16/2013] [Indexed: 02/01/2023] Open
|
18
|
Kapoor S. Cucurbitacin B and its rapidly emerging role in the management of systemic malignancies besides lung carcinomas. Cancer Biother Radiopharm 2013; 28:359. [PMID: 23350897 DOI: 10.1089/cbr.2012.1373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
19
|
Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs 2012; 23:777-87. [PMID: 22561419 DOI: 10.1097/cad.0b013e3283541384] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cucurbitacin and its derivatives (cucurbitacins) are a class of highly oxidized tetracyclic triterpenoids. They are widely distributed in the plant kingdom, where they act as heterologous chemical pheromones that protect plants from external biological insults. Their bioactivities first attracted attention in the 1960s. Documented data demonstrate that cucurbitacins possess strong pharmacological properties, such as antitumor, anti-inflammatory, and hepatoprotective effects, etc. Several molecular targets for cucurbitacins have been discovered, such as fibrous-actin, signal transducer and activator of transcription 3, cyclooxygenase-2, etc. The present study summarizes the achievements of the 50 years of research on cucurbitacins. The aim was to systematically analyze their bioactivities with an emphasis on their anticancer effects. Research and development has shed new insight into the beneficial properties of these compounds.
Collapse
|
20
|
Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 2012; 21:1801-18. [DOI: 10.1517/13543784.2012.727395] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Li X, Wu DI, Shen J, Zhou M, Lu Y. Rapamycin induces autophagy in the melanoma cell line M14 via regulation of the expression levels of Bcl-2 and Bax. Oncol Lett 2012; 5:167-172. [PMID: 23255914 DOI: 10.3892/ol.2012.986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Cancer therapy with rapamycin has been successfully implemented for kidney cancer, glioblastoma and prostate cancer. However, there are few studies concerning the effects of rapamycin on the treatment of human melanoma. In this study, we investigated whether rapamycin may be a promising strategy for the effective treatment of melanoma and explored the possible mechanism for this by culturing M14 cells in vitro and treating with rapamycin at three concentrations (10, 50 or 100 nmol/l). MDC and LC3B staining, western blot analysis, flow cytometry and transmission electron microscopy were employed. We revealed that rapamycin induced autophagy and inhibited the proliferation of M14 cells in a concentration-dependent manner, Furthermore, western blot analysis revealed an upregulated expression of Bcl-2 and downregulated expression of Bax in M14 cells. In conclusion, rapamycin induced autophagy and inhibited the growth of M14 cells. The mechanism may involve regulation of the expression of Bcl-2 family proteins. Rapamycin appears to be a promising strategy for the effective treatment of melanoma.
Collapse
Affiliation(s)
- Xue Li
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | | | | | | | | |
Collapse
|
22
|
Ouyang DY, Xu LH, He XH, Zhang YT, Zeng LH, Cai JY, Ren S. Autophagy is differentially induced in prostate cancer LNCaP, DU145 and PC-3 cells via distinct splicing profiles of ATG5. Autophagy 2012; 9:20-32. [PMID: 23075929 PMCID: PMC3542215 DOI: 10.4161/auto.22397] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagic responses to chemotherapeutic agents may vary greatly among different prostate cancer cells and have not been well characterized. In this study, we showed that valproic acid (VPA) induced conversion of LC3-I to LC3-II and formation of LC3 puncta, the typical markers of autophagy, in LNCaP and PC-3 cells. However, these markers were undetectable in DU145 cells upon autophagic stimulation, indicating a defect of autophagy in this cell line. Among several critical autophagy-related proteins, ATG5 and ATG12-ATG5 conjugates, which are essential for autophagy induction, were absent in DU145 cells. No canonical transcripts for full-length ATG5 but only two alternatively spliced ATG5 transcripts were identified in DU145 cells. These alternative transcripts lack one or two exons, leading to premature termination of ATG5 translation. Transfection of the wild-type ATG5 gene into DU145 cells rescued the production of ATG5 and ATG12-ATG5 conjugates, resulting in formation of LC3-II conjugates and LC3 puncta. Moreover, the levels of the SQSTM1 protein, which should be degradable as an autophagy adaptor, were much higher in DU145 than in LNCaP and PC-3 cells, but were significantly decreased after ATG5 restoration in DU145 cells. However, expression of wild-type ATG5 in DU145 or knockdown of ATG5 in LNCaP and PC-3 cells did not change the inhibitory effects of VPA on these cells. Collectively, these results indicated that VPA-induced autophagy in prostate cancer cells depended on ATG5 and more importantly, that the autophagy pathway was genetically impaired in DU145 cells, suggesting caution in interpreting autophagic responses in this cell line.
Collapse
Affiliation(s)
- Dong-Yun Ouyang
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhu JS, Ouyang DY, Shi ZJ, Xu LH, Zhang YT, He XH. Cucurbitacin B induces cell cycle arrest, apoptosis and autophagy associated with G actin reduction and persistent activation of cofilin in Jurkat cells. Pharmacology 2012; 89:348-6. [PMID: 22699368 DOI: 10.1159/000338757] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/21/2012] [Indexed: 01/11/2023]
Abstract
AIM The present study aimed to explore the antitumor effect and action mechanism of cucurbitacin B (CuB) on human T-cell leukemia Jurkat cells. METHODS Cell proliferation was measured by the MTS assay. Cell cycle distribution, mitochondrial membrane potential and annexin V staining were analyzed using flow cytometry. Western blotting was used to determine the levels of apoptosis- and autophagy-related proteins. RESULTS CuB inhibited the proliferation of Jurkat cells in a dose-dependent manner and induced G 2 /M phase arrest as well as formation of tetraploid cells. Accompanied with these effects, the actin dynamics was disrupted, and cofilin, a key regulator of actin dynamics, was persistently activated (dephosphorylated). Although CuB induced around 10% cells undergoing apoptosis, most of the cells were alive after CuB treatment for 24 h. Induction of autophagy was also evident by accumulation of LC3-II. CuB-induced autophagy seemed to be a prosurvival response, since suppression of CuB-induced autophagy significantly increased the activation of caspase-3. CONCLUSION Our results demonstrated that CuB exhibited antitumor activity in Jurkat cells through induction of cell cycle arrest and apoptosis which was at least partly due to the disruption of actin dynamics.
Collapse
Affiliation(s)
- Jun-Shan Zhu
- Department of Immunobiology, Jinan University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Anti-proliferative effect of 23,24-dihydrocucurbitacin F on human prostate cancer cells through induction of actin aggregation and cofilin-actin rod formation. Cancer Chemother Pharmacol 2012; 70:415-24. [DOI: 10.1007/s00280-012-1921-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|
25
|
Checinska A, Soengas MS. The gluttonous side of malignant melanoma: basic and clinical implications of macroautophagy. Pigment Cell Melanoma Res 2012; 24:1116-32. [PMID: 21995431 DOI: 10.1111/j.1755-148x.2011.00927.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
True to their inherent aggressive behavior, melanomas keep impressing the melanoma community with their ability to bypass tumor suppressor mechanisms. Name a pathway with the potential to control cell survival and melanoma cells will likely have it potentiated by multiple genetic or epigenetic alterations. In the context of progression and chemoresistance, large efforts have been dedicated to the identification of protective mechanisms associated with or linked to apoptotic death programs. These studies have guided the design of targeted anticancer strategies. Still, the promise for pro-apoptotic inducers as lead compounds for drug development has yet to come to fruition. It was then a question of time to identify alternative modulators of cell viability. An ideal candidate that is raising great expectations in the oncology field is autophagy, a catabolic process with multiple roles in cell homeostasis. Here we review the incipient literature on autophagy markers in melanocytic lesions. Intriguingly, histopathological studies are unveiling an intrinsic inter- and intratumor variability in the expression of autophagy modulators. Nonetheless, functional studies support a key role of autopaphagy programs in the response to a variety of stress factors. These include adaptive responses to nutrient deprivation, hypoxia and many anticancer agents, among other stimuli. Strategies are being also developed to mobilize the endocytic machinery and shift autolysosomes into death effectors. The opportunities that lie ahead in this field are exciting. Various authophagy mediators are potentially druggable. Moreover, animal models and the development of sophisticated screening methods offer a platform for multilevel academic-industrial collaborations. These efforts are expected to open avenues of research and, hopefully, lead to a more rational approach to melanoma treatment.
Collapse
Affiliation(s)
- Agnieszka Checinska
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | |
Collapse
|
26
|
Shi ZJ, Ouyang DY, Zhu JS, Xu LH, He XH. Histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory activities through induction of mitochondrial damage and apoptosis in activated lymphocytes. Int Immunopharmacol 2012; 12:580-7. [PMID: 22369900 DOI: 10.1016/j.intimp.2012.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 02/08/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has been proven to be an anti-cancer agent. Its anti-inflammatory activities have recently been observed both in in vitro and in vivo models. Yet its action on lymphocytes and the underlying mechanism are still not well known. In this study, in order to evaluate the anti-inflammatory function of SAHA, we analyzed the effects of SAHA on the proliferation, activation, cytokines secretion, cell cycle distribution and apoptosis of murine lymphocytes activated with concanavalin A (Con A). Our results demonstrated that SAHA inhibited the proliferation of Con A-activated lymphocytes in a dose-dependent manner. The expression of CD69 on CD3(+) T lymphocytes was significantly inhibited by SAHA. Intracellular cytokine staining analysis showed that SAHA could downregulate the expression of pro-inflammatory cytokines TNF-α, IL-6 and IFN-γ in T lymphocytes. Furthermore, analysis of sub-G(0)/G(1) peaks and annexin V binding populations revealed that SAHA induced apoptotic cell death in Con A-activated lymphocytes. Consistent with these results, SAHA treatment also induced a decrease of mitochondrial membrane potential and cleavage of caspase-3 and PARP in these cells. Moreover, SAHA caused an accumulation of phosphorylated histone H2A.X, indicating increased double strand DNA breaks. These findings suggest that induction of apoptosis through the mitochondrial pathway may contribute to the anti-inflammatory activities of SAHA on activated lymphocytes.
Collapse
Affiliation(s)
- Zi-jian Shi
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, PR China
| | | | | | | | | |
Collapse
|