1
|
Wójcicka G, Pradiuch A, Fornal E, Stachniuk A, Korolczuk A, Marzec-Kotarska B, Nikolaichuk H, Czechowska G, Kozub A, Trzpil A, Góralczyk A, Bełtowski J. The effect of exenatide (a GLP-1 analogue) and sitagliptin (a DPP-4 inhibitor) on asymmetric dimethylarginine (ADMA) metabolism and selected biomarkers of cardiac fibrosis in rats with fructose-induced metabolic syndrome. Biochem Pharmacol 2023:115637. [PMID: 37290595 DOI: 10.1016/j.bcp.2023.115637] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis, is a risk factor for endothelial dysfunction, a common pathophysiological denominator for both atherogenesis and cardiac fibrosis. We aimed to investigate whether the cardioprotective and antifibrotic effects of incretin drugs, exenatide and sitagliptin, may be associated with their ability to affect circulating and cardiac ADMA metabolism. Normal and fructose-fed rats were treated with sitagliptin (5.0/10 mg/kg) or exenatide (5/10 µg/kg) for 4 weeks. The following methods were used: LC-MS/MS, ELISA, Real-Time-PCR, colorimetry, IHC and H&E staining, PCA and OPLS-DA projections. Eight-week fructose feeding resulted in an increase in plasma ADMA and a decrease in NO concentration. Exenatide administration into fructose-fed rats reduced the plasma ADMA level and increased NO level. In the heart of these animals exenatide administration increased NO and PRMT1 level, reduced TGF-ß1, α-SMA levels and COL1A1 expression. In the exenatide treated rats renal DDAH activity positively correlated with plasma NO level and negatively with plasma ADMA level and cardiac α-SMA concentration. Sitagliptin treatment of fructose-fed rats increased plasma NO concentration, reduced circulating SDMA level, increased renal DDAH activity and reduced myocardial DDAH activity. Both drugs attenuated the myocardial immunoexpression of Smad2/3/P and perivascular fibrosis. In the metabolic syndrome condition both sitagliptin and exenatide positively modulated cardiac fibrotic remodeling and circulating level of endogenous NOS inhibitors but had no effects on ADMA levels in the myocardium.
Collapse
Affiliation(s)
- G Wójcicka
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Pradiuch
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - E Fornal
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Stachniuk
- Department of Bioanalytic, Medical University of Lublin ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Korolczuk
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - B Marzec-Kotarska
- Department of Clinical Pathology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - H Nikolaichuk
- Department of Bioanalytic, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - G Czechowska
- Department of Pharmacology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Kozub
- Department of Bioanalytic, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Trzpil
- Department of Bioanalytic, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - A Góralczyk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - J Bełtowski
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland.
| |
Collapse
|
2
|
Bati B, Celik I, Turan A, Eray N, Alkan EE, Zirek AK. Effect of isgin ( Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet. Arch Physiol Biochem 2023; 129:298-306. [PMID: 32924615 DOI: 10.1080/13813455.2020.1819338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of Rheum ribes L. plant root extracts on DNA damage, biochemical and antioxidant parameters in rats with experimental obesity induced with a high-calorie diet. The study groups were divided as "normal control(NC)", "obese control(OC)", "obese + Rheum ribes(OR1)(200 mg/kg)" and "obese + Rheum ribes (OR2)(400 mg/kg)". At the end of the application, rats were sacrificed and blood and tissue samples were obtained. According to the results obtained, the marker of DNA damage in tissues of 8-OHdG was determined to be significantly reduced in brain tissue of the OR1 and OR2 groups compared to the NC group. However, fluctuations were identified in the MDA activity, antioxidant defense system elements and serum biomarkers in tissues. In conclusion, Rheum ribes plant root extract ensured improvements in DNA damage in brain tissues and MDA levels and showed positive effects on antioxidant parameter activities in different tissues.
Collapse
Affiliation(s)
- Bedia Bati
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ismail Celik
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Abdullah Turan
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Nese Eray
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Elif Ebru Alkan
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ali Kemal Zirek
- Institute of Sciences, Medical Services and Techniques, Hakkari University, Hakkari, Turkey
| |
Collapse
|
3
|
Moon JS, Hong JH, Jung YJ, Ferrannini E, Nauck MA, Lim S. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 2022; 33:424-442. [PMID: 35491295 DOI: 10.1016/j.tem.2022.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic condition that affects nearly one billion people globally, characterized by triacylglycerol accumulation in the liver as a consequence of metabolic abnormalities (obesity and impaired glucose regulation). Low-grade inflammation, oxidative stress, mitochondrial dysfunction, and dysbiosis in gut microbiota are involved in the etiology of MAFLD, and both cardiovascular events and hepatic complications are the long-term consequences. In the absence of approved therapies for this condition, sodium-glucose cotransporter 2 inhibitors (SGLT-2 Is) and glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have the specific advantage of lowering body weight and providing cardiovascular benefits. Here, we discuss potential roles for SGLT-2 Is and GLP-1 RAs in the prevention and treatment of intrahepatic triacylglycerol accumulation and associated inflammation and/or fibrosis.
Collapse
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Hwa Hong
- Department of Internal Medicine, Eulji University Hospital, School of Medicine, Daejeon, Republic of Korea
| | - Yong Jin Jung
- Department of Internal Medicine, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital (Ruhr-University, Bochum), Bochum, Germany.
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
4
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
5
|
Hurtado-Carneiro V, Dongil P, Pérez-García A, Álvarez E, Sanz C. Preventing Oxidative Stress in the Liver: An Opportunity for GLP-1 and/or PASK. Antioxidants (Basel) 2021; 10:antiox10122028. [PMID: 34943132 PMCID: PMC8698360 DOI: 10.3390/antiox10122028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
The liver’s high metabolic activity and detoxification functions generate reactive oxygen species, mainly through oxidative phosphorylation in the mitochondria of hepatocytes. In contrast, it also has a potent antioxidant mechanism for counterbalancing the oxidant’s effect and relieving oxidative stress. PAS kinase (PASK) is a serine/threonine kinase containing an N-terminal Per-Arnt-Sim (PAS) domain, able to detect redox state. During fasting/feeding changes, PASK regulates the expression and activation of critical liver proteins involved in carbohydrate and lipid metabolism and mitochondrial biogenesis. Interestingly, the functional inactivation of PASK prevents the development of a high-fat diet (HFD)-induced obesity and diabetes. In addition, PASK deficiency alters the activity of other nutrient sensors, such as the AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). In addition to the expression and subcellular localization of nicotinamide-dependent histone deacetylases (SIRTs). This review focuses on the relationship between oxidative stress, PASK, and other nutrient sensors, updating the limited knowledge on the role of PASK in the antioxidant response. We also comment on glucagon-like peptide 1 (GLP-1) and its collaboration with PASK in preventing the damage associated with hepatic oxidative stress. The current knowledge would suggest that PASK inhibition and/or exendin-4 treatment, especially under fasting conditions, could ameliorate disorders associated with excess oxidative stress.
Collapse
Affiliation(s)
- Verónica Hurtado-Carneiro
- Department of Physiology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Correspondence:
| | - Pilar Dongil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Ana Pérez-García
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - Elvira Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain; (P.D.); (A.P.-G.); (E.Á.)
| | - Carmen Sanz
- Department of Cell Biology, Faculty of Medicine, Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Bati B, Celik I, Vuran NE, Turan A, Alkan EE, Zirek AK. Effects of Gundelia tournefortii L. on biochemical parameters, antioxidant activities and DNA damage in a rat model of experimental obesity. BRAZ J BIOL 2021; 83:e251198. [PMID: 34550296 DOI: 10.1590/1519-6984.251198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to investigate the effects of Gundelia tournefortii L. plant extract on different tissues in terms of DNA damage, biochemical and antioxidant parameter values in rats with high-calorie diets. With this aim, Wistar albino male rats were divided into 4 groups containing 6 rats each and the study was completed over 12 weeks duration. At the end of the implementation process over the 12 weeks, rats were sacrificed and blood and tissue samples were obtained. Analyses were performed on blood and tissue samples. According to results for DNA damage (8-OHdG), in brain tissue the OG2 group was significantly reduced compared to the NC group. For MDA results in liver tissue, OG1 and OG2 groups were determined to increase by a significant degree compared to the control group, while the OG2 group was also increased significantly compared to the obese group. In terms of the other parameters, comparison between the groups linked to consumption of a high calorie diet (HCD) and administration of Gundelia tournefortii L. in terms of antioxidant activities and serum samples obtained statistically significant results. Gundelia tournefortii L. plant extracts had effects that may be counted as positive on antioxidant parameter activity and were especially identified to improve DNA damage and MDA levels in brain tissues. Additionally, consumption of Gundelia tournefortii L. plant extract in the diet may have antiobesity effects; thus, it should be evaluated for use as an effective weight-loss method and as a new therapeutic agent targeting obesity.
Collapse
Affiliation(s)
- B Bati
- Van Yüzüncü Yıl University, Faculty of Education, Department of Mathematics and Science Education, Van, Turkey
| | - I Celik
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - N Eray Vuran
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - A Turan
- Van Yüzüncü Yıl University, Science Faculty, Department of Molecular Biology and Genetic, Van, Turkey
| | - E E Alkan
- Van Yüzüncü Yıl University, Faculty of Education, Department of Mathematics and Science Education, Van, Turkey
| | - A K Zirek
- Hakkari University, Institute of Sciences, Medical Services and Techniques, Hakkari, Turkey
| |
Collapse
|
7
|
Sofogianni A, Filippidis A, Chrysavgis L, Tziomalos K, Cholongitas E. Glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: An update. World J Hepatol 2020; 12:493-505. [PMID: 32952876 PMCID: PMC7475780 DOI: 10.4254/wjh.v12.i8.493] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/02/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic liver disease worldwide. NAFLD progresses in some cases to non-alcoholic steatohepatitis (NASH), which is characterized, in addition to liver fat deposition, by hepatocyte ballooning, inflammation and liver fibrosis, and in some cases may lead to hepatocellular carcinoma. NAFLD prevalence increases along with the rising incidence of type 2 diabetes mellitus (T2DM). Currently, lifestyle interventions and weight loss are used as the major therapeutic strategy in the vast majority of patients with NAFLD. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used in the management of T2DM and do not have major side effects like hypoglycemia. In patients with NAFLD, the GLP-1 receptor production is down-regulated. Recently, several animal and human studies have emphasized the role of GLP-1RAs in ameliorating liver fat accumulation, alleviating the inflammatory environment and preventing NAFLD progression to NASH. In this review, we summarize the updated literature data on the beneficial effects of GLP-1RAs in NAFLD/NASH. Finally, as GLP-1RAs seem to be an attractive therapeutic option for T2DM patients with concomitant NAFLD, we discuss whether GLP-1RAs should represent the first line pharmacotherapy for these patients.
Collapse
Affiliation(s)
- Areti Sofogianni
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece
| | - Athanasios Filippidis
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece
| | - Lampros Chrysavgis
- First Department of Internal Medicine, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki 54636, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
8
|
Saad ZA, Khodeer DM, Zaitone SA, Ahmed AAM, Moustafa YM. Exenatide ameliorates experimental non-alcoholic fatty liver in rats via suppression of toll-like receptor 4/NFκB signaling: Comparison to metformin. Life Sci 2020; 253:117725. [PMID: 32348835 DOI: 10.1016/j.lfs.2020.117725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) is a common liver disease. This study aimed to evaluate the role of exenatide compared with metformin in halting the progression of fatty liver stimulated by a high-fat diet (HiFD) in rats. MAIN METHODS Thirty male Wistar rats were allocated into 6 groups, 5 rats per each group. Group I: maintained on normal diet (normal group) for fourteen weeks. The other five groups were kept on HiFD throughout the experiment, HiFD was administered beside pharmacological treatments/or vehicle. Group II: (NAFLD control group), group III: received metformin (60 mg/kg/day, P.O.), group IV-VI: received exenatide (10, 20, and 40 μg/kg/day, S.C.) respectively for 7 weeks. At the end of the therapeutic period, fasting blood glucose was determined, and body weight was registered. Rats were sacrificed, and blood samples were taken to measure serum insulin, lipids, and liver enzymes. The liver index and homeostasis model of insulin resistance (HOMA-IR) index were calculated. Further, livers were dissected for histopathological examination and Western blot analysis. KEY FINDINGS NAFLD control group showed hyperglycemia, hyperinsulinemia, increased liver enzymes, hypertriglyceridemia, elevated hepatic lipid peroxides, and inflammatory mediators (interlukin 6, nuclear factor-κB, tumor necrosis factor-α and Toll-like receptor4) in addition to hepatic fatty degeneration. In a dose-dependent manner, exenatide significantly improved most of the above mentioned markers in comparsion with NAFLD at P≤0.05. SIGNIFICANCE The current results suggest that exenatide is equivalent to metformin in controlling insulin resistance, body weight gain, improving liver function, suppressing inflammation, and attenuating NAFLD progression in male rats.
Collapse
Affiliation(s)
- Zeinab A Saad
- Medical Administration, Suez Canal University, Ismailia, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amal A M Ahmed
- Department of Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
9
|
Radbakhsh S, Sathyapalan T, Banach M, Sahebkar A. Incretins and microRNAs: Interactions and physiological relevance. Pharmacol Res 2020; 153:104662. [PMID: 31982487 DOI: 10.1016/j.phrs.2020.104662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNA) are one class of the small regulatory RNAs that can impact the expression of numerous genes including incretin hormones and their G protein-coupled receptors. Incretin peptides, including GLP-1, GLP-2, and GIP, are released from the gastrointestinal tract and have an crucial role in the glucose hemostasis and pancreatic beta-cell function. These hormones and their analogs with a longer half-life, glucagon like peptide-1 receptor agonists (GLP1RA), modify the expression of miRNAs. Dipeptidyl peptidase IV (DPP-4) is an enzyme that degrades the incretin hormones and is inactivated by DPP-4 inhibitors, which are a class of compounds used in the management of type 2 diabetes. DPP-4 inhibitors may also increase or reduce the expression of miRNAs. In this review, we describe the possible interactions between miRNAs and incretin hormones and the relevance of such interactions to physiological processes and diseases.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Koonyosying P, Kongkarnka S, Uthaipibull C, Svasti S, Fucharoen S, Srichairatanakool S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed Pharmacother 2018; 108:1694-1702. [PMID: 30372872 DOI: 10.1016/j.biopha.2018.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023] Open
Abstract
Iron overload in patients with β-thalassemia can cause oxidative organ dysfunction. Iron chelation along with antioxidant supplementation can ameliorate such complications and prolong lives. Green tea extract (GTE) rich in epigallocatechin-3-gallate (EGCG) exhibits anti-oxidation and iron chelation properties in β-knockout thalassemic (BKO) mice diagnosed with iron overload. We investigated the effects of GTE and deferiprone (DFP) alone in combination with one another, and upon the levels of redox-active iron, lipid-peroxidation product, insulin and hepcidin in BKO mice. A state of iron overload was induced in the mice via a trimethylhexanoyl-ferrocene supplemented (Fe) diet for 3 months, and the mice were treated daily with either: DFP (50 mg/kg), DFP (50 mg/kg) plus GTE (50 mg EGCG equivalent/kg), or GTE alone for 2 months. Plasma non-transferrin bound iron (NTBI), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepcidin and insulin; tissue iron and MDA were measured. DFP, GTE and GTE + DFP effectively decreased plasma MDA (p < 0.05), NTBI and ALT, and increased plasma hepcidin and insulin. All the treatments also reduced iron accumulation and MDA production in both the pancreas and liver in the mice. However, the combination therapy demonstrated no advantages over monotherapy. The findings suggest GTE improved liver and pancreatic β-cell functions in iron-overloaded β-thalassemia mice by diminishing redox iron and free radicals, while inhibiting lipid peroxidation. Consequently, there are indications that GTE holds significant potential for clinical use.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chairat Uthaipibull
- Protein-Ligand Engineering and Molecular Biology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | | |
Collapse
|
11
|
Allam MM, El Gazzar WB. Exendin-4, a glucagon-like peptide-1 receptor agonist downregulates hepatic receptor for advanced glycation end products in non-alcoholic steatohepatitis rat model. Arch Physiol Biochem 2018; 124:10-17. [PMID: 28696785 DOI: 10.1080/13813455.2017.1348362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Exendin-4, a glucagon-like peptide-1 receptor agonist has been shown to have curative effects on hepatic steatosis in murine models. OBJECTIVE The present study aimed to elucidate the effect of Exendin-4 on hepatic receptor for advanced glycation end products (RAGE) mRNA expression in non-alcoholic steatohepatitis (NASH) rat model induced by high-fat diet. METHODS NASH was induced by high-fat diet intake, and Exendin-4 was given in two different doses. After 12 weeks, liver enzyme levels, hepatic triglycerides, antioxidant enzymes and malondialdehyde (MDA) levels, and mRNA RAGE was detected using RT-PCR. RESULTS Exendin-4 in high dose reduced significantly liver enzymes activity, hepatic triglycerides, MDA levels and hepatic mRNA RAGE expression levels with significantly higher antioxidant enzymes activity. CONCLUSIONS Our results give further insights into the mechanisms underlying the curative role of Exendin-4 in NASH, suggesting that interference with RAGE may be a useful therapeutic approach to NASH.
Collapse
Affiliation(s)
- Mona M Allam
- a Physiology Department, Faculty of Medicine , Benha University , Benha , Egypt
| | - Walaa B El Gazzar
- b Biochemistry Department, Faculty of Medicine , Benha University , Benha , Egypt
| |
Collapse
|
12
|
Gogiashvili M, Edlund K, Gianmoena K, Marchan R, Brik A, Andersson JT, Lambert J, Madjar K, Hellwig B, Rahnenführer J, Hengstler JG, Hergenröder R, Cadenas C. Metabolic profiling of ob/ob mouse fatty liver using HR-MAS 1H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway. Anal Bioanal Chem 2016; 409:1591-1606. [PMID: 27896396 DOI: 10.1007/s00216-016-0100-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1H-NMR. In addition, after demonstrating that HR-MAS 1H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1H-NMR and qRT-PCR, respectively.
Collapse
Affiliation(s)
- Mikheil Gogiashvili
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany.
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Kathrin Gianmoena
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Institute of the Ruhr-Universität Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jan T Andersson
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 30, 48149, Münster, Germany
| | - Jörg Lambert
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany
| | - Katrin Madjar
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Birte Hellwig
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Jörg Rahnenführer
- Faculty of Statistics, TU Dortmund University, Mathematics Building, 44221, Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Roland Hergenröder
- Leibniz Institut für Analytische Wissenschaften - ISAS e.V., Bunsen-Kirchhoff-Strasse 11, 44139, Dortmund, Germany
| | - Cristina Cadenas
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| |
Collapse
|
13
|
Wu J, Williams GR, Branford-White C, Li H, Li Y, Zhu LM. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. Eur J Pharm Sci 2016; 92:28-38. [DOI: 10.1016/j.ejps.2016.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
|
14
|
Abstract
PURPOSE OF REVIEW Glucagon-like peptide-1 (GLP-1) is the best known incretin hormone able to potentiate glucose-induced insulin secretion. Moreover, GLP-1 is currently under intensive investigation as a potential crucial mediator of beneficial metabolic effects after bariatric surgery, because of its eating inhibitory, antiobesity, and antidiabetes effects. This review briefly summarizes recent findings on the specific effects of GLP-1 on lipoprotein metabolism. The related hormone GLP-2 is derived from the same precursor gene; its effects on lipoprotein metabolism will also be discussed briefly. RECENT FINDINGS Pharmacological activation of the GLP-1 system has beneficial effects on obesity-induced alterations of lipoprotein metabolism. These benefits can be observed with direct GLP-1 receptor agonists like liraglutide or exendin-4, but also with inhibitors of dipeptidyl peptidase IV (DPP-IV), which reduce the breakdown of endogenous GLP-1. The role of GLP-2-related pathways on lipid levels and metabolism are less clear, but some effects (e.g. increased intestinal chylomicron output) are opposite to GLP-1. SUMMARY Activation of the GLP-1-dependent pathways may perhaps translate into a lower cardiovascular risk. Understanding how GLP-1 and GLP-2 regulate and interact in the control of lipoprotein metabolism will set the stage for the development of new strategies to treat dyslipidaemia in obesity, diabetes, and other cardiometabolic diseases.
Collapse
Affiliation(s)
- Thomas A Lutz
- aInstitute of Veterinary Physiology, Vetsuisse Faculty University of Zurich bCenter for Integrative Human Physiology, University of Zurich, Zurich cInstitute for Food Nutrition and Health, Laboratory of Translational Nutritional Biology, ETH Zurich, Schwerzenbach dCenter for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | |
Collapse
|