1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Shoda C, Lee D, Miwa Y, Yamagami S, Nakashizuka H, Nimura K, Okamoto K, Kawagishi H, Negishi K, Kurihara T. Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis. FASEB J 2024; 38:e23792. [PMID: 38953555 DOI: 10.1096/fj.202400540rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.
Collapse
Affiliation(s)
- Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Aichi Animal Eye Clinic, Nagoya, Aichi, Japan
| | - Satoru Yamagami
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Kazumi Nimura
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
| | - Kazutoshi Okamoto
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Bergandi L, Palladino G, Meduri A, De Luca L, Silvagno F. Vitamin D and Sulforaphane Decrease Inflammatory Oxidative Stress and Restore the Markers of Epithelial Integrity in an In Vitro Model of Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:6404. [PMID: 38928111 PMCID: PMC11203625 DOI: 10.3390/ijms25126404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is strictly linked to chronic oxidative stress, inflammation, loss of epithelial barrier integrity, and often with abnormal new blood vessel development. In this study, the retinal epithelial cell line ARPE-19 was treated with pro-inflammatory transforming growth factor-beta (TGF-β) to investigate the activity of vitamin D (VD) and sulforaphane (SF) in abating the consequences of oxidative stress and inflammation. The administration of VD and SF lowered reactive oxygen species (ROS) levels, and abated the related expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8 induced by TGF-β. We evaluated mitochondrial respiration as a source of ROS production, and we discovered that the increased transcription of respiratory elements triggered by TGF-β was prevented by VD and SF. In this model of inflamed epithelium, the treatment with VD and SF also reduced the secretion of VEGF, a key angiogenic factor, and restored the markers of epithelial integrity. Remarkably, all the observed biological effects were potentiated by the co-stimulation with the two compounds and were not mediated by VD receptor expression but rather by the ERK 1/2 pathway. Altogether, the results of this study reveal the powerful synergistic anti-inflammatory activity of SF and VD and lay the foundation for future clinical assessment of their efficacy in AMD.
Collapse
Affiliation(s)
- Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy; (L.B.); (G.P.)
| | - Giulia Palladino
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy; (L.B.); (G.P.)
| | - Alessandro Meduri
- Ophthalmology Clinic, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.M.); (L.D.L.)
| | - Laura De Luca
- Ophthalmology Clinic, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.M.); (L.D.L.)
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy; (L.B.); (G.P.)
| |
Collapse
|
4
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
5
|
Ji S, Xiong M, Chen H, Liu Y, Zhou L, Hong Y, Wang M, Wang C, Fu X, Sun X. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:116. [PMID: 36918530 PMCID: PMC10015098 DOI: 10.1038/s41392-023-01343-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
The ageing process is a systemic decline from cellular dysfunction to organ degeneration, with more predisposition to deteriorated disorders. Rejuvenation refers to giving aged cells or organisms more youthful characteristics through various techniques, such as cellular reprogramming and epigenetic regulation. The great leaps in cellular rejuvenation prove that ageing is not a one-way street, and many rejuvenative interventions have emerged to delay and even reverse the ageing process. Defining the mechanism by which roadblocks and signaling inputs influence complex ageing programs is essential for understanding and developing rejuvenative strategies. Here, we discuss the intrinsic and extrinsic factors that counteract cell rejuvenation, and the targeted cells and core mechanisms involved in this process. Then, we critically summarize the latest advances in state-of-art strategies of cellular rejuvenation. Various rejuvenation methods also provide insights for treating specific ageing-related diseases, including cellular reprogramming, the removal of senescence cells (SCs) and suppression of senescence-associated secretory phenotype (SASP), metabolic manipulation, stem cells-associated therapy, dietary restriction, immune rejuvenation and heterochronic transplantation, etc. The potential applications of rejuvenation therapy also extend to cancer treatment. Finally, we analyze in detail the therapeutic opportunities and challenges of rejuvenation technology. Deciphering rejuvenation interventions will provide further insights into anti-ageing and ageing-related disease treatment in clinical settings.
Collapse
Affiliation(s)
- Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China.
| |
Collapse
|
6
|
Arrigo A, Aragona E, Bandello F. The Role of Inflammation in Age-Related Macular Degeneration: Updates and Possible Therapeutic Approaches. Asia Pac J Ophthalmol (Phila) 2023; 12:158-167. [PMID: 36650098 DOI: 10.1097/apo.0000000000000570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common retinal disease characterized by complex pathogenesis and extremely heterogeneous characteristics. Both in "dry" and "wet" AMD forms, the inflammation has a central role to promote the degenerative process and to stimulate the onset of complications. AMD is characterized by several proinflammatory stimuli, cells and mediators involved, and metabolic pathways. Nowadays, inflammatory biomarkers may be unveiled and analyzed by means of several techniques, including laboratory approaches, histology, immunohistochemistry, and noninvasive multimodal retinal imaging. These methodologies allowed to perform remarkable steps forward for understanding the role of inflammation in AMD pathogenesis, also offering new opportunities to optimize the diagnostic workup of the patients and to develop new treatments. The main goal of the present paper is to provide an updated scenario of the current knowledge regarding the role of inflammation in "dry" and "wet" AMD and to discuss new possible therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
7
|
Choi YA, Jeong A, Woo CH, Cha SC, Park DY, Sagong M. Aqueous microRNA profiling in age-related macular degeneration and polypoidal choroidal vasculopathy by next-generation sequencing. Sci Rep 2023; 13:1274. [PMID: 36690666 PMCID: PMC9870898 DOI: 10.1038/s41598-023-28385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Although many studies demonstrated the differences of clinical features, natural course, and response to treatment between typical age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV), differential microRNAs (miRNAs) expression in the aqueous humor (AH) between them has not been reported yet. We investigated the roles of miRNAs in the AH of patients with typical AMD and PCV using next-generation sequencing (NGS) and quantitative PCR (qPCR). Target genes and predicted pathways of miRNAs were investigated via pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes database. A total of 161 miRNAs from eyes with typical AMD and 185 miRNAs from eyes with PCV were differentially expressed. 33 miRNAs were commonly upregulated, and 77 miRNAs were commonly downregulated in both typical AMD and PCV groups. Among them, hsa-miR-140-5p, hsa-miR-374c-3p, and hsa-miR-200a-5p were differentially expressed and were predicted to regulate proteoglycans in cancer, p53 signaling pathway, Hippo signaling pathway, and adherens junction. The differential expression profiles and target gene regulation networks of AH miRNAs may contribute to the development of different pathological phenotypes in typical AMD and PCV. The results of this study provide novel insights into the pathogenesis, associated prognostic biomarkers, and therapeutic targets in AMD and PCV.
Collapse
Affiliation(s)
- Yeong A Choi
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Areum Jeong
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Soon Cheol Cha
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Do Young Park
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea
| | - Min Sagong
- Department of Ophthalmology, Yeungnam University College of Medicine, #170 Hyunchungro, Nam-Gu, Daegu, 42415, South Korea.
- Yeungnam Eye Center, Yeungnam University Hospital, Daegu, South Korea.
| |
Collapse
|
8
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
9
|
Tian H, Chen Z, Zhu X, Ou Q, Wang Z, Wu B, Xu JY, Jin C, Gao F, Wang J, Zhang J, Zhang J, Lu L, Xu GT. Induced retinal pigment epithelial cells with anti-epithelial-to-mesenchymal transition ability delay retinal degeneration. iScience 2022; 25:105050. [PMID: 36185374 PMCID: PMC9519511 DOI: 10.1016/j.isci.2022.105050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The hostile microenvironment of the retina in patients with age-related macular degeneration (AMD) may trigger epithelial-to-mesenchymal transition (EMT) of grafted retinal pigment epithelial (RPE) cells, thus attenuating the therapeutic outcome. Here, we transformed human dedifferentiated induced pluripotent stem cell-derived RPE (iPSC-RPE) cells into induced RPE (iRPE) cells using a cocktail of four transcription factors (TFs)—CRX, MITF-A, NR2E1, and C-MYC. These critical TFs maintained the epithelial property of iRPE cells by regulating the expression of bmp7, forkhead box f2, lin7a, and pard6b, and conferred resistance to TGF-β-induced EMT in iRPE cells by targeting ppm1a. The iRPE cells with Tet-on system-regulated c-myc expression exhibited EMT resistance and better therapeutic function compared with iPSC-RPE cells in rat AMD model. Our study demonstrates that endowing RPE cells with anti-EMT property avoids the risk of EMT after cells are grafted into the subretinal space, and it may provide a suitable candidate for AMD treatment. CRX, MITF-A, NR2E1, and C-MYC transform De-iPSC-RPE cells into iRPE cells iRPE cells have resistance to TGF-β-induced EMT BMP7, FOXF2, LIN7A, PARD6B, and PPM1A mediate the functions of TFs in iRPE cells iRPE cells have better retinal protective function than iPSC-RPE cells
Collapse
|
10
|
Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022; 11:2336. [PMID: 35954181 PMCID: PMC9367584 DOI: 10.3390/cells11152336] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options.
Collapse
Affiliation(s)
- Soumaya Hachana
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
11
|
|
12
|
Al-Ani A, Toms D, Sunba S, Giles K, Touahri Y, Schuurmans C, Ungrin M. Scaffold-Free Retinal Pigment Epithelium Microtissues Exhibit Increased Release of PEDF. Int J Mol Sci 2021; 22:11317. [PMID: 34768747 PMCID: PMC8583603 DOI: 10.3390/ijms222111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022] Open
Abstract
The retinal pigmented epithelium (RPE) plays a critical role in photoreceptor survival and function. RPE deficits are implicated in a wide range of diseases that result in vision loss, including age-related macular degeneration (AMD) and Stargardt disease, affecting millions worldwide. Subretinal delivery of RPE cells is considered a promising avenue for treatment, and encouraging results from animal trials have supported recent progression into the clinic. However, the limited survival and engraftment of transplanted RPE cells delivered as a suspension continues to be a major challenge. While RPE delivery as epithelial sheets exhibits improved outcomes, this comes at the price of increased complexity at both the production and transplant stages. In order to combine the benefits of both approaches, we have developed size-controlled, scaffold-free RPE microtissues (RPE-µTs) that are suitable for scalable production and delivery via injection. RPE-µTs retain key RPE molecular markers, and interestingly, in comparison to conventional monolayer cultures, they show significant increases in the transcription and secretion of pigment-epithelium-derived factor (PEDF), which is a key trophic factor known to enhance the survival and function of photoreceptors. Furthermore, these microtissues readily spread in vitro on a substrate analogous to Bruch's membrane, suggesting that RPE-µTs may collapse into a sheet upon transplantation. We anticipate that this approach may provide an alternative cell delivery system to improve the survival and integration of RPE transplants, while also retaining the benefits of low complexity in production and delivery.
Collapse
Affiliation(s)
- Abdullah Al-Ani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Saud Sunba
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kayla Giles
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
| | - Yacine Touahri
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (Y.T.); (C.S.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (Y.T.); (C.S.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
13
|
Wang Z, Huang Y, Chu F, Liao K, Cui Z, Chen J, Tang S. Integrated Analysis of DNA methylation and transcriptome profile to identify key features of age-related macular degeneration. Bioengineered 2021; 12:7061-7078. [PMID: 34569899 PMCID: PMC8806579 DOI: 10.1080/21655979.2021.1976502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common vision-threatening disease. The current study sought to integrate DNA methylation with transcriptome profile to explore key features in AMD. Gene expression data were obtained from the Gene Expression Omnibus (GEO, accession ID: GSE135092) and DNA methylation data were obtained from the ArrayExpress repository (E-MTAB-7183). A total of 456 differentially expressed genes (DEGs) and 4827 intragenic differentially methylated CpGs (DMCs) were identified between AMD and controls. DEGs and DMCs were intersected and 19 epigenetically induced (EI) genes and 15 epigenetically suppressed (ES) genes were identified. Immune cell infiltration analysis was performed to estimate the abundance of different types of immune cell in each sample. Enrichment scores of inflammatory response and tumor necrosis factor-alpha (TNFα) signaling via nuclear factor kappa B (NF-κb) were positively correlated with abundance of activated memory CD4 T cells and M1 macrophages. Subsequently, two significant random forest classifiers were constructed based on DNA methylation and transcriptome data. SMAD2 and NGFR were selected as key genes through functional epigenetic modules (FEM) analysis. Expression level of SMAD2, NGFR and their integrating proteins was validated in hydrogen peroxide (H2O2) and TNFα co-treated retinal pigment epithelium (RPE) in vitro. The findings of the current study showed that local inflammation and systemic inflammatory host response play key roles in pathogenesis of AMD. SMAD2 and NGFR provide new insight in understanding the molecular mechanism and are potential therapeutic targets for development of AMD therapy.
Collapse
Affiliation(s)
- Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Feixue Chu
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | | | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Cas Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Hsiao CC, Chang YC, Hsiao YT, Chen PH, Hsieh MC, Wu WC, Kao YH. Triamcinolone acetonide modulates TGF‑β2‑induced angiogenic and tissue‑remodeling effects in cultured human retinal pigment epithelial cells. Mol Med Rep 2021; 24:802. [PMID: 34523693 PMCID: PMC8456346 DOI: 10.3892/mmr.2021.12442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β2 (TGF-β2) has been implicated in the pathogenesis of proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR), due to its ability to stimulate the overproduction of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), and remodeling of the extracellular matrix (ECM). Although intravitreal triamcinolone acetonide (TA) is clinically useful in the treatment of PVR and PDR, its molecular mechanism has yet to be fully elucidated. The present study investigated whether TA treatment altered TGF-β2-driven biological effects on the behavior of cultured human retinal pigment epithelial (RPE) cells, in order to determine which signaling pathway may be essential for the pharmacological action of TA. The R-50 human RPE cell line was treated with TA in the presence of TGF-β2, followed by analyses of cell viability and contraction using cell viability and collagen gel contraction assays. VEGF mRNA expression and protein production were measured using reverse transcription-quantitative PCR and ELISA, respectively. The phosphorylation status of signaling mediators and the protein expression of type I collagen (COL1A1), α-smooth muscle actin (α-SMA), and ECM-remodeling enzymes, including MMP-2 and MMP-9, were analyzed using western blotting. The gelatinolytic activity of MMPs was detected using gelatin zymography. TA treatment exhibited no prominent cytotoxicity but markedly antagonized TGF-β2-induced cytostatic effects on RPE cell viability and TGF-β2-enhanced contractility in collagen gels. In the context of TGF-β2-related signaling, TA significantly attenuated TGF-β2-elicited Smad2, extracellular-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation. Moreover, TA markedly mitigated TGF-β2-induced VEGF upregulation through ablation of p38 signaling activity. TA also partially attenuated TGF-β2-elicted expression of COL1A1, α-SMA, MMP-2, and MMP-9, but only suppressed TGF-β2-induced MMP-9 gelatinolytic activity. Mechanistically, the MEK/ERK signaling pathway may have a critical role in the TGF-β2-induced upregulation of COL1A1, α-SMA and MMP-9. In conclusion, TA may be considered a useful therapeutic agent for treating TGF-β2-associated intraocular angiogenesis and tissue remodeling, the underlying mechanism of which may involve the ERK and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan, R.O.C
| | - Yo-Chen Chang
- Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yu-Ting Hsiao
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, R.O.C
| | - Po-Han Chen
- Department of Medical Research, E‑Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| | - Ming-Chu Hsieh
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80761, Taiwan, R.O.C
| | - Wen-Chuan Wu
- Department of Ophthalmology, China Medical University Hospital, Taichung 404332, Taiwan, R.O.C
| | - Ying-Hsien Kao
- Department of Medical Research, E‑Da Hospital, Kaohsiung 82445, Taiwan, R.O.C
| |
Collapse
|
15
|
May A, Su F, Dinh B, Ehlen R, Tran C, Adivikolanu H, Shaw PX. Ongoing controversies and recent insights of the ARMS2-HTRA1 locus in age-related macular degeneration. Exp Eye Res 2021; 210:108605. [PMID: 33930395 DOI: 10.1016/j.exer.2021.108605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/10/2021] [Accepted: 04/21/2021] [Indexed: 01/17/2023]
Abstract
Age-related macular degeneration (AMD) is the most common cause of central vision loss among elderly populations in industrialized countries. Genome-wide association studies have consistently associated two genomic loci with progression to late-stage AMD: the complement factor H (CFH) locus on chromosome 1q31 and the age-related maculopathy susceptibility 2-HtrA serine peptidase 1 (ARMS2-HTRA1) locus on chromosome 10q26. While the CFH risk variant has been shown to alter complement activity, the ARMS2-HTRA1 risk haplotype remains enigmatic due to high linkage disequilibrium and inconsistent functional findings spanning two genes that are plausibly causative for AMD risk. In this review, we detail the genetic and functional evidence used to support either ARMS2 or HTRA1 as the causal gene for AMD risk, emphasizing both the historical development and the current understanding of the ARMS2-HTRA1 locus in AMD pathogenesis. We conclude by summarizing the evidence in favor of HTRA1 and present our hypothesis whereby HTRA1-derived ECM fragments mediate AMD pathogenesis.
Collapse
Affiliation(s)
- Adam May
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Fei Su
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Brian Dinh
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Rachael Ehlen
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Christina Tran
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Harini Adivikolanu
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| | - Peter X Shaw
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, 9415 Campus Point Drive, La Jolla, CA 92093-0946, USA; Altman Clinical and Translational Research Institute, University of California, San Diego, 9452 Medical Center Drive, La Jolla, CA 92093-0990, USA.
| |
Collapse
|
16
|
Yang Y, Liu W, Wei J, Cui Y, Zhang D, Xie J. Transforming growth factor-β1-induced N-cadherin drives cell-cell communication through connexin43 in osteoblast lineage. Int J Oral Sci 2021; 13:15. [PMID: 33850101 PMCID: PMC8044142 DOI: 10.1038/s41368-021-00119-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Gap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-β1(TGF-β1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell-cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - JieYa Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Intartaglia D, Giamundo G, Conte I. The Impact of miRNAs in Health and Disease of Retinal Pigment Epithelium. Front Cell Dev Biol 2021; 8:589985. [PMID: 33520981 PMCID: PMC7844312 DOI: 10.3389/fcell.2020.589985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding RNAs, are essential key players in the control of biological processes in both physiological and pathological conditions. miRNAs play important roles in fine tuning the expression of many genes, which often have roles in common molecular networks. miRNA dysregulation thus renders cells vulnerable to aberrant fluctuations in genes, resulting in degenerative diseases. The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells that resides between the light-sensitive photoreceptors (PR) and the choriocapillaris. The demanding physiological functions of RPE cells require precise gene regulation for the maintenance of retinal homeostasis under stress conditions and the preservation of vision. Thus far, our understanding of how miRNAs function in the homeostasis and maintenance of the RPE has been poorly addressed, and advancing our knowledge is central to harnessing their potential as therapeutic agents to counteract visual impairment. This review focuses on the emerging roles of miRNAs in the function and health of the RPE and on the future exploration of miRNA-based therapeutic approaches to counteract blinding diseases.
Collapse
Affiliation(s)
| | | | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Biology, Polytechnic and Basic Sciences School, University of Naples Federico II, Naples, Italy
| |
Collapse
|
18
|
Microarray Analysis of Small Extracellular Vesicle-Derived miRNAs Involved in Oxidative Stress of RPE Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7658921. [PMID: 33194007 PMCID: PMC7641673 DOI: 10.1155/2020/7658921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to investigate the miRNA profiles of nanosized small extracellular vesicles (sEVs) from human retinal pigment epithelial (RPE) cells under oxidative damage. ARPE-19 cells were cultured with ox-LDL (100 mg/L) or serum-free medium for 48 hours, sEVs were then extracted, and miRNA sequencing was conducted to identify the differentially expressed genes (DEGs) between the 2 groups. RNA sequence results were validated using quantitative real-time PCR. The Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and ingenuity pathway analyses (IPA) were performed for the DEGs. Results revealed that oxidative stress inhibited RPE cell viability and promoted sEV secretion. A total of 877 DEGs from sEVs were identified, of which 272 were downregulated and 605 were upregulated. In total, 66 enriched GO terms showed that the 3 most significant enrichment terms were cellular processes (biological processes), cell (cellular component), and catalytic activity (molecular function). IPA were used to explore DEGs associated with oxidation damage and further construct a miRNA-target regulatory network. This study identified several DEGs from oxidation-stimulated RPE cells, which may act as potential RNA targets for prognosis and diagnosis of RPE degeneration.
Collapse
|
19
|
Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The Role of Inflammation in Age-Related Macular Degeneration. Int J Biol Sci 2020; 16:2989-3001. [PMID: 33061811 PMCID: PMC7545698 DOI: 10.7150/ijbs.49890] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease which incidence gradually increases with age. Inflammation participates in AMD pathogenesis, including choroidal neovascularization and geographic atrophy. It is also a kind of self-protective regulation from injury for the eyes. In this review, we described inflammation in AMD pathogenesis, summarized the roles played by inflammation-related cytokines, including pro-inflammatory and anti-inflammatory cytokines, as well as leukocytes (macrophages, dendritic cells, neutrophils, T lymphocytes and B lymphocytes) in the innate or adaptive immunity in AMD. Possible clinical applications such as potential diagnostic biomarkers and anti-inflammatory therapies were also discussed. This review overviews the inflammation as a target of novel effective therapies in treating AMD.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
20
|
Lynch AM, Wagner BD, Palestine AG, Janjic N, Patnaik JL, Mathias MT, Siringo FS, Mandava N. Plasma Biomarkers of Reticular Pseudodrusen and the Risk of Progression to Advanced Age-Related Macular Degeneration. Transl Vis Sci Technol 2020; 9:12. [PMID: 32974084 PMCID: PMC7488626 DOI: 10.1167/tvst.9.10.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose To determine, using an aptamer-based technology in patients with intermediate age-related macular degeneration (AMD), (1) if there is a difference in plasma levels of 4979 proteins in patients with and without reticular pseudodrusen (RPD), and (2) if plasma levels of proteins are related to time to conversion to advanced AMD. Methods Patients with intermediate AMD and RPD were identified from an AMD registry. Relative concentrations of each protein were log (base 2) transformed and compared between patients with and without RPD using linear regression. A Cox proportional hazards survival model was fit to each aptamer to quantify associations with time to conversion. A pathway analysis was conducted in converters versus non-converters using the Reactome database. Results Of the 109 intermediate AMD patients, 39 had bilateral RPD (36%). Two proteins, TCL1A and CNDP1, were lower in patients in the intermediate AMD group with RPD. Twenty-one patients converted to advanced AMD with a median time to conversion of 25.2 months (range, 2.3-48.5 months) and median follow-up time in non-converters of 26.4 months (range, 0.03-49.7 months). Several proteins (lysozyme C, TFF3, RNAS6, and SAP3) distinguished patients who converted from those who did not convert to advanced AMD. The top conversion pathways included tumor necrosis factors bind their physiological receptors, digestion and absorption, signaling by activin, and signaling by TGF-β family members. Conclusions We identified a protein signature related to RPD, as well as to conversion to advanced AMD. The pathway analysis suggests that dysfunction of critical systemic pathways may have links to conversion to advanced AMD. Translational Relevance Biomarkers identified in plasma likely reflect systemic alterations in protein expression in patients with intermediate AMD.
Collapse
Affiliation(s)
- Anne M Lynch
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO, USA
| | - Alan G Palestine
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jennifer L Patnaik
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marc T Mathias
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Frank S Siringo
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Naresh Mandava
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
21
|
Yang F, Sun Y, Bai Y, Li S, Huang L, Li X. Asthma Promotes Choroidal Neovascularization via the Transforming Growth Factor beta1/Smad Signaling Pathway in a Mouse Model. Ophthalmic Res 2020; 65:14-29. [PMID: 32781454 DOI: 10.1159/000510778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The association between age-related macular degeneration (AMD) and asthma is controversial. Transforming growth factor beta (TGF-β), which plays a critical role in asthma, has been extensively studied with regard to its function in choroidal neovascularization (CNV). In the present study, we aimed to investigate the role of TGF-β and the possible mechanism of CNV formation complicated with asthma and to explore the effect of a TGF-β inhibitor on CNV development in asthma mouse models. METHODS Laser-induced CNV and ovalbumin-induced asthma mouse models were divided into five groups: control group, acute asthma group, chronic asthma group, inhibitor-treated acute asthma group, and inhibitor-treated chronic asthma group. The gene expression patterns of angiogenic cytokines, vascular endothelial growth factor (VEGF) receptors and inflammasomes in the control group, acute asthma group and chronic asthma group were detected using a QuantiGene Plex 6.0 Reagent System. Fundus fluorescein angiography (FFA) and histology of CNV lesions stained with haematoxylin-eosin (HE) were performed to evaluate CNV formation. Quantitative real-time PCR and western blotting were used to assess TGF-β1, TGF-β2, and VEGF expression and Smad2/3, AKT, p38 MAPK, and ERK1/2 signal transduction and phosphorylation in retinal and choroidal tissue from each group. RESULTS In this study, we verified that laser treatment led to more CNV and vascular leakage in asthmatic mice than that in control mice. The changes were particularly notable in the chronic asthma group. The respective TGF-β1, VEGF, and phosphorylated Smad2/3 (p-Smad2/3) mRNA and protein levels in retinal and choroidal tissue were significantly upregulated in both the acute and chronic asthma groups. After injection of a TGF-β inhibitor, a distinct decline in VEGF, TGF-β1, and p-Smad2/3 protein and mRNA levels was observed, and the mean CNV area also decreased. CONCLUSION We provide new evidence that asthma could be a risk factor for CNV development via the TGF-β1/Smad signalling pathway. A TGF-β inhibitor can be applied as a useful, adjunctive therapeutic strategy for preventing CNV formation in asthmatic patients.
Collapse
Affiliation(s)
- Fei Yang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Department of Ophthalmology, Peking University International Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Yaoyao Sun
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Yujing Bai
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Shanshan Li
- Department of Ophthalmology, Qilu Hospital Affiliated Shandong University, Jinan, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People's Hospital, Beijing, China
- Eye Institute of Xiamen University & Xiamen Eye Centre of Xiamen University, Xiamen, China
| |
Collapse
|
22
|
Wooff Y, Cioanca AV, Chu-Tan JA, Aggio-Bruce R, Schumann U, Natoli R. Small-Medium Extracellular Vesicles and Their miRNA Cargo in Retinal Health and Degeneration: Mediators of Homeostasis, and Vehicles for Targeted Gene Therapy. Front Cell Neurosci 2020; 14:160. [PMID: 32670023 PMCID: PMC7330137 DOI: 10.3389/fncel.2020.00160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Photoreceptor cell death and inflammation are known to occur progressively in retinal degenerative diseases such as age-related macular degeneration (AMD). However, the molecular mechanisms underlying these biological processes are largely unknown. Extracellular vesicles (EV) are essential mediators of cell-to-cell communication with emerging roles in the modulation of immune responses. EVs, including exosomes, encapsulate and transfer microRNA (miRNA) to recipient cells and in this way can modulate the environment of recipient cells. Dysregulation of EVs however is correlated to a loss of cellular homeostasis and increased inflammation. In this work we investigated the role of isolated retinal small-medium sized EV (s-mEV) which includes exosomes in both the healthy and degenerating retina. Isolated s-mEV from normal retinas were characterized using dynamic light scattering, transmission electron microscopy and western blotting, and quantified across 5 days of photo-oxidative damage-induced degeneration using nanotracking analysis. Small RNAseq was used to characterize the miRNA cargo of retinal s-mEV isolated from healthy and damaged retinas. Finally, the effect of exosome inhibition on cell-to-cell miRNA transfer and immune modulation was conducted using systemic daily administration of exosome inhibitor GW4869 and in situ hybridization of s-mEV-abundant miRNA, miR-124-3p. Electroretinography and immunohistochemistry was performed to assess functional and morphological changes to the retina as a result of GW4869-induced exosome depletion. Results demonstrated an inverse correlation between s-mEV concentration and photoreceptor survivability, with a decrease in s-mEV numbers following degeneration. Small RNAseq revealed that s-mEVs contained uniquely enriched miRNAs in comparison to in whole retinal tissue, however, there was no differential change in the s-mEV miRNAnome following photo-oxidative damage. Exosome inhibition via the use of GW4869 was also found to exacerbate retinal degeneration, with reduced retinal function and increased levels of inflammation and cell death demonstrated following photo-oxidative damage in exosome-inhibited mice. Further, GW4869-treated mice displayed impaired translocation of photoreceptor-derived miR-124-3p to the inner retina during damage. Taken together, we propose that retinal s-mEV and their miRNA cargo play an essential role in maintaining retinal homeostasis through immune-modulation, and have the potential to be used in targeted gene therapy for retinal degenerative diseases.
Collapse
Affiliation(s)
- Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
23
|
Role of fibrillin-2 in the control of TGF-β activation in tumor angiogenesis and connective tissue disorders. Biochim Biophys Acta Rev Cancer 2020; 1873:188354. [PMID: 32119940 DOI: 10.1016/j.bbcan.2020.188354] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Fibrillins constitute a family of large extracellular glycoproteins which multimerize to form microfibrils, an important structure in the extracellular matrix. It has long been assumed that fibrillin-2 was barely present during postnatal life, but it is now clear that fibrillin-2 molecules form the structural core of microfibrils, and are masked by an outer layer of fibrillin-1. Mutations in fibrillins give rise to heritable connective tissue disorders, including Marfan syndrome and congenital contractural arachnodactyly. Fibrillins also play an important role in matrix sequestering of members of the transforming growth factor-β family, and in context of Marfan syndrome excessive TGF-β activation has been observed. TGF-β activation is highly dependent on integrin binding, including integrin αvβ8 and αvβ6, which are upregulated upon TGF-β exposure. TGF-β is also involved in tumor progression, metastasis, epithelial-to-mesenchymal transition and tumor angiogenesis. In several highly vascularized types of cancer such as hepatocellular carcinoma, a positive correlation was found between increased TGF-β plasma concentrations and tumor vascularity. Interestingly, fibrillin-1 has a higher affinity to TGF-β and, therefore, has a higher capacity to sequester TGF-β compared to fibrillin-2. The previously reported downregulation of fibrillin-1 in tumor endothelium affects the fibrillin-1/fibrillin-2 ratio in the microfibrils, exposing the normally hidden fibrillin-2. We postulate that fibrillin-2 exposure in the tumor endothelium directly stimulates tumor angiogenesis by influencing TGF-β sequestering by microfibrils, leading to a locally higher active TGF-β concentration in the tumor microenvironment. From a therapeutic perspective, fibrillin-2 might serve as a potential target for future anti-cancer therapies.
Collapse
|
24
|
Jing R, Qi T, Wen C, Yue J, Wang G, Pei C, Ma B. Interleukin-2 induces extracellular matrix synthesis and TGF-β2 expression in retinal pigment epithelial cells. Dev Growth Differ 2019; 61:410-418. [PMID: 31608440 PMCID: PMC6899885 DOI: 10.1111/dgd.12630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Macular fibrosis is a vital obstacle of vision acuity improvement of age‐related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL‐2) on epithelial‐mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor β2 (TGF‐β2) expression in retinal pigment epithelial (RPE) cells. 10 μg/L IL‐2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α‐smooth muscle actin (α‐SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL‐1), TGF‐β2, and the activation of the JAK/STAT3 and NF‐κB signaling pathway. Furthermore, JAK/STAT3 and NF‐κB signaling pathways were specifically blocked by WP1066 or BAY11‐7082, respectively, and the expression of α‐SMA, COL‐1, Fn and TGF‐β2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL‐2 with or without WP1066 or BAY11‐7082. After induction of IL‐2, the expressions of Fn, COL‐1, TGF‐β2 protein were significantly increased, and this effect was correlated with IL‐2 treatment duration, while α‐SMA protein expression did not change significantly. Both WP1066 and BAY11‐7082 could effectively downregulate the expression of Fn, COL‐1 and TGF‐β2 induced by IL‐2. What's more, both NF‐κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF‐κB inhibitor BAY 11‐7082 could obviously decrease RPE cells migration capability induced by IL‐2. IL‐2 promotes cell migration, ECM synthesis and TGF‐β2 expression in RPE cells via JAK/STAT3 and NF‐κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaqi Yue
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangyan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|