1
|
Park J, Liu R, Kim AS, Cyr NN, Boehlein SK, Resende MFR, Savin DA, Bailey LS, Sumerlin BS, Hudalla GA. Sweet corn phytoglycogen dendrimers as a lyoprotectant for dry-state protein storage. J Biomed Mater Res A 2024; 112:2026-2041. [PMID: 38856491 DOI: 10.1002/jbm.a.37761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Protein biotherapeutics typically require expensive cold-chain storage to maintain their fold and function. Packaging proteins in the dry state via lyophilization can reduce these cold-chain requirements. However, formulating proteins for lyophilization often requires extensive optimization of excipients that both maintain the protein folded state during freezing and drying (i.e., "cryoprotection" and "lyoprotection"), and form a cake to carry the dehydrated protein. Here we show that sweet corn phytoglycogens, which are glucose dendrimers, can act as both a protein lyoprotectant and a cake-forming agent. Phytoglycogen (PG) dendrimers from 16 different maize sources (PG1-16) were extracted via ethanol precipitation. PG size was generally consistent at ~70-100 nm for all variants, whereas the colloidal stability in water, protein contaminant level, and maximum density of cytocompatibility varied for PG1-16. 10 mg/mL PG1, 2, 9, 13, 15, and 16 maintained the activity of various proteins, including green fluorescent protein, lysozyme, β-galactosidase, and horseradish peroxidase, over a broad range of concentrations, through multiple rounds of lyophilization. PG13 was identified as the lead excipient candidate as it demonstrated narrow dispersity, colloidal stability in phosphate-buffered saline, low protein contaminants, and cytocompatibility up to 10 mg/mL in NIH3T3 cell cultures. All dry protein-PG13 mixtures had a cake-like appearance and all frozen protein-PG13 mixtures had a Tg' of ~ -26°C. The lyoprotection and cake-forming properties of PG13 were density-dependent, requiring a minimum density of 5 mg/mL for maximum activity. Collectively these data establish PG dendrimers as a new class of excipient to formulate proteins in the dry state.
Collapse
Affiliation(s)
- Junha Park
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Alexander S Kim
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Noah N Cyr
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Susan K Boehlein
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Daniel A Savin
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Laura S Bailey
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Brent S Sumerlin
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
- Polymer Chemical Characterization Lab, Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, Wertheim College of Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
3
|
Lou H, Wu Y, Kuczera K, Schöneich C. Coarse-Grained Molecular Dynamics Simulation of Heterogeneous Polysorbate 80 Surfactants and their Interactions with Small Molecules and Proteins. Mol Pharm 2024; 21:5041-5052. [PMID: 39208298 DOI: 10.1021/acs.molpharmaceut.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Polysorbate 80 (PS80) is widely used in pharmaceutical formulations, and its commercial grades exhibit certain levels of structural heterogeneity. The objective of this study was to apply coarse-grained molecular dynamics simulations to better understand the effect of PS80 heterogeneity on micelle self-assembly, the loading of hydrophobic small molecules into the micelle core, and the interactions between PS80 and a protein, bovine serum albumin (BSA). Four representative PS80 variants with different head and tail structures were studied. Our simulations found that PS80 structural heterogeneity could affect blank micelle properties such as solvent-accessible surface area, aggregation number, and micelle aspect ratio. It was also found that hydrophobic small molecules such as ethinyl estradiol preferentially partitioned into the PS80 micelle core and PS80 dioleates formed a more hydrophobic core compared to PS80 monooleates. Furthermore, multiple PS80 molecules could bind to BSA, and PS80 heterogeneity profoundly changed the binding ratio as well as the surfactant-protein contact area.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
4
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
5
|
Kothari M, Wanjari A, Acharya S, Karwa V, Chavhan R, Kumar S, Kadu A, Patil R. A Comprehensive Review of Monoclonal Antibodies in Modern Medicine: Tracing the Evolution of a Revolutionary Therapeutic Approach. Cureus 2024; 16:e61983. [PMID: 38983999 PMCID: PMC11231668 DOI: 10.7759/cureus.61983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as potent therapeutic agents, revolutionizing the landscape of modern medicine. This comprehensive review traces the evolution of mAbs from their inception to their current prominence, highlighting key milestones in their development and exploring their diverse therapeutic applications. Beginning with an overview of their molecular structure and mechanisms of action, we delve into the production and engineering of mAbs, including hybridoma technology and recombinant DNA techniques. Therapeutic applications across various medical disciplines, including cancer treatment, autoimmune diseases, and infectious diseases, are examined in detail, showcasing the significant clinical successes of mAbs. Furthermore, this review discusses the challenges and opportunities in manufacturing scalability, cost-effectiveness, and access to therapies. Looking ahead, the implications of mAbs in future research and clinical practice are explored, emphasizing the potential for next-generation mAbs, personalized medicine, and integration with emerging modalities such as immunotherapy and gene therapy. In conclusion, the evolution of monoclonal antibodies underscores their transformative impact on healthcare and their continued promise to advance the frontiers of medicine.
Collapse
Affiliation(s)
- Manjeet Kothari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Vineet Karwa
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Roma Chavhan
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Ajinkya Kadu
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Rajvardhan Patil
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Lou H, Luan X, Hu G, Hageman MJ. Development of a drying method for proteins based on protein-hyaluronic acid precipitation. Int J Pharm 2024; 654:123940. [PMID: 38408551 DOI: 10.1016/j.ijpharm.2024.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
This study aims to develop a new method to dry proteins based on protein-hyaluronic acid (HA) precipitation and apply the precipitation-redissolution technique to develop highly concentrated protein formulations. Lysozyme was used as a model protein and HA with various molecular weights (MW) were investigated. Under low ionic strength, low-MW HA (e.g., MW: around 5 K) did not induce lysozyme precipitation. Conversely, high-MW HA (e.g., MW: approximately from 40 K to 1.5 M) precipitated more than 90 % of lysozyme. The dried lysozyme-HA precipitates had moisture levels between 4 % and 5 %. The lysozyme-HA precipitates could be redissolved using PBS (pH 7.4, ionic strength: ∼ 163 mM). The viscosity of the reconstituted solution was dependent on HA MW, e.g., 4 cP for HA40K, and 155 cP for HA1.5 M, suggesting low-MW HA might be a proper excipient for highly concentrated solution formulations for subcutaneous/intraocular injection and high-MW HA may fit for other applications. The tertiary structure of lysozyme after the precipitation-redissolution steps had no significant difference from that of the original lysozyme as confirmed by fluorescence spectroscopy. The denaturation temperature of lysozyme after the precipitation-redissolution steps and that of the original lysozyme were close, indicating they possessed similar thermal stability. The accelerated stability study revealed that lysozyme stored in the dry precipitates was more physically stable than that in the buffer solution. Overall, this new drying technique is suitable for drying proteins and exhibits several benefits such as minimum energy consumption, cost effectiveness, high production yield, and mild processing conditions. In addition, the precipitation-redissolution technique proposed in this study can potentially be used to develop highly concentrated formulations, especially for proteins experiencing poor stability in the liquid state.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Xi Luan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
7
|
Sagar, Takhellambam M, Rattan A, Prajapati VK. Unleashing the power of antibodies: Engineering for tomorrow's therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:1-36. [PMID: 38762268 DOI: 10.1016/bs.apcsb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Antibodies play a crucial role in host defense against various diseases. Antibody engineering is a multidisciplinary field that seeks to improve the quality of life of humans. In the context of disease, antibodies are highly specialized proteins that form a critical line of defense against pathogens and the disease caused by them. These infections trigger the innate arm of immunity by presenting on antigen-presenting cells such as dendritic cells. This ultimately links to the adaptive arm, where antibody production and maturation occur against that particular antigen. Upon binding with their specific antigens, antibodies trigger various immune responses to eliminate pathogens in a process called complement-dependent cytotoxicity and phagocytosis of invading microorganisms by immune cells or induce antibody-dependent cellular cytotoxicity is done by antibodies. These engineered antibodies are being used for various purposes, such as therapeutics, diagnostics, and biotechnology research. Cutting-edge techniques that include hybridoma technology, transgenic mice, display techniques like phage, yeast and ribosome displays, and next-generation sequencing are ways to engineer antibodies and mass production for the use of humankind. Considering the importance of antibodies in protecting from a diverse array of pathogens, investing in research holds great promise to develop future therapeutic targets to combat various diseases.
Collapse
Affiliation(s)
- Sagar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Malemnganba Takhellambam
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
8
|
Escobar ELN, Griffin VP, Dhar P. Correlating Surface Activity with Interface-Induced Aggregation in a High-Concentration mAb Solution. Mol Pharm 2024; 21:1490-1500. [PMID: 38385557 DOI: 10.1021/acs.molpharmaceut.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Interface-induced aggregation resulting in protein particle formation is an issue during the manufacturing and storage of protein-based therapeutics. High-concentration formulations of therapeutic proteins are even more prone to protein particle formation due to increased protein-protein interactions. However, the dependence of interface-induced protein particle formation on bulk protein concentration is not understood. Furthermore, the formation of protein particles is often mitigated by the addition of polysorbate-based surfactants. However, the details of surfactant-protein interactions that prevent protein particle formation at high concentrations remain unclear. In this work, a tensiometer technique was used to evaluate the surface pressure of an industrially relevant mAb at different bulk concentrations, and in the absence and presence of a polysorbate-based surfactant, polysorbate 20 (PS20). The adsorption kinetics was correlated with subvisible protein particle formation at the air-water interface and in the bulk protein solution using a microflow imaging technique. Our results showed that, in the absence of any surfactant, the number of subvisible particles in the bulk protein solutions increased linearly with mAb concentration, while the number of protein particles measured at the interface showed a logarithmic dependence on bulk protein concentration. In the presence of surfactants above the critical micelle concentration (CMC), our results for low-concentration mAb solutions (10 mg/mL) showed an interface that is surfactant-dominated, and particle characterization results showed that the addition of the surfactant led to reduced particle formation. In contrast, for the highest concentration (170 mg/mL), coadsorption of proteins and surfactants was observed at the air-water interface, even for surfactant formulations above CMC and the surfactant did not mitigate subvisible particle formation. Our results taken together provide evidence that the ratio between the surfactant and mAb molecules is an important consideration when formulating high-concentration mAb therapeutics to prevent unwanted aggregation.
Collapse
Affiliation(s)
- Estephanie L N Escobar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Valerie P Griffin
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| | - Prajnaparamita Dhar
- Department of Chemical and Petroleum Engineering, The University of Kansas, 1530W 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Zhang Y, Wu Y, Schöneich C. Near UV Photodegradation Mechanisms of Amino Acid Excipients: Formation of the Carbon Dioxide Radical Anion from Aspartate and Fe(III). Mol Pharm 2024; 21:1233-1245. [PMID: 38350108 DOI: 10.1021/acs.molpharmaceut.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Carbon dioxide radical anion (•CO2-) is a powerful reducing agent that can reduce protein disulfide bonds and convert molecular oxygen to superoxide. Therefore, the generation of •CO2- can be detrimental to pharmaceutical formulations. Iron is among the most prevalent impurities in formulations, where Fe(III) chelates of histidine (His) can produce •CO2- upon exposure to near-UV light (Zhang and Schöneich, Eur. J. Pharm. Biopharm. 2023, 190, 231-241). Here, we monitor by spin-trapping in combination with electron paramagnetic resonance spectroscopy and/or high-performance liquid chromatography-mass spectrometry analysis the photochemical formation of •CO2- for a series of common amino acid excipients, including arginine (Arg), methionine (Met), proline (Pro), glutamic acid (Glu), glycine (Gly), aspartic acid (Asp), and lysine (Lys). Our results indicate that in the presence of Fe(III), Asp, and Glu produce significant yields of •CO2- under photoirradiation with near-UV light. Notably, Asp demonstrates the highest efficiency of •CO2- generation compared with that of the other amino acid excipients. Stable isotope labeling indicates that •CO2- exclusively originates from the α-carboxyl group of Asp. Mechanistic studies reveal two possible pathways for •CO2- formation, which involve either a β-carboxyl radical or an amino radical cation intermediate.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
10
|
Hu G, Bonanno D, Su Y, Zhao X, Krishnamachari Y, Forrest W, Persak S, Givand J, Mannes D, Olbinado M, Wagner M, Grünzweig C, Novak V. Unraveling Pre-filled Syringe Needle Clogging: Exploring a Fresh Outlook Through Innovative Techniques. Pharm Res 2024; 41:547-556. [PMID: 38326531 DOI: 10.1007/s11095-024-03673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE This study aimed to investigate the movement of liquid in the needle region of staked-in-needle pre-filled syringes using neutron imaging and synchrotron X-ray tomography. The objective was to gain insights into the dynamics of liquid presence and understand the factors contributing to needle clogging. METHODS Staked-in-needle pre-filled syringes were examined using neutron radiography and synchrotron X-ray phase-contrast computed tomography. Neutron radiography provided a 2D visualization of liquid presence in the needle, while synchrotron X-ray tomography offered high-resolution 3D imaging to study detailed morphological features of the liquid. RESULTS Neutron radiography revealed liquid presence in the needle region for as-received samples and after temperature and pressure cycling. Pressure cycling had a more pronounced effect on liquid formation. Synchrotron X-ray tomography confirmed the presence of liquid and revealed various morphologies, including droplets of different sizes, liquid segments blocking sections of the needle, and a thin layer covering the needle wall. Liquid presence was also observed between the steel needle and the glass barrel. CONCLUSIONS The combination of neutron imaging and synchrotron X-ray tomography provided valuable insights into the dynamics of liquid movement in staked-in-needle pre-filled syringes. Temperature and pressure cycling were found to contribute to additional liquid formation, with pressure changes playing a significant role. The detailed morphological analysis enhanced the understanding of microstructural arrangements within the needle. This research contributes to addressing the issue of needle clogging and can guide the development of strategies to improve pre-filled syringe performance.
Collapse
Affiliation(s)
- Guangli Hu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA.
| | - Daniel Bonanno
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA.
| | - Xi Zhao
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Yogita Krishnamachari
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - William Forrest
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Steven Persak
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Jeffrey Givand
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - David Mannes
- ANAXAM, PARK INNOVAARE: deliveryLAB, CH-5234, Villigen, Switzerland
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Margie Olbinado
- ANAXAM, PARK INNOVAARE: deliveryLAB, CH-5234, Villigen, Switzerland
- Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Matthias Wagner
- ANAXAM, PARK INNOVAARE: deliveryLAB, CH-5234, Villigen, Switzerland
| | | | - Vladimir Novak
- ANAXAM, PARK INNOVAARE: deliveryLAB, CH-5234, Villigen, Switzerland
| |
Collapse
|
11
|
Wang L, Hobson AD, Salomon PL, Fitzgibbons J, Xu J, McCarthy S, Wu K, Jia Y, Hernandez A, Li X, Xu Z, Wang Z, Yu Y, Li J, Tao L. Linker substitution influences succinimide ring hydrolysis equilibrium impacting the stability of attachment to antibody-drug conjugates. RSC Med Chem 2024; 15:612-622. [PMID: 38389885 PMCID: PMC10880948 DOI: 10.1039/d3md00569k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 02/24/2024] Open
Abstract
Maleimide chemistry is widely used in antibody-drug conjugate (ADC) generation to connect drugs to antibodies through a succinimide linker. The resulting ADC is prone to payload loss via a reverse Michael reaction, leading to premature drug release in vivo. Complete succinimide hydrolysis is an effective strategy to overcome the instability of ADC. However, we discovered through previous work that hydrolysed succinimide rings can close again in a liquid formulation during storage and under thermal stress conditions. In this work, a set of maleimide linkers with hydrolysis-prone groups were designed. The corresponding ADCs were prepared and subjected to thermal stress conditions. The extent of succinimide hydrolysis and drug release was measured, and ADC properties such as SEC, DAR, pI and clog P of linkers were calculated. Our results demonstrated that even though all these groups increased the hydrolysis rate, they have different impacts on maintaining the hydrolysed succinimide ring in an open conformation and ADC stability in a liquid formulation.
Collapse
Affiliation(s)
- Lu Wang
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Adrian D Hobson
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Paulin L Salomon
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Julia Fitzgibbons
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Jianwen Xu
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Sean McCarthy
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Kan Wu
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Ying Jia
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Axel Hernandez
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| | - Xiang Li
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Zhou Xu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Zhongyuan Wang
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Yajie Yu
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Junxian Li
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| | - Lin Tao
- WuXi AppTec 168 Nanhai Road, Tianjin Economic-Technological Development Area TEDA TJS 300457 China
| |
Collapse
|
12
|
Janke JJ, Starr CG, Kingsbury JS, Furtmann N, Roberts CJ, Calero-Rubio C. Computational Screening for mAb Colloidal Stability with Coarse-Grained, Molecular-Scale Simulations. J Phys Chem B 2024; 128:1515-1526. [PMID: 38315822 DOI: 10.1021/acs.jpcb.3c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Monoclonal antibodies (mAbs) are an important modality of protein therapeutics with broad applications for numerous diseases. However, colloidal instabilities occurring at high protein concentrations can limit the ability to develop stable, high-concentration liquid dosage forms that are required for patient-centric, device-mediated products. Therefore, it is advantageous to identify colloidally stable mAbs early in the discovery process to ensure that they are selected for development. Experimental screening for colloidal stability can be time- and resource-consuming and is most feasible at the later stages of drug development due to material requirements. Alternatively, computational approaches have emerging potential to provide efficient screening and focus developmental efforts on mAbs with the greatest developability potential, while providing mechanistic relationships for colloidal instability. In this work, coarse-grained, molecular-scale models were fine-tuned to screen for colloidal stability at amino-acid resolution. This model parameterization provides a framework to screen for mAb self-interactions and extrapolate to bulk solution behavior. This approach was applied to a wide array of mAbs under multiple buffer conditions, demonstrating the utility of the presented computational approach to augment early candidate screening and later formulation strategies for protein therapeutics.
Collapse
Affiliation(s)
- J Joel Janke
- Biologics Drug Product Development and Manufacturing, Sanofi, Framingham, Massachusetts 01701, United States
| | - Charles G Starr
- Biologics Drug Product Development and Manufacturing, Sanofi, Framingham, Massachusetts 01701, United States
| | - Jonathan S Kingsbury
- Biologics Drug Product Development and Manufacturing, Sanofi, Framingham, Massachusetts 01701, United States
| | - Norbert Furtmann
- Large Molecules Research Platform, Sanofi-Aventis Deutschland GmbH, Frankfurt 65926, Germany
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Cesar Calero-Rubio
- Biologics Drug Product Development and Manufacturing, Sanofi, Framingham, Massachusetts 01701, United States
| |
Collapse
|
13
|
Chakraborty A, Mitra A, Sahu S, Tawate M, Lad S, Kamaldeep, Rakshit S, Upadhye Bannore T, Gaikwad S, Dhotre G, Ray MK, Damle A, Basu S, Banerjee S. Intricacies in the Preparation of Patient Doses of [ 177Lu]Lu-Rituximab and [ 177Lu]Lu-Trastuzumab Using Low Specific Activity [ 177Lu]LuCl 3: Methodological Aspects. Mol Imaging Biol 2024; 26:61-80. [PMID: 37673943 DOI: 10.1007/s11307-023-01846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
The development of humanized monoclonal antibodies (MAbs) with Lutetium-177 ([177Lu]Lu3+) has brought a paradigm shift in the arena of targeted therapy of various cancers. [177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab have gained prominence due to their improved therapeutic efficacy in the treatment of lymphoma and breast cancer. The clinical dose formulation of these radiolabeled MAbs, using low specific activity [177Lu]LuCl3, requires extensive optimization of the radiolabeling protocol. The present study merits the development of a single protocol which has been optimized for conjugation of Rituximab and Trastuzumab with p-NCS-benzyl-DOTA and further radiolabeling these immunoconjugates (ICs) with low specific activity [177Lu]LuCl3. Herein, we report a consistent and reproducible protocol for clinical dose formulations of [177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab (~9.25 GBq each, equivalent to ~2 patient doses) with radiochemical yield (RCY) between 84 and 86% and radiochemical purities (RCP) >99%. The in vitro stabilities of both these radioimmunoconjugates (RICs) were retained up to 120 h post-radiolabeling, upon storage with L-ascorbic acid as stabilizer (concentration: ~ 220-240 μg/37MBq) at -20 °C. The ready-to-use formulation of clinical doses[177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab has been successfully achieved by employing a single optimized protocol. While [177Lu]Lu-DOTA-Rituximab has exhibited a high degree of localization in retroperitoneal nodal mass of refractory lymphoma patient, high uptake of [177Lu]Lu-DOTA-Trastuzumab has been observed in metastatic breast carcinoma patient with multiple skeletal metastases.
Collapse
Affiliation(s)
- Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Arpit Mitra
- Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology, Vashi, Navi Mumbai, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sangita Lad
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | - Kamaldeep
- Homi Bhabha National Institute, Mumbai, India
- Health Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | | | - Sujay Gaikwad
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
| | - Geetanjali Dhotre
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mukti Kanta Ray
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Archana Damle
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India.
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.
| |
Collapse
|
14
|
Song J, Taraban M, Yu YB, Lu L, Biswas PG, Xu W, Xi H, Bhambhani A, Hu G, Su Y. In-situ biophysical characterization of high-concentration protein formulations using wNMR. MAbs 2024; 16:2304624. [PMID: 38299343 PMCID: PMC10841025 DOI: 10.1080/19420862.2024.2304624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
High-concentration protein formulation is of paramount importance in patient-centric drug product development, but it also presents challenges due to the potential for enhanced aggregation and increased viscosity. The analysis of critical quality attributes often necessitates the transfer of samples from their primary containers together with sample dilution. Therefore, there is a demand for noninvasive, in situ biophysical methods to assess protein drug products directly in primary sterile containers, such as prefilled syringes, without dilution. In this study, we introduce a novel application of water proton nuclear magnetic resonance (wNMR) to evaluate the aggregation propensity of a high-concentration drug product, Dupixent® (dupilumab), under stress conditions. wNMR results demonstrate a concentration-dependent, reversible association of dupilumab in the commercial formulation, as well as irreversible aggregation when exposed to accelerated thermal stress, but gradually reversible aggregation when exposed to freeze and thaw cycles. Importantly, these results show a strong correlation with data obtained from established biophysical analytical tools widely used in the pharmaceutical industry. The application of wNMR represents a promising approach for in situ noninvasive analysis of high-concentration protein formulations directly in their primary containers, providing valuable insights for drug development and quality assessment.
Collapse
Affiliation(s)
- Jing Song
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Marc Taraban
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Y. Bruce Yu
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Lynn Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Pallavi Guha Biswas
- University of Maryland School of Pharmacy and Institute for Bioscience and Biotechnology Research, Rockville, MD, USA
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Hanmi Xi
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Akhilesh Bhambhani
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Guangli Hu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, USA
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
15
|
Zikos J, Webb GM, Wu HL, Reed JS, Watanabe J, Usachenko JL, Shaqra AM, Schiffer CA, Van Rompay KKA, Sacha JB, Magnani DM. FcRn-enhancing mutations lead to increased and prolonged levels of the HIV CCR5-blocking monoclonal antibody leronlimab in the fetuses and newborns of pregnant rhesus macaques. MAbs 2024; 16:2406788. [PMID: 39324549 PMCID: PMC11441024 DOI: 10.1080/19420862.2024.2406788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Prenatal administration of monoclonal antibodies (mAbs) is a strategy that could be exploited to prevent viral infections during pregnancy and early life. To reach protective levels in fetuses, mAbs must be transported across the placenta, a selective barrier that actively and specifically promotes the transfer of antibodies (Abs) into the fetus through the neonatal Fc receptor (FcRn). Because FcRn also regulates Ab half-life, Fc mutations like the M428L/N434S, commonly known as LS mutations, and others have been developed to enhance binding affinity to FcRn and improve drug pharmacokinetics. We hypothesized that these FcRn-enhancing mutations could similarly affect the delivery of therapeutic Abs to the fetus. To test this hypothesis, we measured the transplacental transfer of leronlimab, an anti-CCR5 mAb, in clinical development for preventing HIV infections, using pregnant rhesus macaques to model in utero mAb transfer. We also generated a stabilized and FcRn-enhanced form of leronlimab, termed leronlimab-PLS. Leronlimab-PLS maintained higher levels within the maternal compartment while also reaching higher mAb levels in the fetus and newborn circulation. Further, a single dose of leronlimab-PLS led to complete CCR5 receptor occupancy in mothers and newborns for almost a month after birth. These findings support the optimization of FcRn interactions in mAb therapies designed for administration during pregnancy.
Collapse
MESH Headings
- Animals
- Pregnancy
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Macaca mulatta
- Fetus/immunology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Animals, Newborn
- Humans
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/genetics
- HIV Infections/immunology
- HIV Infections/drug therapy
- HIV Infections/genetics
- Maternal-Fetal Exchange/immunology
- Mutation
- HIV Antibodies/immunology
- HIV Antibodies/genetics
- CCR5 Receptor Antagonists/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
Collapse
Affiliation(s)
- Joanna Zikos
- Nonhuman Primate Reagent Resource (NHPRR), Department of Medicine - Innate Immunity, UMass Chan Medical School, Worcester, MA, USA
| | - Gabriela M Webb
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Helen L Wu
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jason S Reed
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Watanabe
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Jodie L Usachenko
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
| | - Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Koen K A Van Rompay
- California National Primate Research Center (CNPRC), University of California, Davis, CA, USA
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, USA
| | - Jonah B Sacha
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Diogo M Magnani
- Nonhuman Primate Reagent Resource (NHPRR), Department of Medicine - Innate Immunity, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
16
|
Zhou DD, Sun LP, Yu Q, Zhai XT, Zhang LW, Gao RJ, Zhen YS, Wang R, Miao QF. Elucidating the development, characterization, and antitumor potential of a novel humanized antibody against Trop2. Int J Biol Macromol 2023; 253:127105. [PMID: 37769779 DOI: 10.1016/j.ijbiomac.2023.127105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/09/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Trophoblast cell surface antigen 2 (Trop2) has emerged as a potential target for effective cancer therapy. In this study, we report a novel anti-Trop2 antibody IMB1636, developed using hybridoma technology. It exhibited high affinity and specificity (KD = 0.483 nM) in binding both antigens and cancer cells, as well as human tumor tissues. hIMB1636 could induce endocytosis, and enabled targeted delivery to the tumor site with an in vivo retention time of 264 h. The humanized antibody hIMB1636, acquired using CDR grafting, exhibited the potential to directly inhibit cancer cell proliferation and migration, and to induce ADCC effects. Moreover, hIMB1636 significantly inhibited the growth of MDA-MB-468 xenograft tumors in vivo. Mechanistically, hIMB1636 induced cell cycle arrest and apoptosis by regulating cyclin-related proteins and the caspase cascade. In comparison to commercialized sacituzumab, hIMB1636 recognized a conformational epitope instead of a linear one, bound to antigen and cancer cells with similar binding affinity, induced significantly more potent ADCC effects against cancer cells, and displayed superior antitumor activities both in vitro and in vivo. The data presented in this study highlights the potential of hIMB1636 as a carrier for the formulation of antibody-based conjugates, or as a promising candidate for anticancer therapy.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li-Ping Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qun Yu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Tian Zhai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rong Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
17
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Hadley P, Chen Y, Cline L, Han Z, Tang Q, Huang X, Desai T. Precise surface functionalization of PLGA particles for human T cell modulation. Nat Protoc 2023; 18:3289-3321. [PMID: 37853157 PMCID: PMC10775953 DOI: 10.1038/s41596-023-00887-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/05/2023] [Indexed: 10/20/2023]
Abstract
The biofunctionalization of synthetic materials has extensive utility for biomedical applications, but approaches to bioconjugation typically show insufficient efficiency and controllability. We recently developed an approach by building synthetic DNA scaffolds on biomaterial surfaces that enables the precise control of cargo density and ratio, thus improving the assembly and organization of functional cargos. We used this approach to show that the modulation and phenotypic adaptation of immune cells can be regulated using our precisely functionalized biomaterials. Here, we describe the three key procedures, including the fabrication of polymeric particles engrafted with short DNA scaffolds, the attachment of functional cargos with complementary DNA strands, and the surface assembly control and quantification. We also explain the critical checkpoints needed to ensure the overall quality and expected characteristics of the biological product. We provide additional experimental design considerations for modifying the approach by varying the material composition, size or cargo types. As an example, we cover the use of the protocol for human primary T cell activation and for the identification of parameters that affect ex vivo T cell manufacturing. The protocol requires users with diverse expertise ranging from synthetic materials to bioconjugation chemistry to immunology. The fabrication procedures and validation assays to design high-fidelity DNA-scaffolded biomaterials typically require 8 d.
Collapse
Affiliation(s)
- Pierce Hadley
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Yuanzhou Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA
| | - Lariana Cline
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Zhiyuan Han
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Qizhi Tang
- Diabetes Center, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA.
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tejal Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, CA, USA.
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, CA, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
19
|
Ren S. Effects of arginine in therapeutic protein formulations: a decade review and perspectives. Antib Ther 2023; 6:265-276. [PMID: 38075239 PMCID: PMC10702853 DOI: 10.1093/abt/tbad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2024] Open
Abstract
Arginine (Arg) is a natural amino acid with an acceptable safety profile and a unique chemical structure. Arg and its salts are highly effective in enhancing protein refolding and solubilization, suppressing protein-protein interaction and aggregation and reducing viscosity of high concentration protein formulations. Arg and its salts have been used in research and 20 approved protein injectables. This review summarizes the effects of Arg as an excipient in therapeutic protein formulations with the focus on its physicochemical properties, safety, applications in approved protein products, beneficial and detrimental effects in liquid and lyophilized protein formulations when combined with different counterions and mechanism on protein stabilization and destabilization. The decade literature review indicates that the benefits of Arg overweigh its risks when it is used appropriately. It is recommended to add Arg along with glutamate as a counterion to high concentration protein formulations on top of sugars or polyols to counterbalance the negative effects of Arg hydrochloride. The use of Arg as a viscosity reducer and protein stabilizer in high concentration formulations will be the inevitable future trend of the biopharmaceutical industry for subcutaneous administration.
Collapse
Affiliation(s)
- Steven Ren
- CMC Management, WuXi Biologics, 7 Clarke Drive, Cranbury, NJ 08512, USA
| |
Collapse
|
20
|
Mosca I, Pounot K, Beck C, Colin L, Matsarskaia O, Grapentin C, Seydel T, Schreiber F. Biophysical Determinants for the Viscosity of Concentrated Monoclonal Antibody Solutions. Mol Pharm 2023; 20:4698-4713. [PMID: 37549226 DOI: 10.1021/acs.molpharmaceut.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Monoclonal antibodies (mAbs) are particularly relevant for therapeutics due to their high specificity and versatility, and mAb-based drugs are hence used to treat numerous diseases. The increased patient compliance of self-administration motivates the formulation of products for subcutaneous (SC) administration. The associated challenge is to formulate highly concentrated antibody solutions to achieve a significant therapeutic effect, while limiting their viscosity and preserving their physicochemical stability. Protein-protein interactions (PPIs) are in fact the root cause of several potential problems concerning the stability, manufacturability, and delivery of a drug product. The understanding of macroscopic viscosity requires an in-depth knowledge on protein diffusion, PPIs, and self-association/aggregation. Here, we study the self-diffusion of different mAbs of the IgG1 subtype in aqueous solution as a function of the concentration and temperature by quasi-elastic neutron scattering (QENS). QENS allows us to probe the short-time self-diffusion of the molecules and therefore to determine the hydrodynamic mAb cluster size and to gain information on the internal mAb dynamics. Small-angle neutron scattering (SANS) is jointly employed to probe structural details and to understand the nature and intensity of PPIs. Complementary information is provided by molecular dynamics (MD) simulations and viscometry, thus obtaining a comprehensive picture of mAb diffusion.
Collapse
Affiliation(s)
- Ilaria Mosca
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Kévin Pounot
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Louise Colin
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | | | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 Av. des Martyrs, Grenoble 38042, France
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
| |
Collapse
|
21
|
Erfani A, Schieferstein JM, Reichert P, Narasimhan CN, Pastuskovas C, Parab V, Simmons D, Yang X, Shanker A, Hammond P, Doyle PS. Crystalline Antibody-Laden Alginate Particles: A Platform for Enabling High Concentration Subcutaneous Delivery of Antibodies. Adv Healthc Mater 2023; 12:e2202370. [PMID: 36745878 PMCID: PMC11469019 DOI: 10.1002/adhm.202202370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/30/2023] [Indexed: 02/08/2023]
Abstract
Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL-1 antibody are achieved with encapsulation efficiencies in the range of 89-97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles' disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated.
Collapse
Affiliation(s)
- Amir Erfani
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
| | | | | | | | | | | | | | - Xiaoyu Yang
- Merck Research LaboratoriesKenilworthNJ07033USA
| | - Apoorv Shanker
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Patrick S. Doyle
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
- Harvard Medical School Initiative for RNA MedicineBostonMA02215USA
| |
Collapse
|
22
|
Chowdhury AA, Manohar N, Witek MA, Woldeyes MA, Majumdar R, Qian KK, Kimball WD, Xu S, Lanzaro A, Truskett TM, Johnston KP. Subclass Effects on Self-Association and Viscosity of Monoclonal Antibodies at High Concentrations. Mol Pharm 2023. [PMID: 37191356 DOI: 10.1021/acs.molpharmaceut.3c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effects of a subclass of monoclonal antibodies (mAbs) on protein-protein interactions, formation of reversible oligomers (clusters), and viscosity (η) are not well understood at high concentrations. Herein, we quantify a short-range anisotropic attraction between the complementarity-determining region (CDR) and CH3 domains (KCDR-CH3) for vedolizumab IgG1, IgG2, or IgG4 subclasses by fitting small-angle X-ray scattering (SAXS) structure factor Seff(q) data with an extensive library of 12-bead coarse-grained (CG) molecular dynamics simulations. The KCDR-CH3 bead attraction strength was isolated from the strength of long-range electrostatic repulsion for the full mAb, which was determined from the theoretical net charge and a scaling parameter ψ to account for solvent accessibility and ion pairing. At low ionic strength (IS), the strongest short-range attraction (KCDR-CH3) and consequently the largest clusters and highest η were observed with IgG1, the subclass with the most positively charged CH3 domain. Furthermore, the trend in KCDR-CH3 with the subclass followed the electrostatic interaction energy between the CDR and CH3 regions calculated with the BioLuminate software using the 3D mAb structure and molecular interaction potentials. Whereas the equilibrium cluster size distributions and fractal dimensions were determined from fits of SAXS with the MD simulations, the degree of cluster rigidity under flow was estimated from the experimental η with a phenomenological model. For the systems with the largest clusters, especially IgG1, the inefficient packing of mAbs in the clusters played the largest role in increasing η, whereas for other systems, the relative contribution from stress produced by the clusters was more significant. The ability to relate η to short-range attraction from SAXS measurements at high concentrations and to theoretical characterization of electrostatic patches on the 3D surface is not only of fundamental interest but also of practical value for mAb discovery, processing, formulation, and subcutaneous delivery.
Collapse
Affiliation(s)
- Amjad A Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shifeng Xu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Erkamp NA, Oeller M, Sneideris T, Ausserwoger H, Levin A, Welsh TJ, Qi R, Qian D, Lorenzen N, Zhu H, Sormanni P, Vendruscolo M, Knowles TPJ. Multidimensional Protein Solubility Optimization with an Ultrahigh-Throughput Microfluidic Platform. Anal Chem 2023; 95:5362-5368. [PMID: 36930285 PMCID: PMC10061369 DOI: 10.1021/acs.analchem.2c05495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Protein-based biologics are highly suitable for drug development as they exhibit low toxicity and high specificity for their targets. However, for therapeutic applications, biologics must often be formulated to elevated concentrations, making insufficient solubility a critical bottleneck in the drug development pipeline. Here, we report an ultrahigh-throughput microfluidic platform for protein solubility screening. In comparison with previous methods, this microfluidic platform can make, incubate, and measure samples in a few minutes, uses just 20 μg of protein (>10-fold improvement), and yields 10,000 data points (1000-fold improvement). This allows quantitative comparison of formulation excipients, such as sodium chloride, polysorbate, histidine, arginine, and sucrose. Additionally, we can measure how solubility is affected by the combinatorial effect of multiple additives, find a suitable pH for the formulation, and measure the impact of mutations on solubility, thus enabling the screening of large libraries. By reducing material and time costs, this approach makes detailed multidimensional solubility optimization experiments possible, streamlining drug development and increasing our understanding of biotherapeutic solubility and the effects of excipients.
Collapse
Affiliation(s)
- Nadia A Erkamp
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Marc Oeller
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Hannes Ausserwoger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Aviad Levin
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Timothy J Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Runzhang Qi
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Daoyuan Qian
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Nikolai Lorenzen
- Biophysics and Injectable Formulation, Global Research Technology, Novo Nordisk A/S, 2760 Maaloev, Denmark
| | - Hongjia Zhu
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Pietro Sormanni
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, U.K
| |
Collapse
|
24
|
Perodeau J, Arbogast LW, Nieuwkoop AJ. Solid-State NMR Characterization of Lyophilized Formulations of Monoclonal Antibody Therapeutics. Mol Pharm 2023; 20:1480-1489. [PMID: 36702622 DOI: 10.1021/acs.molpharmaceut.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Monoclonal antibodies (mAbs) are an important and growing class of biotherapeutic drugs. Method development for the characterization of critical quality attributes, including higher-order structure (HOS), of mAbs remains an area of active inquiry. Recently, solution-state nuclear magnetic resonance (NMR) spectroscopy has received increased attention and is a means for reliable, high-resolution HOS characterization of aqueous-based preparations of mAbs. While mAbs are predominantly formulated in solution, up to 20% are prepared as solid amorphous powders and techniques for the robust characterization of HOS in the solid state remain limited. We propose here the use of solid-state NMR (ssNMR) fingerprinting to inform directly on the HOS of solid preparations of mAbs. Using lyophilized samples of the NISTmAb reference material prepared with different formulation conditions, we demonstrate that 1H-13C cross-polarization (hC-CP) buildup spectral series at natural isotopic abundance mAb samples are sensitive to differences in formulation. We also demonstrate that principal component analysis (PCA) can be used to differentiate the samples from one another in a user-independent manner while also highlighting areas where expert analysis can provide structural details about important molecular interactions in solid-phase protein formulations. Results from this study contribute to establishing the foundation for the use of ssNMR for HOS characterization of solid-phase biotherapeutics.
Collapse
Affiliation(s)
- Jacqueline Perodeau
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
| | - Luke W Arbogast
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, Maryland20850, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
| |
Collapse
|
25
|
Donners AAMT, van der Zwet K, Rademaker CMA, Egberts TCG, Schutgens REG, Fischer K. The efficacy of the entire-vial dosing of emicizumab: Real-world evidence on plasma concentrations, bleeds, and drug waste. Res Pract Thromb Haemost 2023; 7:100074. [PMID: 36915864 PMCID: PMC10005899 DOI: 10.1016/j.rpth.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 02/10/2023] Open
Abstract
Background Prophylaxis with emicizumab provides effective bleeding protection in persons with hemophilia A (PwHA) but pressures healthcare budgets. The body weight-adjusted dosing at 7-, 14-, or 28-day intervals, according to the label, often mismatches the vial content. Entire-vial dosing resulted in therapeutic concentrations according to pharmacokinetic simulations and was introduced to avoid waste. Objectives The objective of this study was to evaluate the efficacy of entire-vial dosing of emicizumab by investigating real-world evidence of plasma concentrations, bleeds, and drug waste. Methods This is a single-center, observational study with PwHA receiving emicizumab in mg/kg doses according to label but dosing interval extrapolated to the nearest vial size. Patient characteristics and bleeds were compared 1 year before starting emicizumab and during emicizumab until January 2022. Concentrations were assessed at weeks 4, 12, and annually. The mean (95% CI) annualized bleed rates were compared by using negative binomial regression. Drug waste between label-based dosing and entire-vial dosing was compared. Results A total of 112 individuals (94% severe phenotype and 9% positive FVIII inhibitors) were followed for a median of 56 weeks (interquartile range [IQR] 52-68) before and 51 weeks (IQR 29-75) after starting emicizumab. The median emicizumab dose was 5.9 (IQR 5.5-6.2) mg/kg/4 wk with median concentrations of 63 (IQR 51-80) μg/mL. The annualized bleed rate of treated bleeds before emicizumab was 3.6 (95% CI 2.9-4.4) and was 0.8 (95% CI 0.6-1.1) during emicizumab (P < .001). Drug waste was reduced by 9%. Conclusion The entire-vial dosing of emicizumab is an attractive treatment option for PwHA leading to therapeutic plasma concentrations, good bleeding control, and drug waste avoidance.
Collapse
Affiliation(s)
- Anouk A M T Donners
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Konrad van der Zwet
- Van Creveldkliniek, Center for Benign Haematology, Thrombosis and Haemostasis, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carin M A Rademaker
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Toine C G Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Department of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Roger E G Schutgens
- Van Creveldkliniek, Center for Benign Haematology, Thrombosis and Haemostasis, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Kathelijn Fischer
- Van Creveldkliniek, Center for Benign Haematology, Thrombosis and Haemostasis, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
26
|
Zhang Y, Schöneich C. Visible Light Induces Site-Specific Oxidative Heavy Chain Fragmentation of a Monoclonal Antibody (IgG1) Mediated by an Iron(III)-Containing Histidine Buffer. Mol Pharm 2023; 20:650-662. [PMID: 36538763 DOI: 10.1021/acs.molpharmaceut.2c00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fragmentation of therapeutic monoclonal antibodies represents a critical quality attribute. Here, we report a novel visible light-induced heavy chain fragmentation of IgG1 mediated by an Fe(III)-containing histidine (His) buffer. Based on non-reducing sodium dodecylsulfate-polyacrylamide gel electrophoresis and mass spectrometry analysis, IgG1 fragments with apparent molecular weights of ∼130, ∼110, and ∼22 kDa were detected in photo-irradiated samples and were mechanistically rationalized with an oxidative cleavage at Thr259. Specifically, the reactions are proposed to involve the generation of an intermediary alkoxyl radical, which undergoes β-cleavage to yield a glycyl radical. The latter either converts into Gly or adds oxygen and follows a peroxyl radical chemistry. The cleavage process requires the presence of His, while only negligible yields of cleavage products are formed when His is replaced by acetate, succinate, or phosphate buffer. Importantly, the fragmentation can be prevented by ethylenediaminetetraacetic acid (EDTA) only when the EDTA concentrations are in significant excess over the concentrations of Fe(III) and proteins, suggesting a strong binding between Fe(III) and IgG1.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| |
Collapse
|
27
|
Desai M, Kundu A, Hageman M, Lou H, Boisvert D. Monoclonal antibody and protein therapeutic formulations for subcutaneous delivery: high-concentration, low-volume vs. low-concentration, high-volume. MAbs 2023; 15:2285277. [PMID: 38013454 DOI: 10.1080/19420862.2023.2285277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Biologic drugs are used to treat a variety of cancers and chronic diseases. While most of these treatments are administered intravenously by trained healthcare professionals, a noticeable trend has emerged favoring subcutaneous (SC) administration. SC administration of biologics poses several challenges. Biologic drugs often require higher doses for optimal efficacy, surpassing the low volume capacity of traditional SC delivery methods like autoinjectors. Consequently, high concentrations of active ingredients are needed, creating time-consuming formulation obstacles. Alternatives to traditional SC delivery systems are therefore needed to support higher-volume biologic formulations and to reduce development time and other risks associated with high-concentration biologic formulations. Here, we outline key considerations for SC biologic drug formulations and delivery and explore a paradigm shift: the flexibility afforded by low-to-moderate-concentration drugs in high-volume formulations as an alternative to the traditionally difficult approach of high-concentration, low-volume SC formulation delivery.
Collapse
Affiliation(s)
- M Desai
- Medical Affairs, Enable Injections, Inc, Cincinnati, OH, USA
| | - A Kundu
- Manufacturing Sciences, Takeda Pharmaceuticals, Brooklyn Park, MN, USA
| | - M Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA
| | - H Lou
- Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, KS, USA
| | - D Boisvert
- Independent Chemistry Manufacturing & Controls (CMC) Consultant, El Cerrito, CA, USA
| |
Collapse
|
28
|
Schmitt J, Razvi A, Grapentin C. Predictive modeling of concentration-dependent viscosity behavior of monoclonal antibody solutions using artificial neural networks. MAbs 2023; 15:2169440. [PMID: 36705325 PMCID: PMC9888472 DOI: 10.1080/19420862.2023.2169440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Solutions of monoclonal antibodies (mAbs) can show increased viscosity at high concentration, which can be a disadvantage during protein purification, filling, and administration. The viscosity is determined by protein-protein-interactions, which are influenced by the antibody's sequence as well as solution conditions, like pH, buffer type, or the presence of salts and other excipients. To predict viscosity, experimental parameters, like the diffusion interaction parameter (kD), or computational tools harnessing information derived from primary sequence, are often used, but a reliable predictive tool is still missing. We present a modeling approach employing artificial neural networks (ANNs) using experimental factors combined with simulation-derived parameters plus viscosity data from 27 highly concentrated (180 mg/mL) mAbs. These ANNs can be used to predict if mAbs exhibit problematic viscosity at distinct concentrations or to model viscosity-concentration-curves.
Collapse
Affiliation(s)
| | - Abbas Razvi
- Lonza AG/Ltd, Drug Product Services, Basel, Switzerland
| | - Christoph Grapentin
- Lonza AG/Ltd, Drug Product Services, Basel, Switzerland,CONTACT Christoph Grapentin
| |
Collapse
|
29
|
Ghosh I, Gutka H, Krause ME, Clemens R, Kashi RS. A systematic review of commercial high concentration antibody drug products approved in the US: formulation composition, dosage form design and primary packaging considerations. MAbs 2023; 15:2205540. [PMID: 37243580 DOI: 10.1080/19420862.2023.2205540] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/29/2023] Open
Abstract
Three critical aspects that define high concentration antibody products (HCAPs) are as follows: 1) formulation composition, 2) dosage form, and 3) primary packaging configuration. HCAPs have become successful in the therapeutic sector due to their unique advantage of allowing subcutaneous self-administration. Technical challenges, such as physical and chemical instability, viscosity, delivery volume limitations, and product immunogenicity, can hinder successful development and commercialization of HCAPs. Such challenges can be overcome by robust formulation and process development strategies, as well as rational selection of excipients and packaging components. We compiled and analyzed data from US Food and Drug Administration-approved and marketed HCAPs that are ≥100 mg/mL to identify trends in formulation composition and quality target product profile. This review presents our findings and discusses novel formulation and processing technologies that enable the development of improved HCAPs at ≥200 mg/mL. The observed trends can be used as a guide for further advancements in the development of HCAPs as more complex antibody-based modalities enter biologics product development.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Hiten Gutka
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Mary E Krause
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ryan Clemens
- College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Ramesh S Kashi
- Sterile Product Development, Bristol Myers Squibb, Summit, NJ, USA
| |
Collapse
|
30
|
Mieczkowski C, Zhang X, Lee D, Nguyen K, Lv W, Wang Y, Zhang Y, Way J, Gries JM. Blueprint for antibody biologics developability. MAbs 2023; 15:2185924. [PMID: 36880643 PMCID: PMC10012935 DOI: 10.1080/19420862.2023.2185924] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Large-molecule antibody biologics have revolutionized medicine owing to their superior target specificity, pharmacokinetic and pharmacodynamic properties, safety and toxicity profiles, and amenability to versatile engineering. In this review, we focus on preclinical antibody developability, including its definition, scope, and key activities from hit to lead optimization and selection. This includes generation, computational and in silico approaches, molecular engineering, production, analytical and biophysical characterization, stability and forced degradation studies, and process and formulation assessments. More recently, it is apparent these activities not only affect lead selection and manufacturability, but ultimately correlate with clinical progression and success. Emerging developability workflows and strategies are explored as part of a blueprint for developability success that includes an overview of the four major molecular properties that affect all developability outcomes: 1) conformational, 2) chemical, 3) colloidal, and 4) other interactions. We also examine risk assessment and mitigation strategies that increase the likelihood of success for moving the right candidate into the clinic.
Collapse
Affiliation(s)
- Carl Mieczkowski
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Xuejin Zhang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Dana Lee
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Khanh Nguyen
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Wei Lv
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Yanling Wang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Yue Zhang
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Jackie Way
- Department of Protein Sciences, Hengenix Biotech, Inc, Milpitas, CA, USA
| | - Jean-Michel Gries
- President, Discovery Research, Hengenix Biotech, Inc, Milpitas, CA, USA
| |
Collapse
|
31
|
Xu C, Khanal S, Pierson NA, Quiroz J, Kochert B, Yang X, Wylie D, Strulson CA. Development, validation, and implementation of a robust and quality control-friendly focused peptide mapping method for monitoring oxidation of co-formulated monoclonal antibodies. Anal Bioanal Chem 2022; 414:8317-8330. [DOI: 10.1007/s00216-022-04366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
|
32
|
Hicks D, Baehr C, Silva-Ortiz P, Khaimraj A, Luengas D, Hamid FA, Pravetoni M. Advancing humanized monoclonal antibody for counteracting fentanyl toxicity towards clinical development. Hum Vaccin Immunother 2022; 18:2122507. [PMID: 36194773 PMCID: PMC9746415 DOI: 10.1080/21645515.2022.2122507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 12/15/2022] Open
Abstract
Innovative therapies to complement current treatments are needed to curb the growing incidence of fatal overdoses related to synthetic opioids. Murine and chimeric monoclonal antibodies (mAb) specific for fentanyl and its analogs have demonstrated pre-clinical efficacy in preventing and reversing drug-induced toxicity in rodent models. However, mAb-based therapeutics require extensive engineering as well as in vitro and in vivo characterization to advance to first-in-human clinical trials. Here, novel murine anti-fentanyl mAbs were selected for development based on affinity for fentanyl, and efficacy in counteracting the pharmacological effects of fentanyl in mice. Humanization and evaluation of mutations designed to eliminate predicted post-translational modifications resulted in two humanized mAbs that were effective at preventing fentanyl-induced pharmacological effects in rats. These humanized mAbs showed favorable biophysical properties with respect to aggregation and hydrophobicity by chromatography-based assays, and thermostability by dynamic scanning fluorimetry. These results collectively support that the humanized anti-fentanyl mAbs developed herein warrant further clinical development for treatment of fentanyl toxicity.
Collapse
Affiliation(s)
- Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Pedro Silva-Ortiz
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Diego Luengas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Fatima A. Hamid
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- School of Medicine, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Petkova AI, Kubajewska I, Vaideanu A, Schätzlein AG, Uchegbu IF. Gene Targeting to the Cerebral Cortex Following Intranasal Administration of Polyplexes. Pharmaceutics 2022; 14:pharmaceutics14061136. [PMID: 35745709 PMCID: PMC9231247 DOI: 10.3390/pharmaceutics14061136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Gene delivery to the cerebral cortex is challenging due to the blood brain barrier and the labile and macromolecular nature of DNA. Here we report gene delivery to the cortex using a glycol chitosan—DNA polyplex (GCP). In vitro, GCPs carrying a reporter plasmid DNA showed approximately 60% of the transfection efficiency shown by Lipofectamine lipoplexes (LX) in the U87 glioma cell line. Aiming to maximise penetration through the brain extracellular space, GCPs were coated with hyaluronidase (HYD) to form hyaluronidase-coated polyplexes (GCPH). The GCPH formulation retained approximately 50% of the in vitro hyaluronic acid (HA) digestion potential but lost its transfection potential in two-dimensional U87 cell lines. However, intranasally administered GCPH (0.067 mg kg−1 DNA) showed high levels of gene expression (IVIS imaging of protein expression) in the brain regions. In a separate experiment, involving GCP, LX and naked DNA, the intranasal administration of the GCP formulation (0.2 mg kg−1 DNA) resulted in protein expression predominantly in the cerebral cortex, while a similar dose of intranasal naked DNA led to protein expression in the cerebellum. Intranasal LX formulations did not show any evidence of protein expression. GCPs may provide a means to target protein expression to the cerebral cortex via the intranasal route.
Collapse
Affiliation(s)
- Asya I. Petkova
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Ilona Kubajewska
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Alexandra Vaideanu
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
| | - Andreas G. Schätzlein
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
| | - Ijeoma F. Uchegbu
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK; (A.I.P.); (I.K.); (A.V.); (A.G.S.)
- Nanomerics Ltd., Northwick Park and St. Mark’s Hospital, Y Block, Watford Road, London HA1 3UJ, UK
- Correspondence:
| |
Collapse
|
34
|
Danielsen M, Hempel C, Andresen TL, Urquhart AJ. Biopharmaceutical nanoclusters: Towards the self-delivery of protein and peptide therapeutics. J Control Release 2022; 347:282-307. [PMID: 35513210 DOI: 10.1016/j.jconrel.2022.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022]
Abstract
Protein and peptide biopharmaceuticals have had a major impact on the treatment of a number of diseases. There is a growing interest in overcoming some of the challenges associated with biopharmaceuticals, such as rapid degradation in physiological fluid, using nanocarrier delivery systems. Biopharmaceutical nanoclusters (BNCs) where the therapeutic protein or peptide is clustered together to form the main constituent of the nanocarrier system have the potential to mimic the benefits of more established nanocarriers (e.g., liposomal and polymeric systems) whilst eliminating the issue of low drug loading and potential side effects from additives. These benefits would include enhanced stability, improved absorption, and increased biopharmaceutical activity. However, the successful development of BNCs is challenged by the physicochemical complexity of the protein and peptide constituents as well as the dynamics of clustering. Here, we present and discuss common methodologies for the synthesis of therapeutic protein and peptide nanoclusters, as well as review the current status of this emerging field.
Collapse
Affiliation(s)
- Mia Danielsen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Casper Hempel
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andrew J Urquhart
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|