1
|
Küper K, Poschet G, Rossmann J, Garbade SF, Spiegelhalter A, Wen D, Hoffmann GF, Schmitt CP, Opladen T, Peters V. Dipeptides in CSF and plasma: diagnostic and therapeutic potential in neurological diseases. Amino Acids 2024; 57:2. [PMID: 39673003 PMCID: PMC11645304 DOI: 10.1007/s00726-024-03434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Dipeptides (DPs), composed of two amino acids (AAs), hold significant therapeutic potential but remain underexplored. Given the crucial role of AAs in central nervous system (CNS) function, this study investigated the presence of DPs in cerebrospinal fluid (CSF) and their correlation with corresponding AAs, potentially indicating their role as AA donors. Plasma and CSF samples were collected from 43 children with neurological or metabolic conditions of unknown origin, including 23 with epilepsy. A panel of 33 DPs was quantified using UPLC-MS/MS. Out of 33 DPs, 18 were detectable in CSF and 20 in plasma, displaying high inter-individual variance. Gly-Asp, Gly-Pro, and Ala-Glu were consistently found in all CSF samples, while only Gly-Asp was universally detectable in plasma. Anserine and carnosine were prominent in CSF and plasma, respectively, with no other histidine-containing DPs observed. Generally, DP concentrations were higher in plasma than in CSF; however, anserine and Gly-Pro had similar concentrations in both fluids. Significant correlations were observed between specific DPs and their corresponding AAs in CSF (Gly-Glu, Gly-Pro and Ser-Gln) and plasma (Glu-Glu and Glu-Ser). Notably, patients with epilepsy had elevated medium anserine concentrations in CSF. This study is the first to demonstrate the presence of numerous DPs in CSF and plasma. Further research is needed to determine if DP patterns can support the diagnosis of neurological diseases and whether DP administration can modulate amino acid availability in the brain, potentially offering new therapeutic options, such as for defects in the amino acid transporter.
Collapse
Affiliation(s)
- Katharina Küper
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Julia Rossmann
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Alexander Spiegelhalter
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Heidelberg, Germany
| | - Dan Wen
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Claus P Schmitt
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Thomas Opladen
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Verena Peters
- Division of Pediatric Neurology and Metabolic Medicine, Department I, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Loos CMM, Zhao S, Li L, Li J, Han W, Vanzant ES, McLeod KR. Essential oil supplementation improves insulin sensitivity and modulates the plasma metabolome of hyperinsulinemic horses. Front Vet Sci 2024; 11:1444581. [PMID: 39687851 PMCID: PMC11648227 DOI: 10.3389/fvets.2024.1444581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study was to investigate the effect of essential oil (EO) supplementation on insulin sensitivity (IS) and the plasma metabolome in insulin dysregulated (ID) horses. Horses were blocked by degree of IS and assigned randomly to treatment: oral daily bolus (50 mL) of either a plant derived EO supplement or carrier (CON). Mares were housed in dry lots with ad libitum access to grass hay and supplemented individually twice daily with a concentrate to meet nutrient requirements for mature horses. Before and after 6 wks of treatment, mares underwent a combined glucose-insulin tolerance test (CGIT) and an oral sugar test (OST) on separate days. Global metabolome analysis was conducted on plasma samples before and after treatment. Although treatment did not affect (p > 0.4) AUC or glucose clearance during CGIT, there was a treatment*covariate interaction (p ≤ 0.08) for insulin concentrations at 75 min (INS75) and positive phase time (PT) with EO decreasing both INS75 (p ≤ 0.002) and PT (p = 0.05) in horses with more severe initial degree of ID. Similarly, EO treatment reduced (p ≤ 0.006) insulinemic response to the OST in horses exhibiting higher pre-treatment responses (treatment*covariate, p = 0.004). There were 702 metabolites identified that were uniquely changed with EO treatment. Pathway analysis and biomarkers showed EO-mediated changes in amino acid, linoleic acid, mesaconic acid, TCA-cyle intermediates and bile acid metabolism. The directional changes in these pathways or biomarkers are consistent with changes in inulin sensitivity in other models. These data show that EO shifted the plasma metabolome and improved insulin sensitivity in horses.
Collapse
Affiliation(s)
- Caroline M. M. Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Shuang Zhao
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Liang Li
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Janet Li
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Wei Han
- The Metabolomics Innovation Centre and Chemistry Department, University of Alberta, Edmonton, AB, Canada
| | - Eric S. Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Wang Q, Saadati S, Kabthymer RH, Gadanec LK, Lawton A, Tripodi N, Apostolopoulos V, de Courten B, Feehan J. The impact of carnosine on biological ageing - A geroscience approach. Maturitas 2024; 189:108091. [PMID: 39153379 DOI: 10.1016/j.maturitas.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Biological ageing involves a gradual decline in physiological function and resilience, marked by molecular, cellular, and systemic changes across organ systems. Geroscience, an interdisciplinary field, studies these mechanisms and their role in age-related diseases. Genomic instability, inflammation, telomere attrition, and other indicators contribute to conditions like cardiovascular disease and neurodegeneration. Geroscience identifies geroprotectors, such as resveratrol and metformin, targeting ageing pathways to extend the healthspan. Carnosine, a naturally occurring dipeptide (b-alanine and l-histidine), has emerged as a potential geroprotector with antioxidative, anti-inflammatory, and anti-glycating properties. Carnosine's benefits extend to muscle function, exercise performance, and cognitive health, making it a promising therapeutic intervention for healthy ageing and oxidative stress-related pathologies. In this review, we summarize the evidence describing carnosine's effects in promoting healthy ageing, providing new insights into improving geroscience.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Robel Hussen Kabthymer
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Amy Lawton
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
4
|
Baudin J, Hernandez-Baixauli J, Romero-Giménez J, Yang H, Mulero F, Puiggròs F, Mardinoglu A, Arola L, Caimari A. A cocktail of histidine, carnosine, cysteine and serine reduces adiposity and improves metabolic health and adipose tissue immunometabolic function in ovariectomized rats. Biomed Pharmacother 2024; 179:117326. [PMID: 39208671 DOI: 10.1016/j.biopha.2024.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats. Twenty OVX rats were orally supplemented with either MIS (OVX-MIS) or vehicle (OVX). Ten OVX rats received vehicle orally along with subcutaneous injections of 17β-oestradiol (OVX-E2), whereas 10 rats underwent a sham operation and received oral and injected vehicles (control group). MIS consumption partly counteracted the fat mass accretion observed in OVX animals, leading to decreased total fat mass, adiposity index and retroperitoneal white adipose tissue (RWAT) adipocyte hypertrophy. OVX-MIS rats also displayed increased lean mass and lean/fat ratio, suggesting a healthier body composition, similar to the results reported for OVX-E2 animals. MIS consumption decreased the circulating levels of the proinflammatory marker CRP, the total cholesterol-to-HDL-cholesterol ratio and the leptin-to-adiponectin ratio, a biomarker of diabetes risk and metabolic syndrome. RWAT transcriptomics indicated that MIS favourably regulated genes involved in adipocyte structure and morphology, cell fate determination and differentiation, glucose/insulin homeostasis, inflammation, response to stress and oxidative phosphorylation, which may be mechanisms underlying the beneficial effects described for OVX-MIS rats. Our results pave the way for using this MIS formulation to improve the body composition and immunometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain; Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Jordi Romero-Giménez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain.
| |
Collapse
|
5
|
Patterson JS, Rana BK, Gu H, Sears DD. Sitting Interruption Modalities during Prolonged Sitting Acutely Improve Postprandial Metabolome in a Crossover Pilot Trial among Postmenopausal Women. Metabolites 2024; 14:478. [PMID: 39330485 PMCID: PMC11433994 DOI: 10.3390/metabo14090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Older adults sit during most hours of the day; more than 30% are considered physically inactive. The accumulation of prolonged sitting time is an exercise-independent risk factor for aging-related conditions such as cardiometabolic disease and cancer. Archival plasma samples from a randomized controlled, four-condition crossover study conducted in 10 postmenopausal women with overweight or obesity were analyzed. During 5-hour conditions completed on separate days, the trial tested three interruption modalities: two-minute stands each 20 min (STS), hourly ten-minute standing breaks (Stand), hourly two-minute walks (Walk), and a controlled sit. Fasting baseline and 5-hour end point (2 h postprandial) samples were used for targeted metabolomic profiling. Condition-associated metabolome changes were compared using paired t-tests. STS eliminated the postprandial elevation of amino acid metabolites that was observed in the control. A norvaline derivative shown to have anti-hypertensive and -hyperglycemic effects was significantly increased during Stand and STS. Post-hoc testing identified 19 significantly different metabolites across the interventions. Tight metabolite clustering by condition was driven by amino acid, vasoactive, and sugar metabolites, as demonstrated by partial least squares-discriminant analyses. This exploratory study suggests that brief, low-intensity modalities of interrupting prolonged sitting can acutely elucidate beneficial cardiometabolic changes in postmenopausal women with cardiometabolic risk.
Collapse
Affiliation(s)
- Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Brinda K. Rana
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
- Department of Family Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
- UCSD Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Wang Q, Tripodi N, Valiukas Z, Bell SM, Majid A, de Courten B, Apostolopoulos V, Feehan J. The protective role of carnosine against type 2 diabetes-induced cognitive impairment. Food Sci Nutr 2024; 12:3819-3833. [PMID: 38873448 PMCID: PMC11167184 DOI: 10.1002/fsn3.4077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
The morbidity and mortality associated with type 2 diabetes mellitus (T2DM) have grown exponentially over the last 30 years. Together with its associated complications, the mortality rates have increased. One important complication in those living with T2DM is the acceleration of age-related cognitive decline. T2DM-induced cognitive impairment seriously affects memory, executive function, and quality of life. However, there is a lack of effective treatment for both diabetes and cognitive decline. Thus, finding novel treatments which are cheap, effective in both diabetes and cognitive impairment, are easily accessible, are needed to reduce impact on patients with diabetes and health-care systems. Carnosine, a histidine containing dipeptide, plays a protective role in cognitive diseases due to its antioxidant, anti-inflammation, and anti-glycation properties, all of which may slow the development of neurodegenerative diseases and ischemic injury. Furthermore, carnosine is also involved in regulating glucose and insulin in diabetes. Herein, we discuss the neuroprotective role of carnosine and its mechanisms in T2DM-induced cognitive impairment, which may provide a theoretical basis and evidence base to evaluate whether carnosine has therapeutic effects in alleviating cognitive dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Zachary Valiukas
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| | - Simon M. Bell
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, Sheffield UniversitySheffieldUK
| | - Barbora de Courten
- STEM college, RMIT UniversityMelbourneVictoriaAustralia
- School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
- Australian Institute for Musculoskeletal Sciences, Immunology Program, Western HealthThe University of Melbourne and Victoria UniversityMelbourneVictoriaAustralia
| | - Jack Feehan
- Institute for Health and Sport, Victoria UniversityMelbourneAustralia
| |
Collapse
|
7
|
Hariharan R, Cameron J, Menon K, Mesinovic J, Jansons P, Scott D, Lu ZX, de Courten M, Feehan J, de Courten B. Carnosine supplementation improves glucose control in adults with pre-diabetes and type 2 diabetes: A randomised controlled trial. Nutr Metab Cardiovasc Dis 2024; 34:485-496. [PMID: 38172006 DOI: 10.1016/j.numecd.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND AND AIMS Type 2 diabetes (T2DM) is a major cause of morbidity and mortality globally. Carnosine, a naturally occurring dipeptide, has anti-inflammatory, antioxidant, and anti-glycating effects, with preliminary evidence suggesting it may improve important chronic disease risk factors in adults with cardiometabolic conditions. METHODS AND RESULTS In this randomised controlled trial, 43 adults (30%F) living with prediabetes or T2DM consumed carnosine (2 g) or a matching placebo daily for 14 weeks to evaluate its effect on glucose metabolism assessed via a 2-h 75 g oral glucose tolerance test. Secondary outcomes included body composition analysis by dual energy x-ray absorptiometry (DEXA), calf muscle density by pQCT, and anthropometry. Carnosine supplementation decreased blood glucose at 90 min (-1.31 mmol/L; p = 0.02) and 120 min (-1.60 mmol/L, p = 0.02) and total glucose area under the curve (-3.30 mmol/L; p = 0.04) following an oral glucose tolerance test. There were no additional changes in secondary outcomes. The carnosine group results remained significant before and after adjustment for age, sex, and change in weight (all>0.05), and in further sensitivity analyses accounting for missing data. There were no significant changes in insulin levels. CONCLUSION This study provides preliminary support for larger trials evaluating carnosine as a potential treatment for prediabetes and the initial stages of T2DM. Likely mechanisms may include changes to hepatic glucose output explaining the observed reduction in blood glucose without changes in insulin secretion following carnosine supplementation.
Collapse
Affiliation(s)
- Rohit Hariharan
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - James Cameron
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; Monash Cardiovascular Research Centre, Monash Heart, Monash Health, Clayton VIC, Australia
| | - Kirthi Menon
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong VIC, Australia
| | - Paul Jansons
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong VIC, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong VIC, Australia
| | - Zhong X Lu
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; Monash Health Pathology, Clayton, VIC, Australia
| | - Maximilian de Courten
- Mitchell Institute for Health and Education Policy, Victoria University, Melbourne VIC, Australia; Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Jack Feehan
- Mitchell Institute for Health and Education Policy, Victoria University, Melbourne VIC, Australia; Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; School of Health and Biomedical Sciences, RMIT, Bundoora, Australia.
| |
Collapse
|
8
|
Berdaweel IA, Monroe TB, Alowaisi AA, Mahoney JC, Liang IC, Berns KA, Gao D, McLendon JM, Anderson EJ. Iron scavenging and suppression of collagen cross-linking underlie antifibrotic effects of carnosine in the heart with obesity. Front Pharmacol 2024; 14:1275388. [PMID: 38348353 PMCID: PMC10859874 DOI: 10.3389/fphar.2023.1275388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/13/2023] [Indexed: 02/15/2024] Open
Abstract
Oral consumption of histidyl dipeptides such as l-carnosine has been suggested to promote cardiometabolic health, although therapeutic mechanisms remain incompletely understood. We recently reported that oral consumption of a carnosine analog suppressed markers of fibrosis in liver of obese mice, but whether antifibrotic effects of carnosine extend to the heart is not known, nor are the mechanisms by which carnosine is acting. Here, we investigated whether oral carnosine was able to mitigate the adverse cardiac remodeling associated with diet induced obesity in a mouse model of enhanced lipid peroxidation (i.e., glutathione peroxidase 4 deficient mice, GPx4+/-), a model which mimics many of the pathophysiological aspects of metabolic syndrome and T2 diabetes in humans. Wild-type (WT) and GPx4+/-male mice were randomly fed a standard (CNTL) or high fat high sucrose diet (HFHS) for 16 weeks. Seven weeks after starting the diet, a subset of the HFHS mice received carnosine (80 mM) in their drinking water for duration of the study. Carnosine treatment led to a moderate improvement in glycemic control in WT and GPx4+/-mice on HFHS diet, although insulin sensitivity was not significantly affected. Interestingly, while our transcriptomic analysis revealed that carnosine therapy had only modest impact on global gene expression in the heart, carnosine substantially upregulated cardiac GPx4 expression in both WT and GPx4+/-mice on HFHS diet. Carnosine also significantly reduced protein carbonyls and iron levels in myocardial tissue from both genotypes on HFHS diet. Importantly, we observed a robust antifibrotic effect of carnosine therapy in hearts from mice on HFHS diet, which further in vitro experiments suggest is due to carnosine's ability to suppress collagen-cross-linking. Collectively, this study reveals antifibrotic potential of carnosine in the heart with obesity and illustrates key mechanisms by which it may be acting.
Collapse
Affiliation(s)
- Islam A. Berdaweel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Department of Clinical Pharmacy, College of Pharmacy, Yarmouk University, Irbid, Jordan
| | - T. Blake Monroe
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Amany A. Alowaisi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Department of Clinical Pharmacy, College of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Jolonda C. Mahoney
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - I-Chau Liang
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Kaitlyn A. Berns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Dylan Gao
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jared M. McLendon
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Sun J, Guo F, Ran J, Wu H, Li Y, Wang M, Wang X. Bibliometric and Visual Analysis of Global Research on Taurine, Creatine, Carnosine, and Anserine with Metabolic Syndrome: From 1992 to 2022. Nutrients 2023; 15:3374. [PMID: 37571314 PMCID: PMC10420945 DOI: 10.3390/nu15153374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Red meat and animal-sourced protein are often disparaged as risk factors for developing metabolic syndrome, while emerging research has shown the beneficial effects of dietary taurine, creatine, carnosine, and anserine which are all exclusively abundant in red meat. Thus, it is imperative to highlight the available evidence to help promote red meat as part of a well-balanced diet to optimize human health. In this study, a bibliometric analysis was conducted to investigate the current research status of dietary taurine, creatine, carnosine, and anserine with metabolic syndrome, identify research hotspots, and delineate developmental trends by utilizing the visualization software CiteSpace. A total of 1094 publications were retrieved via the Web of Science Core Collection from 1992 to 2022. There exists a gradual increase in the number of publications on this topic, but there is still much room for research papers to rise. The United States has participated in the most studies, followed by China and Japan. The University of Sao Paulo was the research institute contributing the most; Kyung Ja Chang and Sanya Roysommuti have been identified as the most prolific authors. The analysis of keywords reveals that obesity, lipid profiles, blood pressure, and glucose metabolism, as well as ergogenic aid and growth promoter have been the research hotspots. Inflammation and diabetic nephropathy will likely be frontiers of future research related to dietary taurine, creatine, carnosine, and anserine. Overall, this paper may provide insights for researchers to further delve into this field and enlist the greater community to re-evaluate the health effects of red meat.
Collapse
Affiliation(s)
- Jiaru Sun
- Department of Nursing, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| | - Fang Guo
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, China; (H.W.); (Y.L.)
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
| | - Haisheng Wu
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, China; (H.W.); (Y.L.)
| | - Yang Li
- School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pok Fu Lam, Hong Kong, China; (H.W.); (Y.L.)
| | - Mingxu Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China
| | - Xiaoqin Wang
- Department of Nursing, Xi’an Jiaotong University Health Science Center, 76 Yanta West Road, Xi’an 710061, China;
| |
Collapse
|
10
|
Pfeffer T, Wetzel C, Kirschner P, Bartosova M, Poth T, Schwab C, Poschet G, Zemva J, Bulkescher R, Damgov I, Thiel C, Garbade SF, Klingbeil K, Peters V, Schmitt CP. Carnosinase-1 Knock-Out Reduces Kidney Fibrosis in Type-1 Diabetic Mice on High Fat Diet. Antioxidants (Basel) 2023; 12:1270. [PMID: 37372000 DOI: 10.3390/antiox12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine and anserine supplementation markedLy reduce diabetic nephropathy in rodents. The mode of nephroprotective action of both dipeptides in diabetes, via local protection or improved systemic glucose homeostasis, is uncertain. Global carnosinase-1 knockout mice (Cndp1-KO) and wild-type littermates (WT) on a normal diet (ND) and high fat diet (HFD) (n = 10/group), with streptozocin (STZ)-induced type-1 diabetes (n = 21-23/group), were studied for 32 weeks. Independent of diet, Cndp1-KO mice had 2- to 10-fold higher kidney anserine and carnosine concentrations than WT mice, but otherwise a similar kidney metabolome; heart, liver, muscle and serum anserine and carnosine concentrations were not different. Diabetic Cndp1-KO mice did not differ from diabetic WT mice in energy intake, body weight gain, blood glucose, HbA1c, insulin and glucose tolerance with both diets, whereas the diabetes-related increase in kidney advanced glycation end-product and 4-hydroxynonenal concentrations was prevented in the KO mice. Tubular protein accumulation was lower in diabetic ND and HFD Cndp1-KO mice, interstitial inflammation and fibrosis were lower in diabetic HFD Cndp1-KO mice compared to diabetic WT mice. Fatalities occurred later in diabetic ND Cndp1-KO mice versus WT littermates. Independent of systemic glucose homeostasis, increased kidney anserine and carnosine concentrations reduce local glycation and oxidative stress in type-1 diabetic mice, and mitigate interstitial nephropathy in type-1 diabetic mice on HFD.
Collapse
Affiliation(s)
- Tilman Pfeffer
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Charlotte Wetzel
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Philip Kirschner
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maria Bartosova
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology (CMCP), Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Zemva
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruben Bulkescher
- Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ivan Damgov
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christian Thiel
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kristina Klingbeil
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Verena Peters
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Claus Peter Schmitt
- Centre for Paediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Cesak O, Vostalova J, Vidlar A, Bastlova P, Student V. Carnosine and Beta-Alanine Supplementation in Human Medicine: Narrative Review and Critical Assessment. Nutrients 2023; 15:nu15071770. [PMID: 37049610 PMCID: PMC10096773 DOI: 10.3390/nu15071770] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The dipeptide carnosine is a physiologically important molecule in the human body, commonly found in skeletal muscle and brain tissue. Beta-alanine is a limiting precursor of carnosine and is among the most used sports supplements for improving athletic performance. However, carnosine, its metabolite N-acetylcarnosine, and the synthetic derivative zinc-L-carnosine have recently been gaining popularity as supplements in human medicine. These molecules have a wide range of effects—principally with anti-inflammatory, antioxidant, antiglycation, anticarbonylation, calcium-regulatory, immunomodulatory and chelating properties. This review discusses results from recent studies focusing on the impact of this supplementation in several areas of human medicine. We queried PubMed, Web of Science, the National Library of Medicine and the Cochrane Library, employing a search strategy using database-specific keywords. Evidence showed that the supplementation had a beneficial impact in the prevention of sarcopenia, the preservation of cognitive abilities and the improvement of neurodegenerative disorders. Furthermore, the improvement of diabetes mellitus parameters and symptoms of oral mucositis was seen, as well as the regression of esophagitis and taste disorders after chemotherapy, the protection of the gastrointestinal mucosa and the support of Helicobacter pylori eradication treatment. However, in the areas of senile cataracts, cardiovascular disease, schizophrenia and autistic disorders, the results are inconclusive.
Collapse
Affiliation(s)
- Ondrej Cesak
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Ales Vidlar
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| | - Petra Bastlova
- Department of Rehabilitaion, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
| | - Vladimir Student
- Department of Urology, University Hospital Olomouc, 775 20 Olomouc, Czech Republic
- Faculty of Medicine and Dentistry, Palacky University, 775 15 Olomouc, Czech Republic
| |
Collapse
|
12
|
Matthews JJ, Turner MD, Santos L, Elliott-Sale KJ, Sale C. Carnosine increases insulin-stimulated glucose uptake and reduces methylglyoxal-modified proteins in type-2 diabetic human skeletal muscle cells. Amino Acids 2023; 55:413-420. [PMID: 36637533 PMCID: PMC10038967 DOI: 10.1007/s00726-022-03230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023]
Abstract
Type-2 diabetes (T2D) is characterised by a dysregulation of metabolism, including skeletal muscle insulin resistance, mitochondrial dysfunction, and oxidative stress. Reactive species, such as methylglyoxal (MGO) and 4-hydroxynonenal (4-HNE), positively associate with T2D disease severity and can directly interfere with insulin signalling and glucose uptake in skeletal muscle by modifying cellular proteins. The multifunctional dipeptide carnosine, and its rate-limiting precursor β-alanine, have recently been shown to improve glycaemic control in humans and rodents with diabetes. However, the precise mechanisms are unclear and research in human skeletal muscle is limited. Herein, we present novel findings in primary human T2D and lean healthy control (LHC) skeletal muscle cells. Cells were differentiated to myotubes, and treated with 10 mM carnosine, 10 mM β-alanine, or control for 4-days. T2D cells had reduced ATP-linked and maximal respiration compared with LHC cells (p = 0.016 and p = 0.005). Treatment with 10 mM carnosine significantly increased insulin-stimulated glucose uptake in T2D cells (p = 0.047); with no effect in LHC cells. Insulin-stimulation increased MGO-modified proteins in T2D cells by 47%; treatment with carnosine attenuated this increase to 9.7% (p = 0.011). There was no effect treatment on cell viability or expression of other proteins. These findings suggest that the beneficial effects of carnosine on glycaemic control may be explained by its scavenging actions in human skeletal muscle.
Collapse
Affiliation(s)
- Joseph J Matthews
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Sport and Exercise, Centre for Life and Sport Sciences (CLaSS), Birmingham City University, Birmingham, UK
| | - Mark D Turner
- Centre for Diabetes, Chronic Diseases & Ageing, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Livia Santos
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Kirsty J Elliott-Sale
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Craig Sale
- Sport, Health and Performance Research Centre, Musculoskeletal Physiology Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
- Institute of Sport, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
13
|
Durán-Carabali LE, Da Silva JL, Colucci ACM, Netto CA, De Fraga LS. Protective effect of sex steroid hormones on morphological and cellular outcomes after neonatal hypoxia-ischemia: A meta-analysis of preclinical studies. Neurosci Biobehav Rev 2023; 145:105018. [PMID: 36572200 DOI: 10.1016/j.neubiorev.2022.105018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Sex steroid hormones play an important role in fetal development, brain functioning and neuronal protection. Growing evidence highlights the positive effects of these hormones against brain damage induced by neonatal hypoxia-ischemia (HI). This systematic review with meta-analysis aims to verify the efficacy of sex steroid hormones in preventing HI-induced brain damage in rodent models. The protocol was registered at PROSPERO and a total of 22 articles were included. Moderate to large effects were observed in HI animals treated with sex steroid hormones in reducing cerebral infarction size and cell death, increasing neuronal survival, and mitigating neuroinflammatory responses and astrocyte reactivity. A small effect was evidenced for cognitive function, but no significant effect for motor function; moreover, a high degree of heterogeneity was observed. In summary, data suggest that sex steroid hormones, such as progesterone and 17β estradiol, improve morphological and cellular outcomes following neonatal HI. Further research is paramount to examine neurological function during HI recovery and standardization of methodological aspects is imperative to reduce the risk of spurious findings.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - J L Da Silva
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A C M Colucci
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - C A Netto
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L S De Fraga
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
14
|
Wetzel C, Pfeffer T, Bulkescher R, Zemva J, Modafferi S, Polimeni A, Salinaro AT, Calabrese V, Schmitt CP, Peters V. Anserine and Carnosine Induce HSP70-Dependent H 2S Formation in Endothelial Cells and Murine Kidney. Antioxidants (Basel) 2022; 12:antiox12010066. [PMID: 36670928 PMCID: PMC9855136 DOI: 10.3390/antiox12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Anserine and carnosine have nephroprotective actions; hydrogen sulfide (H2S) protects from ischemic tissue damage, and the underlying mechanisms are debated. In view of their common interaction with HSP70, we studied possible interactions of both dipeptides with H2S. H2S formation was measured in human proximal tubular epithelial cells (HK-2); three endothelial cell lines (HUVEC, HUAEC, MCEC); and in renal murine tissue of wild-type (WT), carnosinase-1 knockout (Cndp1-KO) and Hsp70-KO mice. Diabetes was induced by streptozocin. Incubation with carnosine increased H2S synthesis capacity in tubular cells, as well as with anserine in all three endothelial cell lines. H2S dose-dependently reduced anserine/carnosine degradation rate by serum and recombinant carnosinase-1 (CN1). Endothelial Hsp70-KO reduced H2S formation and abolished the stimulation by anserine and could be restored by Hsp70 transfection. In female Hsp70-KO mice, kidney H2S formation was halved. In Cndp1-KO mice, kidney anserine concentrations were several-fold and sex-specifically increased. Kidney H2S formation capacity was increased 2-3-fold in female mice and correlated with anserine and carnosine concentrations. In diabetic Cndp1-KO mice, renal anserine and carnosine concentrations as well as H2S formation capacity were markedly reduced compared to non-diabetic Cndp1-KO littermates. Anserine and carnosine induce H2S formation in a cell-type and Hsp70-specific manner within a positive feedback loop with CN1.
Collapse
Affiliation(s)
- Charlotte Wetzel
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tilman Pfeffer
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruben Bulkescher
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Johanna Zemva
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Alessandra Polimeni
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
15
|
Su M, Chen D, Zhou J, Shen Q. Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle. Animals (Basel) 2022; 12:ani12091136. [PMID: 35565563 PMCID: PMC9105694 DOI: 10.3390/ani12091136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 01/03/2023] Open
Abstract
This study investigated the dietary supplementation of starches with different carbohydrate sources on the proximate composition, meat quality, flavor substances, and volatile flavor substances in the meat of Chinese Xiangxi yellow cattle. A total of 21 Chinese Xiangxi yellow steers (20 ± 0.5 months, 310 kg ± 5.85 kg) were randomly divided into three groups (control, corn, and barley groups), with seven steers per group. The control steers received a conventional diet (coarse forage type: whole silage corn at the end of the dough stage as the main source), the corn group received a diet with corn as the main carbohydrate source, and the barley group received a diet with barley as the main carbohydrate source. The experiment lasted for 300 d. and the means of the final weights in the control, corn, and barley groups were 290 kg, 359 kg, and 345 kg. The diets were isonitrogenous. The corn and barley groups reduced the moisture (p = 0.04) and improved the intramuscular fat content of the meat (p = 0.002). They also improved meat color (a*) (p = 0.01) and reduced cooking loss (p = 0.08), shear force (p = 0.002), and water loss (p = 0.001). There was no significant difference in the 5′-nucleotide content (p > 0.05), the equivalent umami concentration (EUC) (p = 0.88), and taste activity value (TAV) (p > 0.05) among the three groups. The 5′-IMP (umami) content was the highest in the 5′-nucleotide and its TAV > 1. The corn and barley groups improved the content of tasty amino acids (tAA, p < 0.001). The corn group had a higher content of sweet amino acids (SAA, p < 0.001) and total amino acids (TAA, p = 0.003). Corn and barley improved the levels of MUFA (p < 0.001), PUFA (p = 0.002), n-3 PUFA (p = 0.005), and n-6 PUFA (p = 0.020). The levels of alcohols, hydrocarbons, and aldehydes in the corn group were higher than in the barley and control groups (p < 0.001). The esters content in the corn group was higher than in the barley and control groups (p = 0.050). In conclusion, feeding corn or barley as a carbohydrate source can improve the nutrient content and taste. Feeding corn as a carbohydrate source can improve the content of free amino acids (Cys, Glu, Gly, Thr, Leu, Trp, Gln, Asn, and Asp), fatty acids (saturated fatty acid, monounsaturated fatty acid, polyunsaturated fatty acid, n-3PUFA, n-6PUFA, and total fatty acid), and volatile flavor substances (alcohols, aldehydes, acids, and hydrocarbons) to improve the flavor and meat quality.
Collapse
Affiliation(s)
- Minchao Su
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (M.S.); (J.Z.)
| | - Dong Chen
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (M.S.); (J.Z.)
- Correspondence: ; Tel.: +86-731-13787038140
| | - Jing Zhou
- College of Animal Science, Hunan Agricultural University, Changsha 410128, China; (M.S.); (J.Z.)
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
16
|
Brugnara L, García AI, Murillo S, Ribalta J, Fernandez G, Marquez S, Rodriguez MA, Vinaixa M, Amigó N, Correig X, Kalko S, Pomes J, Novials A. Muscular carnosine is a marker for cardiorespiratory fitness and cardiometabolic risk factors in men with type 1 diabetes. Eur J Appl Physiol 2022; 122:1429-1440. [PMID: 35298695 DOI: 10.1007/s00421-022-04929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Muscle is an essential organ for glucose metabolism and can be influenced by metabolic disorders and physical activity. Elevated muscle carnosine levels have been associated with insulin resistance and cardiometabolic risk factors. Little is known about muscle carnosine in type 1 diabetes (T1D) and how it is influenced by physical activity. The aim of this study was to characterize muscle carnosine in vivo by proton magnetic resonance spectroscopy (1H MRS) and evaluate the relationship with physical activity, clinical characteristics and lipoprotein subfractions. METHODS 16 men with T1D (10 athletes/6 sedentary) and 14 controls without diabetes (9/5) were included. Body composition by DXA, cardiorespiratory capacity (VO2peak) and serum lipoprotein profile by proton nuclear magnetic resonance (1H NMR) were obtained. Muscle carnosine scaled to water (carnosineW) and to creatine (carnosineCR), creatine and intramyocellular lipids (IMCL) were quantified in vivo using 1H MRS in a 3T MR scanner in soleus muscle. RESULTS Subjects with T1D presented higher carnosine CR levels compared to controls. T1D patients with a lower VO2peak presented higher carnosineCR levels compared to sedentary controls, but both T1D and control groups presented similar levels of carnosineCR at high VO2peak levels. CarnosineW followed the same trend. Integrated correlation networks in T1D demonstrated that carnosineW and carnosineCR were associated with cardiometabolic risk factors including total and abdominal fat, pro-atherogenic lipoproteins (very low-density lipoprotein subfractions), low VO2peak, and IMCL. CONCLUSIONS Elevated muscle carnosine levels in persons with T1D and their effect on atherogenic lipoproteins can be modulated by physical activity.
Collapse
Affiliation(s)
- Laura Brugnara
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Isabel García
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Serafín Murillo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josep Ribalta
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili/Unitat de Recerca en Lípids i Arteriosclerosi, IISRV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Guerau Fernandez
- Bioinformatics Unit, Genetics and Molecular Medicine Service, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Susanna Marquez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Maria Vinaixa
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain
| | - Núria Amigó
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain.,Biosfer Teslab, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Xavier Correig
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Susana Kalko
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Bioinformatics Core Facility (IDIBAPS), Barcelona, Spain
| | - Jaume Pomes
- Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Novials
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain. .,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
17
|
Hekmat-Ardakani A, Morshed-Behbahani B, Rahimi-Ardabili H, Ayati MH, Namazi N. The effects of dietary supplements and natural products targeting glucose levels: an overview. Crit Rev Food Sci Nutr 2022; 63:6138-6167. [PMID: 35081820 DOI: 10.1080/10408398.2022.2028716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Identifying effective dietary supplements and medicinal herbs has attracted the attention of clinicians and researchers to complement the standard treatment in controlling diabetes mellitus. In the present overview, we aimed to collect studies with the highest level of evidence to shed light on detecting the most effective dietary supplements and medicinal herbs for controlling glycemic status. For the current overview, four electronic databases, including PubMed, Scopus, Web of Science, and Cochrane Library, were systematically searched from inception to 31 December 2020 and then updated until 1 October 2021 to obtain eligible meta-analyses on either dietary supplements or medicinal herbs and their effects on glycemic status. Fasting blood sugar (FBS) and Hemoglobin A1C (HbA1C) were considered as primary outcomes. Finally, ninety-one meta-analyses on dietary supplements (n = 55) and herbs (n = 36) were included. Evidence showed positive effects of chromium, zinc, propolis, aloe vera, milk thistle, fenugreek, cinnamon, ginger, and nettle on FBS and/or HbA1C. However, mostly the heterogeneity (I2) was high. Other supplements and herbs also showed no reduction in glucose levels or their effects were small. Although some dietary supplements and medicinal herbs showed a significant reduction in FBS and/or HbA1C, mostly their effects from the clinical point of view were not remarkable. In addition, due to high heterogeneity, publication bias, and a limited number of included studies in most cases further clinical trials are needed for making decision on anti-diabetic supplement efficacy.
Collapse
Affiliation(s)
| | - Bahar Morshed-Behbahani
- Midwifery Department, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hania Rahimi-Ardabili
- School of Population Health, UNSW, Sydney, Australia
- Centre for Health Informatics, Australian Institute of Health Innovation, Sydney, Australia
| | - Mohammad Hossein Ayati
- School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|