1
|
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family. Mil Med Res 2024; 11:40. [PMID: 38902808 PMCID: PMC11191355 DOI: 10.1186/s40779-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.
Collapse
Affiliation(s)
- Heng-Zhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing-Lve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Dong-Liang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | - Ali Mobasheri
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, 90014, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania.
- Department of Rheumatology and Clinical Immunology, Universitair Medisch Centrum Utrecht, Utrecht, 3508, GA, the Netherlands.
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000, Liège, Belgium.
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Scudese E, Vue Z, Katti P, Marshall AG, Demirci M, Vang L, López EG, Neikirk K, Shao B, Le H, Stephens D, Hall DD, Rostami R, Rodman T, Kabugi K, Harris C, Shao J, Mungai M, AshShareef ST, Hicsasmaz I, Manus S, Wanjalla C, Whiteside A, Dasari R, Williams C, Damo SM, Gaddy JA, Glancy B, Dantas EHM, Kinder A, Kadam A, Tomar D, Scartoni F, Baffi M, McReynolds MR, Phillips MA, Cooper A, Murray SA, Quintana AM, Exil V, Kirabo A, Mobley BC, Hinton A. 3D Mitochondrial Structure in Aging Human Skeletal Muscle: Insights into MFN-2 Mediated Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566502. [PMID: 38168206 PMCID: PMC10760012 DOI: 10.1101/2023.11.13.566502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear. Mitochondrial aging is associated with decreased mitochondrial capacity, so we sought to investigate how aging affects mitochondrial structure and potential age-related regulators. Specifically, the three-dimensional (3D) mitochondrial structure associated with morphological changes in skeletal muscle during aging requires further elucidation. We hypothesized that aging causes structural remodeling of mitochondrial 3D architecture representative of dysfunction, and this effect is mitigated by exercise. We used serial block-face scanning electron microscopy to image human skeletal tissue samples, followed by manual contour tracing using Amira software for 3D reconstruction and subsequent analysis of mitochondria. We then applied a rigorous in vitro and in vivo exercise regimen during aging. Across 5 human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria we less spherical and more complex, indicating age-related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age-related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved as Marf, the MFN2 ortholog in Drosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age-related structural changes in mitochondria and further suggest that exercise may mitigate age-related structural decline through modulation of mitofusin 2.
Collapse
Affiliation(s)
- Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Prassana Katti
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza López
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Duane D. Hall
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Rahmati Rostami
- Department of Genetic Medicine, Joan & Sanford I. Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, Iowa City, IA 52242, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Salma T. AshShareef
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Innes Hicsasmaz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Celestine Wanjalla
- Division of Infection Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Revathi Dasari
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, 45435, USA
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Jennifer A. Gaddy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Estélio Henrique Martin Dantas
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Doctor’s Degree Program in Nursing and Biosciences - PpgEnfBio, Federal University of the State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
- Laboratory of Human Motricity Biosciences - LABIMH, Federal University of the State of Rio de Janeiro - UNIRIO, RJ, Brazil
- Brazilian Paralympic Academy – APB
- Doctor’s Degree Program in Health and Environment - PSA, Tiradentes University - UNIT, Aracaju, SE, Brazil
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Fabiana Scartoni
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Matheus Baffi
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA, 16801, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Vernat Exil
- Department of Pediatrics, Div. of Cardiology, St. Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Annet Kirabo
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bret C. Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
3
|
El Assar M, Rodríguez-Sánchez I, Álvarez-Bustos A, Rodríguez-Mañas L. Biomarkers of frailty. Mol Aspects Med 2024; 97:101271. [PMID: 38631189 DOI: 10.1016/j.mam.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Several biomarkers have been proposed to identify frailty, a multisystemic age-related syndrome. However, the complex pathophysiology and the absence of a consensus on a comprehensive and universal definition make it challenging to pinpoint a singular biomarker or set of biomarkers that conclusively characterize frailty. This review delves into the main laboratory biomarkers, placing special emphasis on those associated with various pathways closely tied to the frailty condition, such as inflammation, oxidative stress, mitochondrial dysfunction, metabolic and endocrine alterations and microRNA. Additionally, we provide a summary of different clinical biomarkers encompassing different tools that have been proposed to assess frailty. We further address various imaging biomarkers such as Dual Energy X-ray Absorptiometry, Bioelectrical Impedance analysis, Computed Tomography and Magnetic Resonance Imaging, Ultrasound and D3 Creatine dilution. Intervention to treat frailty, including non-pharmacological ones, especially those involving physical exercise and nutrition, and pharmacological interventions, that include those targeting specific mechanisms such as myostatin inhibitors, insulin sensitizer metformin and with special relevance for hormonal treatments are mentioned. We further address the levels of different biomarkers in monitoring the potential positive effects of some of these interventions. Despite the availability of numerous biomarkers, their performance and usefulness in the clinical arena are far from being satisfactory. Considering the multicausality of frailty, there is an increasing need to assess the role of sets of biomarkers and the combination between laboratory, clinical and image biomarkers, in terms of sensitivity, specificity and predictive values for the diagnosis and prognosis of the different outcomes of frailty to improve detection and monitoring of older people with frailty or at risk of developing it, being this a need in the everyday clinical practice.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Madrid, Spain.
| |
Collapse
|
4
|
Lei Y, Gan M, Qiu Y, Chen Q, Wang X, Liao T, Zhao M, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Zhu L, Shen L. The role of mitochondrial dynamics and mitophagy in skeletal muscle atrophy: from molecular mechanisms to therapeutic insights. Cell Mol Biol Lett 2024; 29:59. [PMID: 38654156 PMCID: PMC11036639 DOI: 10.1186/s11658-024-00572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Skeletal muscle is the largest metabolic organ of the human body. Maintaining the best quality control and functional integrity of mitochondria is essential for the health of skeletal muscle. However, mitochondrial dysfunction characterized by mitochondrial dynamic imbalance and mitophagy disruption can lead to varying degrees of muscle atrophy, but the underlying mechanism of action is still unclear. Although mitochondrial dynamics and mitophagy are two different mitochondrial quality control mechanisms, a large amount of evidence has indicated that they are interrelated and mutually regulated. The former maintains the balance of the mitochondrial network, eliminates damaged or aged mitochondria, and enables cells to survive normally. The latter degrades damaged or aged mitochondria through the lysosomal pathway, ensuring cellular functional health and metabolic homeostasis. Skeletal muscle atrophy is considered an urgent global health issue. Understanding and gaining knowledge about muscle atrophy caused by mitochondrial dysfunction, particularly focusing on mitochondrial dynamics and mitochondrial autophagy, can greatly contribute to the prevention and treatment of muscle atrophy. In this review, we critically summarize the recent research progress on mitochondrial dynamics and mitophagy in skeletal muscle atrophy, and expound on the intrinsic molecular mechanism of skeletal muscle atrophy caused by mitochondrial dynamics and mitophagy. Importantly, we emphasize the potential of targeting mitochondrial dynamics and mitophagy as therapeutic strategies for the prevention and treatment of muscle atrophy, including pharmacological treatment and exercise therapy, and summarize effective methods for the treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yuhang Lei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanhao Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiuyang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianci Liao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengying Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Yeh CY, Chini LC, Davidson JW, Garcia GG, Gallagher MS, Freichels IT, Calubag MF, Rodgers AC, Green CL, Babygirija R, Sonsalla MM, Pak HH, Trautman M, Hacker TA, Miller RA, Simcox J, Lamming DW. Late-life isoleucine restriction promotes physiological and molecular signatures of healthy aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527311. [PMID: 36798157 PMCID: PMC9934591 DOI: 10.1101/2023.02.06.527311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In defiance of the paradigm that calories from all sources are equivalent, we and others have shown that dietary protein is a dominant regulator of healthy aging. The restriction of protein or the branched-chain amino acid isoleucine promotes healthspan and extends lifespan when initiated in young or adult mice. However, many interventions are less efficacious or even deleterious when initiated in aged animals. Here, we investigate the physiological, metabolic, and molecular consequences of consuming a diet with a 67% reduction of all amino acids (Low AA), or of isoleucine alone (Low Ile), in male and female C57BL/6J.Nia mice starting at 20 months of age. We find that both diet regimens effectively reduce adiposity and improve glucose tolerance, which were benefits that were not mediated by reduced calorie intake. Both diets improve specific aspects of frailty, slow multiple molecular indicators of aging rate, and rejuvenate the aging heart and liver at the molecular level. These results demonstrate that Low AA and Low Ile diets can drive youthful physiological and molecular signatures, and support the possibility that these dietary interventions could help to promote healthy aging in older adults.
Collapse
Affiliation(s)
- Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Lucas C.S. Chini
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Jessica W. Davidson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Gonzalo G. Garcia
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Meredith S. Gallagher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Isaac T. Freichels
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Mariah F. Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Allison C. Rodgers
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI 53706
| | - Cara L. Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Michelle M. Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Michaela Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy A. Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- Cardiovascular Physiology Core Facility, University of Wisconsin-Madison, Madison, WI 53706
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706
- Comparative Biomedical Sciences Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
6
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
7
|
Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev 2023; 91:102044. [PMID: 37647997 DOI: 10.1016/j.arr.2023.102044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
According to the Geroscience concept that organismal aging and age-associated diseases share the same basic molecular mechanisms, the identification of biomarkers of age that can efficiently classify people as biologically older (or younger) than their chronological (i.e. calendar) age is becoming of paramount importance. These people will be in fact at higher (or lower) risk for many different age-associated diseases, including cardiovascular diseases, neurodegeneration, cancer, etc. In turn, patients suffering from these diseases are biologically older than healthy age-matched individuals. Many biomarkers that correlate with age have been described so far. The aim of the present review is to discuss the usefulness of some of these biomarkers (especially soluble, circulating ones) in order to identify frail patients, possibly before the appearance of clinical symptoms, as well as patients at risk for age-associated diseases. An overview of selected biomarkers will be discussed in this regard, in particular we will focus on biomarkers related to metabolic stress response, inflammation, and cell death (in particular in neurodegeneration), all phenomena connected to inflammaging (chronic, low-grade, age-associated inflammation). In the second part of the review, next-generation markers such as extracellular vesicles and their cargos, epigenetic markers and gut microbiota composition, will be discussed. Since recent progresses in omics techniques have allowed an exponential increase in the production of laboratory data also in the field of biomarkers of age, making it difficult to extract biological meaning from the huge mass of available data, Artificial Intelligence (AI) approaches will be discussed as an increasingly important strategy for extracting knowledge from raw data and providing practitioners with actionable information to treat patients.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | | | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy
| | - Sara Carrino
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy; Center for Neurodegenerative Disease Research (CESNE), Department of Neurosciences, University of Padova, Padova, Italy
| | - Nicola Baldini
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milano, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica Delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Napoli, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Scientific Institute of Telese Terme, Telese Terme, Italy
| | | | | |
Collapse
|
8
|
Liu H, He X, Deng XY, Yan JL. Exploring the correlation between serum fibroblast growth factor-21 levels and Sarcopenia: a systematic review and meta-analysis. BMC Musculoskelet Disord 2023; 24:533. [PMID: 37386374 DOI: 10.1186/s12891-023-06641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF-21) plays an important role in the growth and metabolism of skeletal muscle cells. This study aims to systemically review the evidence regarding the relationship between FGF-21 levels and Sarcopenia, as well as the related influential factors. METHODS This review was conducted according to the PRISMA guidelines. We comprehensively searched PubMed, EMBASE, the Web of Science, Scopus, and Chinese Databases (CNKI, Wan Fang, VIP, and CBM) up to 1 May 2023. 3 investigators performed independent literature screening and data extraction of the included literature, and two investigators performed an independent quality assessment of case-control studies using the Joanna Briggs Institute (JBI) tool. Data analysis was performed using Review Manager 5.4 software. For continuous various outcomes, mean difference (MD) or standard mean difference (SMD) with 95% confidence intervals (CIs) was applied for assessment by fixed-effect or random-effect model analysis. The heterogeneity test was performed by the Q-statistic and quantified using I2, and publication bias was evaluated using a funnel plot. RESULTS Five studies with a total of 625 cases were included in the review. Meta-analysis showed lower BMI in the sarcopenia group [MD= -2.88 (95% CI, -3. 49, -2.27); P < 0.00001; I2 = 0%], significantly reduced grip strength in the sarcopenia group compared to the non-sarcopenia group [MD = -7.32(95% CI, -10.42,-4.23); P < 0.00001; I2 = 93%]. No statistically significant differences in serum FGF21 levels were found when comparing the two groups of subjects [SMD = 0.31(95% CI, -0.42, 1.04); P = 0.41; I2 = 94%], and no strong correlation was found between the onset of sarcopenia and serum FGF21 levels. CONCLUSION The diagnosis of sarcopenia is followed by a more significant decrease in muscle mass and strength, but there is a lack of strong evidence to support a direct relationship between elevated organismal FGF21 and sarcopenia, and it is not convincing to use FGF21 as a biological or diagnostic marker for sarcopenia. The currently used diagnostic criteria for sarcopenia and setting of cut-off values for each evaluation parameter no longer seem to match clinical practice.
Collapse
Affiliation(s)
- Hao Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xia He
- Affiliated Sichuan Provincial Rehabilitation Hospital of the Chengdu University of Traditional Chinese Medicine, Chengdu, 611135, China.
| | - Xiao-Yan Deng
- Tianhui Town Community Health Center, Chengdu, 610081, China
| | - Jing-Lu Yan
- Tianhui Town Community Health Center, Chengdu, 610081, China
| |
Collapse
|
9
|
Chen K, Huang W, Wang J, Xu H, Ruan L, Li Y, Wang Z, Wang X, Lin L, Li X. Increased serum fibroblast growth factor 21 levels are associated with adverse clinical outcomes after intracerebral hemorrhage. Front Neurosci 2023; 17:1117057. [PMID: 37214383 PMCID: PMC10198380 DOI: 10.3389/fnins.2023.1117057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) is the most prevalent cause of death. We sought to explore whether serum Fibroblast growth factor 21 (FGF21) is of substantial benefit in predicting poor prognosis in ICH patient. Methods A prospective, multicenter cohort analysis of serum FGF21 levels in 418 ICH patients was carried out. At three months following ICH start, the primary endpoint was death or major disability, whereas the secondary endpoint was death. We investigated the association between serum FGF21 and clinical outcomes. We added FGF21 to the existing rating scale to assess whether it enhanced the prediction ability of the original model. Effectiveness was determined by calculating the C-statistic, net reclassification index (NRI), absolute integrated discrimination improvement (IDI) index. Results Among 418 enrolled patients, 217 (51.9%) of the all subjects had death or significant disability. Compared with patients in the lowest quartile group, those in the first quartile group had higher risk of the primary outcome (Odds ratio, 2.73 [95%CI,1.42-5.26, p < 0.05]) and second outcome (Hazard ratio, 4.28 [95%CI,1.61-11.42, p < 0.001]). The integration of FGF21 into many current ICH scales improved the discrimination and calibration quality for the integrated discrimination index's prediction of main and secondary findings (all p < 0.05). Conclusion Elevated serum FGF21 is associated with increased risks of adverse clinical outcomes at 3 months in ICH patients, suggesting FGF21 may be a valuable prognostic factor.
Collapse
Affiliation(s)
- Keyang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- Department of Neurology, The First Affiliated Hospital Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixin Ruan
- The People’s Hospital of Pingyang, Wenzhou, China
| | - Yongang Li
- The First People’s Hospital of Wenling, Taizhou, China
| | - Zhen Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Branco P, Calça R, Martins AR, Mateus C, Jervis MJ, Gomes DP, Azeredo-Lopes S, De Melo Junior AF, Sousa C, Civantos E, Mas-Fontao S, Gaspar A, Ramos S, Morello J, Nolasco F, Rodrigues A, Pereira SA. Fibrosis of Peritoneal Membrane, Molecular Indicators of Aging and Frailty Unveil Vulnerable Patients in Long-Term Peritoneal Dialysis. Int J Mol Sci 2023; 24:5020. [PMID: 36902451 PMCID: PMC10002940 DOI: 10.3390/ijms24055020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Peritoneal membrane status, clinical data and aging-related molecules were investigated as predictors of long-term peritoneal dialysis (PD) outcomes. A 5-year prospective study was conducted with the following endpoints: (a) PD failure and time until PD failure, (b) major cardiovascular event (MACE) and time until MACE. A total of 58 incident patients with peritoneal biopsy at study baseline were included. Peritoneal membrane histomorphology and aging-related indicators were assessed before the start of PD and investigated as predictors of study endpoints. Fibrosis of the peritoneal membrane was associated with MACE occurrence and earlier MACE, but not with the patient or membrane survival. Serum α-Klotho bellow 742 pg/mL was related to the submesothelial thickness of the peritoneal membrane. This cutoff stratified the patients according to the risk of MACE and time until MACE. Uremic levels of galectin-3 were associated with PD failure and time until PD failure. This work unveils peritoneal membrane fibrosis as a window to the vulnerability of the cardiovascular system, whose mechanisms and links to biological aging need to be better investigated. Galectin-3 and α-Klotho are putative tools to tailor patient management in this home-based renal replacement therapy.
Collapse
Affiliation(s)
- Patrícia Branco
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Rita Calça
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Ana Rita Martins
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
| | - Catarina Mateus
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
| | - Maria João Jervis
- Surgery Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2740-134 Lisboa, Portugal
| | - Daniel Pinto Gomes
- Pathology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2740-134 Lisboa, Portugal
| | - Sofia Azeredo-Lopes
- CHRC, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Department of Statistics and Operational Research, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Antonio Ferreira De Melo Junior
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Cátia Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| | - Ester Civantos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Sebastian Mas-Fontao
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Augusta Gaspar
- Nephrology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2790-134 Lisboa, Portugal
| | - Sância Ramos
- Pathology Department, Hospital Santa Cruz, Centro Hospitalar de Lisboa Ocidental (CHLO), 2740-134 Lisboa, Portugal
| | - Judit Morello
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Fernando Nolasco
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Anabela Rodrigues
- UMIB—Unidade Multidisciplinar de Investigação Biomédica, ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal
- Departamento de Nefrologia, ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Centro Hospitalar Universitário do Porto (CHUdsA), 4050-345 Porto, Portugal
| | - Sofia Azeredo Pereira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
- Centro Clínico Académico de Lisboa, 1159-056 Lisboa, Portugal
| |
Collapse
|
11
|
Kim JW, Shin SK, Kwon EY. Luteolin Protects Against Obese Sarcopenia in Mice with High-Fat Diet-Induced Obesity by Ameliorating Inflammation and Protein Degradation in Muscles. Mol Nutr Food Res 2023; 67:e2200729. [PMID: 36708177 DOI: 10.1002/mnfr.202200729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/04/2023] [Indexed: 01/29/2023]
Abstract
SCOPE Although sarcopenia is mainly caused by aging, sarcopenia due to obesity has become an emerging issue given the increase in obesity among people of various ages. There are studies on obesity or sarcopenia, our understanding of obesity-mediated sarcopenia is insufficient. Luteolin (LU) has exhibited antiobesity effects, but no studies have investigated the LU effects on antisarcopenia. This study therefore investigated the effects of LU on obese sarcopenia in mice with high-fat diet (HFD)-induced obesity. METHODS AND RESULTS To evaluate its inhibitory efficacy against obese sarcopenia, 5-week-old mice are fed an HFD supplemented with LU for 20 weeks. LU exerts suppressive effects on obesity, inflammation, and protein degradation in the HFD-fed obese mice. It also inhibits lipid infiltration into the muscle and decreases p38 activity and the mRNA expression of inflammatory factors, including TNF-α, Tlr2, Tlr4, MCP1, and MMP2, in the muscle. The suppression of muscle inflammation by LU leads to the inhibition of myostatin, FoxO, atrogin, and MuRF expression. These effects of LU affect inhibition of protein degradation and improvement of muscle function. CONCLUSION Here, it demonstrates that LU's antiobesity and antiinflammatory functionality affect inhibition of muscle protein degradation, and consequently, these interactions by LU exerts a protective effect against obese sarcopenia.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 80, Daehak-ro, Buk-Ku, Daegu, 41566, Republic of Korea
| |
Collapse
|
12
|
Samoilova YG, Matveeva MV, Khoroshunova EA, Kudlay DA, Oleynik OA, Spirina LV. Markers for the Prediction of Probably Sarcopenia in Middle-Aged Individuals. J Pers Med 2022; 12:jpm12111830. [PMID: 36579539 PMCID: PMC9692986 DOI: 10.3390/jpm12111830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Sarcopenia is a condition that is characterized by a progressive loss of muscle mass, strength, and function, resulting in reduced quality of life. The aim of the study was to analyze the significance of pro-inflammatory markers in the prognostic diagnosis of sarcopenia. The participants were divided into two groups: the main group of 146 people and the control-75 people. The complex of examinations included neuropsychological testing (Hospital Anxiety and Depression Scale (HADS), quality-of-life questionnaire for patients with sarcopenia (SarQoL), and short health assessment form (MOS SF-36)), a 6 m walking speed test, manual dynamometry, bioimpedancemetry, and metabolic markers (nitrates, fibroblast growth factor 21, and malondialdehyde). When analyzing metabolic markers in the main group, a twofold increase in nitrates in the main group was recorded in a subsequent analysis adjusted for multiple variables, there was a negative association between the nitrate levels for weak grip strength and appendicular muscle mass. An additional analysis revealed that the complaint of pain in the lower extremities was more frequent in patients of the main group, as well as constipation and the pathology of thyroid gland, and they were more frequently diagnosed with arterial hypertension. At the same time, patients from the main group more frequently took vitamin D. When conducting body composition, the main group recorded a higher weight visceral fat content, as well as a decrease in appendicular and skeletal muscle mass; these changes were accompanied by a decrease in protein and minerals. Among the markers that differed significantly were nitrates, and it was this that was associated with decreased muscle strength and appendicular mass, which may indicate both a possible mechanism and a possible predictive marker. The results of this study can be used to develop a screening method for diagnosing sarcopenia at the outpatient stage.
Collapse
Affiliation(s)
- Yulia G. Samoilova
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Health of Russia, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Mariia V. Matveeva
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Health of Russia, Moskovsky Trakt 2, 634050 Tomsk, Russia
- Correspondence: ; Tel.: +7-913-815-2552
| | - Ekaterina A. Khoroshunova
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Health of Russia, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Dmitry A. Kudlay
- Federal State Autonomous Educational Institution of Higher Education “First Moscow State Medical University Named after I.I. THEM. Sechenov” of the Ministry of Health of Russia (Sechenov University), St. Trubetskaya 8, Building 2, 119048 Moscow, Russia
- Federal State Budgetary Institution “State Research Center “Institute of Immunology”” FMBA of Russia, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Oxana A. Oleynik
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Health of Russia, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Liudmila V. Spirina
- Federal State Budgetary Educational Institution of Higher Education «Siberian State Medical University» of the Ministry of Health of Russia, Moskovsky Trakt 2, 634050 Tomsk, Russia
| |
Collapse
|
13
|
Zhang Y, Jiang L, Su P, Ma Z, Kang W, Ye X, Liu Y, Yu J. Association between Plasma FGF21 Levels and Body Composition in Patients with Gastric Cancer. Nutr Cancer 2022; 75:349-356. [PMID: 36190321 DOI: 10.1080/01635581.2022.2118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Accumulating evidence has suggested that Fibroblast growth factor 21 (FGF21) plays an important role in metabolic diseases. This study aimed to investigate the relationship between plasma FGF21 levels and body composition parameters in gastric cancer (GC) patients. METHODS This study was cross-sectional based on a prospective cohort of GC patients in a single center. Computer tomography (CT) and bioelectrical impedance analysis (BIA) were used to estimate skeletal muscle and adipose tissue mass. Blood samples were collected and plasma concentrations of FGF21 were measured by ELISA. Spearman's rank correlation test and logistic regression analysis were performed to assess associations between plasma FGF21 levels and these body composition parameters. RESULTS A total of 66 GC patients were enrolled in this study. Plasma FGF21 levels were significantly higher in women compared with men. The plasma FGF21 levels were positively correlated with fat mass index (FMI), fat mass percentage (FM%), and subcutaneous adipose tissue index (SATI). Furthermore, after adjustment for confounders, the lower plasma FGF21 levels were remain associated with increased odds for low SATI. CONCLUSIONS Plasma FGF21 levels were positively associated with FMI, FM%, and SATI in GC patients, suggesting a potential mechanistic link between FGF21 and subcutaneous adipose tissue in GC.
Collapse
Affiliation(s)
- Yingjing Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Su
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiqiang Ma
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqin Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Wang T. Searching for the link between inflammaging and sarcopenia. Ageing Res Rev 2022; 77:101611. [PMID: 35307560 DOI: 10.1016/j.arr.2022.101611] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
15
|
Chiu LT, Wang CH, Lin YL, Hsu BG. Association of serum fibroblast growth factor 21 levels with skeletal muscle mass and mortality in chronic hemodialysis patients. J Formos Med Assoc 2022; 121:2481-2489. [DOI: 10.1016/j.jfma.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023] Open
|