1
|
Lee S, Cha D, Jin JX, Kim GA, Lee BC. Paradoxical effects of inhibition of Δ14-reductase and Δ7-reductase on porcine oocyte maturation and subsequent embryo development after parthenogenetic activation. Theriogenology 2025; 235:245-253. [PMID: 39879673 DOI: 10.1016/j.theriogenology.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Follicular fluid-derived meiosis-activating sterol (FF-MAS), an intermediate in the cholesterol biosynthesis pathway, plays a crucial role in the meiotic resumption of mammalian oocytes. Maintaining a high concentration of FF-MAS in vitro is challenging; therefore, AY9944 A-7, an inhibitor of Δ14-reductase [which converts FF-MAS to testis meiosis-activating sterol (T-MAS)] and Δ7-reductase (which converts T-MAS to cholesterol), has been used to enhance oocyte maturation. This study examined the effects of various concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 on porcine oocyte maturation and subsequent embryo development. Results indicate that treatment with 10 and 20 μM AY9944 A-7 during in vitro maturation (IVM) enhanced oocyte nuclear maturation, with 10 μM significantly increasing the transcript expression of oocyte maturation-related genes. However, blastocyst formation rates significantly decreased in oocytes treated with AY9944 A-7 concentrations above 10 μM. To explore these unexpected findings, the study evaluated the effects of AY9944 A-7 on lipid content in oocytes and the sonic hedgehog (SHH) signaling pathway in subsequent parthenogenetic embryos. A concentration-dependent decrease in oocyte lipid content was observed following AY9944 A-7 treatment. Additionally, transcripts of SHH signaling pathway genes were detected in preimplantation-stage parthenogenetic embryos, with reduced expression in the 10 μM AY9944 A-7-treated group. Taken together, AY9944 A-7 supplementation during porcine IVM enhanced oocyte maturation by accumulating FF-MAS, but subsequent embryo development was impaired due to cholesterol deficiency, potentially mediated by SHH signaling downregulation.
Collapse
Affiliation(s)
- Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea; Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Department of Biomedical Laboratory Science, School of Health Science, Eulji University, 34824, Uijeongbu, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Ibarretxe-Guerediaga D, Marimón C, Feliu A, Rodríguez-Borjabad C, Plana N, Masana L. Sudden death in a homozygous familial hypercholesterolemic child with noncompaction cardiomyopathy. Just a coincidence? REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2025:S1885-5857(25)00051-9. [PMID: 39929344 DOI: 10.1016/j.rec.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/23/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Daiana Ibarretxe-Guerediaga
- Servei de Medicina Interna, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, Reus, Tarragona, Spain; Unitat de Medicina Vascular i Metabolisme, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, Reus, Tarragona, Spain; Institut de Investigació Sanitària Pere Virgili (IISPV), Reus, Tarragona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Spain.
| | - Cristina Marimón
- Servei de Pediatria, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, Reus, Tarragona, Spain
| | - Albert Feliu
- Servei de Pediatria, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, Reus, Tarragona, Spain
| | - Cèlia Rodríguez-Borjabad
- Unitat de Medicina Vascular i Metabolisme, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, Reus, Tarragona, Spain; Institut de Investigació Sanitària Pere Virgili (IISPV), Reus, Tarragona, Spain
| | - Núria Plana
- Unitat de Medicina Vascular i Metabolisme, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, Reus, Tarragona, Spain
| | - Lluís Masana
- Servei de Medicina Interna, Universitat Rovira i Virgili, Hospital Universitari Sant Joan, Reus, Tarragona, Spain
| |
Collapse
|
3
|
Lin DW, Zhang L, Zhang J, Chandrasekaran S. Inferring metabolic objectives and trade-offs in single cells during embryogenesis. Cell Syst 2025; 16:101164. [PMID: 39778581 PMCID: PMC11738665 DOI: 10.1016/j.cels.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
While proliferating cells optimize their metabolism to produce biomass, the metabolic objectives of cells that perform non-proliferative tasks are unclear. The opposing requirements for optimizing each objective result in a trade-off that forces single cells to prioritize their metabolic needs and optimally allocate limited resources. Here, we present single-cell optimization objective and trade-off inference (SCOOTI), which infers metabolic objectives and trade-offs in biological systems by integrating bulk and single-cell omics data, using metabolic modeling and machine learning. We validated SCOOTI by identifying essential genes from CRISPR-Cas9 screens in embryonic stem cells, and by inferring the metabolic objectives of quiescent cells, during different cell-cycle phases. Applying this to embryonic cell states, we observed a decrease in metabolic entropy upon development. We further uncovered a trade-off between glutathione and biosynthetic precursors in one-cell zygote, two-cell embryo, and blastocyst cells, potentially representing a trade-off between pluripotency and proliferation. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Da-Wei Lin
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA; Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Ling Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Sriram Chandrasekaran
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Gad El-Hak HN, Mohallal EME, Abomosallam M. Reproductive and developmental safety evaluation of Thymelaea hirsuta (L.) leaves aqueous extract in Wistar albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118729. [PMID: 39182699 DOI: 10.1016/j.jep.2024.118729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The popularity of herbal medicine is expanding globally due to the common belief that herbal products are natural and nontoxic. Thymelaea hirsuta leaves are traditionally used for the treatment of recurrent abortion in humans and animals. However, a lack of safety evaluation of the plant, particularly in pregnant women, raises serious concerns regarding its potential embryotoxic effects. AIM OF THE STUDY Therefore, the present study investigated the safety of Thymelaea hirsuta leaves aqueous extract (THLE) during pregnancy and lactation following maternal rat treatment. MATERIALS AND METHODS THLE phytochemical compounds were identified using high-performance liquid chromatography (HPLC). THLE was orally administered to pregnant rats and lactating dams at dosages of 0, 250, 500, and 1000 mg/kg/day. At the end of the study, dam s' and pups' body weights, serum biochemical and hematological indices, and histopathological changes were investigated. For the fetal observation and histopathological changes were also evaluated. RESULTS Our findings revealed that THLE is rich in different phenolic and flavonoid compounds. However, biochemical and hormonal parameters such as ALT, AST, and prolactin were significantly increased in dams treated with a higher dosage of THLE when compared to the control dams (P ≤ 0.05). Additionally, external, visceral and skeletal examinations of fetuses revealed a marked increase of malformation rates in treated fetuses. CONCLUSIONS The results revealed that higher oral dosing of THLE during pregnancy could affect embryonic development in rats, while lower doses are safe and can be used during pregnancy and lactation to attain its beneficial effects.
Collapse
Affiliation(s)
| | | | - Mohamed Abomosallam
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
5
|
Yue T, Guo Y, Qi X, Zheng W, Zhang H, Wang B, Liu K, Zhou B, Zeng X, Ouzhuluobu, He Y, Su B. Sex-biased regulatory changes in the placenta of native highlanders contribute to adaptive fetal development. eLife 2024; 12:RP89004. [PMID: 38869160 PMCID: PMC11175615 DOI: 10.7554/elife.89004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.
Collapse
Affiliation(s)
- Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
6
|
López Angulo D, Lourenço RV, Bridi A, Chaves MA, da Silveira JC, Sobral PJDA. Enhancing Bovine Embryo Development In Vitro Using Oil-in-Water Nanoemulsions as Specific Carriers for Essential Lipids. BIOTECH 2024; 13:19. [PMID: 38921051 PMCID: PMC11201380 DOI: 10.3390/biotech13020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Worldwide meat consumption and production have nearly quintupled in the last 60 years. In this context, research and the application of new technologies related to animal reproduction have evolved in an accelerated way. The objective of the present study was to apply nanoemulsions (NEs) as carriers of lipids to feed bovine embryos in culture media and verify their impact on the development of embryos produced in vitro. The NEs were characterized by particle size, polydispersity, size distribution, physical stability, morphology using atomic force microscopy (AFM), surface tension, density, pH, and rheological behavior. The NEs were prepared by the emulsification/evaporation technique. A central composite rotatable design (CCRD) was used to optimize the NE fabrication parameters. The three optimized formulations used in the embryo application showed an emulsion stability index (ESI) between 0.046 and 0.086, which reflects high stability. The mean droplet diameter analyzed by laser diffraction was approximately 70-80 nm, suggesting a possible transit across the embryonic zona pellucida with pores of an average 90 nm in diameter. AFM images clearly confirm the morphology of spherical droplets with a mean droplet diameter of less than 100 nm. The optimized formulations added during the higher embryonic genome activation phase in bovine embryos enhanced early embryonic development.
Collapse
Affiliation(s)
- Daniel López Angulo
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - Rodrigo Vinicius Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (A.B.)
| | - Matheus Andrade Chaves
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (A.B.)
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (A.B.)
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
7
|
Peeples ES, Mirnics K, Korade Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024; 14:410. [PMID: 38672427 PMCID: PMC11048061 DOI: 10.3390/biom14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.
Collapse
Affiliation(s)
- Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Division of Neonatology, Children’s Nebraska, Omaha, NE 68114, USA
| | - Karoly Mirnics
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
9
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
10
|
Korade Z, Tallman KA, Kim HYH, Balog M, Genaro-Mattos TC, Pattnaik A, Mirnics K, Pattnaik AK, Porter NA. Dose-Response Effects of 7-Dehydrocholesterol Reductase Inhibitors on Sterol Profiles and Vesicular Stomatitis Virus Replication. ACS Pharmacol Transl Sci 2022; 5:1086-1096. [PMID: 36407960 PMCID: PMC9667548 DOI: 10.1021/acsptsci.2c00051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.
Collapse
Affiliation(s)
- Zeljka Korade
- Department
of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Keri A. Tallman
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hye-Young H. Kim
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marta Balog
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Aryamav Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Asit K. Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Ned A. Porter
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
11
|
Nava-Salazar S, Flores-Pliego A, Pérez-Martínez G, Parra-Hernández S, Vanoye-Carlo A, Ibarguengoitia-Ochoa F, Perichart-Perera O, Reyes-Muñoz E, Solis-Paredes JM, Espino Y Sosa S, Estrada-Gutierrez G. Resistin Modulates Low-Density Lipoprotein Cholesterol Uptake in Human Placental Explants via PCSK9. Reprod Sci 2022; 29:3242-3253. [PMID: 35467263 DOI: 10.1007/s43032-022-00943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/09/2022] [Indexed: 11/25/2022]
Abstract
Maternal metabolic status influences pregnancy and, consequently, the perinatal outcome. Resistin is a pro-inflammatory adipokine predominantly expressed and secreted by mononuclear cells, adipose tissue, and placental trophoblastic cells during pregnancy. Recently, we reported an inverse association between maternal resistin levels and fetal low-density lipoprotein cholesterol (LDL-C). Then, in this work, we used a human placental explant model and the trophoblast cell line JEG-3 to evaluate whether resistin affects placental LDL-C uptake. Resistin exposure induced the transcription factor SREBP-2, LDLR, and PCSK9 mRNA expression, and changes at the protein level were confirmed by immunohistochemistry and Western blot. However, for LDLR, the changes were not consistent between mRNA and protein levels. Using a labeled LDL-cholesterol (BODIPY FL LDL), uptake assay demonstrated that the LDL-C was significantly decreased in placental explants exposed to a high dose of resistin and a lesser extent in JEG-3 cells. In summary, resistin induces PCSK9 expression in placental explants and JEG-3 cells, which could be related to negative regulation of the LDLR by lysosomal degradation. These findings suggest that resistin may significantly regulate the LDL-C uptake and transport from the maternal circulation to the fetus, affecting its growth and lipid profile.
Collapse
Affiliation(s)
- Sonia Nava-Salazar
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | | | - Sandra Parra-Hernández
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | | | | | - Otilia Perichart-Perera
- Department of Nutrition and Bioprogramming, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | - Enrique Reyes-Muñoz
- Coordination of Gynecologic and Perinatal Endocrinology, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | - Juan Mario Solis-Paredes
- Department of Human Genetics and Genomics, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | | | | |
Collapse
|
12
|
Xu M, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151739. [PMID: 34848268 DOI: 10.1016/j.scitotenv.2021.151739] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
PFHxS (Perfluorohexane sulfonic acid) is one of the short-chain perfluoroalkyl substances (PFASs) which are widely used in many industrial and consumer applications. However, limited information is available on the molecular mechanism of PFHxS toxicity (e.g. lipid metabolism). This study provides in-depth information on the lipid regulation of zebrafish embryos with and without PFHxS exposure. Lipid changes throughout zebrafish development (4 to 120 h post fertilization (hpf)) were closely associated with lipid species and lipid composition (fatty acyl chains). A comprehensive lipid analysis of four different PFHxS exposures (0, 0.3, 1, 3, and 10 μM) at different zebrafish developmental stages (24, 48, 72, and 120 hpf) was performed. Data on exposure concentration, lipids, and developmental stage showed that all PFHxS concentrations dysregulated the lipid metabolism and these were developmental-dependent. The pattern of significantly changed lipids revealed that PFHxS caused effects related to oxidative stress, inflammation, and impaired fatty acid β-oxidation. Oxidative stress and inflammation caused the remodeling of glycerophospholipid (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), with increased incorporation of omega-3 PUFA and a decreased incorporation of omega-6 PUFA.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
13
|
Diaz-Lundahl S, Sundaram AYM, Gillund P, Gilfillan GD, Olsaker I, Krogenæs A. Gene Expression in Embryos From Norwegian Red Bulls With High or Low Non Return Rate: An RNA-Seq Study of in vivo-Produced Single Embryos. Front Genet 2022; 12:780113. [PMID: 35096004 PMCID: PMC8795813 DOI: 10.3389/fgene.2021.780113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
During the last decade, paternal effects on embryo development have been found to have greater importance than previously believed. In domestic cattle, embryo mortality is an issue of concern, causing huge economical losses for the dairy cattle industry. In attempts to reveal the paternal influence on embryo death, recent approaches have used transcriptome profiling of the embryo to find genes and pathways affected by different phenotypes in the bull. For practical and economic reasons, most such studies have used in vitro produced embryos. The aim of the present study was to investigate the differences in the global transcriptome of in vivo produced embryos, derived from sires with either high or low field fertility measured as the non-return rate (NRR) on day 56 after first AI of the inseminated cows. Superovulated heifers (n = 14) in the age span of 12–15 months were artificially inseminated with semen from either high fertility (n = 6) or low fertility (n = 6) bulls. On day seven after insemination, embryos were retrieved through uterine flushing. Embryos with first grade quality and IETS stage 5 (early blastocyst), 6 (blastocyst) or 7 (expanded blastocyst) were selected for further processing. In total, RNA extracted from 24 embryos was sequenced using Illumina sequencing, followed by differential expression analysis and gene set enrichment analysis. We found 62 genes differentially expressed between the two groups (adj.p-value<0.05), of which several genes and their linked pathways could explain the different developmental capacity. Transcripts highly expressed in the embryos from low fertility bulls were related to sterol metabolism and terpenoid backbone synthesis, while transcripts highly expressed in the high fertility embryos were linked to anti-apoptosis and the regulation of cytokine signaling. The leukocyte transendothelial migration and insulin signaling pathways were associated with enrichments in both groups. We also found some highly expressed transcripts in both groups which can be considered as new candidates in the regulation of embryo development. The present study is an important step in defining the paternal influence in embryonic development. Our results suggest that the sire’s genetic contribution affects several important processes linked to pre-and peri implantation regulation in the developing embryo.
Collapse
Affiliation(s)
- Sofia Diaz-Lundahl
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Gillund
- Geno Breeding and AI Association, Hamar, Norway
| | - Gregor Duncan Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Anette Krogenæs
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
14
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
15
|
Stadler JT, Wadsack C, Marsche G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021; 9:biomedicines9040349. [PMID: 33808220 PMCID: PMC8067099 DOI: 10.3390/biomedicines9040349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| |
Collapse
|
16
|
Puthanveetil P, Kong X, Bräse S, Voros G, Peer WA. Transcriptome analysis of two structurally related flavonoids; Apigenin and Chrysin revealed hypocholesterolemic and ketogenic effects in mouse embryonic fibroblasts. Eur J Pharmacol 2020; 893:173804. [PMID: 33347826 DOI: 10.1016/j.ejphar.2020.173804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
There is no known single therapeutic drug for treating hypercholesterolemia that comes with negligible systemic side effects. In the current study, using next generation RNA sequencing approach in mouse embryonic fibroblasts we discovered that two structurally related flavonoid compounds. Apigenin and Chrysin exhibited moderate blocking ability of multiple transcripts that regulate rate limiting enzymes in the cholesterol biosynthesis pathway. The observed decrease in cholesterol biosynthesis pathway correlated well with an increase in transcripts involved in generation and trafficking of ketone bodies as evident by the upregulation of Bdh1 and Slc16a6 transcripts. The hypocholesterolemic potential of Apigenin and Chrysin at higher concentrations along with their ability to generate ketogenic substrate especially during embryonic stage is useful or detrimental for embryonic health is not clear and still debatable. Our study will serve as a steppingstone to further the investigation in whole animal studies and also in translating this knowledge to human studies.
Collapse
Affiliation(s)
- Prasanth Puthanveetil
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA.
| | - Xiaoli Kong
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA.
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein Leopoldshafen, Germany.
| | - Gabor Voros
- Department of Cardiovascular Diseases, University Hospital Gasthuisberg, Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Wendy Ann Peer
- Department of Environmental Science and Technology, College of Agricultural and Natural Resources, University of Maryland, MD, USA.
| |
Collapse
|
17
|
Pérez-Andrés JM, Cropotova J, Harrison SM, Brunton NP, Cullen PJ, Rustad T, Tiwari BK. Effect of Cold Plasma on Meat Cholesterol and Lipid Oxidation. Foods 2020; 9:foods9121786. [PMID: 33271915 PMCID: PMC7761521 DOI: 10.3390/foods9121786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Cold atmospheric plasma (CAP) is a novel non-thermal technology with potential applications in inactivating microorganisms in food products. However, its impact on food quality is not yet fully understood. The aim of this research is to study the impact of in-package plasma technology on the stability of cholesterol and total lipid in four different types of meat (beef, pork, lamb and chicken breast). Additionally, any changes in the primary or secondary lipid oxidation, which is undesirable from a health perspective, is investigated. CAP was not found to have any impact on the cholesterol or lipid content. However, higher peroxide and thiobarbituric acid reactive substances (TBARS) values were found for the treated samples, indicating that plasma can induce the acceleration of primary and secondary lipid oxidation. Finally, color was not affected by the treatment supporting the suitability of the technology for meat products.
Collapse
Affiliation(s)
- Juan M. Pérez-Andrés
- Food Chemistry and Technology, Teagasc Food Research Centre, 15 Dublin, Ireland;
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Cathal Brugha Street, 1 Dublin, Ireland;
| | - Janna Cropotova
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7034 Trondheim, Norway; (J.C.); (T.R.)
| | - Sabine M. Harrison
- UCD School of Agriculture & Food Science, University College Dublin, 4 Dublin, Ireland; (S.M.H.); (N.P.B.)
| | - Nigel P. Brunton
- UCD School of Agriculture & Food Science, University College Dublin, 4 Dublin, Ireland; (S.M.H.); (N.P.B.)
| | - Patrick J. Cullen
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Cathal Brugha Street, 1 Dublin, Ireland;
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Turid Rustad
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7034 Trondheim, Norway; (J.C.); (T.R.)
| | - Brijesh K. Tiwari
- Food Chemistry and Technology, Teagasc Food Research Centre, 15 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
18
|
Capell-Hattam IM, Sharpe LJ, Qian L, Hart-Smith G, Prabhu AV, Brown AJ. Twin enzymes, divergent control: The cholesterogenic enzymes DHCR14 and LBR are differentially regulated transcriptionally and post-translationally. J Biol Chem 2020; 295:2850-2865. [PMID: 31911440 PMCID: PMC7049974 DOI: 10.1074/jbc.ra119.011323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.
Collapse
Affiliation(s)
- Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Gene Hart-Smith
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia; Department of Molecular Sciences, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| | - Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
19
|
Wages PA, Joshi P, Tallman KA, Kim HYH, Bowman AB, Porter NA. Screening ToxCast™ for Chemicals That Affect Cholesterol Biosynthesis: Studies in Cell Culture and Human Induced Pluripotent Stem Cell-Derived Neuroprogenitors. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17014. [PMID: 31985273 PMCID: PMC7015578 DOI: 10.1289/ehp5053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Changes in cholesterol metabolism are common hallmarks of neurodevelopmental pathologies. A diverse array of genetic disorders of cholesterol metabolism support this claim as do multiple lines of research that demonstrate chemical inhibition of cholesterol biosynthesis compromises neurodevelopment. Recent work has revealed that a number of commonly used pharmaceuticals induce changes in cholesterol metabolism that are similar to changes induced by genetic disorders with devastating neurodevelopmental deficiencies. OBJECTIVES We tested the hypothesis that common environmental toxicants may also impair cholesterol metabolism and thereby possibly contribute to neurodevelopmental toxicity. METHODS Using high-throughput screening with a targeted lipidomic analysis and the mouse neuroblastoma cell line, Neuro-2a, the ToxCast™ chemical library was screened for compounds that impact sterol metabolism. Validation of chemical effects was conducted by assessing cholesterol biosynthesis in human induced pluripotent stem cell (hiPSC)-derived neuroprogenitors using an isotopically labeled cholesterol precursor and by monitoring product formation with UPLC-MS/MS. RESULTS Twenty-nine compounds were identified as validated lead-hits, and four were prioritized for further study (endosulfan sulfate, tributyltin chloride, fenpropimorph, and spiroxamine). All four compounds were validated to cause hypocholesterolemia in Neuro-2a cells. The morpholine-like fungicides, fenpropimorph and spiroxamine, mirrored their Neuro-2a activity in four immortalized human cell lines and in a human neuroprogenitor model derived from hiPSCs, but endosulfan sulfate and tributyltin chloride did not. CONCLUSIONS These data reveal the existence of environmental compounds that interrupt cholesterol biosynthesis and that methodologically hiPSC neuroprogenitor cells provide a particularly sensitive system to monitor the effect of small molecules on de novo cholesterol formation. https://doi.org/10.1289/EHP5053.
Collapse
Affiliation(s)
- Phillip A. Wages
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Piyush Joshi
- Departments of Pediatrics, Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keri A. Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Hye-Young H. Kim
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron B. Bowman
- Departments of Pediatrics, Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ned A. Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Palmquist-Gomes P, Pérez-Pomares JM, Guadix JA. Cellular identities in an unusual presentation of cyclopia in a chick embryo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:179-186. [PMID: 31298492 DOI: 10.1002/jez.b.22893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023]
Abstract
Cyclopia is a congenital anomaly characterized by the presence of a single or partially divided eye in a single orbit at the body midline. This condition is usually associated with other severe facial malformations, such as the absence of the nose and, on rare occasions, the presence of a proboscis located above the ocular structures. The developmental origin of cyclopia in vertebrates is the failure of the embryonic prosencephalon to divide properly during the formation of the two bilateral eyes. Although the developmental origin of the cyclopia-associated proboscis is not clear, it has been suggested that this unique structure results from the disrupted morphogenesis of the olfactory placodes, the main organizers of the developing nose. In this study, we report a spontaneous congenital case of cyclopia with a proboscis-like appendage in a chick embryo. By means of both conventional histology and immunohistochemical methods, we have analyzed this anomaly in detail to suggest an alternative identity for the anatomical embryonic features of cyclopic vertebrate embryos displaying a proboscis. Our findings are discussed in the context of previously reported cases of cyclopia, and provide additional insight into this complex congenital malformation.
Collapse
Affiliation(s)
- Paul Palmquist-Gomes
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain.,Area of Biotechnology, Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - José María Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain.,Area of Biotechnology, Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Juan Antonio Guadix
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain.,Area of Biotechnology, Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| |
Collapse
|
21
|
Zhang Y, Yu J, Zhang J, Hua Y. Simvastatin With PRP Promotes Chondrogenesis of Bone Marrow Stem Cells In Vitro and Wounded Rat Achilles Tendon-Bone Interface Healing In Vivo. Am J Sports Med 2019; 47:729-739. [PMID: 30668918 DOI: 10.1177/0363546518819108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons and ligaments are joined to bone in a specialized interface that transmits force from muscle to bone and permits body movement. Tendon/ligament injuries always occur in the interface areas, and injured tendons/ligaments have a limited healing response because the insertion site is composed of a fibrocartilaginous zone. PURPOSE To study the effect of simvastatin with platelet-rich plasma (PRP) on chondrogenesis of rat bone marrow stem cells (BMSCs) in vitro and wounded rat Achilles tendon-bone interface healing in vivo. STUDY DESIGN Controlled laboratory study. METHODS The in vitro model was performed by the culture of rat BMSCs with various concentrations of simvastatin (0, 10, 50, 100 nM) for 2 weeks. The effect of simvastatin on the chondrogenic differentiation of the BMSCs was examined by histochemical analysis and real-time quantitative reverse transcription polymerase chain reaction. The in vivo model was carried out by testing the healing effect of simvastatin with PRP on 12 wounded rat Achilles tendon-bone interfaces. RESULTS Simvastatin induced chondrogenic differentiation of rat BMSCs in a concentration-dependent manner as evidenced by histological staining and real-time quantitative reverse transcription polymerase chain reaction. The wounds treated with simvastatin alone or with simvastatin-containing PRP gel healed much faster than the wounds treated with saline alone or PRP alone. Histological analysis showed that higher percentages of healed tissues were positively stained with safranin O and fast green in wounds treated with simvastatin-containing PRP gel than in the other 3 groups. Immunohistochemical analysis further demonstrated these findings, as evidenced by more positively stained healed tissues with collagen I and II antibodies in the wound areas treated with simvastatin-containing PRP gel than the other 3 groups. CONCLUSION The combination of simvastatin with PRP induced chondrogenesis of BMSCs in vitro and enhanced fibrocartilage formation in vivo. The simvastatin-PRP gel treatment promotes wounded tendon-bone interface healing in clinical treatment. CLINICAL RELEVANCE The combination of simvastatin with PRP may be a good clinical treatment for wounded tendon/ligament junction healing, especially for acute sports-related tendon/ligament injuries.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| | - Jing Yu
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| | - Jiefeng Zhang
- Department of Trauma Surgery, Taian City Central Hospital, Taian, China
| | - Yongxin Hua
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| |
Collapse
|
22
|
Wages PA, Kim HYH, Korade Z, Porter NA. Identification and characterization of prescription drugs that change levels of 7-dehydrocholesterol and desmosterol. J Lipid Res 2018; 59:1916-1926. [PMID: 30087204 PMCID: PMC6168312 DOI: 10.1194/jlr.m086991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/26/2018] [Indexed: 12/18/2022] Open
Abstract
Regulating blood cholesterol (Chol) levels by pharmacotherapy has successfully improved cardiovascular health. There is growing interest in the role of Chol precursors in the treatment of diseases. One sterol precursor, desmosterol (Des), is a potential pharmacological target for inflammatory and neurodegenerative disorders. However, elevating levels of the precursor 7-dehydrocholesterol (7-DHC) by inhibiting the enzyme 7-dehydrocholesterol reductase is linked to teratogenic outcomes. Thus, altering the sterol profile may either increase risk toward an adverse outcome or confer therapeutic benefit depending on the metabolite affected by the pharmacophore. In order to characterize any unknown activity of drugs on Chol biosynthesis, a chemical library of Food and Drug Administration-approved drugs was screened for the potential to modulate 7-DHC or Des levels in a neural cell line. Over 20% of the collection was shown to impact Chol biosynthesis, including 75 compounds that alter 7-DHC levels and 49 that modulate Des levels. Evidence is provided that three tyrosine kinase inhibitors, imatinib, ponatinib, and masitinib, elevate Des levels as well as other substrates of 24-dehydrocholesterol reductase, the enzyme responsible for converting Des to Chol. Additionally, the mechanism of action for ponatinib and masitinib was explored, demonstrating that protein levels are decreased as a result of treatment with these drugs.
Collapse
Affiliation(s)
- Phillip A Wages
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| | - Zeljka Korade
- Department of Pediatrics, Biochemistry, and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
23
|
Maierean SM, Mikhailidis DP, Toth PP, Grzesiak M, Mazidi M, Maciejewski M, Banach M. The potential role of statins in preeclampsia and dyslipidemia during gestation: a narrative review. Expert Opin Investig Drugs 2018; 27:427-435. [DOI: 10.1080/13543784.2018.1465927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, University College London Medical School, University College London (UCL), London, UK
| | - Peter P. Toth
- Department of Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mariusz Grzesiak
- Department of Gynecology and Obstetrics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Moshen Mazidi
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Marek Maciejewski
- Department of Cardiology, Chair of Cardiology and Cardiac Surgery Medical University of Lodz, Lodz, Poland
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| |
Collapse
|
24
|
Garcia G, Raleigh DR, Reiter JF. How the Ciliary Membrane Is Organized Inside-Out to Communicate Outside-In. Curr Biol 2018; 28:R421-R434. [PMID: 29689227 PMCID: PMC6434934 DOI: 10.1016/j.cub.2018.03.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cilia, organelles that move to execute functions like fertilization and signal to execute functions like photoreception and embryonic patterning, are composed of a core of nine-fold doublet microtubules overlain by a membrane. Distinct types of cilia display distinct membrane morphologies, ranging from simple domed cylinders to the highly ornate invaginations and membrane disks of photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the lipid compositions of ciliary membranes are different from those of other cellular membranes. This specialization presents a unique challenge for the cell as, unlike membrane-bounded organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This distinct ciliary membrane is generated in concert with multiple membrane remodeling events that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane composition relies on discrete molecular machines, including a barrier to membrane proteins entering the cilium at a specialized region of the base of the cilium called the transition zone and a trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane proteins by the release of ciliary extracellular vesicles that may function in intercellular communication, removal of unneeded proteins or ciliary disassembly. Here, we review the structures and transport mechanisms that control ciliary membrane composition, and discuss how membrane specialization enables the cilium to function as the antenna of the cell.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - David R Raleigh
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Laskowski D, Båge R, Humblot P, Andersson G, Sirard MA, Sjunnesson Y. Insulin during in vitro oocyte maturation has an impact on development, mitochondria, and cytoskeleton in bovine day 8 blastocysts. Theriogenology 2017; 101:15-25. [DOI: 10.1016/j.theriogenology.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 01/07/2023]
|
26
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
27
|
Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc Natl Acad Sci U S A 2016; 113:1604984113. [PMID: 27162362 DOI: 10.1073/pnas.1604984113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellular lipids are speculated to act as key intermediates in Hedgehog signal transduction, but their precise identity and function remain enigmatic. In an effort to identify such lipids, we pursued a Hedgehog pathway inhibitory activity that is particularly abundant in flagellar lipids of Chlamydomonas reinhardtii, resulting in the purification and identification of ergosterol endoperoxide, a B-ring oxysterol. A mammalian analog of ergosterol, 7-dehydrocholesterol (7-DHC), accumulates in Smith-Lemli-Opitz syndrome, a human genetic disease that phenocopies deficient Hedgehog signaling and is caused by genetic loss of 7-DHC reductase. We found that depleting endogenous 7-DHC with methyl-β-cyclodextrin treatment enhances Hedgehog activation by a pathway agonist. Conversely, exogenous addition of 3β,5α-dihydroxycholest-7-en-6-one, a naturally occurring B-ring oxysterol derived from 7-DHC that also accumulates in Smith-Lemli-Opitz syndrome, blocked Hedgehog signaling by inhibiting activation of the essential transduction component Smoothened, through a mechanism distinct from Smoothened modulation by other lipids.
Collapse
|
28
|
Dhcr7 Regulates Palatal Shelf Fusion through Regulation of Shh and Bmp2 Expression. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7532714. [PMID: 27066502 PMCID: PMC4811056 DOI: 10.1155/2016/7532714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/07/2016] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of the 7-dehydrocholesterol reductase (Dhcr7) gene and identify signaling pathways involved in regulation of embryonic palatogenesis. The expression of Dhcr7 and its protein product were examined during murine normal embryonic palatogenesis via a reverse transcription polymerase chain reaction (RT-PCR) and Western blot (WB). RNA interference (RNAi) technology was used to inhibit Dhcr7 expression in a palatal shelf culture in vitro. The effects of Dhcr7 on palatogenesis and palatal fusion were examined by scanning electron microscopy (SEM). The expression changes of Dhcr7, Sonic Hedgehog (Shh), and bone morphogenetic protein-2 (Bmp2) were measured by RT-PCR and WB after Dhcr7 gene silencing and the addition of exogenous cholesterol. The results showed that the palatal shelf failed to complete normal development and fusion when Dhcr7 expression was inhibited. The inhibitory effect study of RNAi on the development of the palatal shelf supported that cholesterol supplementation did not alter the silencing of Dhcr7. Shh and Bmp2 expressions were reduced after Dhcr7 gene silencing, and administration of exogenous cholesterol did not affect Dhcr7 expression; however Shh and Bmp2 expressions increased. We conclude that Dhcr7 plays a role in growth of the palatal shelf and can regulate palatogenesis through alterations in the levels of Shh and Bmp2.
Collapse
|
29
|
Officioso A, Manna C, Alzoubi K, Lang F. Triggering of Erythrocyte Death by Triparanol. Toxins (Basel) 2015; 7:3359-71. [PMID: 26305256 PMCID: PMC4549755 DOI: 10.3390/toxins7083359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/23/2022] Open
Abstract
The cholesterol synthesis inhibitor Triparanol has been shown to trigger apoptosis in several malignancies. Similar to the apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress which may activate erythrocytic Ca2+ permeable unselective cation channels with subsequent Ca2+ entry and increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored whether and how Triparanol induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ROS formation from 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. As a result, a 48 h exposure of human erythrocytes to Triparanol (20 µM) significantly increased DCFDA fluorescence and significantly increased Fluo3-fluorescence. Triparanol (15 µM) significantly increased the percentage of annexin-V-binding cells, and significantly decreased the forward scatter. The effect of Triparanol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. In conclusion, Triparanol leads to eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane. Triparanol is at least in part effective by stimulating ROS formation and Ca2+ entry.
Collapse
Affiliation(s)
- Arbace Officioso
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
30
|
|
31
|
Ahmad MW, Kim HS. Stereoselective synthesis of 3,7-diarylaminocholestanes by titanium-mediated reductive amination. Steroids 2014; 88:53-9. [PMID: 25008986 DOI: 10.1016/j.steroids.2014.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
An efficient method for the synthesis of aryl aminocholestanes, using a chlorotriisopropoxytitanium(IV)-mediated reductive amination reaction of 5α-cholestane-3,7-dione, is reported. A series of 3,7-diarylaminocholestane derivatives were prepared according to this methodology in up to 98% yield. These compounds were primarily characterized by (1)H NMR, (13)C NMR, and mass spectrometry.
Collapse
Affiliation(s)
- Md Wasi Ahmad
- Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Hong-Seok Kim
- Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
32
|
Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets. Br J Nutr 2014; 112:1459-68. [PMID: 25216241 DOI: 10.1017/s0007114514002402] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To elucidate the effects of maternal dietary betaine supplementation on hepatic expression of cholesterol metabolic genes in newborn piglets and the involved epigenetic mechanisms, we fed gestational sows with control or betaine-supplemented diets (3 g/kg) throughout pregnancy. Neonatal piglets born to betaine-supplemented sows had higher serum methionine concentration and hepatic content of betaine, which was associated with significantly up-regulated hepatic expression of glycine N-methyltransferase. Prenatal betaine exposure increased hepatic cholesterol content and modified the hepatic expression of cholesterol metabolic genes in neonatal piglets. Sterol regulatory element-binding protein 2 was down-regulated at both mRNA and protein levels, while 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) was down-regulated at the mRNA level, but up-regulated at the protein level, in betaine-exposed piglets. The transcriptional repression of HMGCR was associated with CpG island hypermethylation and higher repressive histone mark H3K27me3 (histone H3 lysine 27 trimethylation) on the promoter, whereas increased HMGCR protein content was associated with significantly decreased expression of miR-497. Furthermore, LDL receptor was significantly down-regulated at both mRNA and protein levels in the liver of betaine-exposed piglets, which was associated with promoter CpG hypermethylation. In addition, the expression of cholesterol-27α-hydroxylase (CYP27α1) was up-regulated at both mRNA and protein levels, while the expression of cholesterol-7α-hydroxylase (CYP7α1) was increased at the mRNA level, but unchanged at the protein level associated with increased expression of miR-181. These results indicate that maternal betaine supplementation increases hepatic cholesterol content in neonatal piglets through epigenetic regulations of cholesterol metabolic genes, which involve alterations in DNA and histone methylation and in the expression of microRNA targeting these genes.
Collapse
|
33
|
Zhou C, Chen J, Zhang X, Costa LG, Guizzetti M. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain. Alcohol Alcohol 2014; 49:626-34. [PMID: 25081040 DOI: 10.1093/alcalc/agu049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 06/17/2014] [Indexed: 01/24/2023] Open
Abstract
AIMS Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. METHODS Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. RESULTS Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. CONCLUSION Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels.
Collapse
Affiliation(s)
- Chunyan Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jing Chen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Xiaolu Zhang
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA Department of Neuroscience, University of Parma, Parma, Italy
| | - Marina Guizzetti
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
34
|
Lamaziere A, Wolf C, Quinn PJ. How lipidomics provides new insight into drug discovery. Expert Opin Drug Discov 2014; 9:819-36. [DOI: 10.1517/17460441.2014.914026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Eisa-Beygi S, Ekker M, Moon TW, Macdonald RL, Wen XY. Developmental processes regulated by the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway: highlights from animal studies. Reprod Toxicol 2014; 46:115-20. [PMID: 24732207 DOI: 10.1016/j.reprotox.2014.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/13/2014] [Accepted: 04/02/2014] [Indexed: 12/20/2022]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme in the biosynthesis of cholesterol and isoprenoids, which are substrates required for post-translational modification of signalling proteins that can potentially regulate various aspects of embryonic development. The HMGCR transcripts are detectable during early embryogenesis in both invertebrates and vertebrates, which suggests a conserved developmental requirement for mevalonate derivatives. Consistently, recent animal and in vitro studies have yielded valuable insights into potential morphogenic parameters that are modulated by HMGCR activity. These developmental end-points include brain and craniofacial morphogenesis, PGC migration and survival, myocardial epithelial migration and fusion, EC migration and survival, and vascular stabilization. By providing a synthesis of these studies, we hope that this review will highlight the need to comprehensively examine the entire suite of developmental processes regulated by HMGCR.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Biology, Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, ON, Canada; Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science & Department of Medicine, University of Toronto, ON, Canada.
| | - Marc Ekker
- Department of Biology, Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, ON, Canada
| | - Thomas W Moon
- Department of Biology, Centre for Advanced Research in Environmental Genomics (CAREG), University of Ottawa, ON, Canada
| | - R Loch Macdonald
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science & Department of Medicine, University of Toronto, ON, Canada; Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science & Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
36
|
Vinkler C, Leshinsky-Silver E, Michelson M, Haas D, Lerman-Sagie T, Lev D. A newly recognized syndrome of severe growth deficiency, microcephaly, intellectual disability, and characteristic facial features. Eur J Med Genet 2014; 57:288-92. [PMID: 24709618 DOI: 10.1016/j.ejmg.2014.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Genetic syndromes with proportionate severe short stature are rare. We describe two sisters born to nonconsanguineous parents with severe linear growth retardation, poor weight gain, microcephaly, characteristic facial features, cutaneous syndactyly of the toes, high myopia, and severe intellectual disability. During infancy and early childhood, the girls had transient hepatosplenomegaly and low blood cholesterol levels that normalized later. A thorough evaluation including metabolic studies, radiological, and genetic investigations were all normal. Cholesterol metabolism and transport were studied and no definitive abnormality was found. No clinical deterioration was observed and no metabolic crises were reported. After due consideration of other known hereditary causes of post-natal severe linear growth retardation, microcephaly, and intellectual disability, we propose that this condition represents a newly recognized autosomal recessive multiple congenital anomaly-intellectual disability syndrome.
Collapse
Affiliation(s)
- Chana Vinkler
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel; Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel.
| | - Esther Leshinsky-Silver
- Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel; Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Michelson
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel; Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel
| | - Dorothea Haas
- Division of Inborn Metabolic Diseases, University Children's Hospital, Im Neuenheimer Feld, Heidelberg, Germany
| | - Tally Lerman-Sagie
- Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel; Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
37
|
Seli E, Babayev E, Collins SC, Nemeth G, Horvath TL. Minireview: Metabolism of female reproduction: regulatory mechanisms and clinical implications. Mol Endocrinol 2014; 28:790-804. [PMID: 24678733 DOI: 10.1210/me.2013-1413] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Female fertility is highly dependent on successful regulation of energy metabolism. Central processes in the hypothalamus monitor the metabolic state of the organism and, together with metabolic hormones, drive the peripheral availability of energy for cellular functions. In the ovary, the oocyte and neighboring somatic cells of the follicle work in unison to achieve successful metabolism of carbohydrates, amino acids, and lipids. Metabolic disturbances such as anorexia nervosa, obesity, and diabetes mellitus have clinically important consequences on human reproduction. In this article, we review the metabolic determinants of female reproduction and their role in infertility.
Collapse
Affiliation(s)
- Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences (E.S., E.B., S.C., T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520; Department of Obstetrics and Gynecology (G.N., T.L.H.), University of Szeged, Faculty of Medicine, Szeged, Hungary 6701; Department of Comparative Medicine (T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520; and the Department of Neurobiology (T.L.H.), Yale School of Medicine, New Haven, Connecticut 06520
| | | | | | | | | |
Collapse
|
38
|
Wu S, Fisher J, Naciff J, Laufersweiler M, Lester C, Daston G, Blackburn K. Framework for Identifying Chemicals with Structural Features Associated with the Potential to Act as Developmental or Reproductive Toxicants. Chem Res Toxicol 2013; 26:1840-61. [DOI: 10.1021/tx400226u] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shengde Wu
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Joan Fisher
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Jorge Naciff
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Michael Laufersweiler
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Cathy Lester
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - George Daston
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Karen Blackburn
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| |
Collapse
|
39
|
Kim HS, Jadhav JR, Jung SJ, Kwak JH. Synthesis and antimicrobial activity of imidazole and pyridine appended cholestane-based conjugates. Bioorg Med Chem Lett 2013; 23:4315-8. [DOI: 10.1016/j.bmcl.2013.05.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 01/29/2023]
|
40
|
Bi X, Han X, Zhang F, He M, Zhang Y, Zhi XY, Zhao H. Triparanol suppresses human tumor growth in vitro and in vivo. Biochem Biophys Res Commun 2012; 425:613-8. [PMID: 22877755 DOI: 10.1016/j.bbrc.2012.07.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/28/2022]
Abstract
Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.
Collapse
Affiliation(s)
- Xinyu Bi
- Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Kramer J, Bartsch M, Krug D, Klinger M, Nitschke M, Rohwedel J. Simvastatin modulates mouse embryonic stem cell-derived chondrogenesis in vitro. Toxicol In Vitro 2012; 26:1170-6. [PMID: 22771337 DOI: 10.1016/j.tiv.2012.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
It has been studied in detail that cellular differentiation during chondrogenesis can be recapitulated in vitro by differentiation of embryonic stem (ES) cells as embryoid bodies (EBs). We here used this model system of cartilage development to analyze the effect of simvastatin, a potentially embryotoxic substance. Statins are a group of drugs used to treat hypercholesterolaemia. We found that simvastatin activated cartilage nodule formation during EB differentiation. Extended application of simvastatin resulted in enhanced expression of cartilage marker molecules and prolonged persistence of cartilage nodules. Expression of collagen type II was upregulated during simvastatin-induced chondrogenic ES cell differentiation as demonstrated by quantitative real time PCR. However, immunostaining for cartilage marker molecules revealed that cartilage nodules within simvastatin-treated EBs were defective, bearing cavities of cell loss. Furthermore, caspase activity was reduced in comparison to untreated controls indicating reduced apoptosis. Taken together, we may speculate that simvastatin prolongs survival of chondrocytes and disrupts cellular integrity of cartilage nodules during EB development by affecting apoptotic mechanisms. The study underlines that ES cell-derived EBs are a useful in vitro model to screen substances for their embryotoxic and teratogenic potential.
Collapse
Affiliation(s)
- J Kramer
- Medical Dept. I and Dept. of Virology and Cell Biology, University of Lübeck, 23538 Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Sun Q, Guo Y, Ma S, Yuan J, An S, Li J. Dietary mineral sources altered lipid and antioxidant profiles in broiler breeders and posthatch growth of their offsprings. Biol Trace Elem Res 2012; 145:318-24. [PMID: 21912962 DOI: 10.1007/s12011-011-9196-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The aim of this study was to investigate the influence of mineral sources on broiler breeders and their offsprings. Broiler breeding hens were fed with diets containing either organic or inorganic trace minerals at equal levels, i.e., (1) control group was fed with basal diet supplemented with inorganic trace minerals; (2) OZ group was fed with organic Zn instead of sulfate; and (3) OTM group was fed with organic Cu, Mn, Zn, and Se instead of inorganic sources. Results indicated that OTM supplementation decreased plasma cholesterol and triglyceride and increased yolk triglyceride via increasing high-density lipid protein cholesterol and decreasing low-density lipid protein cholesterol and very low-density lipid protein (VLDL) in plasma. OZ diets decreased plasma cholesterol and triglyceride mainly by reducing VLDL concentration. For control group, increased lipid concentrations resulted in increased lipid peroxidation in serum and malondialdehyde retention in yolk. Zn retention was not affected. Otherwise, OZ diet was observed to decrease Cu in yolk and albumen. While for OTM group, albumen Cu, albumen Se, and hepatic Se of hatched chicks were increased, but yolk Cu was decreased. Moreover, organic mineral supplementations improved broilers' growth performance. In conclusion, organic mineral supplementation in breeders' diets protected breeders from lipid peroxidation, increased egg nutrition retention, and benefit for growth of broilers.
Collapse
Affiliation(s)
- Qiujuan Sun
- The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | |
Collapse
|
43
|
Chi Y, Xia H, Su M, Song P, Qi X, Cui Y, Cao Y, Chen T, Qiu Y, Zhao A, Ma X, Zheng X, Jia W. Metabonomic Phenotyping Reveals an Embryotoxicity of Deca-Brominated Diphenyl Ether in Mice. Chem Res Toxicol 2011; 24:1976-83. [DOI: 10.1021/tx200300v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Jadhav JR, Ahmad MW, Kim HS. A New Acridine-Imidazolium-Based Cholestane Receptor for Anion Sensing. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple congenital malformation and intellectual disability syndrome, with clinical characteristics that encompass a wide spectrum and great variability. Elucidation of the biochemical and genetic basis for SLOS, specifically understanding SLOS as a cholesterol deficiency syndrome caused by mutation in DHCR7, opened up enormous possibilities for therapeutic intervention. When cholesterol was discovered to be the activator of sonic hedgehog, cholesterol deficiency with inactivation of this developmental patterning gene was thought to be the cause of SLOS malformations, yet this explanation is overly simplistic. Despite these important research breakthroughs, there is no proven treatment for SLOS. Better animal models are needed to allow potential treatment testing and the study of disease pathophysiology, which is incompletely understood. Creation of human cellular models, especially models of brain cells, would be useful, and in vivo human studies are also essential. Biomarker development will be crucial in facilitating clinical trials in this rare condition, because the clinical phenotype can change over many years. Additional research in these and other areas is critical if we are to make headway towards ameliorating the effects of this devastating condition.
Collapse
|
46
|
Jadhav JR, Bae CH, Kim HS. Fluorescence sensing of H2PO4- by a imidazolium-based cholestane receptor. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.01.107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Idkowiak J, O'Riordan S, Reisch N, Malunowicz EM, Collins F, Kerstens MN, Köhler B, Graul-Neumann LM, Szarras-Czapnik M, Dattani M, Silink M, Shackleton CHL, Maiter D, Krone N, Arlt W. Pubertal presentation in seven patients with congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. J Clin Endocrinol Metab 2011; 96:E453-62. [PMID: 21190981 PMCID: PMC3124345 DOI: 10.1210/jc.2010-1607] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/16/2010] [Indexed: 01/02/2023]
Abstract
CONTEXT P450 oxidoreductase (POR) is a crucial electron donor to all microsomal P450 cytochrome (CYP) enzymes including 17α-hydroxylase (CYP17A1), 21-hydroxylase (CYP21A2) and P450 aromatase. Mutant POR causes congenital adrenal hyperplasia with combined glucocorticoid and sex steroid deficiency. P450 oxidoreductase deficiency (ORD) commonly presents neonatally, with disordered sex development in both sexes, skeletal malformations, and glucocorticoid deficiency. OBJECTIVE The aim of the study was to describe the clinical and biochemical characteristics of ORD during puberty. DESIGN Clinical, biochemical, and genetic assessment of seven ORD patients (five females, two males) presenting during puberty was conducted. RESULTS Predominant findings in females were incomplete pubertal development (four of five) and large ovarian cysts (five of five) prone to spontaneous rupture, in some only resolving after combined treatment with estrogen/progestin, GnRH superagonists, and glucocorticoids. Pubertal development in the two boys was more mildly affected, with some spontaneous progression. Urinary steroid profiling revealed combined CYP17A1 and CYP21A2 deficiencies indicative of ORD in all patients; all but one failed to mount an appropriate cortisol response to ACTH stimulation indicative of adrenal insufficiency. Diagnosis of ORD was confirmed by direct sequencing, demonstrating disease-causing POR mutations. CONCLUSION Delayed and disordered puberty can be the first sign leading to a diagnosis of ORD. Appropriate testosterone production during puberty in affected boys but manifest primary hypogonadism in girls with ORD may indicate that testicular steroidogenesis is less dependent on POR than adrenal and ovarian steroidogenesis. Ovarian cysts in pubertal girls may be driven not only by high gonadotropins but possibly also by impaired CYP51A1-mediated production of meiosis-activating sterols due to mutant POR.
Collapse
Affiliation(s)
- Jan Idkowiak
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheong MC, Na K, Kim H, Jeong SK, Joo HJ, Chitwood DJ, Paik YK. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity. J Biol Chem 2010; 286:7248-56. [PMID: 21186286 DOI: 10.1074/jbc.m110.189183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the biochemical mechanism underlying the effect of sterol deprivation on longevity in Caenorhabditis elegans, we treated parent worms (P0) with 25-azacoprostane (Aza), which inhibits sitosterol-to-cholesterol conversion, and measured mean lifespan (MLS) in F2 worms. At 25 μM (∼EC(50)), Aza reduced total body sterol by 82.5%, confirming sterol depletion. Aza (25 μM) treatment of wild-type (N2) C. elegans grown in sitosterol (5 μg/ml) reduced MLS by 35%. Similar results were obtained for the stress-related mutants daf-16(mu86) and gas-1(fc21). Unexpectedly, Aza had essentially no effect on MLS in the stress-resistant daf-2(e1370) or mitochondrial complex II mutant mev-1(kn1) strains, indicating that Aza may target both insulin/IGF-1 signaling (IIS) and mitochondrial complex II. Aza increased reactive oxygen species (ROS) levels 2.7-fold in N2 worms, but did not affect ROS production by mev-1(kn1), suggesting a direct link between Aza treatment and mitochondrial ROS production. Moreover, expression of the stress-response transcription factor SKN-1 was decreased in amphid neurons by Aza and that of DAF-28 was increased when DAF-6 was involved, contributing to lifespan reduction.
Collapse
Affiliation(s)
- Mi Cheong Cheong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Clayton P, Fischer B, Mann A, Mansour S, Rossier E, Veen M, Lang C, Baasanjav S, Kieslich M, Brossuleit K, Gravemann S, Schnipper N, Karbasyian M, Demuth I, Zwerger M, Vaya A, Utermann G, Mundlos S, Stricker S, Sperling K, Hoffmann K. Mutations causing Greenberg dysplasia but not Pelger anomaly uncouple enzymatic from structural functions of a nuclear membrane protein. Nucleus 2010; 1:354-66. [PMID: 21327084 PMCID: PMC3027044 DOI: 10.4161/nucl.1.4.12435] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 01/31/2023] Open
Abstract
The lamin B receptor (LBR) is an inner nuclear membrane protein with a structural function interacting with chromatin and lamins, and an enzymatic function as a sterol reductase. Heterozygous LBR mutations cause nuclear hyposegmentation in neutrophils (Pelger anomaly), while homozygous mutations cause prenatal death with skeletal defects and abnormal sterol metabolism (Greenberg dysplasia). It has remained unclear whether the lethality in Greenberg dysplasia is due to cholesterol defects or altered nuclear morphology.To answer this question we characterized two LBR missense mutations and showed that they cause Greenberg dysplasia. Both mutations affect residues that are evolutionary conserved among sterol reductases. In contrast to wildtype LBR, both mutations failed to rescue C14 sterol reductase deficient yeast, indicating an enzymatic defect. We found no Pelger anomaly in the carrier parent excluding marked effects on nuclear structure. We studied Lbr in mouse embryos and demonstrate expression in skin and the developing skeletal system consistent with sites of histological changes in Greenberg dysplasia. Unexpectedly we found in disease-relevant cell types not only nuclear but also cytoplasmatic LBR localization. The cytoplasmatic LBR staining co-localized with ER-markers and is thus consistent with the sites of endogeneous sterol synthesis. We conclude that LBR missense mutations can abolish sterol reductase activity, causing lethal Greenberg dysplasia but not Pelger anomaly. The findings separate the metabolic from the structural function and indicate that the sterol reductase activity is essential for human intrauterine development.
Collapse
Affiliation(s)
- Peter Clayton
- UCL Institute of Child Health with Great Ormond Street Hospital for ChildrenNHS Trust; London, UK
| | - Björn Fischer
- Institute for Medical Genetics; Charité University Medicine; Berlin, Germany
| | - Anuska Mann
- UCL Institute of Child Health with Great Ormond Street Hospital for ChildrenNHS Trust; London, UK
| | - Sahar Mansour
- SW Thames Regional Genetics Service; St. George's Hospital Medical School; University of London; London, UK
| | - Eva Rossier
- Humangenetik; Universitätsklinikum Tuebingen; Tuebingen, Germany
| | | | | | - Sevjidmaa Baasanjav
- Division of Nephrology; Department of Medicine, Neurology and Dermatology; University Hospital Leipzig; Leipzig, Germany
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Moritz Kieslich
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Katja Brossuleit
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Sophia Gravemann
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Nele Schnipper
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Mohsen Karbasyian
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Ilja Demuth
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Monika Zwerger
- B065 Functional Architecture of the Cell; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Amparo Vaya
- Department of Clinical Pathology; La Fe University Hospital; Valencia, Spain
| | - Gerd Utermann
- Human Genetics; Department of Medical Genetics, Molecular and Clinical Pharmacology; Innsbruck, Austria
| | - Stefan Mundlos
- Institute for Medical Genetics; Charité University Medicine; Berlin, Germany
- Max Planck Institute for Molecular Genetics; Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics; Berlin, Germany
| | - Karl Sperling
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
| | - Katrin Hoffmann
- Institute for Medical Genetics; Charité University Medicine; Berlin, Germany
- Institute for Human Genetics; Charité University Medicine; Berlin, Germany
- Max Planck Institute for Human Development; Berlin, Germany
- The Berlin Aging Study II; Research Group on Geriatrics; Charité University Medicine; Berlin, Germany
| |
Collapse
|
50
|
Interplay between cholesterol and drug metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:146-60. [PMID: 20570756 DOI: 10.1016/j.bbapap.2010.05.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/14/2022]
Abstract
Cholesterol biosynthetic and metabolic pathways contain several branching points towards physiologically active molecules, such as coenzyme Q, vitamin D, glucocorticoid and steroid hormones, oxysterols, or bile acids. Sophisticated regulatory mechanisms are involved in maintenance of the homeostasis of not only cholesterol but also other cholesterogenic molecules. In addition to endogenous cues, cholesterol homeostasis needs to accommodate also to exogenous cues that are imported into the body, such as chemicals and medications. Steroid and nuclear receptors together with sterol regulatory element-binding protein (SREBP) mediate the fine tuning of biosynthetic and metabolic routes as well as transports of cholesterol and its derivatives. Similarly, drug/xenobiotic metabolism is the subject to the feedback regulation of cytochrome P450 enzymes and transporters. The regulatory mechanisms that maintain the homeostasis of cholesterogenic molecules and are involved in drug metabolism share similarities. Cholesterol and cholesterogenic compounds (bile acids, glucocorticoids, vitamin D, etc.) regulate the xenosensor signaling in drug-mediated induction of the major drug-metabolizing cytochrome P450 enzymes. The key cellular receptors, pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and glucocorticoid receptor (GR) provide a functional cross-talk between the pathways maintaining cholesterol homeostasis and controlling the expression of drug-metabolizing enzymes. These receptors serve as metabolic sensors, resulting in a coordinate regulation of cholesterogenic compounds metabolism and of the defense against xenobiotic and endobiotic toxicity. Herein we present a comprehensive review of functional interactions between cholesterol homeostasis and drug metabolism involving the main nuclear and steroid receptors.
Collapse
|