1
|
Seo JW, Jiang S, Ahn S, Kang YS, Sung Y, Li X, Jamrasi P, Sun EM, Yoo J, Kim BY, Sim H, Song W. Effect of mixed protein supplementation on golf performance and muscle function: a randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr 2024; 21:2393368. [PMID: 39166753 PMCID: PMC11340221 DOI: 10.1080/15502783.2024.2393368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND As a relatively novel approach to enhancing skeletal muscle health, mixed protein supplementation has shown similar responses to whey protein. However, no previous studies have examined its impact on golf swing performance. This study aimed to examine the effect of mixed protein supplementation on the swing performance and muscle strength of casual golfers. METHODS Sixty participants with a handicap of less than 20 were recruited and randomly assigned to a double-blind, placebo-controlled study design. The participants were divided into two groups: a mixed protein group (MG, n = 30), and a placebo control group (CG, n = 30). They were instructed to ingest either a supplement containing casein calcium, whey protein, and isolated pea protein, or a placebo, once daily for 8 weeks. Pre- and posttests consisted of anthropometric measurements, muscle strength (isokinetic knee and trunk strength, and handgrip strength), 2-minute push-ups, balance, and golf swing performance using a driver and 7-iron. RESULTS After the 8-week supplementation period, ANCOVA, using baseline values as covariates, revealed significant differences for driver distance (p = .004) and driver ball speed (p < .001). MG significantly increased driver distance by 5.17 ± 12.8 m (p = .046), driver ball speed by 1.36 ± 2.87 m/s (p = .021). Additionally, significantly improvements were observed in hand grip strength (+2.12 ± 3.47 kg, p = .004), two-minute push-ups (+4.89 ± 8.14 reps, p = .004), and balance score (-0.37 ± 0.69 min, p = .009). No significant differences were observed in body composition parameters (p > .05). CONCLUSION The intake of a mixed protein containing both animal and plant proteins had positive effects on golf performance and muscle function. Therefore, mixed proteins may represent a safe and effective approach to enhancing skeletal muscle health in golf players.
Collapse
Affiliation(s)
- Ji-Won Seo
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
| | - Shu Jiang
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
| | - Soyoung Ahn
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
| | - Yu Seon Kang
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
| | - Yunho Sung
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
| | - Xinxing Li
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
| | - Parivash Jamrasi
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
| | - Eun Mi Sun
- Research Team 1, CHLabs Corporation, Seoul, Republic of Korea
| | - Jihee Yoo
- Research Team 1, CHLabs Corporation, Seoul, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Hyunsu Sim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Wook Song
- Seoul National University, Health and Exercise Science Laboratory, Institute of Sports Science, Department of Physical Education, Seoul, Republic of Korea
- Seoul National University, Institute on Aging, Seoul, Republic of Korea
| |
Collapse
|
2
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
3
|
Mei J, Ju C, Wang B, Gao R, Zhang Y, Zhou S, Liu E, Zhang L, Meng H, Liu Y, Zhao R, Zhao J, Zhang Y, Zeng W, Li J, Zhang P, Zhao J, Liu Y, Huan L, Huang Y, Zhu F, Liu H, Luo R, Yang Q, Gao S, Wang X, Fang Q, Lu Y, Dong Y, Yin X, Qiu P, Yang Q, Yang L, Xu F. The efficacy and safety of Bazi Bushen Capsule in treating premature aging: A randomized, double blind, multicenter, placebo-controlled clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155742. [PMID: 38838635 DOI: 10.1016/j.phymed.2024.155742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE It is unclear whether traditional Chinese patent medicines can resist premature aging. This prospective study investigated the effects of Bazi Bushen Capsule (BZBS) which is a traditional Chinese patent medicine for tonifying the kidney essence on premature senility symptoms and quality of life, telomerase activity and telomere length. STUDY DESIGN AND METHODS It was a parallel, multicenter, double-blind, randomized, and placebo-controlled trial. Subjects (n = 530) aged 30-78 years were randomized to receive BZBS or placebo capsules 12 weeks. The primary outcome was the clinical feature of change in kidney deficiency for aging evaluation scale (CFCKD-AES) and tilburg frailty indicator (TFI). The secondary outcomes were SF-36, serum sex hormone level, five times sit-to-stand time (FTSST), 6MWT, motor function test-grip strength, balance test, walking speed, muscle mass measurement, telomerase and telomere length. RESULTS After 12 weeks of treatment, the CFCKD-AES and TFI scores in the BZBS group decreased by 13.79 and 1.50 respectively (6.42 and 0.58 in the placebo group, respectively); The SF-36 in the BZBS group increased by 98.38 (23.79 in the placebo group). The FTSST, motor function test grip strength, balance test, walking speed, and muscle mass in the elderly subgroup were all improved in the BZBS group. The telomerase content in the BZBS group increased by 150.04 ng/ml compared to the placebo group. The fever led one patient in the placebo group to discontinue the trial. One patient in the placebo group withdrew from the trial due to pregnancy. None of the serious AEs led to treatment discontinuation, and 3 AEs (1.14%) were assessed as related to BZBS by the primary investigator. CONCLUSIONS BZBS can improve premature aging symptoms, frailty scores, and quality of life, as well as improve FTSST, motor function: grip strength, balance test, walking speed, and muscle mass in elderly subgroups of patients, and enhance telomerase activity, but it is not significantly associated with increasing telomere length which is important for healthy aging. TRIAL REGISTRY https://www.chictr.org.cn/showproj.html?proj=166181.
Collapse
Affiliation(s)
- Jun Mei
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Chunxiao Ju
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Biqing Wang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China; Graduate School, Beijing University of Chinese Medicine, Beijing, PR China
| | - Rui Gao
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yanhong Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Shunlin Zhou
- Department of Rehabilitation, Hebei Yiling Hospital, Shijiazhuang, 050000, PR China
| | - Erjun Liu
- Department of Traditional Chinese Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Lirui Zhang
- Department of Traditional Chinese Medicine, Tangshan Central Hospital, Tangshan, 063000, PR China
| | - Hong Meng
- International school of cosmetics, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yafeng Liu
- Department of Traditional Chinese Medicine, Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Ruihua Zhao
- Department of gynaecology, Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing, 100053, PR China
| | - Jiajun Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital, Jinan, 250021, PR China
| | - Ying Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Wenying Zeng
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Jing Li
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Ping Zhang
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Junnan Zhao
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yanfei Liu
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Luyao Huan
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Yuxiao Huang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Fuli Zhu
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Huiyan Liu
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Ran Luo
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qi Yang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Shanfeng Gao
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Xiaoyuan Wang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qingxia Fang
- Department of gynaecology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - YuHong Lu
- LNKMED Tech Co., Ltd, Beijing, 100000, PR China
| | - Yan Dong
- LNKMED Tech Co., Ltd, Beijing, 100000, PR China
| | - Xueying Yin
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Panbo Qiu
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Qiaoning Yang
- Clinical Pharmacology Research Institute, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China
| | - Limin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, PR China
| | - Fengqin Xu
- Institute of geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, PR China.
| |
Collapse
|
4
|
Zhang Y, Liu K, Zhan Y, Zhao Y, Chai Y, Ning J, Pan H, Kong L, Yuan W. Impact of Chinese herbal medicine on sarcopenia in enhancing muscle mass, strength, and function: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2024; 38:2303-2322. [PMID: 38419525 DOI: 10.1002/ptr.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Sarcopenia has become important to the public health with the increase in the aging population in society. However, the therapeutic effects of conventional approaches, including pharmacotherapy, exercise, and nutritional intervention, are far from satisfactory. Chinese herbal medicine is a new treatment format with interesting possibilities in sarcopenia has been widely practiced. The study aims to explore the effectiveness of Chinese herbal medicine in sarcopenia. We comprehensively searched the following electronic databases: Medline, EMBASE, APA PsycInfo, Cochrane Library, Web of Science, PubMed, and Chinese database from the establishment of the database to December 2022 (no language restrictions). Randomized controlled clinical studies on the use of Chinese herbal medicine in sarcopenia were selected in compliance with PRISMA guidelines. Review Manager and Stata were used for statistical analysis and the mean difference and standardized mean difference were adopted. Of 277 identified studies, 17 were eligible and included in our analysis (N = 1440 participants). The results showed that Chinese herbal medicine can improve total efficiency (RR = 1.29, 95% CI [1.21, 1.36], p < 0.00001) in sarcopenia and enhance muscle mass (SMD = 1.02, 95% CI [0.55, 1.50], p < 0.0001), and muscle strength measured by grip strength (SMD = 0.66, 95% CI [0.36, 0.96], p < 0.0001), measured by 60°/s knee extension peak TQ (MD = 5.63, 95% CI [-0.30, 11.57], p = 0.06) and muscle function measured by 6-meter walking speed (SMD = 1.34, 95% CI [0.60, 2.08], p = 0.0004), measured by the short physical performance battery of 1.50%, 95% CI (1.05, 1.95), measured by the EuroQoL 5-dimension of (SMD = 0.27, 95% CI [-0.10, 0.65], p = 0.16), suggesting that Chinese herbal medicine alone or combined with conventional treatment has ameliorating effect on sarcopenia. Chinese herbal medicine is a potential therapeutic strategy in sarcopenia. The funnel plot and Egger's test indicated publication bias. To confirm our conclusions, further high-quality studies should be conducted.
Collapse
Affiliation(s)
- Yujie Zhang
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaoqiang Liu
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunfan Zhan
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Zhao
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongli Chai
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Ning
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Pan
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingjun Kong
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei'an Yuan
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Lee SY. Comment on Krikorian et al. Early Intervention in Cognitive Aging with Strawberry Supplementation. Nutrients 2023, 15, 4431. Nutrients 2024; 16:824. [PMID: 38542735 PMCID: PMC10975459 DOI: 10.3390/nu16060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/07/2024] [Indexed: 08/14/2024] Open
Abstract
I read with interest the paper by Krikorian et al [...].
Collapse
Affiliation(s)
- Sang Yeoup Lee
- Family Medicine Clinic, Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; ; Tel.: +82-55-3601442
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan 50612, Republic of Korea
- Department of Medical Education, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Ko JS, Chang BY, Choi YJ, Choi JS, Kwon HY, Lee JY, Kim SY, Choung SY. Ashwagandha Ethanol Extract Attenuates Sarcopenia-Related Muscle Atrophy in Aged Mice. Nutrients 2024; 16:157. [PMID: 38201986 PMCID: PMC10781061 DOI: 10.3390/nu16010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The investigation focused on the impact of Withania somnifera (ashwagandha) extract (WSE) on age-related mechanisms affecting skeletal muscle sarcopenia-related muscle atrophy in aged mice. Beyond evaluating muscular aspects, the study explored chronic low-grade inflammation, muscle regeneration, and mitochondrial biogenesis. WSE administration, in comparison to the control group, demonstrated no significant differences in body weight, diet, or water intake, affirming its safety profile. Notably, WSE exhibited a propensity to reduce epidermal and abdominal fat while significantly increasing muscle mass at a dosage of 200 mg/kg. The muscle-to-fat ratio, adjusted for body weight, increased across all treatment groups. WSE administration led to a reduction in the pro-inflammatory cytokines TNF-α and IL-1β, mitigating inflammation-associated muscle atrophy. In a 12-month-old mouse model equivalent to a 50-year-old human, WSE effectively preserved muscle strength, stabilized grip strength, and increased muscle tissue weight. Positive effects were observed in running performance and endurance. Mechanistically, WSE balanced muscle protein synthesis/degradation, promoted fiber differentiation, and enhanced mitochondrial biogenesis through the IGF-1/Akt/mTOR pathway. This study provides compelling evidence for the anti-sarcopenic effects of WSE, positioning it as a promising candidate for preventing sarcopenia pending further clinical validation.
Collapse
Affiliation(s)
- Jin-Sung Ko
- Department of Biomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea; (J.-S.K.); (Y.-J.C.)
| | - Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (B.-Y.C.); (S.-Y.K.)
| | - Young-Ju Choi
- Department of Biomedical Science & BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Chungnam, Republic of Korea; (J.-S.K.); (Y.-J.C.)
| | - Ji-Soo Choi
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Hee-Yeon Kwon
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Jae-Yeon Lee
- R&D Center, NSTbio Co., Ltd., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea; (J.-S.C.); (H.-Y.K.); (J.-Y.L.)
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea; (B.-Y.C.); (S.-Y.K.)
| | - Se-Young Choung
- Department of Preventive Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Chungnam, Republic of Korea
| |
Collapse
|
7
|
Hyun J, Lee SY, Ryu B, Jeon YJ. A Combination Study of Pre- and Clinical Trial: Seaweed Consumption Reduces Aging-Associated Muscle Loss! Aging Dis 2023; 15:2813-2827. [PMID: 38029400 PMCID: PMC11567250 DOI: 10.14336/ad.2023.0927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Seaweed consumption in Asian food cultures may benefit longevity and age-related conditions like sarcopenia with aging. However, sarcopenia lacks a definitive treatment, and pharmaceutical options have limitations in efficacy and safety. Recent studies on aging female mice found that Ishige okamurae (IO), a brown algae, and its active compound diphloroethohydroxycarmalol improved sarcopenia. Further research is needed to understand the effects of seaweed consumption on sarcopenia in humans. This clinical trial divided participants into a test group (receiving 500 mg/kg IO supplementation, mean±SD; age 62.73±7.18 years, n=40) and a control group (age 63.10±7.06 years, n=40). Hazard analysis assessed vital signs and muscle strength improvement during the trial. Additionally, 12-month-old mice were oral-fed IO at different doses (50, 100, 200 mg/kg) for 6-weeks. Aging and muscle-wasting related markers were evaluated, including grip strength, body weight and compositions, serum-parameters, and molecular-changes. The clinical trial found no significant changes in toxicity-parameters between the groups (p>0.05) after 12-weeks of IO supplementation. The IO group exhibited a remarkable increase in lower-limb quadriceps muscle-strength compared to the control (p=0.002). Furthermore, IO treatment improved age-related decline in quadriceps strength in the subgroup; under 61-years-old (p=0.004), without significant differences in foot-dominancy between groups (p=0.171). In 12-month-old male mice, IO administration improved age-related deficiencies in grip strength (p<0.0001) and testosterone (p=0.0001). Muscular regeneration parameters, such as lean-mass (p<0.0001), inhibition of proteolysis (measured by changes in myogenin and atrogin-1 protein expressions), cross-sectional myofiber area (p<0.0001), number of satellite cells (p=0.0001), and increased mitochondrial oxidative phosphorylation complexes in muscle tissue indicative of mitochondrial biogenesis, were also improved by IO administration. This trial is the first to explore the positive association between consuming brown-algae IO and age-related decreases in muscle strength. IO treatment helps maintain muscle mass and delays muscle wasting during aging, suggesting it as a potent nutritional strategy to protect against aging-associated sarcopenia.
Collapse
Affiliation(s)
- Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea.
| | - Sang Yeoup Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Department of Family Medicine, Biomedical Research Institute, and Integrated Research Institute for Natural Ingredients and Functional Foods, Pusan National University Yangsan Hospital, Republic of Korea.
- Department of Medical Education, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| | - Bomi Ryu
- Department of Food Science & Nutrition, Pukyong National University, Busan, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
8
|
Bak J, Lee SJ, Kim TW, Hwang S, Park MJ, Arunachalam R, Yoo E, Park MH, Choi YS, Kim HK. Schisandrol A and gomisin N from Schisandra chinensis extract improve hypogonadism via anti-oxidative stress in TM3 Leydig cells. Nutr Res Pract 2023; 17:1-12. [PMID: 36777801 PMCID: PMC9884586 DOI: 10.4162/nrp.2023.17.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Male hypogonadism is a condition where the body does not produce enough testosterone and significantly impacts health. Age, obesity, genetics, and oxidative stress are some physiological factors that may contribute to testosterone deficiency. Previous studies have shown many pharmacological benefits of Schisandra chinensis (S. chinensis) Baillon as an anti-inflammatory and antioxidant. However, the molecular mechanism of attenuating hypogonadism is yet to be well established. This research was undertaken to study the effects of S. chinensis extract (SCE) on testosterone deficiency. MATERIALS/METHODS S. chinensis fruit was pulverized and extracted using 60% aqueous ethanol. HPLC analysis was performed to analyze and quantify the lignans of the SCE. RESULTS The 2,2-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging assays confirmed that the SCE and its major lignans (schisandrol A and gomisin N) inhibit oxidative stress. Effects of SCE analysis on the testosterone level under oxidative stress conditions revealed that both schisandrol A and gomisin N were able to recover the lowered testosterone levels. Through mRNA expression of TM3 Leydig cell, we observed that the SCE lignans were able to induce the enzymes involved in testosterone biosynthesis-related genes such as 3β-HSD4 (P < 0.01 for SCE, and P < 0.001 for schisandrol A and gomisin N), 17β-HSD3 (P < 0.001 for SCE, schisandrol A and gomisin N), and 17, 20-desmolase (P < 0.01 for schisandrol A, and P < 0.001 for SCE and gomisin N). CONCLUSIONS These results support that SCE and its active components could be potential therapeutic agents for regulating and increasing testosterone production.
Collapse
Affiliation(s)
- Jia Bak
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Seung Ju Lee
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Tae Won Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Seonhwa Hwang
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Min Ju Park
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Rohith Arunachalam
- College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Eunsoo Yoo
- College of Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Min Hi Park
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Yun-Sik Choi
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| | - Hye Kyung Kim
- College of Pharmacy, Kyungsung University, Busan 48434, Korea
| |
Collapse
|
9
|
Choi JI, Kweon HY, Lee YL, Lee JH, Lee SY. Efficacy of Silkworm Pupae Extract on Muscle Strength and Mass in Middle-Aged and Older Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial. J Nutr Health Aging 2023; 27:578-585. [PMID: 37498105 DOI: 10.1007/s12603-023-1942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES We investigated the efficacy and safety of silkworm pupae extract (SWP) consumption for 12 weeks on muscle mass and strength in middle-aged and older individuals with relatively low skeletal muscle mass who do regular low-intensity exercise. DESIGN A randomized double-blinded placebo-controlled trial. PARTICIPANTS The study was conducted with 54 participants with relatively low skeletal muscle mass (SMM) (64.4 ± 6.1 years; body mass index, 23.8 ± 2.4 kg/m2). INTERVENTION AND MEASUREMENTS Participants were randomly assigned to one of two groups: 1000 mg of SWP/day plus regular exercise (SWP group, n=27) or placebo plus regular exercise (placebo group, n=27). All participants were required to engage in 30-60 minutes/day of walking for ≥3 days/week for 12 weeks. The primary outcome was knee extension/flexion strength (Nm), measured at the velocity of 60°/s. Secondary outcomes included body composition, biomarkers (creatine kinase and creatinine), handgrip strength, and quality of life questionnaire. RESULTS Both the intention-to-treat (ITT) and per-protocol (PP) analyses revealed no significant impact of SWP on knee strength compared to the placebo group over 12 weeks. On the other hand, the SWP group had significantly greater increases in right-handgrip strength by 1.94 kg (95% CI: 0.08-3.79; p = 0.041) and left-handgrip strength by 1.83 kg (0.25-3.41; p = 0.024) compared to the placebo group in the ITT population, after 12 weeks. Moreover, in the PP population, the SWP group revealed an even greater increase in right-handgrip strength by 2.07 kg (0.15-3. 98; p = 0.035) and left-handgrip strength by 2.21 kg (0.60-3.83; p = 0.008) for the 12-week period. However, this study resulted in a failure to detect significant differences in the body composition, biomarkers, quality of life questionnaire, physical activity, and caloric intake between the groups. None of the participants in the SWP group experienced any significant adverse events. In the placebo group, two participants experienced urticaria and allergic side effects, leading to their withdrawal from the study and two exhibited elevated levels of liver enzyme and increased diastolic blood pressure, respectively at 12 weeks. CONCLUSION SWP, in addition to low-intensity exercise, may enhance handgrip strengths in middle-aged and older adults with relatively lower SMM. Future studies need to use a large sample size over longer periods to validate our findings. This trial was registered at clinicaltrials.gov as NCT04994054.
Collapse
Affiliation(s)
- J I Choi
- Sang Yeoup Lee, Family Medicine Clinic, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea, Telephone: +82-55-390-1442, E-mail: , Fax: +82-51-510-8125
| | | | | | | | | |
Collapse
|
10
|
Lee SR, Lee YL, Lee SY. Effect of Ishige okamurae extract on musculoskeletal biomarkers in adults with relative sarcopenia: Study protocol for a randomized double-blind placebo-controlled trial. Front Nutr 2022; 9:1015351. [PMID: 36238450 PMCID: PMC9551569 DOI: 10.3389/fnut.2022.1015351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionSarcopenia is a phenomenon in which skeletal muscle mass decreases with age, causing many health problems. Many studies have been conducted to improve sarcopenia nutritionally. Ishige okamura (IO) is a genus of brown algae and plays a role in anti-diabetes, anti-obesity, and myogenesis. However, the effect of IO extract (IOE) on human muscle strength and mass is unclear. Therefore, we will examine the impact and safety of consumption of IOE for 12 weeks on muscle strength and mass in middle-aged and old-aged adults with relatively low skeletal muscle mass.Materials and methodsA randomized controlled trial is conducted on 80 adults aged 50–80. A total of 80 participants will be enrolled in this study. Participants assign IOE-taking group (n = 40) and placebo taking group (n = 40). At a baseline and 12 weeks after treatment, the following parameters of the participants are checked: knee extension strength, handgrip strength, body composition, laboratory tests, dietary recall, physical activity, and EQ-5D-5L.DiscussionThe present study will be the first randomized, double-blind placebo-controlled trial to examine the efficacy and tolerability of IOE supplementation in adults with relatively low muscle mass. The nutritional intake and physical activity that might influence muscle strength and mass will be considered as covariates for transparency of results. The results of this study will provide clinical evidence for sarcopenia patients with nutrient treatment.Clinical Trial Registrationwww.clinicaltrials.gov/, Identifier: NCT04617951.
Collapse
Affiliation(s)
- Sae Rom Lee
- Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Ye Li Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
| | - Sang Yeoup Lee
- Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
- Department of Medical Education, Pusan National University School of Medicine, Yangsan, South Korea
- *Correspondence: Sang Yeoup Lee
| |
Collapse
|
11
|
Lee YL, Lee SY. Effect of fermented oyster ( Crassostrea gigas) extracts and regular walking on muscle strength and mass in older adults with relatively low muscle mass: A randomized controlled trial. Front Nutr 2022; 9:935395. [PMID: 35958254 PMCID: PMC9358242 DOI: 10.3389/fnut.2022.935395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Oysters possess an excellent nutritional profile containing γ-aminobutyric acid (GABA). Previous data suggest that GABA is a potent bioactive compound for improving muscle health. Lactic acid fermentation is thought to increase GABA content. However, the effect of oral supplementation of fermented oyster extracts (FO) on human muscle strength and mass is unclear. Therefore, we tested the effects and safety of consumption of FO combined with regular walking for 12 weeks on muscle strength and mass in older adults with relatively low muscle mass. Materials and methods A randomized controlled trial was conducted on 54 adults between 50 and 78 years of age. Participants were randomized to receive either placebo or 1,200 mg FO daily for 12 weeks. By fermentation with Lactobacillus brevis BJ20, FO was prepared from Crassostrea gigas. At baseline and at 12 weeks after treatment, the following parameters of the participants were examined: knee strengths, handgrip strengths, body composition, blood tests, and 24-h dietary recall. All participants were required to walk for 30–60 min/day for >3 days/week during the trial period. Physical activity was assessed using an exercise log during the study. Results Of the 54 participants, 49 completed the trial without reporting adverse effects. FO supplementation over 12 weeks did not cause any increase in knee or grip strength compared to the control group. Also, no differences were observed in the muscle mass, growth hormone, muscle biomarkers, anti-inflammatory markers, and antioxidative markers between the two groups. None of the participants experienced adverse events. Application of FO was well tolerated, and no notable adverse effect was reported in both groups. Discussion FO supplementation with regular walking did not improve remarkably muscle function compared to regular walking alone in adults with relatively low muscle mass. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [NCT04109911].
Collapse
Affiliation(s)
- Ye Li Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
| | - Sang Yeoup Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea.,Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea.,Department of Medical Education, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
12
|
Lai J, Tang Y, Yang F, Chen J, Huang FH, Yang J, Wang L, Qin D, Law BYK, Wu AG, Wu JM. Targeting autophagy in ethnomedicine against human diseases. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114516. [PMID: 34487846 DOI: 10.1016/j.jep.2021.114516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the past five years, ethnopharmacy-based drugs have been increasingly used in clinical practice. It has been reported that hundreds of ethnopharmacy-based drugs can modulate autophagy to regulate physiological and pathological processes, and ethnomedicines also have certain therapeutic effects on illnesses, revealing the important roles of these medicines in regulating autophagy and treating diseases. AIM OF THE STUDY This study reviews the regulatory effects of natural products on autophagy in recent years, and discusses their pharmacological effects and clinical applications in the process of diseases. It provides a preliminary literature basis and reference for the research of plant drugs in the regulation of autophagy. MATERIALS AND METHODS A comprehensive systematic review in the fields of relationship between autophagy and ethnomedicine in treating diseases from PubMed electronic database was performed. Information was obtained from documentary sources. RESULTS We recorded some illnesses associated with autophagy, then classified them into different categories reasonably. Based on the uses of these substances in different researches of diseases, a total of 80 active ingredients or compound preparations of natural drugs were searched. The autophagy mechanisms of these substances in the treatments of divers diseases have been summarized for the first time, we also looked forward to the clinical application of some of them. CONCLUSIONS Autophagy plays a key function in lots of illnesses, the regulation of autophagy has become one of the important means to prevent and treat these diseases. About 80 compounds and preparations involved in this review have been proved to have therapeutic effects on related diseases through the mechanism of autophagy. Experiments in vivo and in vitro showed that these compounds and preparations could treat these diseases by regulating autophagy. The typical natural products curcumin and tripterine have powerful roles in regulating autophagy and show good and diversified curative effects.
Collapse
Affiliation(s)
- Jia Lai
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Fei Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fei-Hong Huang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - Jian-Ming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Hong BS, Baek S, Kim MR, Park SM, Kim BS, Kim J, Lee KP. Systematic analysis of the pharmacological function of Schisandra as a potential exercise supplement. Phys Act Nutr 2021; 25:38-44. [PMID: 35152622 PMCID: PMC8843844 DOI: 10.20463/pan.2021.0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
[Purpose] Exercise can prevent conditions such as atrophy and degenerative brain diseases. However, owing to individual differences in athletic ability, exercise supplements can be used to improve a person’s exercise capacity. Schisandra chinensis (SC) is a natural product with various physiologically active effects. In this study, we analyzed SC using a pharmacological network and determined whether it could be used as an exercise supplement.[Methods] The active compounds of SC and target genes were identified using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). The active compound and target genes were selected based on pharmacokinetic (PK) conditions (oral bioavailability (OB) ≥ 30%, Caco-2 permeability (Caco-2) ≥ -0.4, and drug-likeness (DL) ≥ 0.18). Gene ontology (GO) was analyzed using the Cytoscape software.[Results] Eight active compounds were identified according to the PK conditions. Twenty-one target genes were identified after excluding duplicates in the eight active compounds. The top 10 GOs were analyzed using GO-biological process analysis. GO was subsequently divided into three representative categories: postsynaptic neurotransmitter receptor activity (53.85%), an intracellular steroid hormone receptor signaling pathway (36.46%), and endopeptidase activity (10%). SC is related to immune function.[Conclusion] According to the GO analysis, SC plays a role in immunity and inflammation, promotes liver metabolism, improves fatigue, and regulates the function of steroid receptors. Therefore, we suggest SC as an exercise supplement with nutritional and anti-fatigue benefits.
Collapse
|