1
|
Ma L, Yin Y, Yu Z, Xu N, Ma L, Qiao W, Zhen X, Yang F, Zhang N, Yu Y. Toll-like receptor 6 inhibits colorectal cancer progression by suppressing NF-κB signaling. Heliyon 2024; 10:e26984. [PMID: 38509947 PMCID: PMC10951511 DOI: 10.1016/j.heliyon.2024.e26984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Toll-like receptors (TLRs) are implicated in the pathogenesis and progression of inflammation-associated cancers, except their role in regulating innate immunity. Specifically, a berrant expression of TLR6 has been observed in colorectal cancers (CRC). However, the effect of abnormal TLR6 expression on CRC remians unclear. Therefore, the present study evaluated TLR6 expression in CRC, its effect on CRC proliferation, and its underlying mechanism. Methods The expression of TLR6 in CRC was assessed using data from TCGA, GTEx, and HPA datasets and immunohistochemical assays of tumor tissues from patients with CRC. In human CRC cell lines, TLR6 signaling was activated using the TLR6 agonist Pam2CSK4 and was blocked using antiTLR6-IgG; subsequently, cell growth, migration, invasion, cell cycle, and apoptosis were compared in CRC cells. The levels of the anti-apoptotic protein Bcl-2 and the apoptotic protein Bax were identified using western blotting. In addition, the effect of TLR6 knockdown by shRNAs in CRC cells was observed both in vitro and in vivo. Nuclear factor κB (NF-κB) level was evaluated using immunofluorescence and western bolt. Results TLR6 expression was significantly downregulated in CRC tissues. The activation of TLR6 by Pam2CSK4 (100 pg/mL to 10 ng/mL) inhibited the proliferation of CRC cells. Compared with blocking TLR6 signaling using antiTLR6-IgG, activating TLR6 signaling significantly inhibited CRC cell growth, migration, and invasion as well as decreased the proportion of cells in the S and G2/M phases and promoted apoptosis. Furthermore, the knockdown of TLR6 by shRNA promoted the biological activity of CRC cells both in vitro and in vivo. Moreover, the activation of TLR6 signaling by Pam2CSK4 significantly downregulated NF-κB and Bcl-2 levels but upregulated Bax levels. Conclusion The findings of this study demonstrate that TLR6 may play a inhibitive role in CRC tumorigenesis by suppressing the activity of NF-κB signaling.
Collapse
Affiliation(s)
- Lina Ma
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Yancun Yin
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Zhenhai Yu
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong, 264100, China
| | - Lianhuan Ma
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Weiwei Qiao
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Xiaowen Zhen
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Fan Yang
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Naili Zhang
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Yue Yu
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
2
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
3
|
Miya TV, Marima R, Damane BP, Ledet EM, Dlamini Z. Dissecting Microbiome-Derived SCFAs in Prostate Cancer: Analyzing Gut Microbiota, Racial Disparities, and Epigenetic Mechanisms. Cancers (Basel) 2023; 15:4086. [PMID: 37627114 PMCID: PMC10452611 DOI: 10.3390/cancers15164086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PCa) continues to be the most diagnosed cancer and the second primary cause of fatalities in men globally. There is an abundance of scientific evidence suggesting that the human microbiome, together with its metabolites, plays a crucial role in carcinogenesis and has a significant impact on the efficacy of anticancer interventions in solid and hematological cancers. These anticancer interventions include chemotherapy, immune checkpoint inhibitors, and targeted therapies. Furthermore, the microbiome can influence systemic and local immune responses using numerous metabolites such as short-chain fatty acids (SCFAs). Despite the lack of scientific data in terms of the role of SCFAs in PCa pathogenesis, recent studies show that SCFAs have a profound impact on PCa progression. Several studies have reported racial/ethnic disparities in terms of bacterial content in the gut microbiome and SCFA composition. These studies explored microbiome and SCFA racial/ethnic disparities in cancers such as colorectal, colon, cervical, breast, and endometrial cancer. Notably, there are currently no published studies exploring microbiome/SCFA composition racial disparities and their role in PCa carcinogenesis. This review discusses the potential role of the microbiome in PCa development and progression. The involvement of microbiome-derived SCFAs in facilitating PCa carcinogenesis and their effect on PCa therapeutic response, particularly immunotherapy, are discussed. Racial/ethnic differences in microbiome composition and SCFA content in various cancers are also discussed. Lastly, the effects of SCFAs on PCa progression via epigenetic modifications is also discussed.
Collapse
Affiliation(s)
- Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
| | - Elisa Marie Ledet
- Tulane Cancer Center, Tulane Medical School, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
5
|
Yang HJ, Kim JH. Role of microbiome and its metabolite, short chain fatty acid in prostate cancer. Investig Clin Urol 2023; 64:3-12. [PMID: 36629060 PMCID: PMC9834570 DOI: 10.4111/icu.20220370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
The microbiome which is an assembly of all microbes living inside our bodies performs a major role in maintaining human health and wellness. It has been found that the imbalance of the microbiome can cause various diseases in humans. Similarly, there is growing evidence that the microbiome largely affects a person's chance of contracting certain cancers and how the disease develops and progresses. Studies have shown that about 15% to 20% of all cancers are caused by microbial pathogens. The prevalence of prostate cancer, which is increasing rapidly in Korea, is related to lifestyle including diet. These diets can alter the gut microbial composition, and the effect of the microbiome on prostate cancer development can be estimated. However, the microbiome associated with prostate cancer has been reported differently according to race. This means that the metabolite rather than the specific microbiome will be important. Short chain fatty acids, metabolites of the microbiome, plays an important role in the action mechanism of the microbiome. Short chain fatty acids play roles such as immunomodulation and inhibition of histone deacetylase. Here, we examined the most up-to-date literature featuring the effects of the microbiome on the risk and pathogenesis of prostate cancer.
Collapse
Affiliation(s)
- Hee Jo Yang
- Department of Urology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
6
|
Xu Z, Lv Z, Chen F, Zhang Y, Xu Z, Huo J, Liu W, Yu S, Tuersun A, Zhao J, Zong Y, Shen X, Feng W, Lu A. Dysbiosis of human tumor microbiome and aberrant residence of Actinomyces in tumor-associated fibroblasts in young-onset colorectal cancer. Front Immunol 2022; 13:1008975. [PMID: 36119074 PMCID: PMC9481283 DOI: 10.3389/fimmu.2022.1008975] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common form of cancer, and the incidence of sporadic young-onset colorectal cancer (yCRC) has been increasing. Microbiota residing in the tumor microenvironment are emerging tumor components. The colonic microbiome differs between patients with CRC and healthy controls; however, few studies have investigated the role of the tumor microbiota in disease diagnosis and tumorigenesis of yCRC. We performed 16S rRNA sequencing analysis to identify the microbiome in CRC and found that tumor microbial diversity decreased in yCRC. Proteobacteria and Firmicutes were the most abundant phyla in all CRC samples, and Actinomyces and Schaalia cardiffensis were the key microbiota in the yCRC group. Correlation analysis revealed that Actinomyces co-occurred with various pro-tumor microbial taxa, including Bacteroidia, Gammaproteobacteria, and Pseudomonas. An independent cohort was used to validate the results. The Actinomyces in CRC was co-localized with cancer-associated fibroblasts and activated the TLR2/NF-κB pathway and reduces CD8+ T lymphocyte infiltration in CRC microenvironment. This study suggests that tumoral microbiota plays an important role in promoting tumorigenesis and therefore has potential as a promising non-invasive tool and intervention target for anti-tumor therapy.
Collapse
Affiliation(s)
- Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zifeng Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wangyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Suyue Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Abudumaimaitijiang Tuersun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Aiguo Lu, ; Wenqing Feng, ; Xiaonan Shen,
| |
Collapse
|
7
|
Yinhang W, Wei W, Jing Z, Qing Z, Yani Z, Yangyanqiu W, Shuwen H. Biological roles of toll-like receptors and gut microbiota in colorectal cancer. Future Microbiol 2022; 17:1071-1089. [PMID: 35916158 DOI: 10.2217/fmb-2021-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most considerably common malignancies of the alimentary system, with high mortality and incidence rates. The present study suggested that the occurrence of CRC is closely related to bacteria, as the large intestine is a gathering place for human micro-organisms. However, the nosogenesis of bacteria leading to tumorigenesis is still obscure. Recently, many studies have reported that toll-like receptors and their related molecular pathways are involved in the process of gut micro-organisms generating CRC. Gut micro-organisms can promote or inhibit the development of CRC via binding to special toll-like receptors. In this paper, the authors review the relationship among toll-like receptors, gut micro-organisms and CRC in order to provide a reference for future tumor immunotherapy and targeted therapy.
Collapse
Affiliation(s)
- Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,The Second School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, 310053, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Wu Wei
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Qing
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| | - Zhou Yani
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Wang Yangyanqiu
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Graduate School of Medicine Faculty, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang Province, 310058, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, 1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China.,Key Laboratory of Multiomics Research & Clinical Transformation of Digestive Cancer of Huzhou,1558 Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
8
|
Dong J, Qian Y, Zhang G, Lu L, Zhang S, Ji G, Zhao A, Xu H. Can Natural Products be Used to Overcome the Limitations of Colorectal Cancer Immunotherapy? Front Oncol 2022; 12:884423. [PMID: 35600371 PMCID: PMC9114697 DOI: 10.3389/fonc.2022.884423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer of the digestive system that endangers human health. Immunotherapy is widely used in the treatment of patients with cancer. Some patients with dMMR/MSI-H CRC benefit from treatments that use immune checkpoint inhibitors, but most CRC patients are not sensitive to immunotherapy. Furthermore, internal resistance and immune escape lead to a reduced immunotherapy response. Therefore, the development of an effective combination therapy to improve the response rate to immunotherapy is a goal of cancer research. Natural products are potential candidates for comprehensive cancer treatments due to their wide range of immunomodulatory effects through multifactorial underlying mechanisms. In this review, we summarize the challenges in the treatment of CRC and assess the immunomodulatory effects of natural products and their active components. Our work suggests that natural products represent potential options for combined CRC immunotherapy.
Collapse
Affiliation(s)
- Jiahuan Dong
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Qian
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengan Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Qin J, Li H, Yu W, Wei L, Wen B. Effect of cold exposure and capsaicin on the expression of histone acetylation and Toll-like receptors in 1,2-dimethylhydrazine-induced colon carcinogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60981-60992. [PMID: 34165751 DOI: 10.1007/s11356-021-14849-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Previous studies have indicated that capsaicin-rich diet and cold weather have shown strong association with tumor incidence. Thus, we investigated the effects of capsaicin and cold exposure in 1,2-dimethylhydrazine (DMH)-induced colorectal cancer as well as the mechanisms underlying capsaicin and cold-induced CRC. Rats were randomly divided into four groups and received cold still water and capsaicin via intragastric gavage until the end of the experiment. The rat's body weight, thymus weight, and food intakes were assessed. Global levels of histone H3K9, H3K18, H3K27, and H4K16 acetylation and histone deacetylase (HDACs) in colon mucosa were assessed by western blot. Expression levels of Toll-like receptors 2 (TLR2) and Toll-like receptors 4 (TLR4) were measured by western blot and reverse-transcriptase quantitative polymerase chain reaction (qPCR). We found that cold and low-dose capsaicin increased tumor numbers and multiplicity, although there were no differences in tumor incidence. Additionally, rat exposure to cold water and capsaicin display further higher levels of histone H3 lysine 9 (H3K9AC), histone H3 lysine 18 (H3K18AC), histone H3 lysine 27 (H3K27AC), and HDACs compared with the DMH and normal rats. In contrast, a considerable decrease of histone H4 lysine 16 (H4K16AC) was detected in the colon mucosa. Cold and low-dose capsaicin exposure groups were also increased TLR2 and TLR4 protein levels and mRNA levels. These results suggest that chronic cold exposure and capsaicin at a low-dose intervention exacerbate ectopic expression of global histone acetylation and TLR level, which are crucial mechanisms responsible for the progression of colorectal cancer in rats.
Collapse
Affiliation(s)
- Jingchun Qin
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Huixuan Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Yu
- The Second People's Hospital Lianyungang, Lianyungang, China
| | - Li Wei
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, China
| | - Bin Wen
- Institute of Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Abstract
Toll like receptors (TLRs) are the most studied pattern recognition receptors (PRRs) as they connect the innate to the acquired immune response. To date, there are ten human TLRs which are expressed either on the plasma membrane or on the endosomes. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are plasma membrane TLRs that recognise extracellular components of pathogens, whereas TLR3, TLR7, TLR8 and TLR9 are located on endosomes where they recognise foreign nucleic acids. Of these TLRs, TLR10 is the latest human TLR to be discovered and its function and ligands are still unclear. TLR10 is the only known member of TLR family that can elicit anti-inflammatory effect. TLR10 can inhibit other TLRs by competing with stimulatory TLRs, dimerising with TLR1, TLR2 and TLR6, and by inducing PI3K/Akt to produce IL-1Ra. There is controversy on the function of TLR10 as an anti-inflammatory TLR as initial studies on TLR10 revealed it to promote inflammation. Herein, we review the detailed functions of TLR10 in immunity and give an account of how and when TLR10 can act on both sides of the inflammatory spectrum.
Collapse
|
11
|
Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1157023. [PMID: 34552981 PMCID: PMC8452412 DOI: 10.1155/2021/1157023] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (TLRs) are the important mediators of inflammatory pathways in the gut which play a major role in mediating the immune responses towards a wide variety of pathogen-derived ligands and link adaptive immunity with the innate immunity. Numerous studies in different populations across the continents have reported on the significant roles of TLR gene polymorphisms in modulating the risk of colorectal cancer (CRC). CRC is one of the major malignancies affecting the worldwide population and is currently ranking the third most common cancer in the world. In this review, we have attempted to discuss the structure, functions, and signaling of TLRs in comprehensive detail together with the role played by various TLR gene SNPs in CRC susceptibility.
Collapse
|
12
|
Hoda M. Potential Alternatives to Conventional Cancer Therapeutic Approaches: The Way Forward. Curr Pharm Biotechnol 2021; 22:1141-1148. [PMID: 33069195 DOI: 10.2174/1389201021666201016142408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
onventional cancer therapeutic approaches broadly include chemotherapy, radiation therapy and surgery. These established approaches have evolved over several decades of clinical experience. For a complex disease like cancer, satisfactory treatment remains an enigma for the simple fact that the causal factors for cancer are extremely diverse. In order to overcome existing therapeutic limitations, consistent scientific endeavors have evolved several potential therapeutic approaches, majority of which focuses essentially on targeted drug delivery, minimal concomitant ramification, and selective high cytotoxicity. The current review focuses on highlighting some of these potential alternatives that are currently in various stages of in vitro, in vivo, and clinical trials. These include physical, chemical and biological entities that are avidly being explored for therapeutic alternatives. Some of these entities include suicide gene, micro RNA, modulatory peptides, ultrasonic waves, free radicals, nanoparticles, phytochemicals, and gene knockout, and stem cells. Each of these techniques may be exploited exclusively and in combination with conventional therapeutic approaches thereby enhancing the therapeutic efficacy of the treatment. The review intends to briefly discuss the mechanism of action, pros, and cons of potential alternatives to conventional therapeutic approaches.
Collapse
Affiliation(s)
- Muddasarul Hoda
- Department of Biological Sciences, Aliah University, IIA/27-Newtown, Kolkata 700160, India
| |
Collapse
|
13
|
Luthra-Guptasarma M, Guptasarma P. Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe Covid-19? Bioessays 2021; 43:e2000211. [PMID: 34213801 DOI: 10.1002/bies.202000211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022]
Abstract
We propose that hyper-inflammation (HYPi) is a ''runaway'' consequence of acute inflammation (ACUi) that arises more easily (and also abates less easily) in those who host a pre-existing chronic inflammation (CHRi), because (i) most factors involved in generating an ACUi to limit viral proliferation are already present when there is an underlying CHRi, and also because (ii) anti-inflammatory (AI) mechanisms for the abatement of ACUi (following containment of viral proliferation) are suppressed and desensitized where there is an underlying CHRi, with this causing the ACUi to spiral into a HYPi. Stress, pollution, diet, and gut microbiomes (alterable in weeks through dietary changes) have an intimate and bidirectional cause-effect relationship with CHRi. We propose that avoidance of CHRi-promoting foods and adoption of CHRi-suppressing foods could reduce susceptibility to HYPi, in Covid-19 and in other viral diseases, such as influenza, which are characterized by episodic and unpredictable HYPi.
Collapse
Affiliation(s)
- Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
14
|
Yan D, Chen Y. Tumor mutation burden (TMB)-associated signature constructed to predict survival of lung squamous cell carcinoma patients. Sci Rep 2021; 11:9020. [PMID: 33907270 PMCID: PMC8079676 DOI: 10.1038/s41598-021-88694-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a common type of lung cancer with high incidence and mortality rate. Tumor mutational burden (TMB) is an emerging biomarker for selecting patients with non-small cell lung cancer (NSCLC) for immunotherapy. This study aimed to reveal TMB involved in the mechanisms of LUSC and develop a model to predict the overall survival of LUSC patients. The information of patients with LUSC were obtained from the cancer genome atlas database (TCGA). Differentially expressed genes (DEGs) between low- and the high-TMB groups were identified and taken as nodes for the protein-protein interaction (PPI) network construction. Gene oncology (GO) enrichment analysis and gene set enrichment analysis (GSEA) were used to investigate the potential molecular mechanism. Then, we identified the factors affecting the prognosis of LUSC through cox analysis, and developed a risk score signature. Kaplan-Meier method was conducted to analyze the difference in survival between the high- and low-risk groups. We constructed a nomogram based on the risk score model and clinical characteristics to predict the overall survival of patients with LUSC. Finally, the signature and nomogram were further validated by using the gene expression data downloaded from the Gene Expression Omnibus (GEO) database. 30 DEGs between high- and low-TMB groups were identified. PPI analysis identified CD22, TLR10, PIGR and SELE as the hub genes. Cox analysis indicated that FAM107A, IGLL1, SELE and T stage were independent prognostic factors of LUSC. Low-risk scores group lived longer than that of patients with high-risk scores in LUSC. Finally, we built a nomogram that integrated the clinical characteristics (TMN stage, age, gender) with the three-gene signature to predict the survival probability of LUSC patients. Further verification in the GEO dataset. TMB might contribute to the pathogenesis of LUSC. TMB-associated genes can be used to develope a model to predict the OS of lung squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Dan Yan
- Department of Respiratory, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, No. 365, East Renmin Road, Jinhua, 321000, Zhejiang Province, People's Republic of China.
| | - Yi Chen
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
15
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Nucci D, Fatigoni C, Salvatori T, Nardi M, Realdon S, Gianfredi V. Association between Dietary Fibre Intake and Colorectal Adenoma: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4168. [PMID: 33920845 PMCID: PMC8071151 DOI: 10.3390/ijerph18084168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
PubMed/Medline, Excerpta Medica dataBASE (EMBASE) and Scopus were searched in January 2021 in order to retrieve evidence assessing the association between dietary fibre intake and the risk of colorectal adenoma in adults. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used for the reporting of results. Only primary observational studies were included. Publication bias was estimated through the Egger's test and the visual inspection of the funnel plot. Heterogeneity between studies was calculated with I2 statistics. The search strategy identified 683 papers, 21 of which were included in our meta-analysis. Having evaluated a total of 157,725 subjects, the results suggest a protective effect of dietary fibre intake against colorectal adenoma. Effect Size (ES) was [0.71 (95% CI = 0.68-0.75), p = 0.000)]. Moderate statistical heterogeneity (Chi2 = 61.68, df = 23, I2 = 62.71%, p = 0.000) was found. Findings show a statistically significant (p = 0.000) and robust association between a higher intake of dietary fibre and a lower risk of colorectal adenoma, considering both the prevalent and incident risk. Moreover, the meta-regression analysis showed a borderline significant negative linear correlation between the amount of dietary fibre intake and colorectal adenoma. Lastly, we performed a subgroup analysis by sex, showing a higher protective effect for men.
Collapse
Affiliation(s)
- Daniele Nucci
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.N.); (M.N.)
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (C.F.); (T.S.)
| | - Tania Salvatori
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy; (C.F.); (T.S.)
| | - Mariateresa Nardi
- Nutritional Support Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.N.); (M.N.)
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
| | - Vincenza Gianfredi
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
- CAPHRI Care and Public Health Research Institute, Maastricht University, 6211 Maastricht, The Netherlands
| |
Collapse
|
17
|
Rasmussen NF, Bech BH, Rubin KH, Andersen V. Associations between participation in, intensity of, and time spent on leisure time physical activity and risk of inflammatory bowel disease among older adults (PA-IBD): a prospective cohort study. BMC Public Health 2021; 21:634. [PMID: 33794834 PMCID: PMC8015056 DOI: 10.1186/s12889-021-10492-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Inflammatory bowel diseases (IBDs) are diseases of the immune system that share some genetic and lifestyle-related predisposing factors. Increasing incidences have been reported in all age groups. Based on experimental studies suggesting a role of physical activity on intestinal inflammation, this study aimed to investigate the association between leisure time physical activity and the risk of IBD in older adults. Methods The study is a prospective cohort study using Danish registry data and questionnaire data from the Danish “Diet, Cancer and Health” cohort. The outcome IBD was defined as having at least two main diagnoses of Crohn’s disease or ulcerative colitis registered in the National Patient Registry from the period between December 1993 and May 1997 with an average follow-up of 25 years. Cox proportional hazard models were used to estimate hazard-ratios for IBD onset associated with being physically active and with levels of the metabolic equivalent of task (MET) hours/week of physical activity and hours/week spent on six types of physical activity. All analyses were adjusted for potential confounders. Furthermore, the analyses were stratified according to age-group, occupational physical activity, smoking, BMI and work status to test for effect modification. Results In total, 54,645 men and women aged between 50 and 64 years were included, and of which there were 529 cases. When comparing physically active with inactive participants measured by MET hours/week there was no statistically significant difference in risk of IBD (0.89 [0.13; 6.27]), regardless of how participation was measured. Results did not indicate any dose-response effect when comparing quartile groups of MET hours/week (HR = 0.97 [0.76; 1.22], HR = 0.82 [0.64; 1.05] and HR = 0.83 [0.65; 1.07] or whether five of the six types of activities were compared with the lowest quartile as reference. For do-it-yourself-work, the third quartile of hours/week was associated with a higher risk of IBD compared to the second quartile of hours/week (HR = 1.44 [1.10; 1.90]. No effect modification was found. Conclusions There was no association between physical activity and risk of IBD when comparing physically active with inactive participants. Neither did the results indicate any dose-response effect when comparing quartile groups of MET hours/week with the lowest quartile as reference. Do-it-yourself work, however, appeared to be associated with a higher risk of IBD when comparing the third quartile with the second quartile of hours/week. The study has clinical relevance by its contribution to the explanatory field of the causes of IBD. However, the study has some limitations, and further research is needed to clarify associations between physical activity and risk of IBD. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10492-7.
Collapse
Affiliation(s)
- Nathalie Fogh Rasmussen
- Focused research unit for Molecular Diagnostic and Clinical Research (MOK), IRS-Center Sonderjylland, Hospital of Southern Jutland, Kresten Philipsens Vej 15 F, 6200, Aabenraa, Denmark
| | - Bodil Hammer Bech
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| | - Katrine Hass Rubin
- OPEN - Open Patient data Explorative Network, Department of Clinical Research, University of Southern Denmark, and Odense University Hospital, Odense, Denmark
| | - Vibeke Andersen
- Focused research unit for Molecular Diagnostic and Clinical Research (MOK), IRS-Center Sonderjylland, Hospital of Southern Jutland, Kresten Philipsens Vej 15 F, 6200, Aabenraa, Denmark. .,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
18
|
Kopp TI, Vogel U, Andersen V. Associations between common polymorphisms in CYP2R1 and GC, Vitamin D intake and risk of colorectal cancer in a prospective case-cohort study in Danes. PLoS One 2020; 15:e0228635. [PMID: 32012190 PMCID: PMC6996822 DOI: 10.1371/journal.pone.0228635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background The association between vitamin D and incidence of colorectal cancer has been thoroughly investigated, but the results are conflicting. The objectives in this study were to investigate whether two functional polymorphisms in GC and CYP2R1, respectively, previously shown to predict vitamin D concentrations, were associated with risk of colorectal cancer; and further, to assess gene-environment interaction between the polymorphisms and intake of vitamin D through diet and supplementation in relation to risk of colorectal cancer. Methods A nested case-cohort study of 920 colorectal cancer cases and 1743 randomly selected participants from the Danish prospective “Diet, Cancer and Health” study was performed. Genotypes CYP2R1/rs10741657 and GC/rs4588 were determined by PCR-based KASP™ genotyping assay. Vitamin D intake from supplements and diet was assessed from a validated food frequency questionnaire. Incidence rate ratios were estimated by the Cox proportional hazards model, and interactions between polymorphisms in GC and CYP2R1 and vitamin D intake in relation to risk of colorectal cancer were assessed. Results Neither of the two polymorphisms was associated with risk of colorectal cancer per se. Heterozygote carriage of CYP2R1/rs10741657 and GC/rs4588, and carriage of two risk alleles (estimated by a genetic risk score) were weakly associated with 9–12% decreased risk of colorectal cancer per 3 μg intake of vitamin D per day (IRRCYP2R1/rs10741657 = 0.88, 95% CI: 0.79–0.97; IRRGC/rs4588 = 0.91, 95% CI: 0.82–1.01, IRRGRS2 = 0.90, 95% CI: 0.81–0.99). Conclusions The results suggest that genetic variation in vitamin D metabolising genes may influence the association between vitamin D intake, through food and supplementation, and risk of colorectal cancer. Clinical trial registry NCT03370432. Registered 12 December 2017 (retrospectively registered).
Collapse
Affiliation(s)
- Tine Iskov Kopp
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Neurology, The Danish Multiple Sclerosis Registry, Rigshospitalet, Glostrup, Denmark
- * E-mail:
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Centre Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Regional Health Research-Center Sønderjylland, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Rubin KH, Rasmussen NF, Petersen I, Kopp TI, Stenager E, Magyari M, Hetland ML, Bygum A, Glintborg B, Andersen V. Intake of dietary fibre, red and processed meat and risk of late-onset Chronic Inflammatory Diseases: A prospective Danish study on the "diet, cancer and health" cohort. Int J Med Sci 2020; 17:2487-2495. [PMID: 33029091 PMCID: PMC7532485 DOI: 10.7150/ijms.49314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Human and animal studies support the involvement of diet in the development of CID -chronic inflammatory diseases such as inflammatory bowel disease, psoriasis, rheumatoid arthritis, psoriatic arthritis, and multiple sclerosis. Objective: This cohort study aimed to investigate the association between intake of fibre, red and processed meat, and occurrence of late-onset CID (50+ years of age) in the DCH: Danish Diet, Cancer and Health cohort. We hypothesised that risk of late-onset CID would be lower among those with high intake of fibre and/or low intake of meat compared to individuals with low fibre and/or high meat intake. Methods: The DCH recruited 56,468 individuals, aged 50-64 years, between 1993 and 1997. At recruitment, diet intake was registered using food frequency questionnaires as well as lifestyle factors in 56,075 persons. Exposure variables were generated as sex-adjusted tertiles of fibre and meat (g/day). Development of CIDs was identified in national registries. Hazard ratios (HR) of late-onset CIDs (adjusted for age, sex, energy intake, alcohol, smoking, education, comorbidity, and civil status) were estimated for all three exposure variables. Results: During follow-up of 1,123,754 years (median (Interquartile range) = 22.2 (20.1-23.1)), 1,758 (3.1%) participants developed at least one CID. The adjusted HRs for developing CID (low fibre 1.04 [0.89-1.22] and medium fibre 1.04 [0.91-1.18] (high fibre as reference), and medium meat 0.96 [0.86-1.09] and high meat 0.94 [0.82-1.07] (low meat as reference)) or the individual diseases were not statistically significant. Conclusion: This large study did not support that a high intake of fibre and/or a low intake of meat had a high impact on the risk of late-onset CID.
Collapse
Affiliation(s)
- Katrine Hass Rubin
- OPEN - Open Patient data Explorative Network, Department of Clinical Research, University of Southern Denmark, and Odense University Hospital, Odense Denmark
| | - Nathalie Fogh Rasmussen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Inge Petersen
- OPEN - Open Patient data Explorative Network, Department of Clinical Research, University of Southern Denmark, and Odense University Hospital, Odense Denmark
| | - Tine Iskov Kopp
- Danish Cancer Society Research Centre, Copenhagen, Denmark.,The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmarkarch, University of Southern Denmark, Odense
| | - Egon Stenager
- MS clinic of Southern Jutland (Sønderborg, Esbjerg, Kolding) University Hospital of Southern Jutland, DK-6200 Aabenraa, Denmark.,Department of Regional Health Research, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Melinda Magyari
- The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmarkarch, University of Southern Denmark, Odense.,National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Merete Lund Hetland
- The DANBIO registry and Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Center of Head and Orthopaedics, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen
| | - Anette Bygum
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark.,Research Unit of Dermato-Venerology, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente Glintborg
- The DANBIO registry and Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Center of Head and Orthopaedics, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Aranda-Olmedo I, Rubio LA. Dietary legumes, intestinal microbiota, inflammation and colorectal cancer. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Andersen V, Halekoh U, Bohn T, Tjønneland A, Vogel U, Kopp TI. No Interaction between Polymorphisms Related to Vitamin A Metabolism and Vitamin A Intake in Relation to Colorectal Cancer in a Prospective Danish Cohort. Nutrients 2019; 11:nu11061428. [PMID: 31242605 PMCID: PMC6627526 DOI: 10.3390/nu11061428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Although vitamin A is essential for gut immune cell trafficking (paramount for the intestinal immune system), epidemiological studies on the role of vitamin A in colorectal cancer (CRC) aetiology are conflicting. By using functional polymorphisms, gene–environment (GxE) interaction analyses may identify the biological effects (or “mechanism of action”) of environmental factors on CRC aetiology. Potential interactions between dietary or supplemental vitamin A intake and genetic variation in the vitamin A metabolic pathway genes related to risk of CRC were studied. We used a nested case-cohort design within the Danish “Diet, Cancer and Health” cohort, with prospectively collected lifestyle information from 57,053 participants, and the Cox proportional hazard models and likelihood ratio test. No statistically significant associations between the selected polymorphisms and CRC, and no statistically significant interactions between vitamin A intake and the polymorphisms were found. In conclusion, no support of an involvement of vitamin A in CRC aetiology was found.
Collapse
Affiliation(s)
- Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Institute of Regional Health Research-Center Sønderjylland, Hospital of Southern Jutland, 6200 Aabenraa, Denmark.
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark.
| | - Ulrich Halekoh
- Institute of Public Health, Unit of Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, 5000 Odense, Denmark.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Population Health, 1445 Strassen, Luxembourg.
| | - Anne Tjønneland
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ulla Vogel
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark.
| | - Tine Iskov Kopp
- Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.
- The Danish Multiple Sclerosis Registry, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| |
Collapse
|
22
|
do Prado SBR, Castro-Alves VC, Ferreira GF, Fabi JP. Ingestion of Non-digestible Carbohydrates From Plant-Source Foods and Decreased Risk of Colorectal Cancer: A Review on the Biological Effects and the Mechanisms of Action. Front Nutr 2019; 6:72. [PMID: 31157230 PMCID: PMC6529955 DOI: 10.3389/fnut.2019.00072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The hypothesis that links the increase in the intake of plant-source foods to a decrease in colorectal cancer (CRC) risk has almost 50 years. Nowadays, systematic reviews and meta-analysis of case-control and cohort studies confirmed the association between dietary patterns and CRC risk, in which the non-digestible carbohydrates (NDC) from plant-source foods are known to play beneficial effects. However, the mechanisms behind the physicochemical properties and biological effects induced by NDC on the decrease of CRC development and progression remain not fully understood. NDC from plant-source foods consist mainly of complex carbohydrates from plant cell wall including pectin and hemicellulose, which vary among foods in structure and in composition, therefore in both physicochemical properties and biological effects. In the present review, we highlighted the mechanisms and described the recent findings showing how these complex NDC from plant-source foods are related to a decrease in CRC risk through induction of both physicochemical effects in the gastrointestinal tract, fermentation-related effects, and direct effects resulting from the interaction between NDC and cellular components including toll-like receptors and galectin-3. Studies support that the definition of the structure-function relationship-especially regarding the fermentation-related effects of NDC, as well as the direct effects of these complex carbohydrates in cells-is crucial for understanding the possible NDC anticancer effects. The dietary recommendations for the intake of NDC are usually quantitative, describing a defined amount of intake per day. However, as NDC from plant-source foods can exert effects that vary widely according to the NDC structure, the dietary recommendations for the intake of NDC plant-source foods are expected to change from a quantitative to a qualitative perspective in the next few years, as occurred for lipid recommendations. Thus, further studies are necessary to define whether specific and well-characterized NDC from plant-source foods induce beneficial effects related to a decrease in CRC risk, thereby improving nutritional recommendations of healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Gabrielle Fernandez Ferreira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer 2019; 120:871-882. [PMID: 30936499 PMCID: PMC6734657 DOI: 10.1038/s41416-019-0441-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022] Open
Abstract
Significant progress in the development of new immunotherapies has led to successful clinical trials for malignant melanoma and non-small cell lung cancer; however, for the majority of solid tumours of the gastrointestinal tract, little or no progress has been seen. The efficacy of immunotherapies is limited by the complexities of a diverse set of immune cells, and interactions between the tumour cells and all other cells in the local microenvironment of solid tumours. A large fraction of immune cells present in and around solid tumours derive from the innate arm of the immune system and using these cells against tumours offers an alternative immunotherapeutic option, especially as current strategies largely harness the adaptive arm of the immune system. This option is currently being investigated and attempts at using the innate immune system for gastrointestinal cancers are showing initial results. Several important factors, including cytokines, chemotherapeutics and the microbiome, influence the plasticity and functionality of innate (myeloid) cells in the microenvironment, and this complexity of regulation has limited translation into successful trials so far. In this review, current concepts of the immunobiology of the innate arm in the tumour microenvironment are presented in the context of clinical translation.
Collapse
Affiliation(s)
- Jakob Nikolas Kather
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,German Translational Cancer Consortium (DKTK), Heidelberg, Germany.,Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany. .,Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany.
| |
Collapse
|
24
|
Panebianco C, Villani A, Pazienza V. High Levels of Prebiotic Resistant Starch in Diet Modulate Gene Expression and Metabolomic Profile in Pancreatic Cancer Xenograft Mice. Nutrients 2019; 11:nu11040709. [PMID: 30934731 PMCID: PMC6521226 DOI: 10.3390/nu11040709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer initiation and protection mainly derives from a systemic metabolic environment regulated by dietary patterns. Less is known about the impact of nutritional interventions in people with a diagnosis of cancer. The aim of our study was to investigate the effect of a diet rich in resistant starch (RS) on cell pathways modulation and metabolomic phenotype in pancreatic cancer xenograft mice. RNA-Seq experiments on tumor tissue showed that 25 genes resulted in dysregulated pancreatic cancer in mice fed with an RS diet, as compared to those fed with control diet. Moreover, in these two different mice groups, six serum metabolites were deregulated as detected by LC–MS analysis. A bioinformatic prediction analysis showed the involvement of the differentially expressed genes on insulin receptor signaling, circadian rhythm signaling, and cancer drug resistance among the three top canonical pathways, whilst cell death and survival, gene expression, and neurological disease were among the three top disease and biological functions. These findings shed light on the genomic and metabolic phenotype, contributing to the knowledge of the mechanisms through which RS may act as a potential supportive approach for enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
25
|
Intake of Red and Processed Meat, Use of Non-Steroid Anti-Inflammatory Drugs, Genetic Variants and Risk of Colorectal Cancer: A Prospective Study of the Danish "Diet, Cancer and Health" Cohort. Int J Mol Sci 2019; 20:ijms20051121. [PMID: 30841568 PMCID: PMC6429260 DOI: 10.3390/ijms20051121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023] Open
Abstract
Red and processed meat have been associated with increased risk of colorectal cancer (CRC), whereas long-term use of non-steroid anti-inflammatory drugs (NSAIDs) may reduce the risk. The aim was to investigate potential interactions between meat intake, NSAID use, and gene variants in fatty acid metabolism and NSAID pathways in relation to the risk of CRC. A nested case-cohort study of 1038 CRC cases and 1857 randomly selected participants from the Danish prospective “Diet, Cancer and Health” study encompassing 57,053 persons was performed using the Cox proportional hazard model. Gene variants in SLC25A20, PRKAB1, LPCAT1, PLA2G4A, ALOX5, PTGER3, TP53, CCAT2, TCF7L2, and BCL2 were investigated. CCAT2 rs6983267 was associated with the risk of CRC per se (p < 0.01). Statistically significant interactions were found between intake of red and processed meat and CCAT2 rs6983267, TP53 rs1042522, LPCAT1 rs7737692, SLC25A20 rs7623023 (pinteraction = 0.04, 0.04, 0.02, 0.03, respectively), and the use of NSAID and alcohol intake and TP53 rs1042522 (pinteraction = 0.04, 0.04, respectively) in relation to the risk of CRC. No other consistent associations or interactions were found. This study replicated an association of CCAT2 rs6983267 with CRC and an interaction between TP53 rs1042522 and NSAID in relation to CRC. Interactions between genetic variants in fatty acid metabolism and NSAID pathways and the intake of red and processed meat were found. Our results suggest that meat intake and NSAID use affect the same carcinogenic mechanisms. All new findings should be sought replicated in independent prospective studies. Future studies on the cancer-protective effects of aspirin/NSAID should include gene and meat assessments.
Collapse
|
26
|
Benarba B. Red and processed meat and risk of colorectal cancer: an update. EXCLI JOURNAL 2018; 17:792-797. [PMID: 30190669 PMCID: PMC6123610 DOI: 10.17179/excli2018-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 11/21/2022]
Affiliation(s)
- Bachir Benarba
- Laboratory Research on Biological Systems and Geomatics, Faculty of Nature and Life,University of Mascara, Algeria
| |
Collapse
|
27
|
Chen J, Vitetta L. Inflammation-Modulating Effect of Butyrate in the Prevention of Colon Cancer by Dietary Fiber. Clin Colorectal Cancer 2018; 17:e541-e544. [PMID: 29866614 DOI: 10.1016/j.clcc.2018.05.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023]
Abstract
The intestinal microbiota plays key roles in human health, and adverse dysbiosis shifts of the microbiota have been associated with chronic diseases, including large bowel cancer. High-fiber diets may reduce the risk for large bowel cancer in association with gut microbiota modulation and butyrate production. Butyrate can inhibit histone deacetylases and associated signaling pathways in cultured cancer cells, promoting cancer cell apoptosis. However, butyrate has prevented colon cancer through the regulation of immune homeostasis rather than histone deacetylases inhibition. It could be important to further examine the pathways of how butyrate encourages immune system changes. We posited that butyrate-activated T-regulatory cells block proinflammatory T cells and thus reduce proinflammatory cytokine production; these cytokines increase cell proliferation and cell survival, the 2 most important cancer cell characteristics. Butyrate can exert anticancer effects through inhibition of multiple signaling pathways. It is possible that a low concentration of butyrate could modulate the immune system before other pathways to exert an anticancer effect. Increasing the concentration of butyrate in the intestines may produce a synergistic inhibitory signaling pathway response and an anti-inflammatory effect.
Collapse
Affiliation(s)
| | - Luis Vitetta
- Medlab Clinical, Sydney, Australia; The University of Sydney, Sydney Medical School, Sydney, Australia.
| |
Collapse
|