1
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Dello Russo M, Sirangelo I, Lauria F, Formisano A, Iannuzzi C, Hebestreit A, Pala V, Siani A, Russo P. Dietary Advanced Glycation End Products (AGEs) and Urinary Fluorescent AGEs in Children and Adolescents: Findings from the Italian I.Family Project. Nutrients 2024; 16:1831. [PMID: 38931185 PMCID: PMC11206686 DOI: 10.3390/nu16121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Advanced glycation end products (AGEs) have been implicated in chronic diseases in adults, but their role in paediatric populations remains uncertain. This study, conducted on the Italian sample of the I.Family project, aimed to investigate the relationship between dietary and urinary fluorescent AGEs in children and adolescents. The secondary objective was to investigate the sources of dietary AGEs (dAGEs) and their association with dietary composition and anthropometric parameters. Dietary data were collected from 1048 participants via 24 h dietary recall in 2013/2014 to estimate dAGEs intake, while urinary fluorescent AGE levels were measured in 544 individuals. Participants were stratified based on dAGEs intake and compared with respect to urinary fluorescent AGE levels, anthropometric measurements, and dietary intake. The results showed no significant correlation between dietary and urinary fluorescent AGE levels, nor between dAGEs and anthropometric parameters. Notably, higher dAGEs were associated with a diet richer in protein (especially from meat sources) and fat and lower in carbohydrates. In addition, the consumption of ultra-processed foods was lower in participants with a higher DAGE intake. This study highlights the lack of a clear association between dietary and urinary fluorescent AGEs in children, but suggests a distinctive dietary pattern associated with increased dAGEs intake. Further investigation is warranted to elucidate the potential health implications of dAGEs in paediatric populations.
Collapse
Affiliation(s)
- Marika Dello Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Ivana Sirangelo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (I.S.); (C.I.)
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Annarita Formisano
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (I.S.); (C.I.)
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, 28359 Bremen, Germany;
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
| | - Paola Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (M.D.R.); (A.F.); (A.S.); (P.R.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (I.S.); (C.I.)
| |
Collapse
|
3
|
Zhou J, Li Y, Zhang J, Cai F. Developing a Portable Autofluorescence Detection System and Its Application in Biological Samples. SENSORS (BASEL, SWITZERLAND) 2024; 24:3351. [PMID: 38894145 PMCID: PMC11174582 DOI: 10.3390/s24113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Advanced glycation end-products (AGEs) are complex compounds closely associated with several chronic diseases, especially diabetes mellitus (DM). Current methods for detecting AGEs are not suitable for screening large populations, or for long-term monitoring. This paper introduces a portable autofluorescence detection system that measures the concentration of AGEs in the skin based on the fluorescence characteristics of AGEs in biological tissues. The system employs a 395 nm laser LED to excite the fluorescence of AGEs, and uses a photodetector to capture the fluorescence intensity. A model correlating fluorescence intensity with AGEs concentration facilitates the detection of AGEs levels. To account for the variation in optical properties of different individuals' skin, the system includes a 520 nm light source for calibration. The system features a compact design, measuring only 60 mm × 50 mm × 20 mm, and is equipped with a miniature STM32 module for control and a battery for extended operation, making it easy for subjects to wear. To validate the system's effectiveness, it was tested on 14 volunteers to examine the correlation between AGEs and glycated hemoglobin, revealing a correlation coefficient of 0.49. Additionally, long-term monitoring of AGEs' fluorescence and blood sugar levels showed a correlation trend exceeding 0.95, indicating that AGEs reflect changes in blood sugar levels to some extent. Further, by constructing a multivariate predictive model, the study also found that AGEs levels are correlated with age, BMI, gender, and a physical activity index, providing new insights for predicting AGEs content and blood sugar levels. This research supports the early diagnosis and treatment of chronic diseases such as diabetes, and offers a potentially useful tool for future clinical applications.
Collapse
Affiliation(s)
| | - Yunfei Li
- School of Biomedical Engineering, Hainan University, Sanya 572000, China; (J.Z.); (J.Z.); (F.C.)
| | | | | |
Collapse
|
4
|
Clemente-Suárez VJ, Peris-Ramos HC, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, David-Fernandez S, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Personalizing Nutrition Strategies: Bridging Research and Public Health. J Pers Med 2024; 14:305. [PMID: 38541047 PMCID: PMC10970995 DOI: 10.3390/jpm14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, although life expectancy has increased significantly, non-communicable diseases (NCDs) continue to pose a significant threat to the health of the global population. Therefore, eating habits have been recognized as key modifiable factors that influence people's health and well-being. For this reason, it is interesting to study dietary patterns, since the human diet is a complex mixture of macronutrients, micronutrients, and bioactive compounds, and can modulate multiple physiological processes, including immune function, the metabolism, and inflammation. To ensure that the data we acquired were current and relevant, we searched primary and secondary sources, including scientific journals, bibliographic indexes, and databases in the last 15 years with the most relevant articles. After this search, we observed that all the recent research on NCDs suggests that diet is a critical factor in shaping an individual's health outcomes. Thus, cardiovascular, metabolic, mental, dental, and visual health depends largely on the intake, habits and patterns, and nutritional behaviors. A diet high in processed and refined foods, added sugars, and saturated fats can increase the risk of developing chronic diseases. On the other hand, a diet rich in whole, nutrient-dense foods, such as vegetables, fruits, nuts, legumes, and a high adherence to Mediterranean diet can improve health's people.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Helia Carmen Peris-Ramos
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | - Susana David-Fernandez
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
5
|
Rhein S, Inderhees J, Herrmann O, Othman A, Begemann K, Fleming T, Nawroth PP, Klika KD, Isa R, König IR, Royl G, Schwaninger M. Glyoxal in hyperglycaemic ischemic stroke - a cohort study. Cardiovasc Diabetol 2023; 22:173. [PMID: 37438755 DOI: 10.1186/s12933-023-01892-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperglycaemia is frequent in acute ischemic stroke and denotes a bad prognosis, even in the absence of pre-existing diabetes. However, in clinical trials treatment of elevated glucose levels with insulin did not improve stroke outcome, suggesting that collateral effects rather than hyperglycaemia itself aggravate ischemic brain damage. As reactive glucose metabolites, glyoxal and methylglyoxal are candidates for mediating the deleterious effects of hyperglycaemia in acute stroke. METHODS In 135 patients with acute stroke, we used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to measure glyoxal, methylglyoxal and several of their glycated amino acid derivatives in serum. Results were verified in a second cohort of 61 stroke patients. The association of serum concentrations with standard stroke outcome scales (NIHSS, mRS) was tested. RESULTS Glucose, glyoxal, methylglyoxal, and the glyoxal-derived glycated amino acid Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (G-H1) were positively correlated with a bad stroke outcome at 3 months as measured by mRS90, at least in one of the two cohorts. However, the glycated amino acids Nε-carboxyethyllysine (CEL) and in one cohort pyrraline showed an inverse correlation with stroke outcome probably reflecting lower food intake in severe stroke. Patients with a poor outcome had higher serum concentrations of glyoxal and methylglyoxal. CONCLUSIONS The glucose-derived α-dicarbonyl glyoxal and glycated amino acids arising from a reaction with glyoxal are associated with a poor outcome in ischemic stroke. Thus, lowering α-dicarbonyls or counteracting their action could be a therapeutic strategy for hyperglycaemic stroke.
Collapse
Affiliation(s)
- Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver Herrmann
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Alaa Othman
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Thomas Fleming
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
- German Research Centre for Diabetes Research, Düsseldorf, Germany
| | - Peter P Nawroth
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rakad Isa
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Inke R König
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Georg Royl
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
6
|
Kim Y. Blood and Tissue Advanced Glycation End Products as Determinants of Cardiometabolic Disorders Focusing on Human Studies. Nutrients 2023; 15:nu15082002. [PMID: 37111220 PMCID: PMC10144557 DOI: 10.3390/nu15082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiometabolic disorders are characterised by a cluster of interactive risk determinants such as increases in blood glucose, lipids and body weight, as well as elevated inflammation and oxidative stress and gut microbiome changes. These disorders are associated with onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). T2DM is strongly associated with CVD. Dietary advanced glycation end products (dAGEs) attributable from modern diets high in sugar and/or fat, highly processed foods and high heat-treated foods can contribute to metabolic etiologies of cardiometabolic disorders. This mini review aims to determine whether blood dAGEs levels and tissue dAGEs levels are determinants of the prevalence of cardiometabolic disorders through recent human studies. ELISA (enzyme-linked immunosorbent assay), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) for blood dAGEs measurement and skin auto fluorescence (SAF) for skin AGEs measurement can be used. Recent human studies support that a diet high in AGEs can negatively influence glucose control, body weight, blood lipid levels and vascular health through the elevated oxidative stress, inflammation, blood pressure and endothelial dysfunction compared with a diet low in AGEs. Limited human studies suggested a diet high in AGEs could negatively alter gut microbiota. SAF could be considered as one of the predictors affecting risks for cardiometabolic disorders. More intervention studies are needed to determine how dAGEs are associated with the prevalence of cardiometabolic disorders through gut microbiota changes. Further human studies are conducted to find the association between CVD events, CVD mortality and total mortality through SAF measurement, and a consensus on whether tissue dAGEs act as a predictor of CVD is required.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
7
|
Yadav N, Palkhede JD, Kim SY. Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs. Int J Mol Sci 2023; 24:7672. [PMID: 37108833 PMCID: PMC10141761 DOI: 10.3390/ijms24087672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing effects in the conventional system. Traditional medicines based on alkaloids, phenolics, tannins, saponins, terpenes, steroids, flavonoids, glycosides, and phytosterols have been in use for a long time and are crucial as alternative treatments. These phytochemical elements are crucial for scavenging free radicals, capturing reactive carbonyl species, changing protein glycation sites, inactivating carbohydrate hydrolases, fighting pathological conditions, and accelerating the healing of wounds. In this review, 221 research papers have been reviewed. This research sought to provide an update on the types and methods of formation of methylglyoxal-advanced glycation end products (MGO-AGEs) and molecular pathways induced by AGEs during the progression of the chronic complications of diabetes and associated diseases as well as to discuss the role of phytoconstituents in MGO scavenging and AGEs breaking. The development and commercialization of functional foods using these natural compounds can provide potential health benefits.
Collapse
Affiliation(s)
- Neera Yadav
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jyoti Dnyaneshwar Palkhede
- Department of Chemistry, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
8
|
de Graaf MCG, Scheijen JLJM, Spooren CEGM, Mujagic Z, Pierik MJ, Feskens EJM, Keszthelyi D, Schalkwijk CG, Jonkers DMAE. The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients 2022; 15:nu15010083. [PMID: 36615740 PMCID: PMC9824683 DOI: 10.3390/nu15010083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
A Western diet comprises high levels of dicarbonyls and advanced glycation endproducts (AGEs), which may contribute to flares and symptoms in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). We therefore investigated the intake of dietary dicarbonyls and AGEs in IBD and IBS patients as part of the habitual diet, and their association with intestinal inflammation. Food frequency questionnaires from 238 IBD, 261 IBS as well as 195 healthy control (HC) subjects were used to calculate the intake of dicarbonyls methylglyoxal, glyoxal, and 3-deoxyglucosone, and of the AGEs Nε-(carboxymethyl)lysine, Nε-(1-carboxyethyl)lysine and methylglyoxal-derived hydroimidazolone-1. Intestinal inflammation was assessed using faecal calprotectin. The absolute dietary intake of all dicarbonyls and AGEs was higher in IBD and HC as compared to IBS (all p < 0.05). However, after energy-adjustment, only glyoxal was lower in IBD versus IBS and HC (p < 0.05). Faecal calprotectin was not significantly associated with dietary dicarbonyls and AGEs in either of the subgroups. The absolute intake of methylglyoxal was significantly higher in patients with low (<15 μg/g) compared to moderate calprotectin levels (15−<50 μg/g, p = 0.031). The concentrations of dietary dicarbonyls and AGEs generally present in the diet of Dutch patients with IBD or IBS are not associated with intestinal inflammation, although potential harmful effects might be counteracted by anti-inflammatory components in the food matrix.
Collapse
Affiliation(s)
- Marlijne C. G. de Graaf
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-38-84-237
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Corinne E. G. M. Spooren
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Zlatan Mujagic
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marieke J. Pierik
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Daniel Keszthelyi
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
9
|
Lyu L, Yu J, Liu Y, He S, Zhao Y, Qi M, Yang N, He L, Wang J, Ping F, Xu L, Li W, Zhang H, Li Y. Dietary patterns, oxidative Stress, inflammation and biological variation in hemoglobin A1c: Association and Mediation analysis in a rural community in north China. Diabetes Res Clin Pract 2022; 194:110154. [PMID: 36379413 DOI: 10.1016/j.diabres.2022.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/15/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim is to assess the relationship between the hemoglobin glycation index(HGI) and dietary patterns, and investigates whether inflammation and oxidative stress mediate the relationship. METHODS Cross-sectional data were collected from 453 dwellers in a Chinese rural community. Diet was assessed using 24 h food recalls. Based on the energy intake ratio from three macronutrients, dietary patterns were identified by cluster analysis. The HGI was defined as the observed HbA1c minus predicted HbA1c. Indicators of inflammation and oxidative stress were assessed. RESULT 3 dietary patterns were clustered, namely "fat(n = 100)", "balance(n = 186)" and "carbohydrate(n = 167)". The fat dietary patterns had lower HGI than the other two dietary patterns. TNFα was higher in the carbohydrate dietary pattern. Linear regression analysis suggested that the carbohydrate dietary pattern was correlated with higher HGI levels(β = 0.204,95 %CI(0.071,0.338)), compared with the fat dietary pattern. The relationship disappeared after accounting for biomarkers of inflammation and oxidative stress. Mediation analyses indicated that TNFα might explain for 19.15 % effects of the carbohydrate dietary pattern on HGI, compared with the fat dietary pattern. CONCLUSION The carbohydrate dietary pattern had positive associations with HGI and TNFα. TNFα partly mediated the relationship between dietary patterns and HGI.
Collapse
Affiliation(s)
- Lu Lyu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Yu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiwen Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shuli He
- Department of Nutrition, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zhao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengya Qi
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Na Yang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Liyun He
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jialu Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fan Ping
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lingling Xu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huabing Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuxiu Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
10
|
A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. Int J Mol Sci 2022; 23:ijms23105328. [PMID: 35628138 PMCID: PMC9141283 DOI: 10.3390/ijms23105328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing. Despite a marked percentage difference in AGE intake, we observed no differences in microbial richness and the general community structure. Only the Anaerostipes spp. had a relative abundance >0.5% and showed differential abundance (0.5 versus 1.11%; p = 0.028, after low- or high-AGE diet, respectively). While the habitual intake of dicarbonyls was not associated with microbial richness or a general community structure, the intake of 3-deoxyglucosone was especially associated with an abundance of several genera. Thus, a 4-week diet low or high in AGEs has a limited impact on the gut microbial composition of abdominally obese humans, paralleling its previously observed limited biological consequences. The effects of dietary dicarbonyls on the gut microbiota composition deserve further investigation.
Collapse
|
11
|
Xie MZ, Guo C, Dong JQ, Zhang J, Sun KT, Lu GJ, Wang L, Bo DY, Jiao LY, Zhao GA. Glyoxal damages human aortic endothelial cells by perturbing the glutathione, mitochondrial membrane potential, and mitogen-activated protein kinase pathways. BMC Cardiovasc Disord 2021; 21:603. [PMID: 34922451 PMCID: PMC8684178 DOI: 10.1186/s12872-021-02418-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Exposure to glyoxal, the smallest dialdehyde, is associated with several diseases; humans are routinely exposed to glyoxal because of its ubiquitous presence in foods and the environment. The aim of this study was to examine the damage caused by glyoxal in human aortic endothelial cells.
Methods Cell survival assays and quantitative fluorescence assays were performed to measure DNA damage; oxidative stress was detected by colorimetric assays and quantitative fluorescence, and the mitogen-activated protein kinase pathways were assessed using western blotting. Results Exposure to glyoxal was found to be linked to abnormal glutathione activity, the collapse of mitochondrial membrane potential, and the activation of mitogen-activated protein kinase pathways. However, DNA damage and thioredoxin oxidation were not induced by dialdehydes. Conclusions Intracellular glutathione, members of the mitogen-activated protein kinase pathways, and the mitochondrial membrane potential are all critical targets of glyoxal. These findings provide novel insights into the molecular mechanisms perturbed by glyoxal, and may facilitate the development of new therapeutics and diagnostic markers for cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02418-3.
Collapse
Affiliation(s)
- Ming-Zhang Xie
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Chun Guo
- Henan Key Laboratory of Neural Regeneration (Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia), First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jia-Qi Dong
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jie Zhang
- Department of Integrating Western and Chinese of Internal Medicine, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Ke-Tao Sun
- Department of Laboratory, Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Guang-Jian Lu
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lei Wang
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - De-Ying Bo
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lu-Yang Jiao
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Guo-An Zhao
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| |
Collapse
|
12
|
Baskal S, Post A, Kremer D, Bollenbach A, Bakker SJL, Tsikas D. Urinary excretion of amino acids and their advanced glycation end-products (AGEs) in adult kidney transplant recipients with emphasis on lysine: furosine excretion is associated with cardiovascular and all-cause mortality. Amino Acids 2021; 53:1679-1693. [PMID: 34693489 PMCID: PMC8592953 DOI: 10.1007/s00726-021-03091-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Arginine (Arg) and lysine (Lys) moieties of proteins undergo various post-translational modifications (PTM) including enzymatic NG- and Nε-methylation and non-enzymatic NG- and Nε-glycation. In a large cohort of stable kidney transplant recipients (KTR, n = 686), high plasma and low urinary concentrations of asymmetric dimethylarginine (ADMA), an abundant PTM metabolite of Arg, were associated with cardiovascular and all-cause mortality. Thus, the prediction of the same biomarker regarding mortality may depend on the biological sample. In another large cohort of stable KTR (n = 555), higher plasma concentrations of Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), two advanced glycation end-products (AGEs) of Lys, were associated with higher cardiovascular mortality. Yet, the associations of urinary AGEs with mortality are unknown. In the present study, we measured 24 h urinary excretion of Lys, CML, and furosine in 630 KTR and 41 healthy kidney donors before and after donation. Our result indicate that lower urinary CML and lower furosine excretion rates are associated with higher mortality in KTR, thus resembling the associations of ADMA. Lower furosine excretion rates were also associated with higher cardiovascular mortality. The 24 h urinary excretion rate of amino acids and their metabolites decreased post-donation (varying as little as − 24% for CEL, and as much as − 62% for ADMA). For most amino acids, the excretion rate was lower in KTR than in donors pre-donation [except for S-(1-carboxyethyl)-l-cysteine (CEC) and NG-carboxyethylarginine (CEA)]. Simultaneous GC–MS measurement of free amino acids, their PTM metabolites and AGEs in urine is a non-invasive approach in kidney transplantation.
Collapse
Affiliation(s)
- Svetlana Baskal
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
13
|
van der Bruggen MM, Spronck B, Delhaas T, Reesink KD, Schalkwijk CG. The Putative Role of Methylglyoxal in Arterial Stiffening: A Review. Heart Lung Circ 2021; 30:1681-1693. [PMID: 34393049 DOI: 10.1016/j.hlc.2021.06.527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Arterial stiffening is a hallmark of vascular ageing and a consequence of many diseases including diabetes mellitus. Methylglyoxal (MGO), a highly reactive α-dicarbonyl mainly formed during glycolysis, has emerged as a potential contributor to the development of arterial stiffness. MGO reacts with arginine and lysine residues in proteins to form stable advanced glycation endproducts (AGEs). AGEs may contribute to arterial stiffening by increased cross-linking of collagen within the extracellular matrix (ECM), by altering the vascular structure, and by triggering inflammatory and oxidative pathways. Although arterial stiffness is mainly determined by ECM and vascular smooth muscle cell function, the effects of MGO and MGO-derived AGEs on these structures have not been thoroughly reviewed to date. METHODS AND RESULTS We conducted a PubMed search without filtering for publication date which resulted in 16 experimental and 22 clinical studies eligible for inclusion. Remarkably, none of the experimental and only three of the clinical studies specifically mentioned MGO-derived AGEs. Almost all studies reported an association between arterial stiffness and AGE accumulation in the arterial wall or increased plasma AGEs. Other studies report reduced arterial stiffness in experimental models upon administration of AGE-breakers. CONCLUSIONS No papers published to date directly show an association between MGO or MGO-derived AGEs and arterial stiffening. The relevance of the various underlying mechanisms is not yet clear, which is particularly due to methodological challenges in the detection of MGO and MGO-derived AGEs at the molecular, intra- and pericellular, and structural levels, as well as in challenges in the assessment of intrinsic arterial wall properties at ECM- and tissue levels.
Collapse
Affiliation(s)
- Myrthe M van der Bruggen
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Biomedical Engineering, School of Engineering & Applied Sciences, Yale University, New Haven, CT, USA
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Koen D Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
14
|
Baskal S, Bollenbach A, Mels C, Kruger R, Tsikas D. Development, validation of a GC-MS method for the simultaneous measurement of amino acids, their PTM metabolites and AGEs in human urine, and application to the bi-ethnic ASOS study with special emphasis to lysine. Amino Acids 2021; 54:615-641. [PMID: 34251524 PMCID: PMC9117344 DOI: 10.1007/s00726-021-03031-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022]
Abstract
A gas chromatography-mass spectrometry (GC-MS) method was developed and validated in relevant concentration ranges for the simultaneous measurement of L-lysine (Lys, L) and its Nε- and Nα-methylated (M), Nε- and Nα-acetylated (Ac), Nε-carboxymethylated (CM) and Nε-carboxyethylated (CE) metabolites in human urine. Analyzed Lys metabolites were the post-translational modification (PTM) products Nε-mono-, di- and trimethyllsine, Nε-MML, Nε-DML, Nε-TML, respectively, Nα-ML, Nε-AcL, Nα-AcL, and its advanced glycation end-products (AGEs) Nε-CML, Nε-CM-[2,4,4-2H3]Lys (d3-CML), Nε-CEL and furosine. AGEs of arginine (Arg) and cysteine (Cys) were also analyzed. De novo synthesized trideutero-methyl esters (R-COOCD3) from unlabelled amino acids and derivatives were used as internal standards. Native urine samples (10 µL aliquots) were evaporated to dryness under a stream of nitrogen. Analytes were esterified using 2 M HCl in methanol (60 min, 80 °C) and subsequently amidated by pentafluoropropionic anhydride in ethyl acetate (30 min, 65 °C). The generated methyl ester-pentafluoropropionyl (Me-PFP) derivatives were reconstituted in borate buffer and extracted immediately with toluene. GC-MS analyses were performed by split-less injection of 1-µL aliquots, oven-programmed separation and negative-ion chemical ionization (NICI). Mass spectra were generated in the scan mode (range, m/z 50-1000). Quantification was performed in the selected-ion monitoring (SIM) mode using a dwell time of 50 or 100 ms for each ion. The GC-MS method was suitable for the measurement of Lys and all of its metabolites, except for the quaternary ammonium cation Nε-TML. The Me-PFP derivatives of Lys, Arg and Cys and its metabolites eluted in the retention time window of 9 to 14 min. The derivatization of Nε-CML, d3-CML and Nε-CEL was accompanied by partial Nε-decarboxylation and formation of the Me-PFP Lys derivative. The lowest derivatization yield was observed for Nε-DML, indicating a major role of the Nε-DML group in Lys derivatization. The GC-MS method enables precise (relative standard deviation, RSD < 20%) and accurate (bias, < ± 20%) simultaneous measurement of 33 analytes in human urine in relevant concentration ranges. We used the method to measure the urinary excretion rates of Lys and its PTM metabolites and AGEs in healthy black (n = 39) and white (n = 41) boys of the Arterial Stiffness in Offspring Study (ASOS). No remarkable differences were found indicating no ethnic-related differences in PTM metabolites and AGEs except for Nε-monomethyllysine and S-(2-carboxymethylcysteine).
Collapse
Affiliation(s)
- Svetlana Baskal
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Alexander Bollenbach
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Catharina Mels
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Aglago EK, Schalkwijk CG, Freisling H, Fedirko V, Hughes DJ, Jiao L, Dahm CC, Olsen A, Tjønneland A, Katzke V, Johnson T, Schulze MB, Aleksandrova K, Masala G, Sieri S, Simeon V, Tumino R, Macciotta A, Bueno-de-Mesquita B, Skeie G, Gram IT, Sandanger T, Jakszyn P, Sánchez MJ, Amiano P, Colorado-Yohar SM, Gurrea AB, Perez-Cornago A, Mayén AL, Weiderpass E, Gunter MJ, Heath AK, Jenab M. Plasma concentrations of advanced glycation end-products and colorectal cancer risk in the EPIC study. Carcinogenesis 2021; 42:705-713. [PMID: 33780524 PMCID: PMC8162627 DOI: 10.1093/carcin/bgab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the non-enzymatic reaction between amino acids and reducing sugars, or dicarbonyls as intermediate compounds. Experimental studies suggest that AGEs may promote colorectal cancer, but prospective epidemiologic studies are inconclusive. We conducted a case-control study nested within a large European cohort. Plasma concentrations of three protein-bound AGEs-Nε-(carboxy-methyl)lysine (CML), Nε-(carboxy-ethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)-were measured by ultra-performance liquid chromatography-tandem mass spectrometry in baseline samples collected from 1378 incident primary colorectal cancer cases and 1378 matched controls. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed using conditional logistic regression for colorectal cancer risk associated with CML, CEL, MG-H1, total AGEs, and [CEL+MG-H1: CML] and [CEL:MG-H1] ratios. Inverse colorectal cancer risk associations were observed for CML (OR comparing highest to lowest quintile, ORQ5 versus Q1 = 0.40, 95% CI: 0.27-0.59), MG-H1 (ORQ5 versus Q1 = 0.73, 95% CI: 0.53-1.00) and total AGEs (OR Q5 versus Q1 = 0.52, 95% CI: 0.37-0.73), whereas no association was observed for CEL. A higher [CEL+MG-H1: CML] ratio was associated with colorectal cancer risk (ORQ5 versus Q1 = 1.91, 95% CI: 1.31-2.79). The associations observed did not differ by sex, or by tumour anatomical sub-site. Although individual AGEs concentrations appear to be inversely associated with colorectal cancer risk, a higher ratio of methylglyoxal-derived AGEs versus those derived from glyoxal (calculated by [CEL+MG-H1: CML] ratio) showed a strong positive risk association. Further insight on the metabolism of AGEs and their dicarbonyls precursors, and their roles in colorectal cancer development is needed.
Collapse
Affiliation(s)
- Elom K Aglago
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Heinz Freisling
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David J Hughes
- Cancer Biology and Therapeutics Group (CBT), Conway Institute, School of Biomolecular and Biomedical Science (SBBS), University College Dublin, Dublin, Ireland
| | - Li Jiao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Anja Olsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Cancer Society Research Center, København, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, København, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany
| | - Krasimira Aleksandrova
- Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Vittorio Simeon
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, University ‘Luigi Vanvitelli’, Napoli, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), Ragusa, Italy
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, Torino, Italy
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Guri Skeie
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Inger Torhild Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Torkjel Sandanger
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, Donostia-San Sebastian, Spain
| | - Sandra M Colorado-Yohar
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Aurelio Barricarte Gurrea
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer (IARC), Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mazda Jenab
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
16
|
Tang D, Xiao W, Gu WT, Zhang ZT, Xu SH, Chen ZQ, Xu YH, Zhang LY, Wang SM, Nie H. Pterostilbene prevents methylglyoxal-induced cytotoxicity in endothelial cells by regulating glyoxalase, oxidative stress and apoptosis. Food Chem Toxicol 2021; 153:112244. [PMID: 33930484 DOI: 10.1016/j.fct.2021.112244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Methylglyoxal (MGO), a cytotoxic byproduct of glycolysis in biological systems, can induce endothelial cells dysfunction, implicated in diabetic vascular complications. Pterostilbene (PTS), a naturally occurring resveratrol derivative, is involved in various pharmacological activities. This study aimed to explore the effects of PTS on MGO induced cytotoxicity in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms for the first time. In the current study, it has been demonstrated that PTS could enhance the level of glyoxalase 1 (GLO-1) and elevate glutathione (GSH) content to active the glyoxalase system, resulting in elimination of the toxic MGO as well as advanced glycation end products (AGEs) in HUVECs. Meanwhile, PTS could also suppress oxidative stress and thus exert cytoprotective effects by elevating Nrf2 nuclear translocation and the corresponding down-stream antioxidant enzymes in MGO induced HUVECs. In addition, PTS could alleviate MGO induced apoptosis in HUVECs via inhibition of oxidative stress and associated downstream mitochondria-dependent signaling apoptotic cascades, as characterized by preventing caspases family activation. Taken together, these findings suggest that PTS could protect against MGO induced endothelial cell cytotoxicity by regulating glyoxalase, oxidative stress and apoptosis, suggesting that PTS could be beneficial in the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei Xiao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Hong Xu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhi-Quan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - You-Hua Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu-Yong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
17
|
Amini S, Jafarirad S, Abiri B, Delgarm P, Mohamad-Zadeh Y, Ghomi MR, Jahangirimehr A. Traditional and Dairy Products and Vegetables Dietary Patterns Are Inversely Associated with the Risk of Cataract in the Middle Age and Aged Population: A Case-Control Study. J Nutr Health Aging 2021; 25:1248-1254. [PMID: 34866153 DOI: 10.1007/s12603-021-1707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Cataract is one of the most common causes of visual impairment and blindness in the world. In the present study, we have been trying to investigate the relationship between major dietary patterns and cataract. DESIGN This was a case-control study. SETTING An ophthalmology outpatient clinic of Khatam al-Anbia Hospital, in Shoushtar city. PARTICIPANTS 336 subjects (168 patients with cataract and 168 healthy ones), from 40 to 80 years old, were recruited. MEASUREMENTS A socio-demographic questionnaire was used to record the demographic information. A food frequency questionnaire was used to determine the foods consumed during the last year. The principal component analysis was used to extract major dietary patterns. The possible relationship between the major dietary patterns and cataract was assessed by multivariable logistic regression models. RESULTS We tried to eliminate the effect of cofactors. The results showed "dairy products and vegetables" dietary pattern had a negative association with cataract (OR: 0.301, 95%CI =0.137-0.658, P trend =0.002). The fourth quartile of the "traditional" dietary pattern also showed a protective role against the cataract (OR: 0.393, 95%CI =0.184-0.842, P trend = 0.036). The third and fourth quartiles of "carbohydrate and simple sugar" pattern were more related with cataract compared to the first quartile (OR: 3.574, 95%CI =1.665-7.671, and OR: 5.067, 95%CI =2.265-11.335, P trend <0.001 respectively). No significant association was found between «nuts, seeds and simple sugar" dietary pattern and cataract. CONCLUSION It seems a dietary pattern rich in proteins and vegetables can decrease the risk of cataract in middle-aged and aged subjects.
Collapse
Affiliation(s)
- S Amini
- Sima Jafarirad, Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Tel: +989112527976, ;
| | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki A, Yabu A, Nakamura H. Advanced glycation end products in musculoskeletal system and disorders. Methods 2020; 203:179-186. [PMID: 32987130 DOI: 10.1016/j.ymeth.2020.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The human population is ageing globally, and the number of old people is increasing yearly. Diabetes is common in the elderly, and the number of diabetic patients is also increasing. Elderly and diabetic patients often have musculoskeletal disorder, which are associated with advanced glycation end products (AGEs). AGEs are heterogeneous molecules derived from non-enzymatic products of the reaction of glucose or other sugar derivatives with proteins or lipids, and many different types of AGEs have been identified. AGEs are a biomarker for ageing and for evaluating disease conditions. Fluorescence, spectroscopy, mass spectrometry, chromatography, and immunological methods are commonly used to measure AGEs, but there is no standardized evaluation method because of the heterogeneity of AGEs. The formation of AGEs is irreversible, and they accumulate in tissue, eventually causing damage. AGE accumulation has been confirmed in neuromusculoskeletal tissues, including bones, cartilage, muscles, tendons, ligaments, and nerves, where they adversely affect biomechanical properties by causing charge changes and forming cross-linkages. AGEs also bind to receptors, such as the receptor for AGEs (RAGE), and induce inflammation by intracellular signal transduction. These mechanisms cause many varied aging and diabetes-related pathological conditions, such as osteoporosis, osteoarthritis, sarcopenia, tendinopathy, and neuropathy. Understanding of AGEs related pathomechanism may lead to develop novel methods for the prevention and therapy of such disorders which affect patients' quality of life. Herein, we critically review the current methodology used for detecting AGEs, and present potential mechanisms by which AGEs cause or exacerbate musculoskeletal disorders.
Collapse
Affiliation(s)
- Akinobu Suzuki
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan.
| | - Akito Yabu
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Japan
| |
Collapse
|
19
|
Dietary Patterns, Carbohydrates, and Age-Related Eye Diseases. Nutrients 2020; 12:nu12092862. [PMID: 32962100 PMCID: PMC7551870 DOI: 10.3390/nu12092862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Over a third of older adults in the U.S. experience significant vision loss, which decreases independence and is a biomarker of decreased health span. As the global aging population is expanding, it is imperative to uncover strategies to increase health span and reduce the economic burden of this age-related disease. While there are some treatments available for age-related vision loss, such as surgical removal of cataracts, many causes of vision loss, such as dry age-related macular degeneration (AMD), remain poorly understood and no treatments are currently available. Therefore, it is necessary to better understand the factors that contribute to disease progression for age-related vision loss and to uncover methods for disease prevention. One such factor is the effect of diet on ocular diseases. There are many reviews regarding micronutrients and their effect on eye health. Here, we discuss the impact of dietary patterns on the incidence and progression of age-related eye diseases, namely AMD, cataracts, diabetic retinopathy, and glaucoma. Then, we focus on the specific role of dietary carbohydrates, first by outlining the physiological effects of carbohydrates on the body and then how these changes translate into eye and age-related ocular diseases. Finally, we discuss future directions of nutrition research as it relates to aging and vision loss, with a discussion of caloric restriction, intermittent fasting, drug interventions, and emerging randomized clinical trials. This is a rich field with the capacity to improve life quality for millions of people so they may live with clear vision for longer and avoid the high cost of vision-saving surgeries.
Collapse
|
20
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
21
|
Kida Y, Saito M, Shinohara A, Soshi S, Marumo K. Non-invasive skin autofluorescence, blood and urine assays of the advanced glycation end product (AGE) pentosidine as an indirect indicator of AGE content in human bone. BMC Musculoskelet Disord 2019; 20:627. [PMID: 31881872 PMCID: PMC6933723 DOI: 10.1186/s12891-019-3011-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Bone mineral density (BMD) measurements are widely used to assess fracture risk. However, the finding that some fracture patients had high BMD together with the low contribution of drugs to osteoporosis suggests that bone strength factors other than BMD contribute to bone quality. We evaluated the amount of advanced glycation end products (AGEs) by non-invasive assays of serum and urine as well as by skin autofluorescence to measure the levels of a representative AGE, pentosidine, to investigate whether pentosidine can serve as an indirect indicator of AGEs formation in bone collagen. Methods A total of 100 spinal surgery patients without fragility fracture (54 males and 46 females) treated at our hospital were enrolled. The amount of pentosidine in blood, urine, skin and bone (lumbar lamina) samples from these patients was measured. AGE accumulation was assessed by measuring skin autofluorescence. We examined the correlation between pentosidine content in tissues and body fluid, as well as skin AGEs with age, height, body weight, BMI, and estimated glomerular filtration rate (eGFR). Results A significant age-related increase in pentosidine levels in tissues was observed, while there was a significant negative correlation between tissue pentosidine and eGFR. The amount of skin pentosidine was significantly and positively correlated with pentosidine content of the bone in those under 50 years of age. Urine pentosidine also correlated positively with bone pentosidine and skin pentosidine, but only in females. The total amount of AGEs in skin did not correlate with bone pentosidine. Conclusion In this study, the strong correlation between the pentosidine content in each sample and eGFR may indicate that renal dysfunction with advancing age increases oxidative stress and induces AGEs formation in collagen-containing tissues. The correlation of skin pentosidine concentration and eGFR, with AGEs formation in bone collagen suggests that pentosidine would be a useful indirect index of decreased bone quality. Skin AGEs estimated by autofluorescence in clinical situations may not be suitable as an indirect assessment of bone quality. Because urine pentosidine correlated positively with bone pentosidine and skin pentosidine in females, urine pentosidine may be a candidate for an indirect assessment of bone quality.
Collapse
Affiliation(s)
- Yoshikuni Kida
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Akira Shinohara
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shigeru Soshi
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|