1
|
Gao F, Liu S, Wang J, Wei G, Yu C, Zheng L, Sun L, Wang G, Sun Y, Bao Y, Song Z. TSP50 facilitates breast cancer stem cell-like properties maintenance and epithelial-mesenchymal transition via PI3K p110α mediated activation of AKT signaling pathway. J Exp Clin Cancer Res 2024; 43:201. [PMID: 39030572 PMCID: PMC11264956 DOI: 10.1186/s13046-024-03118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Studies have confirmed that epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties are conducive to cancer metastasis. In recent years, testes-specific protease 50 (TSP50) has been identified as a prognostic factor and is involved in tumorigenesis regulation. However, the role and molecular mechanisms of TSP50 in EMT and CSC-like properties maintenance remain unclear. METHODS The expression and prognostic value of TSP50 in breast cancer were excavated from public databases and explored using bioinformatics analysis. Then the expression of TSP50 and related genes was further validated by quantitative RT-PCR (qRT-PCR), Western blot, and immunohistochemistry (IHC). In order to investigate the function of TSP50 in breast cancer, loss- and gain-of-function experiments were conducted, both in vitro and in vivo. Furthermore, immunofluorescence (IF) and immunoprecipitation (IP) assays were performed to explore the potential molecular mechanisms of TSP50. Finally, the correlation between the expression of TSP50 and related genes in breast cancer tissue microarray and clinicopathological characteristics was analyzed by IHC. RESULTS TSP50 was negatively correlated with the prognosis of patients with breast cancer. TSP50 promoted CSC-like traits and EMT in both breast cancer cells and mouse xenograft tumor tissues. Additionally, inhibition of PI3K/AKT partly reversed TSP50-induced activation of CSC-like properties, EMT and tumorigenesis. Mechanistically, TSP50 and PI3K p85α regulatory subunit could competitively interact with the PI3K p110α catalytic subunit to promote p110α enzymatic activity, thereby activating the PI3K/AKT signaling pathway for CSC-like phenotypes maintenance and EMT promotion. Moreover, IHC analysis of human breast cancer specimens revealed that TSP50 expression was positively correlated with p-AKT and ALDH1 protein levels. Notably, breast cancer clinicopathological characteristics, such as patient survival time, tumor size, Ki67, pathologic stage, N stage, estrogen receptor (ER) and progesterone receptor (PR) levels, correlated well with TSP50/p-AKT/ALDH1 expression status. CONCLUSION The effects of TSP50 on EMT and CSC-like properties promotion were verified to be dependent on PI3K p110α. Together, our study revealed a novel mechanism by which TSP50 facilitates the progression of breast cancer, which can provide new insights into TSP50-based breast cancer treatment strategies.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Sichen Liu
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Jing Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Gang Wei
- Department of Breast Surgery, Jilin Province Cancer Hospital, Changchun, 130012, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Lihua Zheng
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China
| | - Guannan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China.
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, NO.5268 Renmin Street, Changchun, 130117, China.
| |
Collapse
|
2
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT6, GALNT14, and Gal-3 in association with GDF-15 promotes drug resistance and stemness of breast cancer via β-catenin axis. Growth Factors 2024; 42:84-100. [PMID: 38889447 DOI: 10.1080/08977194.2024.2368907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
N-acetylgalactosaminyltransferases (GALNTs) are a polypeptide responsible for aberrant glycosylation in breast cancer (BC), but the mechanism is unclear. In this study, expression levels of GALNT6, GALNT14, and Gal-3 were assessed in BC, and their association with GDF-15, β-catenin, stemness (SOX2 and OCT4), and drug resistance marker (ABCC5) was evaluated. Gene expression of GALNT6, GALNT14, Gal-3, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in tumor and adjacent non-tumor tissues (n = 30) was determined. The same was compared with GEO-microarray datasets. A significant increase in the expression of candidate genes was observed in BC tumor compared to adjacent non-tumor tissue; and in pre-therapeutic patients compared to post-therapeutic. GALNT6, GALNT14, Gal-3, and GDF-15 showed positive association with β-catenin, SOX2, OCT4, and ABCC5 and were significantly associated with poor Overall Survival. Our findings were also validated via in silico analysis. Our study suggests that GALNT6, GALNT14, and Gal-3 in association with GDF-15 promote stemness and intrinsic drug resistance in BC, possibly by β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
3
|
Hemida AS, Shabaan MI, Taha MA, Abdou AG. Impact of immunohistochemical expression of kinesin family member 18A (Kif18A) and β-catenin in infiltrating breast carcinoma of no special type. World J Surg Oncol 2024; 22:15. [PMID: 38195458 PMCID: PMC10777553 DOI: 10.1186/s12957-023-03276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND KIF18A is a regulator of the cell cycle that stimulates the proliferation of cancer cells. The Wnt/β-catenin pathway is involved in different issues' carcinogenesis and is being examined as a therapeutic target. The relationship between KIF18A and β-catenin in breast cancer was not previously investigated. Therefore, this work aims to study the immunohistochemical expression and correlation of KIF18A and β-catenin in breast-infiltrating duct carcinoma (IDC) and their relation to prognosis. MATERIAL AND METHODS Slides cut from paraffin blocks of 135 IDC and 40 normal breast tissues were stained by KIF18A and β-catenin antibodies. KIF18A cytoplasmic or nucleocytoplasmic staining and β-catenin aberrant expression either nucleo-cytoplasmic or cytoplasmic staining were considered. RESULTS Normal breast tissue and IDC showed a significant difference regarding KIF18A and aberrant β-catenin expression. High KIF18A and β-catenin H score values were associated with poor prognostic factors such as high grade, advanced stage, distant metastasis, high Ki67 status, and Her2neu-enriched subtype. There was a significant direct correlation between KIF18A and β-catenin as regards percent and H score values. Prolonged overall survival (OS) was significantly associated with mild intensity and low H score of KIF18A, and low β-catenin H score. CONCLUSIONS KIF18A could be involved in breast carcinogenesis by activating β-catenin. Overexpression of KIF18A and aberrant expression of β-catenin are considered proto-oncogenes of breast cancer development. KIF18A and β-catenin could be poor prognostic markers and predictors of aggressive behavior of breast cancer.
Collapse
Affiliation(s)
- Aiat Shaban Hemida
- Pathology Department, Faculty of Medicine, Menoufia University, Yassin Abd Elghafar Street, Shebin El Kom, 32511, Egypt.
| | - Mohammed Ibrahim Shabaan
- Pathology Department, Faculty of Medicine, Menoufia University, Yassin Abd Elghafar Street, Shebin El Kom, 32511, Egypt
| | - Mennatallah Ahmed Taha
- Pathology Department, Faculty of Medicine, Menoufia University, Yassin Abd Elghafar Street, Shebin El Kom, 32511, Egypt
| | - Asmaa Gaber Abdou
- Pathology Department, Faculty of Medicine, Menoufia University, Yassin Abd Elghafar Street, Shebin El Kom, 32511, Egypt
| |
Collapse
|
4
|
Mubtasim N, Gollahon L. The Effect of Adipocyte-Secreted Factors in Activating Focal Adhesion Kinase-Mediated Cell Signaling Pathway towards Metastasis in Breast Cancer Cells. Int J Mol Sci 2023; 24:16605. [PMID: 38068928 PMCID: PMC10706115 DOI: 10.3390/ijms242316605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Obesity-associated perturbations in the normal secretion of adipocytokines from white adipocytes can drive the metastatic progression of cancer. However, the association between obesity-induced changes in secretory factors of white adipocytes and subsequent transactivation of the downstream effector proteins impacting metastasis in breast cancer cells remains unclear. Focal adhesion kinase, a cytoplasmic signal transducer, regulates the biological phenomenon of metastasis by activating downstream targets such as beta-catenin and MMP9. Thus, the possible role of phosphorylated FAK in potentiating cancer cell migration was investigated. To elucidate this potential relationship, MCF7 (ER+), MDA-MB-231 (Triple Negative) breast cancer cells, and MCF-10A non-tumorigenic breast cells were exposed to in vitro murine adipocyte-conditioned medium derived from 3T3-L1 MBX cells differentiated to obesity with fatty acid supplementation. Our results show that the conditioned medium derived from these obese adipocytes enhanced motility and invasiveness of breast cancer cells. Importantly, no such changes were observed in the non-tumorigenic breast cells. Our results also show that increased FAK autophosphorylation was followed by increased expression of beta-catenin and MMP9 in the breast cancer cells when exposed to obese adipocyte-conditioned medium, but not in the MCF10A cells. These results indicate that adipocyte-derived secretory factors induced FAK activation through phosphorylation. This in turn increased breast cancer cell migration and invasion by activating its downstream effector proteins beta-catenin and MMP9.
Collapse
Affiliation(s)
- Noshin Mubtasim
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Sikander M, Malik S, Apraku J, Kumari S, Khan P, Mandil H, Ganju A, Chauhan B, Bell MC, Singh MM, Khan S, Yallapu MM, Halaweish FT, Jaggi M, Chauhan SC. Synthesis and Antitumor Activity of Brominated-Ormeloxifene (Br-ORM) against Cervical Cancer. ACS OMEGA 2023; 8:38839-38848. [PMID: 37901538 PMCID: PMC10601051 DOI: 10.1021/acsomega.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 10/31/2023]
Abstract
Aberrant regulation of β-catenin signaling is strongly linked with cancer proliferation, invasion, migration, and metastasis, thus, small molecules that can inhibit this pathway might have great clinical significance. Our molecular modeling studies suggest that ormeloxifene (ORM), a triphenylethylene molecule that docks with β-catenin, and its brominated analogue (Br-ORM) bind more effectively with relatively less energy (-7.6 kcal/mol) to the active site of β-catenin as compared to parent ORM. Herein, we report the synthesis and characterization of a Br-ORM by NMR and FTIR, as well as its anticancer activity in cervical cancer models. Br-ORM treatment effectively inhibited tumorigenic features (cell proliferation and colony-forming ability, etc.) and induced apoptotic death, as evident by pronounced PARP cleavage. Furthermore, Br-ORM treatment caused cell cycle arrest at the G1-S phase. Mechanistic investigation revealed that Br-ORM targets the key proteins involved in promoting epithelial-mesenchymal transition (EMT), as demonstrated by upregulation of E-cadherin and repression of N-cadherin, Vimentin, Snail, MMP-2, and MMP-9 expression. Br-ORM also represses the expression and nuclear subcellular localization of β-catenin. Consequently, Br-ORM treatment effectively inhibited tumor growth in an orthotopic cervical cancer xenograft mouse model along with EMT associated changes as compared to vehicle control-treated mice. Altogether, experimental findings suggest that Br-ORM is a novel, promising β-catenin inhibitor and therefore can be harnessed as a potent anticancer small molecule for cervical cancer treatment.
Collapse
Affiliation(s)
- Mohammed Sikander
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Shabnam Malik
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - John Apraku
- South
Dakota State University, Brookings, South Dakota 57007-2201, United States
| | - Sonam Kumari
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- National
Institutes of Health, Bathesda, South Dakota 20892-4874, United States
| | - Parvez Khan
- Jamia
Millia Islamia University, New Delhi 110025, India
| | - Hassan Mandil
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Aditya Ganju
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Memorial
Sloan Kettering Cancer Center, New York, New York 10065 United States
| | - Bhavin Chauhan
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Maria C. Bell
- Sanford
Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, South Dakota 57104, United States
| | - Man Mohan Singh
- Endocrinology
Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | - Sheema Khan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Murali M. Yallapu
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Fathi T. Halaweish
- South
Dakota State University, Brookings, South Dakota 57007-2201, United States
| | - Meena Jaggi
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Subhash C. Chauhan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
6
|
Sakamoto T, Tanimoto K, Eguchi H, Sasaki S, Tsuboi K, Hayashi SI, Ichihara S. Resveratrol exhibits diverse anti-cancer activities through epigenetic regulation of E-cadherin and p21 in triple-negative breast cancer cells. Breast Cancer 2023; 30:727-738. [PMID: 37166625 DOI: 10.1007/s12282-023-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has an aggressive phenotype and poor outcome, however no specific targeted therapy has been established for TNBC lacking germline BRCA1/2 pathogenic variants. To develop a novel therapeutic strategy, we explored the potential of resveratrol (RSV) for TNBC treatment. METHODS We investigated the effects of RSV on malignant phenotypes of TNBC cells as well as on apoptosis induced by ABT263, a specific inhibitor of BCL-2 and BCL-xL, using morphological observation, migration assay, β-galactosidase staining, and Hoechst staining. To elucidate the underlying mechanisms of RSV-mediated effects, expression levels and histone acetylation levels of cadherin 1 (CDH1, E-cadherin) and cyclin dependent kinase inhibitor 1A (CDKN1A, p21) were determined by RT-qPCR, western blotting, and chromatin immunoprecipitation. Furthermore, knockdown analysis was conducted to evaluate the involvement of E-cadherin and/or p21 in RSV potentiation on cytotoxic activity of ABT263. RESULTS RSV treatment induced epithelial-like cellular morphology and suppressed the migration capacity in MDA-MB-231 and BT-549-Luc TNBC cells. β-galactosidase-positive cells were increased after RSV treatment, indicating the induction of cellular senescence, in MDA-MB-231 cells but not in BT-549-Luc cells. RSV increased the expression and histone acetylation of CDH1 and CDKN1A in both cells. Interestingly, pre-treatment with RSV enhanced the induction of apoptosis in the ABT263-treated MDA-MB-231 and BT-549-Luc cells, and knockdown of CDKN1A decreased ABT263-induced apoptosis in RSV-treated MDA-MB-231 cells. CONCLUSIONS RSV represses the metastatic capacity and enhances the cytotoxic activity of ABT263 in TNBC cells. Our results suggested that RSV can potentially be used as a repressor of metastasis or a sensitizer to ABT263 for TNBC treatment via up-regulation of CDH1 and CDKN1A through epigenetic mechanisms.
Collapse
Affiliation(s)
- Takako Sakamoto
- Department of Environmental and Preventive Medicine, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| | - Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima-shi, Hiroshima, 734-8553, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shunta Sasaki
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai-shi, Miyagi, 980-8575, Japan
| | - Kouki Tsuboi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai-shi, Miyagi, 980-8575, Japan
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai-shi, Miyagi, 980-8575, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| |
Collapse
|
7
|
Taghavi SF, Ghorbani M, Panahi M, Nazem S, Karimi M, Salimi V, Tavakoli-Yaraki M. Differential expression levels of β-catenin are associated with invasive behavior of both functional and non-functional pituitary neuroendocrine tumor (PitNET). Mol Biol Rep 2023; 50:6425-6434. [PMID: 37326745 DOI: 10.1007/s11033-023-08523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although research continues to elucidate the molecular mechanism underlying pituitary tumor pathogenesis, limited information is available on the potential role and expression profile of β-catenin in functional and non-functional pituitary neuroendocrine tumors (PitNETs). METHODS AND RESULTS In the current study, 104 pituitary samples (tumors and cadaveric healthy pituitary tissues) were included and the gene and protein expression levels of β-catenin were assessed by Real-Time PCR and immunohistochemistry, respectively. The correlation between expression level of β-catenin and tumor invasive feature and size as well as patient age, gender, and hormonal level was measured. The data showed that PitNET samples expressed higher levels of the β-catenin gene and protein compared to healthy pituitary tissues. Although there was no difference in β-catenin expression level between non-functioning (NF-PitNETs) and growth hormone-producing tumors (GH-PitNETs), both tumor types showed significantly elevated β-catenin levels compared to healthy pituitary tissues. The high level of β-catenin in the invasive functional and non-functional tumors is indicative of the association of β-catenin with PitNETs invasion. The expression pattern of the β-catenin gene and protein was consistently and significantly associated with these tumor types. The correlation between β-catenin and insulin-like growth factor 1 (IGF-1) in GH-PitNETs indicates the potential relevance of β-catenin and IGF-1 for GH-PitNETs. CONCLUSIONS The simultaneous increase in the expression of β-catenin gene and protein level in PitNET tissues and their relationship to the tumor severity indicates the possible contributing role of β-catenin and its underlying signaling mediators in PitNET pathogenesis.
Collapse
Affiliation(s)
- S Fahimeh Taghavi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Mohammad Ghorbani
- Division of Vascular and Endovascular Neurosurgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Pathology Department, Firozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
8
|
Chen X, Yang M, Yin J, Li P, Zeng S, Zheng G, He Z, Liu H, Wang Q, Zhang F, Chen D. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal 2022; 20:92. [PMID: 35715860 PMCID: PMC9205034 DOI: 10.1186/s12964-022-00888-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with poor prognosis and limited treatment. As a major component of the tumor microenvironment, tumor-associated macrophages (TAMs) play an important role in facilitating the aggressive behavior of TNBC. This study aimed to explore the novel mechanism of TAMs in the regulation of epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties in TNBC. METHODS Expression of the M2-like macrophage marker CD163 was evaluated by immunohistochemistry in human breast cancer tissues. The phenotype of M2 macrophages polarized from Tohoku-Hospital-Pediatrics-1 (THP1) cells was verified by flow cytometry. Transwell assays, wound healing assays, western blotting, flow cytometry, ELISA, quantitative polymerase chain reaction (qPCR), luciferase reporter gene assays, and immunofluorescence assays were conducted to investigate the mechanism by which TAMs regulate EMT and CSC properties in BT549 and HCC1937 cells. RESULTS Clinically, we observed a high infiltration of M2-like tumor-associated macrophages in TNBC tissues and confirmed that TAMs were associated with unfavorable prognosis in TNBC patients. Moreover, we found that conditioned medium from M2 macrophages (M2-CM) markedly promoted EMT and CSC properties in BT549 and HCC1937 cells. Mechanistically, we demonstrated that chemokine (C-C motif) ligand 2 (CCL2) secretion by TAMs activated Akt signaling, which in turn increased the expression and nuclear localization of β-catenin. Furthermore, β-catenin knockdown reversed TAM-induced EMT and CSC properties. CONCLUSIONS This study provides a novel mechanism by which TAMs promote EMT and enhance CSC properties in TNBC via activation of CCL2/AKT/β-catenin signaling, which may offer new strategies for the diagnosis and treatment of TNBC. Video Abstract.
Collapse
Affiliation(s)
- Xiangzhou Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Mingqiang Yang
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Jiang Yin
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Pan Li
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Shanshan Zeng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Guopei Zheng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Zhimin He
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Hao Liu
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Qian Wang
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China.
| | - Fan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, No.99 Zhangzhidong Road, Wuhan, 430000, Hubei, China.
| | - Danyang Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
9
|
Wen JY, Fang YY, Chen G, He RQ, Huang HQ, Wang RS, Zeng DT, Huang WJ, Qin XG. Upregulation of the transmembrane protease serine 3 mRNA level in radioresistant colorectal cancer tissues. Biomark Med 2022; 16:693-715. [PMID: 35543030 DOI: 10.2217/bmm-2021-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the clinical role of transmembrane protease serine 3 (TMPRSS3) in radioresistance and prognosis of colorectal cancer (CRC). Methods: Standardized mean difference (SMD) and summary area under the curve (AUC) of TMPRSS3 were calculated by combining all available high-throughput data globally. The prognostic significance of TMPRSS3 was determined by Kaplan-Meier and Cox regression analyses. Results: TMPRSS3 was remarkably upregulated in 198 CRC radioresistant cases compared with nonradioresistance (SMD = 0.38, AUC = 0.71). Overexpression of TMPRSS3 was observed in 1601 CRC patients compared with control subjects without CRC. TMPRSS3 was a risk factor for disease-free survival of CRC with the summarized hazard ratio 1.28. Conclusion: TMPRSS3 contributes to the radioresistance and unfavorable prognosis of CRC.
Collapse
Affiliation(s)
- Jia-Ying Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Ye-Ying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - He-Qing Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Ren-Sheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin city, no. 1 Jinwang Rd, Yuzhou District, Yulin City, Guangxi Zhuang Autonomous Region, 537000, PR China
| | - Wei-Jian Huang
- Department of Pathology, Redcross Hospital of Yulin city, no. 1 Jinwang Rd, Yuzhou District, Yulin City, Guangxi Zhuang Autonomous Region, 537000, PR China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, no. 6 Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|
10
|
Umar SM, Patra S, Kashyap A, Dev J R A, Kumar L, Prasad CP. Quercetin Impairs HuR-Driven Progression and Migration of Triple Negative Breast Cancer (TNBC) Cells. Nutr Cancer 2021; 74:1497-1510. [PMID: 34278888 DOI: 10.1080/01635581.2021.1952628] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the present study, we have explored the prognostic value of HuR gene as well as protein in breast cancers. Furthermore, we have also investigated the HuR therapeutic relevance in TNBCs, which is an aggressive breast cancer subtype. Using an online meta-analysis tool, we found that HuR protein overexpression positively correlates with reduced overall survival of TNBC patients (p = 0.028). Furthermore, we demonstrated that the TNBC breast cancer cell lines i.e., MDA-MB-231 and MDA-MB-468 are good model systems to study HuR protein, as they both exhibit a significant amount of cytoplasmic HuR (active form). Quercetin treatment significantly inhibited the cytoplasmic HuR in both TNBC cell lines. By using specific HuR siRNA, we established that quercetin-mediated inhibition of adhesion and migration of TNBC cells is dependent on HuR. Upon analyzing adhesion proteins i.e., β-catenin and CD44, we found that quercetin mediated effect on TNBC adhesion and migration was through the HuR-β-catenin axis and CD44, independently. Overall, the present results demonstrate that elevated HuR levels are associated with TNBC progression and relapse, and the ability of quercetin to inhibit cytoplasmic HuR protein provides a rationale for using it as an anticancer agent for the treatment of aggressive TNBCs.Supplemental data for this article is available online at at 10.1080/01635581.2021.1952628.
Collapse
Affiliation(s)
| | - Sushmita Patra
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | - Akanksha Kashyap
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | | | - Lalit Kumar
- Department of Medical Oncology, Dr. BRA IRCH, AIIMS, New Delhi, India
| | | |
Collapse
|
11
|
Weeks SE, Kammerud SC, Metge BJ, AlSheikh HA, Schneider DA, Chen D, Wei S, Mobley JA, Ojesina AI, Shevde LA, Samant RS. Inhibiting β-catenin disables nucleolar functions in triple-negative breast cancer. Cell Death Dis 2021; 12:242. [PMID: 33664239 PMCID: PMC7933177 DOI: 10.1038/s41419-021-03531-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 01/31/2023]
Abstract
Triple-negative breast cancer (TNBC) patients with upregulated Wnt/β-catenin signaling often have poor clinical prognoses. During pathological examinations of breast cancer sections stained for β-catenin, we made the serendipitous observation that relative to non-TNBC, specimens from TNBC patients have a greater abundance of nucleoli. There was a remarkable direct relationship between nuclear β-catenin and greater numbers of nucleoli in TNBC tissues. These surprising observations spurred our investigations to decipher the differential functional relevance of the nucleolus in TNBC versus non-TNBC cells. Comparative nucleolar proteomics revealed that the majority of the nucleolar proteins in TNBC cells were potential targets of β-catenin signaling. Next, we undertook an analysis of the nucleolar proteome in TNBC cells in response to β-catenin inhibition. This effort revealed that a vital component of pre-rRNA processing, LAS1 like ribosome biogenesis factor (LAS1L) was significantly decreased in the nucleoli of β-catenin inhibited TNBC cells. Here we demonstrate that LAS1L protein expression is significantly elevated in TNBC patients, and it functionally is important for mammary tumor growth in xenograft models and enables invasive attributes. Our observations highlight a novel function for β-catenin in orchestrating nucleolar activity in TNBCs.
Collapse
Affiliation(s)
- Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A AlSheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Akinyemi I Ojesina
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
12
|
Ozman Z, Ozbek Iptec B, Sahin E, Guney Eskiler G, Deveci Ozkan A, Kaleli S. Regulation of valproic acid induced EMT by AKT/GSK3β/β-catenin signaling pathway in triple negative breast cancer. Mol Biol Rep 2021; 48:1335-1343. [PMID: 33515347 DOI: 10.1007/s11033-021-06173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Valproic acid (VPA) is a selective histone deacetylation (HDAC) inhibitor and exerts anti-cancer properties in different types of cancer. The epithelial-to-mesenchymal transition (EMT) mediating by different signaling cascade can be a potential target in aggressive human cancers. Therefore, we aimed to clarified the unravel relationship between AKT/GSK3β/β-catenin signalling pathway and VPA-induced EMT in triple negative breast cancer (TNBC). The cytotoxicity of VPA in MDA-MB-231 TNBC and MCF-10A control cells was evaluated. Alterations in the expression levels of Snail, E-cadherin, AKT, GSK3β, β-catenin were analyzed by RT-PCR. Additionally, Annexin V, cell cycle and wound healing assays were performed. Our results showed that VPA remarkably inhibited the growth of TNBC cell and triggered apoptotic cell death through G0/G1 arrest. Furthermore, VPA increased cell migration and activated the EMT process through significantly increasing Snail expression and in turn downregulation of E-cadherin and GKS3β levels. However, the level of AKT and β-catenin was reduced after treatment of VPA. Our data showed that VPA induced EMT process and cell migration in TNBC cells. However, AKT/GSK3β/β-catenin signaling pathway did not mediate EMT activation.
Collapse
Affiliation(s)
- Zeynep Ozman
- Department of Medical Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Betul Ozbek Iptec
- Medical Biochemistry Laboratory, Kızılcahamam State Hospital, Ankara, Turkey
| | - Elvan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
13
|
Jing N, Ma MW, Gao XS, Liu JT, Gu XB, Zhang M, Zhao B, Wang Y, Wang XL, Jia HX. Development and validation of a prognostic nomogram for patients with triple-negative breast cancer with histology of infiltrating duct carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1447. [PMID: 33313192 PMCID: PMC7723543 DOI: 10.21037/atm-20-413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The purpose of this study was to develop prognostic nomograms from a cohort of patients with triple-negative breast cancer (TNBC) with histology of infiltrating duct carcinoma (IDC) by correlating their clinical and pathological parameters with the rates of disease-free survival (DFS) and overall survival (OS). Methods We retrospectively analyzed TNBC patients with histology of IDC at our institution between 2009 and 2012. Age, family history, menopausal status, surgery type, T stage, N stage, histological grade, vascular invasion, perineural invasion, cytokeratin 5/6 status, Ki-67 expression, and epithelial cadherin (E-cadherin) status were analyzed. Predictors were used in multivariable logistic regression analysis to develop a nomogram to predict DFS and OS rates. The nomograms were then subjected to internal validation, with external validation of the nomogram for predicting OS using separate cohorts of TNBC patients known from the Cancer Genome Atlas (TCGA) database. Using the concordance index (C-index) with calibration curves, the predictive accuracy and discriminative ability were calculated. Results A total of 242 eligible TNBC patients were included for analysis. The median follow-up time was 70.73 months. Of the patients, 32.6%, 42.6%, and 24.8% had stage I, II, and III disease, respectively. The 3- and 5-year survival rates were 81.0% and 76.5% for DFS, and 86.5% and 81.1%, for OS, respectively. Age, T stage, N stage, and E-cadherin status were found to be risk factors. The nomograms based on those risk factors accurately predicted the 3- and 5-year survival rates. The C-index was 0.798 and 0.821 for DFS and OS, respectively. Besides, the nomogram for OS showed relatively reliable performance in stratifying different risk groups of patients in training and validation cohorts identified from the TCGA database. The C-index reached 0.843. DFS validation was not completed, as there was insufficient data. Conclusions Using clinicopathological information, we produced a prognostic nomogram that accurately predicts the 3- and 5-year DFS and OS for patients with TNBC with histology of IDC. More external confirmation is required.
Collapse
Affiliation(s)
- Na Jing
- Department of Radiation Oncology, Shanxi Cancer Hospital and the Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Jian-Ting Liu
- Department of Radiation Oncology, Shanxi Cancer Hospital and the Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiao-Bin Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Zhang
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Bo Zhao
- Department of Engineering Physics, Tsinghua University, Beijing, China.,Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing, China
| | - Yu Wang
- Department of Radiation Oncology, Shanxi Cancer Hospital and the Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Xian-Ling Wang
- Department of Radiation Oncology, Shanxi Cancer Hospital and the Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Hai-Xia Jia
- Department of Radiation Oncology, Shanxi Cancer Hospital and the Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Yang L, Lin F, Gao Z, Chen X, Zhang H, Dong K. Anti-tumor peptide SA12 inhibits metastasis of MDA-MB-231 and MCF-7 breast cancer cells via increasing expression of the tumor metastasis suppressor genes, CDH1, nm23-H1 and BRMS1. Exp Ther Med 2020; 20:1758-1763. [PMID: 32742405 DOI: 10.3892/etm.2020.8886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been progress in the treatment of breast cancer; however, the prognosis is still poor due to recurrence and metastasis following conventional treatment. The anti-tumor peptide SA12 has been demonstrated to inhibit proliferation and arrest the cell cycle in MDA-MB-231 and MCF-7 breast cancer cells. In the present study, whether SA12 was able to inhibit the metastasis of breast cancer cells was investigated. Wound healing and Transwell assays were used to investigate the inhibition of SA12 on cell migration while, reverse transcription-quantitative PCR and western blot assays were used to identify the mechanism of action behind the effects of SA12 on cell migration. Results from the wound healing and Transwell assays revealed that SA12 significantly inhibited the migration of MDA-MB-231 and MCF-7 breast cancer cells following treatment with 100 µM SA12. Compared with that in the controls, the mRNA expression levels of cadherin 1 (CDH1), non-metastasis 23-H1 (nm23-H1) and breast cancer metastasis suppressor 1 (BRMS1) were increased in MDA-MB-231 and MCF-7 cells following treatment with 100 µM SA12. Furthermore, the protein expression levels of E-cadherin, NM23A and BRMS1 were also increased in MDA-MB-231 cells and MCF-7 cells following treatment with 100 µM SA12. In conclusion, SA12 inhibited the migration of MDA-MB-231 and MCF-7 breast cancer cells and enhanced the expression of the tumor metastasis suppressor genes, CDH1, nm23-H1 and BRMS1, which may be responsible for the SA12-induced inhibition of breast cancer cell metastasis.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhaowei Gao
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ke Dong
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
15
|
Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Fila M, Chojnacki C. Vitamin D in Triple-Negative and BRCA1-Deficient Breast Cancer-Implications for Pathogenesis and Therapy. Int J Mol Sci 2020; 21:E3670. [PMID: 32456160 PMCID: PMC7279503 DOI: 10.3390/ijms21103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Several studies show that triple-negative breast cancer (TNBC) patients have the lowest vitamin D concentration among all breast cancer types, suggesting that this vitamin may induce a protective effect against TNBC. This effect of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D), can be attributed to its potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis and is supported by many in vitro and animal studies, but its exact mechanism is poorly known. In a fraction of TNBCs that harbor mutations that cause the loss of function of the DNA repair-associated breast cancer type 1 susceptibility (BRCA1) gene, 1,25(OH)2D may induce protective effects by activating its receptor and inactivating cathepsin L-mediated degradation of tumor protein P53 binding protein 1 (TP53BP1), preventing deficiency in DNA double-strand break repair and contributing to genome stability. Similar effects can be induced by the interaction of 1,25(OH)2D with proteins of the growth arrest and DNA damage-inducible 45 (GADD45) family. Further studies on TNBC cell lines with exact molecular characteristics and clinical trials with well-defined cases are needed to determine the mechanism of action of vitamin D in TNBC to assess its preventive and therapeutic potential.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| |
Collapse
|
16
|
Barnawi R, Al-Khaldi S, Bakheet T, Fallatah M, Alaiya A, Ghebeh H, Al-Alwan M. Fascin Activates β-Catenin Signaling and Promotes Breast Cancer Stem Cell Function Mainly Through Focal Adhesion Kinase (FAK): Relation With Disease Progression. Front Oncol 2020; 10:440. [PMID: 32373510 PMCID: PMC7186340 DOI: 10.3389/fonc.2020.00440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs), a rare population of tumor cells with high self-renewability potential, have gained increasing attention due to their contribution to chemoresistance and metastasis. We have previously demonstrated a critical role for the actin-bundling protein (fascin) in mediating breast cancer chemoresistance through activation of focal adhesion kinase (FAK). The latter is known to trigger the β-catenin signaling pathway. Whether fascin activation of FAK would ultimately trigger β-catenin signaling pathway has not been elucidated. Here, we assessed the effect of fascin manipulation in breast cancer cells on triggering β-catenin downstream targets and its dependence on FAK. Gain and loss of fascin expression showed its direct effect on the constitutive expression of β-catenin downstream targets and enhancement of self-renewability. In addition, fascin was essential for glycogen synthase kinase 3β inhibitor-mediated inducible expression and function of the β-catenin downstream targets. Importantly, fascin-mediated constitutive and inducible expression of β-catenin downstream targets, as well as its subsequent effect on CSC function, was at least partially FAK dependent. To assess the clinical relevance of the in vitro findings, we evaluated the consequence of fascin, FAK, and β-catenin downstream target coexpression on the outcome of breast cancer patient survival. Patients with coexpression of fascinhigh and FAKhigh or high β-catenin downstream targets showed the worst survival outcome, whereas in fascinlow, patient coexpression of FAKhigh or high β-catenin targets had less significant effect on the survival. Altogether, our data demonstrated the critical role of fascin-mediated β-catenin activation and its dependence on intact FAK signaling to promote breast CSC function. These findings suggest that targeting of fascin-FAK-β-catenin axis may provide a novel therapeutic approach for eradication of breast cancer from the root.
Collapse
Affiliation(s)
- Rayanah Barnawi
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Samiyah Al-Khaldi
- National Center for Stem Cells, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia
| | - Tala Bakheet
- Molecular Biomedicine Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohannad Fallatah
- National Center for Stem Cells, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia
| | - Ayodele Alaiya
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Mehralikhani A, Movahedi M, Larypoor M, Golab F. Evaluation of the Effect of Foeniculum vulgare on the Expression of E-Cadherin, Dysadherin and Ki-67 in BALB/C Mice with 4T1 Model of Breast Cancer. Nutr Cancer 2020; 73:318-328. [PMID: 32266842 DOI: 10.1080/01635581.2020.1746365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Breast cancer is described as a serious disease and one of the important factors of cancer-related deaths. Considering the drug resistance, special attention has been paid to natural compounds. This study aimed at evaluating the anti-metastatic activity of fennel in a breast cancer mouse model.Methods: A total of 28 adult female BALB/C mice were used in this study. Breast cancer was induced by subcutaneous injection of 4T1 cells in the right lower flank. The mice received fennel extracts daily via intraperitoneal injection for two weeks. Meanwhile, tumor volume was measured every day using calipers. After two weeks, each animal was anesthetized. The expression levels of ki-67 and dysadherin as tumor markers, as well as E-cadherin as a tumor suppressor, were measured in tumor tissue and ovary. Also the expression of her2 was measured in ovary.Results: Tumor size significantly decreased after nine days treatment of the fennel. Fennel treatment caused an increase in the ratio of the expression of E-cadherin to Ki-67 and dysadherin in the tumor tissues. On the other hand, the expression of Ki-67 and HER2 decreased in the ovary.Conclusion: Based on our findings, fennel has anti-tumor and anti-metastatic activities against aggressive cancers.
Collapse
Affiliation(s)
| | - Monireh Movahedi
- Department of Biochemistry, Islamic Azad University, Tehran, Iran
| | | | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Chao TY, Satriyo P, Yeh CT, Chen JH, Aryandono T, Haryana S. Dual therapeutic strategy targeting tumor cells and tumor microenvironment in triple-negative breast cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2020. [DOI: 10.4103/jcrp.jcrp_13_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Al-Marsoummi S, Vomhof-DeKrey E, Basson MD. Schlafen12 Reduces the Aggressiveness of Triple Negative Breast Cancer through Post-Transcriptional Regulation of ZEB1 That Drives Stem Cell Differentiation. Cell Physiol Biochem 2019; 53:999-1014. [PMID: 31838790 DOI: 10.33594/000000191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Schlafen12 (SLFN12) promotes human intestinal and prostatic epithelial differentiation. We sought to determine whether SLFN12 reduces triple-negative breast cancer (TNBC) aggressiveness. METHODS We validated bioinformatics analyses of publicly available databases by staining human TNBC. After virally overexpressing or siRNA-reducing SLFN12 in TNBC cell lines, we measured proliferation by CCK-8 assay, invasion into basement-membrane-coated pores, mRNA by q-RT-PCR and protein by Western blotting. Flow cytometry assessed proliferation and stem cell marker expression, and sorted CD44+/CD24- cells. Stemness was also assessed by mammosphere formation, and translation by click-it-AHA chemistry. RESULTS SLFN12 expression was lower in TNBC tumors and correlated with survival. SLFN12 overexpression reduced TNBC MDA-MB-231, BT549, and Hs578T proliferation. In MDA-MB-231 cells, AdSLFN12 reduced invasion, promoted cell cycle arrest, increased E-cadherin promoter activity, mRNA, and protein, and reduced vimentin expression and protein. SLFN12 knockdown increased vimentin. AdSLFN12 reduced the proportion of MDA-MB-231 CD44+CD24- cells, with parallel differentiation changes. SLFN12 overexpression reduced MDA-MB-231 mammosphere formation. SLFN12 overexpression decreased ZEB1 and Slug protein despite increased ZEB1 and Slug mRNA in all three lines. SLFN12 overexpression accelerated MDA-MB-231 ZEB1 proteasomal degradation and slowed ZEB1 translation. SLFN12 knockdown increased ZEB1 protein. Coexpressing ZEB1 attenuated the SLFN12 effect on E-cadherin mRNA and proliferation in all three lines. CONCLUSION SLFN12 may reduce TNBC aggressiveness and improve survival in part by a post-transcriptional decrease in ZEB1 that promotes TNBC cancer stem cell differentiation.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, USA
| | - Emilie Vomhof-DeKrey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, USA.,Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, USA
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, USA, .,Department of Surgery, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, USA.,Department of Pathology, University of North Dakota School of Medicine and the Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
20
|
Samanta S, Guru S, Elaimy AL, Amante JJ, Ou J, Yu J, Zhu LJ, Mercurio AM. IMP3 Stabilization of WNT5B mRNA Facilitates TAZ Activation in Breast Cancer. Cell Rep 2019; 23:2559-2567. [PMID: 29847788 PMCID: PMC6007887 DOI: 10.1016/j.celrep.2018.04.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/16/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
Insulin-like growth factor-2 mRNA-binding protein 3 (IMP3) is an oncofetal protein associated with many aggressive cancers and implicated in the function of breast cancer stem cells (CSCs). The mechanisms involved, however, are poorly understood. We observed that IMP3 facilitates the activation of TAZ, a transcriptional co-activator of Hippo signaling that is necessary for the function of breast CSCs. The mechanism by which IMP3 activates TAZ involves both mRNA stability and transcriptional regulation. IMP3 stabilizes the mRNA of an alternative WNT ligand (WNT5B) indirectly by repressing miR145-5p, which targets WNT5B, resulting in TAZ activation by alternative WNT signaling. IMP3 also facilitates the transcription of SLUG, which is necessary for TAZ nuclear localization and activation, by a mechanism that is also mediated by WNT5B. These results demonstrate that TAZ can be regulated by an mRNA-binding protein and that this regulation involves the integration of Hippo and alternative WNT-signaling pathways.
Collapse
Affiliation(s)
- Sanjoy Samanta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Santosh Guru
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ameer L Elaimy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - John J Amante
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jun Yu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
21
|
Liu W, Han J, Shi S, Dai Y, He J. TUFT1 promotes metastasis and chemoresistance in triple negative breast cancer through the TUFT1/Rab5/Rac1 pathway. Cancer Cell Int 2019; 19:242. [PMID: 31572059 PMCID: PMC6757435 DOI: 10.1186/s12935-019-0961-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is a breast cancer (BC) subtype that is characterized by its strong invasion and a high risk of metastasis. However, the specific mechanisms underlying these phenotypes are unclear. TUFT1 plays an important role in BC and impacts the proliferation and survival of BC cells. Recent studies have shown that TUFT1 mediates intracellular lysosome localization and vesicle transport by regulating Rab GTPase, but the relevance of this activity in TNBC is unknown. Therefore, our aim was to systematically study the role of TUFT1 in the metastasis and chemoresistance of TNBC. Methods We measured TUFT1, Rab5-GTP, and Rac1-GTP expression levels in samples of human TNBC by immunohistochemistry (IHC) and conducted univariate and multivariate analyses. shRNA-mediated knockdown and overexpression, combined with transwell assays, co-immunoprecipitation, a nude mouse xenograft tumor model, and GTP activity assays were used for further mechanistic studies. Results TUFT1 expression was positively correlated with Rab5-GTP and Rac1-GTP in the TNBC samples, and co-expression of TUFT1 and Rab5-GTP predicted poor prognosis in TNBC patients who were treated with chemotherapy. Mechanism studies showed that TUFT1 could activate Rab5 by binding to p85α, leading to activation of Rac1 through recruitment of Tiam1, and concurrent down-regulation of the NF-κB pathway and proapoptotic factors, ultimately promoting metastasis and chemoresistance in TNBC cells. Conclusions Our findings suggest that the TUFT1/Rab5/Rac1 pathway may be a potential target for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000 Hebei China
| |
Collapse
|
22
|
Capasso A, Bagby SM, Dailey KL, Currimjee N, Yacob BW, Ionkina A, Frank JG, Kim DJ, George C, Lee YB, Benaim E, Gittleman B, Hartman SJ, Tan AC, Kim J, Pitts TM, Eckhardt SG, Tentler JJ, Diamond JR. First-in-Class Phosphorylated-p68 Inhibitor RX-5902 Inhibits β-Catenin Signaling and Demonstrates Antitumor Activity in Triple-Negative Breast Cancer. Mol Cancer Ther 2019; 18:1916-1925. [PMID: 31488700 DOI: 10.1158/1535-7163.mct-18-1334] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
RX-5902 is a first-in-class anticancer agent targeting phosphorylated-p68 and attenuating nuclear shuttling of β-catenin. The purpose of this study was to evaluate the efficacy of RX-5902 in preclinical models of triple-negative breast cancer (TNBC) and to explore effects on β-catenin expression. A panel of 18 TNBC cell lines was exposed to RX-5902, and changes in proliferation, apoptosis, cellular ploidy, and effector protein expression were assessed. Gene expression profiling was used in sensitive and resistant cell lines with pathway analysis to explore pathways associated with sensitivity to RX-5902. The activity of RX-5902 was confirmed in vivo in cell line and patient-derived tumor xenograft (PDX) models. RX-5902 demonstrated potent antiproliferative activity in vitro against TNBC cell lines with an average IC50 of 56 nmol/L in sensitive cell lines. RX-5902 treatment resulted in the induction of apoptosis, G2-M cell-cycle arrest, and aneuploidy in a subset of cell lines. RX-5902 was active in vivo against TNBC PDX models, and treatment resulted in a decrease in nuclear β-catenin. RX-5902 exhibited dose-proportional pharmacokinetics and plasma and tumor tissue in nude mice. Pathway analysis demonstrated an increase in the epithelial-to-mesenchymal transformation (EMT), TGFβ, and Wnt/β-catenin pathways associated with sensitivity to RX-5902. RX-5902 is active against in vitro and in vivo preclinical models of TNBC. Target engagement was confirmed with decreases in nuclear β-catenin and MCL-1 observed, confirming the proposed mechanism of action. This study supports the continued investigation of RX-5902 in TNBC and combinations with immunotherapy.
Collapse
Affiliation(s)
- Anna Capasso
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, University of Texas at Austin, Austin, Texas.
| | - Stacey M Bagby
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kyrie L Dailey
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Naomi Currimjee
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Betelehem W Yacob
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anastasia Ionkina
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Young B Lee
- Rexahn Pharmaceuticals, Inc., Rockville, Maryland
| | - Ely Benaim
- Rexahn Pharmaceuticals, Inc., Rockville, Maryland
| | - Brian Gittleman
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah J Hartman
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik Choon Tan
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jihye Kim
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd M Pitts
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - S Gail Eckhardt
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, University of Texas at Austin, Austin, Texas
| | - John J Tentler
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer R Diamond
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
23
|
Abdel-Mohsen MA, Abo Deif SM, Abou-Shamaa LA. IL-6 Impairs the Activity of Vitamin D3 in the Regulation of Epithelial-Mesenchymal Transition in Triple Negative Breast Cancer. Asian Pac J Cancer Prev 2019; 20:2267-2273. [PMID: 31450894 PMCID: PMC6852800 DOI: 10.31557/apjcp.2019.20.8.2267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 01/08/2023] Open
Abstract
Objective: The present study aimed to investigate the possible role of IL-6 and 1α,25-dihydroxyvitamin D3 (1,25D) signaling in epithelial-mesenchymal transition (EMT) and stemness in triple-negative breast cancer (TNBC) cell line. Methods: TNBC cell line, HCC 1806, was treated with IL-6 and 1,25D for three and six days. Also, the role of vitamin D receptor (VDR) was studied by transfection of TNBC cell line with VDR gene and transfection efficiency was assessed using Human VDR enzyme-linked immunosorbent assay (ELISA). Changes in E-cadherin gene expression were analyzed by quantitative real-time PCR (qRT-PCR). Also, changes in CD44+ cells were analyzed by flow cytometry. Finally, morphological changes were investigated by light microscopy after 6 days. Results: Treatment of HCC1806 cells with IL-6 has no significant effect either on E-cadherin gene expression or CD44+ cells, (p > 0.05). However, E-cadherin gene expression was significantly up-regulated after treatment with 1,25D for 6 days, (p < 0.05). Also, CD44+ cells were significantly reduced after treatment with 1,25D either for 3 or 6 days, (p < 0.05). Transfection of TNBC cell line with VDR gene significantly up-regulated VDR protein expression, (p < 0.05). In addition, overexpression of VDR in TNBC cells and treatment with 1,25D significantly up-regulated E-cadherin gene expression, (p < 0.05) and reduced CD44+ cells, (p < 0.05). Moreover, transfection with VDR and treatment with a combination of 1,25D and IL-6 significantly down-regulated E-cadherin gene expression and increased CD44+ cells compared with transfected cells with VDR treated with 1,25D alone, (p < 0.05). No significant morphological changes were observed in treated cells, 6 days post-treatment. Conclusion: The presence of IL-6 in the breast tumor microenvironment may impair the activity of vitamin D3 signaling, limiting its anti-tumor effects in TNBC.
Collapse
Affiliation(s)
- Mohamed A Abdel-Mohsen
- Department of Applied Medical Chemistry, Medical Research Institute, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt.
| | - Samar M Abo Deif
- Department of Applied Medical Chemistry, Medical Research Institute, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt.
| | - Lobna A Abou-Shamaa
- Department of Immunology and Allergy, Medical Research Institute, 165 El-Horreya Avenue, El-Hadara, 21561 Alexandria, Alexandria University, Egypt
| |
Collapse
|
24
|
Liu W, Chen G, Sun L, Zhang Y, Han J, Dai Y, He J, Shi S, Chen B. TUFT1 Promotes Triple Negative Breast Cancer Metastasis, Stemness, and Chemoresistance by Up-Regulating the Rac1/β-Catenin Pathway. Front Oncol 2019; 9:617. [PMID: 31338333 PMCID: PMC6629836 DOI: 10.3389/fonc.2019.00617] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives: Triple negative breast cancer (TNBC) is a subtype of breast cancer with stronger invasion and metastasis, but its specific mechanism of action is still unclear. Tuft1 plays an important regulatory role in the survival of breast cancer cells; however, its role in regulating TNBC metastatic potential has not been well-characterized. Our aim was therefore to systematically study the mechanism of TUFT1 in the metastasis, stemness, and chemoresistance of TNBC and provide new predictors and targets for BC treatment. Methods: We used western blotting and IHC to measure TUFT1and Rac1-GTP expression levels in both human BC samples and cell lines. A combination of shRNA, migration/invasion assays, sphere formation assay, apoptosis assays, nude mouse xenograft tumor model, and GTP activity assays was used for further mechanistic studies. Results: We demonstrated that silencing TUFT1 in TNBC cells significantly inhibited cell metastasis and stemness in vitro. A nude mouse xenograft tumor model revealed that TUFT1 knockdown greatly decreased spontaneous lung metastasis of TNBC tumors. Mechanism studies showed that TUFT1 promoted tumor cell metastasis and stemness by up-regulating the Rac1/β-catenin pathway. Moreover, mechanistic studies indicated that the lack of TUFT1 expression in TNBC cells conferred more sensitive to chemotherapy and increased cell apoptosis via down-regulating the Rac1/β-catenin signaling pathway. Further, TUFT1 expression positively correlated with Rac1-GTP in TNBC samples, and co-expression of TUFT1 and Rac1-GTP predicted poor prognosis in TNBC patients who treated with chemotherapy. Conclusion: Our findings suggest that TUFT1/Rac1/β-catenin pathway may provide a potential target for more effective treatment of TNBC.
Collapse
Affiliation(s)
- Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Guanglei Chen
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Zhang
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Cox OT, Edmunds SJ, Simon-Keller K, Li B, Moran B, Buckley NE, Bustamante-Garrido M, Healy N, O'Flanagan CH, Gallagher WM, Kennedy RD, Bernards R, Caldas C, Chin SF, Marx A, O'Connor R. PDLIM2 Is a Marker of Adhesion and β-Catenin Activity in Triple-Negative Breast Cancer. Cancer Res 2019; 79:2619-2633. [PMID: 30885980 DOI: 10.1158/0008-5472.can-18-2787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/09/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
The PDLIM2 protein regulates stability of transcription factors including NF-κB and STATs in epithelial and hemopoietic cells. PDLIM2 is strongly expressed in certain cancer cell lines that exhibit an epithelial-to-mesenchymal phenotype, and its suppression is sufficient to reverse this phenotype. PDLIM2 supports the epithelial polarity of nontransformed breast cells, suggesting distinct roles in tumor suppression and oncogenesis. To better understand its overall function, we investigated PDLIM2 expression and activity in breast cancer. PDLIM2 protein was present in 60% of tumors diagnosed as triple-negative breast cancer (TNBC), and only 20% of other breast cancer subtypes. High PDLIM2 expression in TNBC was positively correlated with adhesion signaling and β-catenin activity. Interestingly, PDLIM2 was restricted to the cytoplasm/membrane of TNBC cells and excluded from the nucleus. In breast cell lines, PDLIM2 retention in the cytoplasm was controlled by cell adhesion, and translocation to the nucleus was stimulated by insulin-like growth factor-1 or TGFβ. Cytoplasmic PDLIM2 was associated with active β-catenin and ectopic expression of PDLIM2 was sufficient to increase β-catenin levels and its transcriptional activity in reporter assays. Suppression of PDLIM2 inhibited tumor growth in vivo, whereas overexpression of PDLIM2 disrupted growth in 3D cultures. These results suggest that PDLIM2 may serve as a predictive biomarker for a large subset of TNBC whose phenotype depends on adhesion-regulated β-catenin activity and which may be amenable to therapies that target these pathways. SIGNIFICANCE: This study shows that PDLIM2 expression defines a subset of triple-negative breast cancer that may benefit from targeting the β-catenin and adhesion signaling pathways. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/10/2619/F1.large.jpg.
Collapse
Affiliation(s)
- Orla T Cox
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Shelley J Edmunds
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Germany
| | - Bo Li
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Bruce Moran
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh E Buckley
- School of Pharmacy, Queens University Belfast, Belfast, Northern Ireland
| | - Milan Bustamante-Garrido
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Nollaig Healy
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ciara H O'Flanagan
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - William M Gallagher
- School of Biomolecular & Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Richard D Kennedy
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Northern Ireland
| | - René Bernards
- Division of Molecular Carcinogenesis and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Heidelberg University, Germany
| | - Rosemary O'Connor
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
26
|
Nie J, Jiang HC, Zhou YC, Jiang B, He WJ, Wang YF, Dong J. MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/β-catenin pathway and EMT. Biosci Biotechnol Biochem 2019; 83:1062-1071. [PMID: 30950326 DOI: 10.1080/09168451.2019.1584521] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM MiR-125b plays an important role in breast cancer. The current study was to explore the expression and function of miR-125b in triple negative breast cancer cells. MATERIALS AND METHODS The expression of miR-125b in human TNBC samples and cell lines were examined by qRT-PCR. MTT, scratch assays and transwell assays were utilized to observe the proliferation, migration and invasion ability. MiR-125b's target gene and downstream signaling pathways were investigated by Luciferase Reporter Assays, qRT-PCR, immunofluorescence assays and western bolt. RESULTS MiR-125b was highly expressed in human TNBC tissues and cell lines. Inhibiting miR-125b expression suppressed the proliferation, cell migration and invasion. The three-prime untranslated region (3´-UTR) of adenomatous polyposis coli (APC) mRNA contains miR-125b binding sites, and inhibiting miR-125b expression suppressed the activity of the intracellular Wnt/β-catenin pathways and EMT. CONCLUSION Inhibiting miR-125b regulates the Wnt/β-catenin pathway and EMT to suppress the proliferation and migration of MDA-MB-468 TNBC cells.
Collapse
Affiliation(s)
- Jun Nie
- a Department of Cadre Medical Branch , The Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Hong-Chao Jiang
- b Department of Oncology , The Affiliated Children's Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Yong-Chun Zhou
- a Department of Cadre Medical Branch , The Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Bo Jiang
- a Department of Cadre Medical Branch , The Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Wen-Jie He
- a Department of Cadre Medical Branch , The Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Yu-Feng Wang
- a Department of Cadre Medical Branch , The Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| | - Jian Dong
- c Department of Oncology , The Third Affiliated Hospital of Kunming Medical University , Kunming , Yunnan , China
| |
Collapse
|
27
|
Elkhalifa D, Alali F, Al Moustafa AE, Khalil A. Targeting triple negative breast cancer heterogeneity with chalcones: a molecular insight. J Drug Target 2019; 27:830-838. [PMID: 30582377 DOI: 10.1080/1061186x.2018.1561889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Triple negative breast cancers (TNBCs) are aggressive heterogeneous cancers with not yet determined conventional targeted medication. Therefore, identification of new alternatives or improved treatment options to combat this deadly disease is highly needed. On the other hand, various derived products with chalcone scaffold were historically considered excellent candidates for the development of anticancer drugs. Chalcones unique chemical structure and their substantial biological activities in cancer cells make them an extremely attractive target for the treatment of several human carcinomas including TNBCs. This review highlights the promising therapeutic role of chalcones in TNBC management.
Collapse
Affiliation(s)
- Dana Elkhalifa
- a College of Pharmacy , Qatar University , Doha , Qatar.,b Biomedical Research Centre , Qatar University , Doha , Qatar
| | - Feras Alali
- a College of Pharmacy , Qatar University , Doha , Qatar
| | - Ala-Eddin Al Moustafa
- b Biomedical Research Centre , Qatar University , Doha , Qatar.,c College of Medicine , Qatar University , Doha , Qatar.,d Oncology Department , McGill University , Montreal , Quebec , Canada
| | - Ashraf Khalil
- a College of Pharmacy , Qatar University , Doha , Qatar
| |
Collapse
|
28
|
Dickkopf-1 (Dkk1) protein expression in breast cancer with special reference to bone metastases. Clin Exp Metastasis 2018; 35:763-775. [PMID: 30238177 DOI: 10.1007/s10585-018-9937-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Dysregulation of the Wnt inhibitor dickkopf-1 protein (Dkk1) has been reported in a variety of cancers. In addition, it has been linked to the progression of malignant bone disease by impairing osteoblast activity. This study investigated serum- and tissue levels of Dkk1 in breast cancer patients with- or without bone metastases. Serum Dkk1 levels were measured by ELISA in 89 breast cancer patients and 86 healthy women. Tissue levels of Dkk1 and β-catenin, a major downstream component of Wnt transduction pathway, were tested with immunohistochemical staining in 143 different tissues, including adjacent non-tumoral breast tissues, primary breast tumours, lymph nodes metastases, and bone metastases. Serum levels of Dkk1 were significantly increased in breast cancer patients without metastases compared with healthy controls and even more increased in patients with bone metastases. Tissue expression of Dkk1 was positive in 70% of tested primary breast cancer tissues and demonstrated significant correlation with histological type and PR status. Less frequent expression of Dkk1 was found in lymph nodes metastases and bone metastases compared with adjacent non-tumoral breast tissues and primary breast tumours. Tissue expression of β-catenin was positive in the vast majority of all tested tissue types indicating activated Wnt/β-catenin signalling. Our results suggested that Wnt/β-catenin signalling in breast tumours and their secondary lymph nodes- and bone metastases is dysregulated and this could be related to aberrant Dkk1 expression levels. Hence, Dkk1 protein might provide insights into the continued development of novel comprehensive and therapeutic strategies for breast cancer and its bone metastases.
Collapse
|
29
|
Alonso EN, Ferronato MJ, Fermento ME, Gandini NA, Romero AL, Guevara JA, Facchinetti MM, Curino AC. Antitumoral and antimetastatic activity of Maitake D-Fraction in triple-negative breast cancer cells. Oncotarget 2018; 9:23396-23412. [PMID: 29805742 PMCID: PMC5955106 DOI: 10.18632/oncotarget.25174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis, high local recurrence rate and high rate of metastasis compared with other breast cancer subtypes. In addition, TNBC lacks a targeted therapy. This scenario highlights the need for novel compounds with high potential for TNBC treatment. In this regard, natural products are important sources of anticancer drugs. D-Fraction, a proteoglucan extracted from the edible and medicinal mushroom Grifola frondosa (Maitake), is a dietary supplement that has been shown to exert both immunostimulatory and immune-independent antitumoral effects on some cancer types. However, its antitumoral potential in TNBC is unknown. Therefore, we employed TNBC cells to investigate if D-Fraction is able to attenuate their aggressive phenotype. We found that D-Fraction decreases MDA-MB-231 cell viability through apoptosis induction and reduces their metastatic potential. D-Fraction increases cell-cell adhesion by increasing E-cadherin protein levels and β-catenin membrane localization, and increases cell-substrate adhesion. D-Fraction also decreases cell motility by affecting actin cytoskeleton rearrangements, and proteolytic activity of MMP-2 and MMP-9. Furthermore, D-Fraction decreases the invasive capacity of MDA-MB-231 cells. In concordance, D-Fraction retards tumor growth and reduces lung metastases in a xenograft model. Altogether, these results suggest the potential therapeutic role of D-Fraction in aggressive TNBC.
Collapse
Affiliation(s)
- Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Norberto Ariel Gandini
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | | | - Josefina Alejandra Guevara
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| |
Collapse
|
30
|
Bajrami I, Marlow R, van de Ven M, Brough R, Pemberton HN, Frankum J, Song F, Rafiq R, Konde A, Krastev DB, Menon M, Campbell J, Gulati A, Kumar R, Pettitt SJ, Gurden MD, Cardenosa ML, Chong I, Gazinska P, Wallberg F, Sawyer EJ, Martin LA, Dowsett M, Linardopoulos S, Natrajan R, Ryan CJ, Derksen PWB, Jonkers J, Tutt ANJ, Ashworth A, Lord CJ. E-Cadherin/ROS1 Inhibitor Synthetic Lethality in Breast Cancer. Cancer Discov 2018; 8:498-515. [PMID: 29610289 PMCID: PMC6296442 DOI: 10.1158/2159-8290.cd-17-0603] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
The cell adhesion glycoprotein E-cadherin (CDH1) is commonly inactivated in breast tumors. Precision medicine approaches that exploit this characteristic are not available. Using perturbation screens in breast tumor cells with CRISPR/Cas9-engineered CDH1 mutations, we identified synthetic lethality between E-cadherin deficiency and inhibition of the tyrosine kinase ROS1. Data from large-scale genetic screens in molecularly diverse breast tumor cell lines established that the E-cadherin/ROS1 synthetic lethality was not only robust in the face of considerable molecular heterogeneity but was also elicited with clinical ROS1 inhibitors, including foretinib and crizotinib. ROS1 inhibitors induced mitotic abnormalities and multinucleation in E-cadherin-defective cells, phenotypes associated with a defect in cytokinesis and aberrant p120 catenin phosphorylation and localization. In vivo, ROS1 inhibitors produced profound antitumor effects in multiple models of E-cadherin-defective breast cancer. These data therefore provide the preclinical rationale for assessing ROS1 inhibitors, such as the licensed drug crizotinib, in appropriately stratified patients.Significance: E-cadherin defects are common in breast cancer but are currently not targeted with a precision medicine approach. Our preclinical data indicate that licensed ROS1 inhibitors, including crizotinib, should be repurposed to target E-cadherin-defective breast cancers, thus providing the rationale for the assessment of these agents in molecularly stratified phase II clinical trials. Cancer Discov; 8(4); 498-515. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.
Collapse
Affiliation(s)
- Ilirjana Bajrami
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Rebecca Marlow
- The Breast Cancer Now Research Unit, King's College London, London, United Kingdom
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging (MCCA) Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rachel Brough
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Helen N Pemberton
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Jessica Frankum
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Feifei Song
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Rumana Rafiq
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Asha Konde
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Dragomir B Krastev
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Malini Menon
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Aditi Gulati
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Rahul Kumar
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Stephen J Pettitt
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| | - Mark D Gurden
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Marta Llorca Cardenosa
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Biomedical Research Institute INCLIVA, Hospital Clinico Universitario Valencia, University of Valencia, Spain
| | - Irene Chong
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Patrycja Gazinska
- The Breast Cancer Now Research Unit, King's College London, London, United Kingdom
| | - Fredrik Wallberg
- FACS Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Elinor J Sawyer
- Division of Cancer Studies, Guy's Hospital, King's College London, London, United Kingdom
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Spiros Linardopoulos
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
- The Breast Cancer Now Research Unit, King's College London, London, United Kingdom
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
- Cancer Research UK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
31
|
Jiang W, Li Y, Ou J, Wang X, Zhang C, Yi L, Xue L, Zhang M. Expression analysis of E-cad and vascular endothelial growth factor in triple-negative breast cancer patients of different ethnic groups in western China. Medicine (Baltimore) 2017; 96:e8155. [PMID: 29049198 PMCID: PMC5662364 DOI: 10.1097/md.0000000000008155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this article is to investigate the expression of E-cadherin (E-cad) and vascular endothelial growth factor (VEGF) in triple-negative breast cancer (TNBC) of Han and Uygur women patients in western China, and their relationship with clinical features of TNBC.Totally, 172 cases of Han TNBC patients and 79 cases of Uighur TNBC patients were enrolled. The expressions of E-cad and VEGF were detected with immunohistochemistry. The correlation of E-cad and VEGF expression with lymph node metastasis, TNM stage, and histological grade were analyzed. The 5-year disease-free survival rate of the 2 groups was also evaluated.There was no significant difference in the 5-year disease-free survival rate (P > .05) and the expression of E-cad between the 2 groups. The positive rate of VEGF in Han was significantly lower than that in Uygur (P < .05). The expression of E-cad was negatively correlated with lymph node metastasis, TNM stage, and histological grade (-1≤r < 1, P < .05). However, the expression of VEGF was positively correlated with lymph node metastasis and TNM staging (0 < r < 1, P < 0.05), but not with histological grading.The expression of E-cad and VEGF and their relationship with clinical features of TNBC suggest that Uygur TNBC patients might have different prognostic factors as compared with Han patients.
Collapse
|
32
|
Adamo B, Ricciardi GRR, Ieni A, Franchina T, Fazzari C, Sanò MV, Angelico G, Michele C, Tuccari G, Adamo V. The prognostic significance of combined androgen receptor, E-Cadherin, Ki67 and CK5/6 expression in patients with triple negative breast cancer. Oncotarget 2017; 8:76974-76986. [PMID: 29100362 PMCID: PMC5652756 DOI: 10.18632/oncotarget.20293] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
Background Triple Negative Breast Cancer (TNBC) represents a heterogeneous group of tumors with poor prognosis owing to aggressive tumor biology and lack of targeted therapies. No clear prognostic biomarkers have been identified to date for this subgroup. Materials and Methods In this retrospective study we evaluated the prognostic role of 4 different molecular determinants, including androgen receptor (AR), E-cadherin (CDH1), Ki67 index, and basal cytokeratins (CKs) 5/6, in a cohort of 99 patients with TNBC. All patients received neo/adjuvant chemotherapy (mostly anthracycline/taxane-based). Immunohistochemistry (IHC) was performed in formalin-fixed paraffin-embedded primary tumor samples. CDH1 expression was considered positive as ≥ 30% of the membrane cells staining. AR positivity was defined as > 10% of positive tumor cells. High Ki67 was defined as ≥20% positive tumor cells. CK5/6 expression was judged positive if the score was ≥1. Results The absence of AR expression was significantly associated with highly undifferentiated tumors. Univariate analyses showed that lack of expression of CDH1, tumor size and nodal status were significantly correlated with worse RFS and OS (p< 0.05). AR expression and low Ki67 showed a trend towards better RFS and OS. Patients with absent CK5/6 expression in univariate and multivariate analyses had poorer RFS (p=0.02 and p=0.002, respectively) and OS (p=0.05 and p=0.02, respectively). Multivariate analysis showed an independent association between CDH1 expression and better RFS and OS (p< 0.05) beyond tumor size, nodal status, and grade. The Kaplan-Meier curves showed that patients with AR and CDH1 negative expression and high Ki-67 levels have a significant correlation with poor outcome. Conclusions Our study supports the use of IHC expression of AR, CDH1, Ki67, and CK5/6 as prognostic markers in TNBCs and suggests a link between their expression and prognosis and may help to stratify TNBC patients in different prognostic classes.
Collapse
Affiliation(s)
- Barbara Adamo
- Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - Antonio Ieni
- Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", Section of Pathology, University of Messina, AOU Policlinico "G. Martino" Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology University of Messina, Messina, Italy
| | - Carmine Fazzari
- Pathology Unit, Humanitas Center of Oncology, Catania, Italy
| | - Maria Vita Sanò
- Medical Oncology, Humanitas Catania Oncology Center, Catania, Italy
| | - Giuseppe Angelico
- G. F. Ingrassia Department, Section of Anatomic Pathology, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Caruso Michele
- Medical Oncology, Humanitas Catania Oncology Center, Catania, Italy
| | - Giovanni Tuccari
- Department of Human Pathology of Adult and Evolutive Age "Gaetano Barresi", Section of Pathology, University of Messina, AOU Policlinico "G. Martino" Messina, Italy
| | - Vincenzo Adamo
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology University of Messina, Messina, Italy
| |
Collapse
|
33
|
Hafeez BB, Ganju A, Sikander M, Kashyap VK, Hafeez ZB, Chauhan N, Malik S, Massey AE, Tripathi MK, Halaweish FT, Zafar N, Singh MM, Yallapu MM, Chauhan SC, Jaggi M. Ormeloxifene Suppresses Prostate Tumor Growth and Metastatic Phenotypes via Inhibition of Oncogenic β-catenin Signaling and EMT Progression. Mol Cancer Ther 2017; 16:2267-2280. [PMID: 28615299 DOI: 10.1158/1535-7163.mct-17-0157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/21/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
Ormeloxifene is a clinically approved selective estrogen receptor modulator, which has also shown excellent anticancer activity, thus it can be an ideal repurposing pharmacophore. Herein, we report therapeutic effects of ormeloxifene on prostate cancer and elucidate a novel molecular mechanism of its anticancer activity. Ormeloxifene treatment inhibited epithelial-to-mesenchymal transition (EMT) process as evident by repression of N-cadherin, Slug, Snail, vimentin, MMPs (MMP2 and MMP3), β-catenin/TCF-4 transcriptional activity, and induced the expression of pGSK3β. In molecular docking analysis, ormeloxifene showed proficient docking with β-catenin and GSK3β. In addition, ormeloxifene induced apoptosis, inhibited growth and metastatic potential of prostate cancer cells and arrested cell cycle in G0-G1 phase via modulation of cell-cycle regulatory proteins (inhibition of Mcl-1, cyclin D1, and CDK4 and induction of p21 and p27). In functional assays, ormeloxifene remarkably reduced tumorigenic, migratory, and invasive potential of prostate cancer cells. In addition, ormeloxifene treatment significantly (P < 0.01) regressed the prostate tumor growth in the xenograft mouse model while administered through intraperitoneal route (250 μg/mouse, three times a week). These molecular effects of ormeloxifene were also observed in excised tumor tissues as shown by immunohistochemistry analysis. Our results, for the first time, demonstrate repurposing potential of ormeloxifene as an anticancer drug for the treatment of advanced stage metastatic prostate cancer through a novel molecular mechanism involving β-catenin and EMT pathway. Mol Cancer Ther; 16(10); 2267-80. ©2017 AACR.
Collapse
Affiliation(s)
- Bilal Bin Hafeez
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Aditya Ganju
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Mohammed Sikander
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Vivek K Kashyap
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Zubair Bin Hafeez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Shabnam Malik
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Andrew E Massey
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Manish K Tripathi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | | | - Nadeem Zafar
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Man M Singh
- Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Centre, Memphis, Tennessee.
| |
Collapse
|
34
|
Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 2017; 10:101. [PMID: 28476164 PMCID: PMC5420131 DOI: 10.1186/s13045-017-0471-6] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023] Open
Abstract
Wnt/β-catenin signaling, a highly conserved pathway through evolution, regulates key cellular functions including proliferation, differentiation, migration, genetic stability, apoptosis, and stem cell renewal. The Wnt pathway mediates biological processes by a canonical or noncanonical pathway, depending on the involvement of β-catenin in signal transduction. β-catenin is a core component of the cadherin protein complex, whose stabilization is essential for the activation of Wnt/β-catenin signaling. As multiple aberrations in this pathway occur in numerous cancers, WNT-directed therapy represents an area of significant developmental therapeutics focus. The recently described role of Wnt/β-catenin pathway in regulating immune cell infiltration of the tumor microenvironment renewed the interest, given its potential impact on responses to immunotherapy treatments. This article summarizes the role of Wnt/β-catenin pathway in cancer and ongoing therapeutic strategies involving this pathway.
Collapse
Affiliation(s)
- Sachin Gopalkrishna Pai
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA. .,Current Address: Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, USA.
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Jose Mauricio Mota
- Instituto do Câncer do Estado de São Paulo, University of São Paulo, São Paulo, Brazil
| | - Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | - Jason Benjamin Kaplan
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Francis Joseph Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|