1
|
Ma X, Wang M, Wang J, Han X, Yang X, Zhang H, Zhong D, Qiu S, Yu S, Wang L, Pan Y. Hypoxia-Inducible Factor 1α Affects Yak Oocyte Maturation and Early Embryonic Development by Regulating Autophagy. Antioxidants (Basel) 2024; 13:840. [PMID: 39061908 PMCID: PMC11273763 DOI: 10.3390/antiox13070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In animal assisted reproductive technology, the production of high-quality oocytes is crucial. The yak, having lived in the Qinghai-Tibet Plateau for an extended period, has reproductive cells that are regulated by hypoxia-inducible factor 1α (HIF-1α). This study aimed to investigate the impact of HIF-1α on yak oocyte maturation and early embryonic development in vitro through the regulation of autophagy. The in vitro maturation process of yak oocytes involved the addition of the HIF-1α inducer DFOM and the inhibitor LW6 to examine their effects on yak oocyte maturation, early embryonic development, cell autophagy, cytochrome P450s (CYP450s) enzyme expression, and cumulus diffusion factors. The findings revealed that DFOM significantly upregulated the expression of HIF-1α, resulting in increased the cumulus diffusion area, elevated first polar body expulsion rate of oocytes, enhanced mitochondrial and actin levels, decreased ROS production, and reduced early apoptosis levels of oocytes. Moreover, DFOM promoted the expression of autophagy-related proteins, CYP450s enzymes, and cumulus diffusion factors, thereby enhancing oocyte maturation and early embryonic development. Conversely, LW6 exhibited opposite effects. The inhibition of autophagy levels with 3-MA during DFOM treatment yielded similar outcomes. Furthermore, reducing autophagy led to increased apoptosis levels at all stages of early embryonic development, as well as a significant decrease in total cell number and ICM/TE ratio of blastocysts. Studies have shown that during the in vitro maturation of yak oocytes, HIF-1α can affect the cumulus expansion area of oocytes by regulating autophagy, the first polar body excretion rate, mitochondrial level, actin level, ROS and early apoptosis level, the CYP450s enzyme, and the expression of cumulus expansion factors, thereby improving the in vitro maturation and early embryonic development of yak oocytes. These findings offer valuable insights into the reproductive regulation mechanism of yaks in hypoxic environments and suggest potential strategies for the advancement of yak assisted reproductive technology.
Collapse
Affiliation(s)
- Xin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Xiaoqing Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Donglan Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (X.M.); (M.W.); (J.W.); (X.H.); (X.Y.); (H.Z.); (D.Z.); (S.Q.); (S.Y.); (L.W.)
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| |
Collapse
|
2
|
Yang J, Wang L, Ma J, Diao L, Chen J, Cheng Y, Yang J, Li L. Endometrial proteomic profile of patients with repeated implantation failure. Front Endocrinol (Lausanne) 2023; 14:1144393. [PMID: 37583433 PMCID: PMC10424929 DOI: 10.3389/fendo.2023.1144393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Successful embryo implantation, is the initiating step of pregnancy, relies on not only the high quality of the embryo but also the synergistic development of a healthy endometrium. Characterization and identification of biomarkers for the receptive endometrium is an effective method for increasing the probability of successful embryo implantation. Methods Endometrial tissues from 22 women with a history of recurrent implantation failure (RIF) and 19 fertile controls were collected using biopsy catheters on 7-9 days after the peak of luteinizing hormone. Differentially expressed proteins (DEPs) were identified in six patients with RIF and six fertile controls using isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis. Results Two hundred and sixty-three DEPs, including proteins with multiple bioactivities, such as protein translation, mitochondrial function, oxidoreductase activity, fatty acid and amino acid metabolism, were identified from iTRAQ. Four potential biomarkers for receptive endometrium named tubulin polymerization-promoting protein family member 3 TPPP3, S100 Calcium Binding Protein A13 (S100A13), 17b-hydroxysteroid dehydrogenase 2 (HSD17B2), and alpha-2-glycoprotein 1, zinc binding (AZGP1) were further verified using ProteinSimple Wes and immunohistochemical staining in all included samples (n=22 for RIF and n=19 for controls). Of the four proteins, the protein levels of TPPP3 and HSD17B2 were significantly downregulated in the endometrium of patients with RIF. Discussion Poor endometrial receptivity is considered the main reason for the decrease in pregnancy success rates in patients suffering from RIF. iTRAQ techniques based on isotope markers can identify and quantify low abundance proteomics, and may be suitable for identifying differentially expressed proteins in RIF. This study provides novel evidence that TPPP3 and HSD17B2 may be effective targets for the diagnosis and treatment of non-receptive endometrium and RIF.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jingwen Ma
- Department of Reproductive Medicine, Chengdu XiNan Gynecological Hospital, Chengdu, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
3
|
He S, Cao R, Mao Y, Li N, Wang Y, Ma H, Tian K. Alternative splicing of PSMD13 mediated by genetic variants is significantly associated with endometrial cancer risk. J Gynecol Oncol 2023; 34:e40. [PMID: 36731897 PMCID: PMC10157344 DOI: 10.3802/jgo.2023.34.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Accumulating evidence has shown that aberrant alternative splicing events are closely associated with the onset and development of cancer. However, whether genetic variants-associated alternative splicing is linked to risk of endometrial cancer remains largely uncertain. METHODS We identified single nucleotide polymorphisms (SNPs) locates in the splicing number trait locus (sQTL) of endometrial cancer using the CancerSplicing QTL database. In parallel with bioinformatics analysis, we conducted a case-control study comprising 2,000 cases and 2,013 controls to assess the association between identified SNP which possesses mRNA splicing function and endometrial cancer susceptibility. Furthermore, we used the Kaplan-Meier Plotter, The Human Protein Atlas, SPNR, and Spliceman2 databases for sQTL and differential gene expression analyses to identify the genetic variant which most potentially influence the risk of endometrial cancer through alternative splicing to reveal the potential mechanism by which candidate SNPs regulate the risk of endometrial cancer. RESULTS The results indicated that SNP rs7128029 A CONCLUSION These findings suggest that SNP rs7128029-mediated alternative splicing events in PSMD13 are associated with endometrial cancer risk and may be a potential early screening biomarker for endometrial cancer-susceptible populations.
Collapse
Affiliation(s)
- Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rong Cao
- The Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Mao
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanzhe Wang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kunming Tian
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
4
|
Suen HC, Rao S, Luk ACS, Zhang R, Yang L, Qi H, So HC, Hobbs RM, Lee TL, Liao J. The single-cell chromatin accessibility landscape in mouse perinatal testis development. eLife 2023; 12:e75624. [PMID: 37096870 PMCID: PMC10174692 DOI: 10.7554/elife.75624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Spermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that single-cell sequencing assay for transposase-accessible chromatin (scATAC-Seq) allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell-type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution dataset also unveiled previously unreported subpopulations within both the Sertoli and Leydig cell groups. Further, we defined candidate target cell types and genes of several genome-wide association study (GWAS) signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the 'regulon' of the mouse male germline and supporting somatic cells.
Collapse
Affiliation(s)
- Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Shitao Rao
- School of Medical Technology and Engineering, Fujian Medical UniversityFujianChina
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Alfred Chun Shui Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Ruoyu Zhang
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Lele Yang
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Huayu Qi
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and HealthGuangzhouChina
| | - Hon Cheong So
- Cancer Biology and Experimental Therapeutics Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongChina
| | - Robin M Hobbs
- Germline Stem Cell Biology Laboratory, Centre for Reproductive Health, Hudson Institute of Medical ResearchMelbourneAustralia
| | - Tin-lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
| | - Jinyue Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, ShatinHong KongHong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New TerritoriesHong KongChina
| |
Collapse
|
5
|
Das AP, Chaudhary N, Tyagi S, Agarwal SM. Meta-Analysis of 49 SNPs Covering 25,446 Cases and 41,106 Controls Identifies Polymorphisms in Hormone Regulation and DNA Repair Genes Associated with Increased Endometrial Cancer Risk. Genes (Basel) 2023; 14:genes14030741. [PMID: 36981012 PMCID: PMC10048726 DOI: 10.3390/genes14030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/19/2022] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Endometrial cancer (EC) is among the most common gynecological disorders globally. As single nucleotide polymorphisms (SNPs) play an important role in the causation of EC, therefore, a comprehensive meta-analysis of 49 SNPs covering 25,446 cases and 41,106 controls was performed to identify SNPs significantly associated with increased EC risk. PubMed was searched to identify case control studies and meta-analysis was performed to compute the pooled odds ratio (OR) at 95% confidence interval (CI). Cochran’s Q-test and I2 were used to study heterogeneity, based on which either a random or a fixed effect model was implemented. The meta-analysis identified 11 SNPs (from 10 genes) to be significantly associated with increased EC risk. Among these, seven SNPs were significant in at least three of the five genetic models, as well as three of the polymorphisms (rs1801320, rs11224561, and rs2279744) corresponding to RAD51, PGR, and MDM2 genes, which contained more than 1000 EC cases each and exhibited increased risk. The current meta-analysis indicates that polymorphisms associated with various hormone related genes—SULT1A1 (rs1042028), PGR (rs11224561), and CYP19A1 (rs10046 and rs4775936); DNA repair genes—ERCC2 (rs1799793), OGG1 (rs1052133), MLH1 (rs1800734), and RAD51 (rs1801320) as well as genes like MDM2 (rs2279744), CCND1 (rs9344), and SERPINE1 (rs1799889), are significantly associated with increased EC risk.
Collapse
Affiliation(s)
- Agneesh Pratim Das
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida 201301, India
| | - Nisha Chaudhary
- Multanimal Modi College, Chaudhary Charan Singh University, Modinagar 201204, India
| | - Shrishty Tyagi
- Multanimal Modi College, Chaudhary Charan Singh University, Modinagar 201204, India
| | - Subhash M. Agarwal
- Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida 201301, India
- Correspondence:
| |
Collapse
|
6
|
Lv X, Wu C, Hu H, Fu Y, Yan L, Wang Z, Lv G, Wang G, Bai Z. Transcriptome analysis of growth and shell color between two genetic variants of Corbicula fluminea with different shell colors. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101056. [PMID: 36736150 DOI: 10.1016/j.cbd.2023.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/22/2023]
Abstract
To clarify the molecular mechanism of the black and yellow shell coloration, we performed a transcriptome analysis of whole tissue of Corbicula fluminea in Hongze Lake (Jiangsu Province, China). After assembly, 335,247 unigenes were obtained, and 136,804 unigenes were functionally identified using public databases (NR, GO, KEGG, eggnog, and Swissprot). 1567 differentially expressed genes (DEGs) were detected through pairwise comparisons, of which 941 DEGs were up-regulated and 626 were down-regulated in the black-shelled clam. We compared the DEGs between two clams and identified some coloration-related genes. Notably, the black-shelled clam was larger than the yellow-shelled. We speculated that higher digestion and anabolic ability of black-shelled clam might lead to this phenomenon. In contrast, the yellow-shelled clam appeared to be more sensitive to environmental stress. The metabolic energy of the yellow-shelled clam was depleted to maintain or recover from stress, and provide less energy for growth. In summary, our finding provides a theoretical basis for the molecular mechanism of pigmentation and the difference of somatotype in bivalve, as well as promotes the future breeding of more elite varieties.
Collapse
Affiliation(s)
- Xuefeng Lv
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China. https://twitter.com/
| | - Congdi Wu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Honghui Hu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Ling Yan
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Zhiyan Wang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Gaolun Lv
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Zhiyi Bai
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shangha Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
7
|
Cho EJ, Choi Y, Jung SJ, Kwak HB. Role of exercise in estrogen deficiency-induced sarcopenia. J Exerc Rehabil 2022; 18:2-9. [PMID: 35356136 PMCID: PMC8934617 DOI: 10.12965/jer.2244004.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 11/22/2022] Open
Abstract
A decline in estrogen levels during menopause is associated with the loss of muscle mass and function, and it can accelerate sarcopenia. However, with the growing number of postmenopausal women due to the increase in life expectancy, the effects of estrogen on skeletal muscle are not completely understood. This article reviews the relationship between estrogen deficiency and skeletal muscle, its potential mechanisms, including those involving mitochondria, and the effects of exercise on estrogen deficiency-induced skeletal muscle impairment. In particular, mitochondrial dysfunction induced by estrogen deficiency accelerates sarcopenia via mitochondrial dynamics, mitophagy, and mitochondrial-mediated apoptosis. It is well known that exercise training is essential for health, including for the improvement of sarcopenia. This review highlights the importance of exercise training (aerobic and resistance exercise) as a therapeutic intervention against estrogen deficiency-induced sarcopenia.
Collapse
Affiliation(s)
- Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon,
Korea
| | - Youngju Choi
- Institute of Sports & Arts Convergence, Inha University, Incheon,
Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul,
Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon,
Korea
- Institute of Sports & Arts Convergence, Inha University, Incheon,
Korea
- Corresponding author: Hyo-Bum Kwak, Department of Biomedical Science, Program in Biomedical Science and Engineering Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea,
| |
Collapse
|
8
|
Kobayashi S, Sata F, Ikeda-Araki A, Miyashita C, Itoh S, Goudarzi H, Iwasaki Y, Mitsui T, Moriya K, Shinohara N, Cho K, Kishi R. Associations among maternal perfluoroalkyl substance levels, fetal sex-hormone enzymatic gene polymorphisms, and fetal sex hormone levels in the Hokkaido study. Reprod Toxicol 2021; 105:221-231. [PMID: 34536543 DOI: 10.1016/j.reprotox.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
Prenatal sex hormones affect fetal growth; for example, prenatal exposure to low levels of androgen accelerates female puberty onset. We assessed the association of perfluoroalkyl substances (PFASs) in maternal sera and infant genotypes of genes encoding enzymes involved in sex steroid hormone biosynthesis on cord sera sex hormone levels in a prospective birth cohort study of healthy pregnant Japanese women (n = 224) recruited in Sapporo between July 2002 and October 2005. We analyzed PFAS and five sex hormone levels using liquid chromatography-tandem mass spectrometry. Cytochrome P450 (CYP) 17A1 (CYP17A1 rs743572), 19A1 (CYP19A1 rs10046, rs700519, and rs727479), 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1 rs6203), type 2 (HSD3B2 rs1819698, rs2854964, and rs4659175), 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1 rs605059, rs676387, and rs2676531), and type 3 (HSD17B3 rs4743709) were analyzed using real-time PCR. Multiple linear regression models were used to establish the influence of log10-transformed PFAS levels and infant genotypes on log10-transformed sex steroid hormone levels. When the interaction between perfluorooctanesulfonate (PFOS) levels and female infant genotype CYP17A1 (rs743572) on the androstenedione (A-dione) levels was considered, the estimated changes (95 % confidence intervals) in A-dione levels against PFOS levels, female infant genotype CYP17A1 (rs743572)-AG/GG, and interaction between them showed a mean increase of 0.445 (0.102, 0.787), mean increase of 0.392 (0.084, 0.707), and mean reduction of 0.579 (0.161, 0.997) (Pint = 0.007), respectively. Moreover, a female-specific interaction with testosterone levels was observed. A-dione and T levels showed positive main effects and negative interaction with PFOS levels and the female infant CYP17A1 genotype.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumihiro Sata
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Health Center, Chuo University, 42-8, Ichigaya-Hommura-cho, Shinjuku-ku, Tokyo, 162-8473, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan; Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yusuke Iwasaki
- Department of Biopharmaceutics and Analytical Science, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takahiko Mitsui
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110, Shimokato, Chuo, 409-3898, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North-15, West-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, North-14, West-7, Kita-ku, Sapporo, 060-8648, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
9
|
Trabert B, Geczik AM, Bauer DC, Buist DSM, Cauley JA, Falk RT, Gierach GL, Hue TF, Lacey JV, LaCroix AZ, Michels KA, Tice JA, Xu X, Brinton LA, Dallal CM. Association of Endogenous Pregnenolone, Progesterone, and Related Metabolites with Risk of Endometrial and Ovarian Cancers in Postmenopausal Women: The B ∼FIT Cohort. Cancer Epidemiol Biomarkers Prev 2021; 30:2030-2037. [PMID: 34465588 DOI: 10.1158/1055-9965.epi-21-0669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Postmenopausal pregnenolone and/or progesterone levels in relation to endometrial and ovarian cancer risks have been infrequently evaluated. To address this, we utilized a sensitive and reliable assay to quantify prediagnostic levels of seven markers related to endogenous hormone metabolism. METHODS Hormones were quantified in baseline serum collected from postmenopausal women in a cohort study nested within the Breast and Bone Follow-up to the Fracture Intervention Trial (B∼FIT). Women using exogenous hormones at baseline (1992-1993) were excluded. Incident endometrial (n = 65) and ovarian (n = 67) cancers were diagnosed during 12 follow-up years and compared with a subcohort of 345 women (no hysterectomy) and 413 women (no oophorectomy), respectively. Cox models with robust variance were used to estimate cancer risk. RESULTS Circulating progesterone levels were not associated with endometrial [tertile (T)3 vs. T1 HR (95% confidence interval): 1.87 (0.85-4.11); P trend = 0.17] or ovarian cancer risk [1.16 (0.58-2.33); 0.73]. Increasing levels of the progesterone-to-estradiol ratio were inversely associated with endometrial cancer risk [T3 vs. T1: 0.29 (0.09-0.95); 0.03]. Increasing levels of 17-hydroxypregnenolone were inversely associated with endometrial cancer risk [0.40 (0.18-0.91); 0.03] and positively associated with ovarian cancer risk [3.11 (1.39-6.93); 0.01]. CONCLUSIONS Using sensitive and reliable assays, this study provides novel data that endogenous progesterone levels are not strongly associated with incident endometrial or ovarian cancer risks. 17-hydroxypregnenolone was positively associated with ovarian cancer and inversely associated with endometrial cancer. IMPACT While our results require replication in large studies, they provide further support of the hormonal etiology of endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Britton Trabert
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland. .,Department of Obstetrics and Gynecology, University of Utah, and Cancer Control and Population Sciences Research Program, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Ashley M Geczik
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Doug C Bauer
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Medicine, University of California San Francisco, San Francisco, California
| | - Diana S M Buist
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roni T Falk
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | | | - Trisha F Hue
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - James V Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Andrea Z LaCroix
- Division of Epidemiology, Department of Family and Preventive Medicine, University of California San Diego, San Diego, California
| | - Kara A Michels
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Jeffrey A Tice
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Xia Xu
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, NCI, Bethesda, Maryland
| | - Cher M Dallal
- School of Public Health, University of Maryland, College Park, Maryland
| |
Collapse
|
10
|
Guo L, Liu Y, Liu L, Shao S, Cao Y, Guo J, Niu H. The CYP19A1 (TTTA)n Repeat Polymorphism May Affect the Prostate Cancer Risk: Evidence from a Meta-Analysis. Am J Mens Health 2021; 15:15579883211017033. [PMID: 34036824 PMCID: PMC8161905 DOI: 10.1177/15579883211017033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abnormal aromatase (CYP19A1) expression may participate in prostate cancer (PCa) carcinogenesis. However, the results of studies on the CYP19A1 gene polymorphisms and PCa are conflicting. This meta-analysis aimed to systematically evaluate the associations between the CYP19A1 Arg264Cys polymorphism and the (TTTA)n repeat polymorphism and PCa. Electronic databases (PubMed, EmBase, ScienceDirect, and Cochrane Library) were comprehensively searched to identify eligible studies. The strength of the association between the Arg264Cys polymorphism and PCa was assessed by pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) in allelic, dominant, recessive, homozygous, and heterozygous genetic models. To analyze the impact of the (TTTA)n repeat polymorphism, we sequentially took the N-repeat allele (where N equals 7,8,10,11,12, and 13) as the minor allele and the sum of all the other alleles as the major allele. The ORs and 95% CIs were calculated in the allelic model; this analysis was performed individually for each repeat number. Pooled estimates of nine studies addressing the Arg264Cys polymorphism indicated that this polymorphism was not associated with PCa risk in the overall population or in the Caucasian or Asian subgroups. The 8-repeat allele in the (TTTA)n repeat polymorphism increased PCa risk in the overall population (OR = 1.34, 95% CI = 1.14-1.58, p = .001) and in the subgroup with population-based (PB) controls (OR = 1.41, 95% CI = 1.13-1.74, p = .002) as well as in the subgroup using capillary electrophoresis to identify this polymorphism (OR = 1.34, 95% CI = 1.09-1.65, p = .006).The meta-analysis indicated that the CYP19A1 (TTTA)n repeat polymorphism, but not the Arg264Cys polymorphism, may affect PCa risk.
Collapse
Affiliation(s)
- Lei Guo
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanan Liu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lijun Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shixiu Shao
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanwei Cao
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiaming Guo
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
11
|
A Novel Method to Differentiate Tonsil-Derived Mesenchymal Stem Cells In Vitro into Estrogen-Secreting Cells. Tissue Eng Regen Med 2020; 18:253-264. [PMID: 33113109 DOI: 10.1007/s13770-020-00307-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The advantages of tonsil-derived mesenchymal stem cells (TMSCs) over other mesenchymal stem cells (MSCs) include higher proliferation rates, various differentiation potentials, efficient immune-modulating capacity, and ease of obtainment. Specifically, TMSCs have been shown to differentiate into the endodermal lineage. Estrogen deficiency is a major cause of postmenopausal osteoporosis and is associated with higher incidences of ischemic heart disease and cerebrovascular attacks during the postmenopausal period. Therefore, stem cell-derived, estrogen-secreting cells might be used for estrogen deficiency. METHODS Here, we developed a novel method that utilizes retinoic acid, insulin-like growth factor-1, basic fibroblast growth factor, and dexamethasone to evaluate the differentiating potential of TMSCs into estrogen-secreting cells. The efficacy of the novel differentiating method for generation of estrogen-secreting cells was also evaluated with bone marrow- and adipose tissue-derived MSCs. RESULTS Incubating TMSCs in differentiating media induced the gene expression of cytochrome P450 19A1 (CYP19A1), which plays a key role in estrogen biosynthesis, and increased 17β-estradiol secretion upon testosterone addition. Furthermore, CYP11A1, CYP17A1, and 3β-hydroxysteroid dehydrogenase type-1 gene expression levels were significantly increased in TMSCs. In bone marrow-derived and adipose tissue-derived MSCs, this differentiation method also induced the gene expression of CYP19A1, but not CYP17A1, suggesting TMSCs are a superior source for estrogen secretion. CONCLUSION These results imply that TMSCs can differentiate into functional estrogen-secreting cells, thus providing a novel, alternative cell therapy for estrogen deficiency.
Collapse
|
12
|
Ancelin ML, Norton J, Canonico M, Scarabin PY, Ritchie K, Ryan J. Aromatase (CYP19A1) gene variants, sex steroid levels, and late-life depression. Depress Anxiety 2020; 37:146-155. [PMID: 31730745 DOI: 10.1002/da.22974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sex differences in psychiatric disorders are common and could involve sex steroids. Aromatase, the product of the CYP19A1 gene, is the key enzyme in the conversion of androgen to estrogen. Whether CYP19A1 variants could be associated with depression differently in men and women has not been examined. METHODS This population-based study included 405 men and 602 women aged ≥65 years. A clinical level of depression (DEP) was defined as having a score ≥16 on the Center for Epidemiology Studies Depression scale or a diagnosis of current major depression based on the Mini-International Neuropsychiatric Interview and according to DSM-IV criteria. Seven single-nucleotide polymorphisms (SNPs) spanning the CYP19A1 gene were genotyped and circulating levels of estradiol and testosterone were determined. Multivariable analyses were adjusted for age, body mass index, ischemic pathologies, cognitive impairment, and anxiety. RESULTS Five SNPs were associated with DEP in women specifically and this varied according to a history of major depression (p-values .01 to .0005). Three SNPs were associated with an increased risk of late-life DEP in women without a history of major depression, while two SNPs were associated with a decreased DEP risk in women with a history of major depression and were also associated with higher estradiol levels. CONCLUSIONS Variants of the CYP19A1 gene appear to be susceptibility factors for late-life depression in a sex-specific manner. The polymorphisms decreasing the risk of recurrent depression in postmenopausal women also influence estradiol levels.
Collapse
Affiliation(s)
- Marie-Laure Ancelin
- Inserm, Neuropsychiatry: Epidemiological and Clinical Research, University of Montpellier, Montpellier, France
| | - Joanna Norton
- Inserm, Neuropsychiatry: Epidemiological and Clinical Research, University of Montpellier, Montpellier, France
| | - Marianne Canonico
- Centre for Research Epidemiology and Population Health, UVSQ, Inserm, Paris-Saclay University, Paris-South University, Villejuif, France
| | - Pierre-Yves Scarabin
- Centre for Research Epidemiology and Population Health, UVSQ, Inserm, Paris-Saclay University, Paris-South University, Villejuif, France
| | - Karen Ritchie
- Inserm, Neuropsychiatry: Epidemiological and Clinical Research, University of Montpellier, Montpellier, France.,Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanne Ryan
- Inserm, Neuropsychiatry: Epidemiological and Clinical Research, University of Montpellier, Montpellier, France.,Biological Neuropsychiatry and Dementia Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Genetic Variations of CYP19A1 Gene and Stroke Susceptibility: A Case-Control Study in the Chinese Han Population. J Cardiovasc Pharmacol 2020; 75:344-350. [PMID: 31895872 DOI: 10.1097/fjc.0000000000000793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study aimed to explore the association between genetic variations of CYP19A1 and stroke susceptibility in the Chinese Han population. METHODS A total of 477 stroke patients and 480 healthy controls were recruited in this study. The genotyping of CYP19A1 polymorphisms (rs4646, rs6493487, rs1062033, rs17601876, and rs3751599) was performed by the Agena MassARRAY platform. Under logistic regression models, we evaluated the associations of CYP19A1 polymorphisms and stroke susceptibility by odds ratio and 95% confidence interval. RESULTS Our study showed that rs4646 (codominant: P = 0.020; recessive: P = 0.016) and rs17601876 (allele: P = 0.044; codominant: P = 0.011; dominant: P = 0.009; recessive: P = 0.046) significantly decreased the risk of stroke. In the stratification analysis, rs4646 is associated with decreased stroke risk among the individuals older than 64 years (codominant: P = 0.028; recessive: P = 0.010) and women (codominant: P = 0.029; recessive: P = 0.029), whereas rs1062033 increased stroke risk in the subgroup of age 64 years and younger (recessive: P = 0.042). The rs17601876 polymorphism has a strong relationship with stroke susceptibility, which is age and gender dependent. In haplotype analysis, we found a block (rs17601876 and rs3751599), and Ars17601876Grs3751599 haplotype is related to an increased stroke risk (P < 0.05). In addition, CYP19A1 variations had effects on clinical characteristics. CONCLUSION CYP19A1 polymorphisms were significantly associated with stroke susceptibility in the Chinese Han population.
Collapse
|
14
|
Anupa G, Sharma JB, Roy KK, Sengupta J, Ghosh D. An assessment of the multifactorial profile of steroid-metabolizing enzymes and steroid receptors in the eutopic endometrium during moderate to severe ovarian endometriosis. Reprod Biol Endocrinol 2019; 17:111. [PMID: 31878927 PMCID: PMC6933937 DOI: 10.1186/s12958-019-0553-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Previous studies of expression profiles of major endometrial effectors of steroid physiology in endometriosis have yielded markedly conflicting conclusions, presumably because the relative effects of type of endometriosis, fertility history and menstrual cycle phases on the measured variables were not considered. In the present study, endometrial mRNA and protein levels of several effectors of steroid biosynthesis and action in patients with stage III-IV ovarian endometriosis (OE) with known fertility and menstrual cycle histories were compared with the levels in control endometrium to test this concept. METHODS Endometrial samples were collected from patients without endometriosis (n = 32) or OE stages III-IV (n = 52) with known fertility and cycle histories. qRT-PCR and immunoblotting experiments were performed to measure levels of NR5A1, STAR, CYP19A1, HSD17Bs, ESRs and PGR transcripts and proteins, respectively. Tissue concentrations of steroids (P4, T, E1 and E2) were measured using ELISAs. RESULTS The levels of expression of aromatase and ERβ were lower (P < 0.0001) and 17β-HSD1 (P < 0.0001) and PRA (P < 0.01) were higher in OE endometrium. Lower aromatase levels and higher 17β-HSD1 levels were detected in fertile (aromatase: P < 0.05; 17β-HSD1: P < 0.0001) and infertile (aromatase: P < 0.0001; 17β-HSD1: P < 0.0001) OE endometrium than in the matched control tissues. Both proliferative (PP) and secretory (SP) phase OE samples expressed aromatase (P < 0.0001) and ERβ (PP: P < 0.001; SP: P < 0.01) at lower levels and 17β-HSD1 (P < 0.0001) and PRA (PP: P < 0.01; SP: P < 0.0001) at higher levels than matched controls. Higher 17β-HSD1 (P < 0.01) and E2 (P < 0.05) levels and a lower (P < 0.01) PRB/PRA ratio was observed in infertile secretory phase OE endometrium than in control. CONCLUSIONS We report that dysregulated expression of 17β-HSD1 and PGR resulting in hyperestrogenism and progesterone resistance during the secretory phase of the menstrual cycle, rather than an anomaly in aromatase expression, was the hallmark of eutopic endometrium from infertile OE patients. Furthermore, the results provide proof of concept that the fertility and menstrual cycle histories exerted relatively different effects on steroid physiology in the endometrium from OE patients compared with the control subjects.
Collapse
Affiliation(s)
- G. Anupa
- 0000 0004 1767 6103grid.413618.9Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- 0000 0004 1767 6103grid.413618.9Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jai Bhagwan Sharma
- 0000 0004 1767 6103grid.413618.9Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Kallol K. Roy
- 0000 0004 1767 6103grid.413618.9Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayasree Sengupta
- 0000 0004 1767 6103grid.413618.9Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Debabrata Ghosh
- 0000 0004 1767 6103grid.413618.9Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Kim K, Sun H. Incorporating genetic networks into case-control association studies with high-dimensional DNA methylation data. BMC Bioinformatics 2019; 20:510. [PMID: 31640538 PMCID: PMC6805595 DOI: 10.1186/s12859-019-3040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background In human genetic association studies with high-dimensional gene expression data, it has been well known that statistical selection methods utilizing prior biological network knowledge such as genetic pathways and signaling pathways can outperform other methods that ignore genetic network structures in terms of true positive selection. In recent epigenetic research on case-control association studies, relatively many statistical methods have been proposed to identify cancer-related CpG sites and their corresponding genes from high-dimensional DNA methylation array data. However, most of existing methods are not designed to utilize genetic network information although methylation levels between linked genes in the genetic networks tend to be highly correlated with each other. Results We propose new approach that combines data dimension reduction techniques with network-based regularization to identify outcome-related genes for analysis of high-dimensional DNA methylation data. In simulation studies, we demonstrated that the proposed approach overwhelms other statistical methods that do not utilize genetic network information in terms of true positive selection. We also applied it to the 450K DNA methylation array data of the four breast invasive carcinoma cancer subtypes from The Cancer Genome Atlas (TCGA) project. Conclusions The proposed variable selection approach can utilize prior biological network information for analysis of high-dimensional DNA methylation array data. It first captures gene level signals from multiple CpG sites using data a dimension reduction technique and then performs network-based regularization based on biological network graph information. It can select potentially cancer-related genes and genetic pathways that were missed by the existing methods. Electronic supplementary material The online version of this article (10.1186/s12859-019-3040-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kipoong Kim
- Department of Statistic, Pusan National University, Busan, 46241, Korea
| | - Hokeun Sun
- Department of Statistic, Pusan National University, Busan, 46241, Korea.
| |
Collapse
|
16
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
17
|
Mohammadi H, Joghataei MT, Rahimi Z, Faghihi F, Khazaie H, Farhangdoost H, Mehrpour M. Sex steroid hormones and sex hormone binding globulin levels, CYP17 MSP AI (-34T:C) and CYP19 codon 39 (Trp:Arg) variants in children with developmental stuttering. BRAIN AND LANGUAGE 2017; 175:47-56. [PMID: 28992603 DOI: 10.1016/j.bandl.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Developmental stuttering is known to be a sexually dimorphic and male-biased speech motor control disorder. In the present case-control study, we investigated the relationship between developmental stuttering and steroid hormones. Serum levels of testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), oestradiol, progesterone, cortisol, and sex hormone binding globulin (SHBG), as well as the 2nd/4th digit ratio (2D:4D), an indicator of prenatal testosterone level, were compared between children who stutter (CWS) and children who do not stutter (CWNS). Moreover, two SNPs (CYP17 -34 T:C (MSP AI) and CYP19 T:C (Trp:Arg)) of cytochrome P450, which is involved in steroid metabolism pathways, were analysed between the groups. Our results showed significantly higher levels of testosterone, DHT, and oestradiol in CWS in comparison with CWNS. The severity of stuttering was positively correlated with the serum levels of testosterone, DHEA, and cortisol, whereas no association was seen between the stuttering and digit ratio, progesterone, or SHBG. The CYP17CC genotype was significantly associated with the disorder.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zohreh Rahimi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Department of Psychiatry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hashem Farhangdoost
- Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Mehrpour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Macronutrient intakes and serum oestrogen, and interaction with polymorphisms in CYP19A1 and HSD17B1 genes: a cross-sectional study in postmenopausal Japanese women. Br J Nutr 2017; 118:463-472. [DOI: 10.1017/s0007114517002239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractAlthough higher circulating levels of oestrogen are related to postmenopausal breast cancer risk, limited information is available regarding effects of diet on endogenous oestrogen. Thus, we examined associations between macronutrient intakes and serum oestrogen with consideration of polymorphisms in oestrogen-metabolising genes. In this cross-sectional study, 784 naturally menopaused Japanese women aged 47–69 years were selected from participants of the Japan Multi-Institutional Collaborative Cohort Study. We documented dietary intakes, measured serum concentrations of oestrone (E1) and oestradiol (E2) and genotyped polymorphisms in oestrogen-metabolising CYP19A1 (rs4441215 and rs936306) and HSD17B1 (rs605059) genes. Trends and interactions were examined using linear regression models. In addition, we calculated the ratios of the oestrogen concentrations of the second to the highest quartiles (Q2–Q4) of dietary intake to those of the lowest quartiles (Q1). After adjustment for potential confounders, E2 was significantly associated with intake of carbohydrate and noodles; ratios of Q4 v. Q1 were 1·15 (95 % CI 1·04, 1·28) and 1·15 (95 % CI 1·04, 1·26), respectively. In contrast, E2 levels were inversely associated with intake of total energy, SFA and n-3 highly unsaturated fatty acids (n-3 HUFA); ratios of Q4 v. Q1 were 0·90 (95 % CI 0·82, 0·99), 0·89 (95 % CI 0·81, 0·98) and 0·91 (95 % CI 0·83, 1·00), respectively. In stratified analysis by polymorphisms, the rs605059 genotype of HSD17B1 significantly modified associations of E2 with intake of n-3 HUFA and fish; the associations were limited to those with the CC genotype. Macronutrient intakes were associated with serum E2 level, and these associations may be modified by HSD17B1 polymorphism in postmenopausal women.
Collapse
|
19
|
Kupcová E, Reiffová K. Dispersive liquid-liquid microextraction as an effective preanalytical step for the determination of estradiol in human urine. J Sep Sci 2017; 40:2620-2628. [DOI: 10.1002/jssc.201700123] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Kupcová
- Department of Analytical Chemistry, Faculty of Science; Pavol Jozef Šafárik University in Košice; Košice Slovakia
| | - Katarína Reiffová
- Department of Analytical Chemistry, Faculty of Science; Pavol Jozef Šafárik University in Košice; Košice Slovakia
| |
Collapse
|
20
|
Wang Q, Mesaros C, Blair IA. Ultra-high sensitivity analysis of estrogens for special populations in serum and plasma by liquid chromatography-mass spectrometry: Assay considerations and suggested practices. J Steroid Biochem Mol Biol 2016; 162:70-9. [PMID: 26767303 PMCID: PMC4931956 DOI: 10.1016/j.jsbmb.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
Abstract
Estrogen measurements play an important role in the clinical evaluation of many endocrine disorders as well as in research on the role of hormones in human biology and disease. It remains an analytical challenge to quantify estrogens and their metabolites in specimens from special populations including older men, children, postmenopausal women and women receiving aromatase inhibitors. Historically, immunoassays have been used for measuring estrogens and their metabolites in biological samples for risk assessment. However, the lack of specificity and accuracy of immunoassay-based methods has caused significant problems when interpreting data generated from epidemiological studies and across different laboratories. Stable isotope dilution (SID) methodology coupled with liquid chromatography-selected reaction monitoring-mass spectrometry (LC-SRM/MS) is now accepted as the 'gold-standard' to quantify estrogens and their metabolites in serum and plasma due to improved specificity, high accuracy, and the ability to monitor multiple estrogens when compared with immunoassays. Ultra-high sensitivity can be obtained with pre-ionized derivatives when using triple quadruple mass spectrometers in the selected reaction monitoring (SRM) mode coupled with nanoflow LC. In this review, we have examined the special issues related to utilizing ultra-high sensitivity SID LC-SRM/MS-based methodology to accurately quantify estrogens and their metabolites in the serum and plasma from populations with low estrogen levels. The major issues that are discussed include: sample preparation for both unconjugated and conjugated estrogens, derivatization, chromatographic separation, matrix effects, and assay validation.
Collapse
Affiliation(s)
- Qingqing Wang
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, United States.
| |
Collapse
|
21
|
Usset JL, Raghavan R, Tyrer JP, McGuire V, Sieh W, Webb P, Chang-Claude J, Rudolph A, Anton-Culver H, Berchuck A, Brinton L, Cunningham JM, DeFazio A, Doherty JA, Edwards RP, Gayther SA, Gentry-Maharaj A, Goodman MT, Høgdall E, Jensen A, Johnatty SE, Kiemeney LA, Kjaer SK, Larson MC, Lurie G, Massuger L, Menon U, Modugno F, Moysich KB, Ness RB, Pike MC, Ramus SJ, Rossing MA, Rothstein J, Song H, Thompson PJ, van den Berg DJ, Vierkant RA, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wilkens LR, Wu AH, Yang H, Pearce CL, Schildkraut JM, Pharoah P, Goode EL, Fridley BL. Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity, and Hormone-Related Risk Factors. Cancer Epidemiol Biomarkers Prev 2016; 25:780-90. [PMID: 26976855 PMCID: PMC4873330 DOI: 10.1158/1055-9965.epi-15-1039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Many epithelial ovarian cancer (EOC) risk factors relate to hormone exposure and elevated estrogen levels are associated with obesity in postmenopausal women. Therefore, we hypothesized that gene-environment interactions related to hormone-related risk factors could differ between obese and non-obese women. METHODS We considered interactions between 11,441 SNPs within 80 candidate genes related to hormone biosynthesis and metabolism and insulin-like growth factors with six hormone-related factors (oral contraceptive use, parity, endometriosis, tubal ligation, hormone replacement therapy, and estrogen use) and assessed whether these interactions differed between obese and non-obese women. Interactions were assessed using logistic regression models and data from 14 case-control studies (6,247 cases; 10,379 controls). Histotype-specific analyses were also completed. RESULTS SNPs in the following candidate genes showed notable interaction: IGF1R (rs41497346, estrogen plus progesterone hormone therapy, histology = all, P = 4.9 × 10(-6)) and ESR1 (rs12661437, endometriosis, histology = all, P = 1.5 × 10(-5)). The most notable obesity-gene-hormone risk factor interaction was within INSR (rs113759408, parity, histology = endometrioid, P = 8.8 × 10(-6)). CONCLUSIONS We have demonstrated the feasibility of assessing multifactor interactions in large genetic epidemiology studies. Follow-up studies are necessary to assess the robustness of our findings for ESR1, CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2 Future work is needed to develop powerful statistical methods able to detect these complex interactions. IMPACT Assessment of multifactor interaction is feasible, and, here, suggests that the relationship between genetic variants within candidate genes and hormone-related risk factors may vary EOC susceptibility. Cancer Epidemiol Biomarkers Prev; 25(5); 780-90. ©2016 AACR.
Collapse
Affiliation(s)
- Joseph L Usset
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Rama Raghavan
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jonathan P Tyrer
- Department of Oncology, University of Cambridge Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Valerie McGuire
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Weiva Sieh
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Penelope Webb
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, California
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina
| | - Louise Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Anna DeFazio
- Discipline of Obstetrics, Gynecology, and Neonatology, University of Sydney, Westmead Institute for Cancer Research, Westmead Millennium Institute, Westmead, New South Wales, Australia
| | - Jennifer A Doherty
- Department of Epidemiology, Geisel School of Medicine, Hanover, New Hampshire
| | - Robert P Edwards
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simon A Gayther
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Marc T Goodman
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Estrid Høgdall
- Department of Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark. Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Allan Jensen
- Department of Virus, Lifestyle, and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Sharon E Johnatty
- Division of Genetics and Public Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lambertus A Kiemeney
- Department of Health Evidence, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Susanne K Kjaer
- Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Melissa C Larson
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Galina Lurie
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Leon Massuger
- Department of Obstetrics & Gynecology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London, United Kingdom
| | - Francesmary Modugno
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, New York
| | - Roberta B Ness
- School of Public Health, The University of Texas, Houston, Texas
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Susan J Ramus
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Mary Anne Rossing
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington
| | - Joseph Rothstein
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Honglin Song
- Department of Oncology, University of Cambridge Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Pamela J Thompson
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - David J van den Berg
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Robert A Vierkant
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Shan Wang-Gohrke
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, California
| | - Lynne R Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Anna H Wu
- Department of Preventive Medicine, University of Southern California, Los Angeles, California
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Celeste Leigh Pearce
- Department of Preventive Medicine, University of Southern California, Los Angeles, California. Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Paul Pharoah
- Department of Oncology, University of Cambridge Strangeways Research Laboratory, Cambridge, United Kingdom. Department of Public Health and Primary Care, University of Cambridge Strangeways Research Laboratory, Cambridge, United Kingdom
| | - Ellen L Goode
- Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
22
|
Brureau L, Moningo D, Emeville E, Ferdinand S, Punga A, Lufuma S, Blanchet P, Romana M, Multigner L. Polymorphisms of Estrogen Metabolism-Related Genes and Prostate Cancer Risk in Two Populations of African Ancestry. PLoS One 2016; 11:e0153609. [PMID: 27074016 PMCID: PMC4830606 DOI: 10.1371/journal.pone.0153609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Background Estrogens are thought to play a critical role in prostate carcinogenesis. It has been suggested that polymorphisms of genes encoding enzymes involved in estrogen metabolism are risk factors for prostate cancer. However, few studies have been performed on populations of African ancestry, which are known to have a high risk of prostate cancer. Objective We investigated whether functional polymorphisms of CYP17, CYP19, CYP1B1, COMT and UGT1A1 affected the risk of prostate cancer in two different populations of African ancestry. Methods In Guadeloupe (French West Indies), we compared 498 prostate cancer patients and 565 control subjects. In Kinshasa (Democratic Republic of Congo), 162 prostate cancer patients were compared with 144 controls. Gene polymorphisms were determined by the SNaPshot technique or short tandem repeat PCR analysis. Logistic regression was used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI). Results The AA genotype and the A allele of rs4680 (COMT) appeared to be inversely associated with the risk of prostate cancer in adjusted models for both Afro-Caribbean and native African men. For the A allele, a significant inverse association was observed among cases with low-grade Gleason scores and localized clinical stage, in both populations. Conclusions These preliminary results support the hypothesis that polymorphisms of genes encoding enzymes involved in estrogen metabolism may modulate the risk of prostate cancer in populations of African ancestry.
Collapse
Affiliation(s)
- Laurent Brureau
- Inserm, U1085 - IRSET, Pointe-à-Pitre, Guadeloupe, France
- Service d’Urologie, CHU de Pointe à Pitre, Pointe à Pitre, Guadeloupe, France
- Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Dieudonné Moningo
- Service d’Urologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Elise Emeville
- Inserm, U1085 - IRSET, Pointe-à-Pitre, Guadeloupe, France
- Université de Rennes 1, Rennes, France
| | - Séverine Ferdinand
- Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
- Inserm, U1134, Pointe-à-Pitre, Guadeloupe, France
| | - Augustin Punga
- Service d’Urologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Simon Lufuma
- Service d’Urologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Pascal Blanchet
- Inserm, U1085 - IRSET, Pointe-à-Pitre, Guadeloupe, France
- Service d’Urologie, CHU de Pointe à Pitre, Pointe à Pitre, Guadeloupe, France
- Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Marc Romana
- Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
- Inserm, U1134, Pointe-à-Pitre, Guadeloupe, France
| | - Luc Multigner
- Inserm, U1085 - IRSET, Pointe-à-Pitre, Guadeloupe, France
- Université de Rennes 1, Rennes, France
- * E-mail:
| |
Collapse
|
23
|
Abstract
Sensitive and reliable analysis of endogenous compounds is critically important for many physiological and pathological studies. Methods based on LC–MS have progressed to become the method of choice for analyzing endogenous compounds. However, the analysis can be challenging due to various factors, including inherent low concentrations in biological samples, low ionization efficiency, undesirable chromatographic behavior and interferences of complex biological. The integration of chemical derivatization with LC–MS could enhance its capabilities in sensitivity and selectivity, and extend its application to a wider range of analytes. In this article, we will review the derivatization strategies in the LC–MS analysis of various endogenous compounds, and provide applications highlighting the impact of these important techniques in the evaluation of pathological events.
Collapse
|
24
|
Alanazi M, Alabdulkarim HA, Shaik JP, Al Naeem A, Elrobh M, Al Amri A, Al-Mukaynizi FB, Semlali A, Warsy A, Parine NR. No associations between aromatase gene polymorphisms and breast cancer risk in Saudi patients. Onco Targets Ther 2015; 8:2453-9. [PMID: 26379441 PMCID: PMC4567226 DOI: 10.2147/ott.s84696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Cytochrome P450 (CYP)19A1 encodes aromatase, the enzyme responsible for the conversion of androgens to estrogens, and may play a role in variation in outcomes among women with breast cancer. The aim of this study was to analyze the genetic association of rs4646 (A > C) and rs700518 (Val > Val) in the CYP19A1 gene with the risk of breast cancer. Methods These two single nucleotide polymorphisms (SNPs) were analyzed in a primary study group of breast cancer patients and healthy control subjects. Genotypes were determined by the TaqMan SNP analysis technique. The study data were analyzed using the chi-square or t-test and logistic regression analysis by Statistical Package for the Social Sciences version 16 software. Results rs4646 and rs700518 had no association with susceptibility to breast cancer. There was no significant association for either of these SNPs overall in breast cancer samples when compared with healthy control samples. Our data do not support a relationship between the CYP19A1 rs4646 and rs700518 SNPs and risk of breast cancer. It may be that there are ethnic differences with regard to this relationship. Conclusion This study demonstrated that CYP19A1 rs4646 and rs700518 SNPs may not be involved in the etiology of breast cancer in the Saudi population. Confirmation of our findings in larger populations of other ethnicities could provide evidence for the role of the CYP19A1 gene in breast carcinomas.
Collapse
Affiliation(s)
- Mohammed Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Huda A Alabdulkarim
- Comprehensive Cancer Center at King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Jilani P Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman Al Naeem
- Department of Women's Imaging, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Elrobh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Al Amri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Abdelhabib Semlali
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Arjumand Warsy
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Saraiva AL, Payan-Carreira R, Gärtner F, Fortuna da Cunha MR, Rêma A, Faria F, Lourenço LM, Pires MDA. An immunohistochemical study on the expression of sex steroid receptors, Ki-67 and cytokeratins 7 and 20 in feline endometrial adenocarcinomas. BMC Vet Res 2015; 11:204. [PMID: 26268561 PMCID: PMC4535787 DOI: 10.1186/s12917-015-0530-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endometrial adenocarcinomas are a rare type of tumour in cats. Though different morphologies have been reported, the most frequent histological type of feline endometrial adenocarcinoma (FEA) is the papillary serous. Characterization of molecular markers expression in FEA may contribute to clarify the pathogenesis of these tumours and to assess the differences between normal endometrium and FEA regarding the expression pattern of several proteins. Therefore, this study aimed to evaluate the immunohistochemical profile of a wide panel of antibodies (specific for ER-α, PR, Ki-67, CK7 and CK20) in twenty-four cases of FEA. Comparisons were made between FEA and feline normal cyclic endometrium in follicular (n = 13) and luteal (n = 10) stages. Except for Ki-67, all other molecular markers were assessed independently for the intensity of immunolabeling and for the percentage of cells expressing the protein. RESULTS This study showed that in FEA a loss of expression occurs for ER-α (P ≤ 0.0001) and less markedly also for PR. The lost in sex steroid receptors concerns a decrease in both the proportion of labelled cells and the intensity of immunolabelling (P = 0.002 and P = 0.024, respectively). Proliferative activity, estimated via Ki-67 immunoreaction, significantly increased in FEA as compared to normal endometrium (P ≤ 0.0001). Feline endometrial adenocarcinomas maintained the CK7+/CK20+ status of normal endometrium. However, FEA showed decreased CK7 intensity of labelling compared to normal endometria (P ≤ 0.0001) and loss of CK20 expression, both in intensity (P ≤ 0.0001) and in percentage of positive cells (P = 0.01), compared to normal tissues. CONCLUSIONS Data gathered in this study suggest that proliferation in FEA accompanies ER-α down-regulation, possibly following activation of pathways mediated by local growth factors. Moreover, FEA retains combined expression of CK7 and CK20, as evidenced in normal endometrial epithelia, although a decrease in CK7 expression was observed.
Collapse
Affiliation(s)
- Ana Laura Saraiva
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal. .,Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Campus Universitário, Bloco B, Lordemão, 3020-210, Coimbra, Portugal.
| | - Rita Payan-Carreira
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Fátima Gärtner
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal. .,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.
| | - Marta R Fortuna da Cunha
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Alexandra Rêma
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| | - Fátima Faria
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| | - Lígia M Lourenço
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Maria Dos Anjos Pires
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
26
|
Wang Q, Rangiah K, Mesaros C, Snyder NW, Vachani A, Song H, Blair IA. Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography-tandem mass spectrometry. Steroids 2015; 96:140-52. [PMID: 25637677 PMCID: PMC4369926 DOI: 10.1016/j.steroids.2015.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
An ultrasensitive stable isotope dilution liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for multiplexed quantitative analysis of six unconjugated and conjugated estrogens in human serum. The quantification utilized a new derivatization procedure, which formed analytes as pre-ionized N-methyl pyridinium-3-sulfonyl (NMPS) derivatives. This method required only 0.1mL of human serum, yet was capable of simultaneously quantifying six estrogens within 20min. The lower limit of quantitation (LLOQ) for estradiol (E2), 16α-hydroxy (OH)-E2, 4-methoxy (MeO)-E2 and 2-MeO-E2 was 1fg on column, and was 10fg on column for 4-OH-E2 and 2-OH-E2. All analytes demonstrated a linear response from 0.5 to 200pg/mL (5-2000pg/mL for 4-OH-E2 and 2-OH-E2). Using this validated method, the estrogen levels in human serum samples from 20 female patients and 20 male patients were analyzed and compared. The levels found for unconjugated serum E2 from postmenopausal women (mean 2.7pg/mL) were very similar to those obtained by highly sensitive gas chromatography-mass spectrometry (GC-MS) methodology. However, the level obtained in serum from older men (mean 9.5pg/mL) was lower than has been reported previously by both GC-MS and LC-MS procedures. The total (unconjugated+conjugated) 4-MeO-E2 levels were significantly higher in female samples compared with males (p<0.05). The enhanced sensitivity offered by the present method will allow for a more specific analysis of estrogens and their metabolites. Our observations might suggest that the level of total 4-MeO-E2 could be a potential biomarker for breast cancer cases.
Collapse
Affiliation(s)
- Qingqing Wang
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Kannan Rangiah
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; NCBS, Center for Cellular and Molecular Platforms, Bangalore, India
| | - Clementina Mesaros
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Nathaniel W Snyder
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anil Vachani
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Haifeng Song
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ian A Blair
- Center of Excellence in Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
27
|
Genetic Variant in the CYP19A1 Gene Associated with Coronary Artery Disease. GENETICS RESEARCH INTERNATIONAL 2015; 2015:820323. [PMID: 25861479 PMCID: PMC4378698 DOI: 10.1155/2015/820323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
The CYP19A1 gene encodes the enzyme aromatase, which is responsible for the biosynthesis of estrogens. The rs10046 polymorphism of CYP19A1 gene has been investigated in two studies on the occurrence of hypertension, but there are no studies on its correlation with coronary artery disease (CAD). We investigated 189 subjects who were hospitalized at “KAT” General Hospital of Athens and underwent coronary angiography. Of these, 123 were found with CAD with an average age of 60 years and constituted the patients group and 66 subjects with an average age of 58 years without damage in the coronary vessels and constituted the control group (healthy). The frequencies of genotypes CC, CT, and TT of rs10046 polymorphism are significantly different between the group of CAD patients and the control group (0.34, 0.48, and 0.18 versus 0.20, 0.48, and 0.32, resp., P = 0.034) as the frequency of C allele (0.58 versus 0.44, resp., OR = 1.771 and P = 0.010). We found similar results for men, but not for women (small sample). The results of this study show that the rs10046 (C/T) polymorphism of CYP19A1 gene exhibits correlation with CAD and that patients with C allele have an increased probability of manifesting the disease.
Collapse
|
28
|
Nelis H, Vanden Bussche J, Wojciechowicz B, Franczak A, Vanhaecke L, Leemans B, Cornillie P, Peelman L, Van Soom A, Smits K. Steroids in the equine oviduct: synthesis, local concentrations and receptor expression. Reprod Fertil Dev 2015; 28:RD14483. [PMID: 25751414 DOI: 10.1071/rd14483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Steroids play an important role in mammalian reproduction and early pregnancy. Although systemic changes in steroid concentrations have been well documented, it is not clear how these correlate with local steroid concentrations in the genital tract. We hypothesised that, in the horse, the preimplantation embryo may be subjected to high local steroid concentrations for several days. Therefore, we measured progesterone, 17-hydroxyprogesterone, 17?-oestradiol, testosterone and 17?-testosterone concentrations in equine oviductal tissue by ultra-HPLC coupled with tandem mass spectrometry, and progesterone, 17?-oestradiol, oestrone and testosterone concentrations in oviduct fluid by radioimmunoassay, with reference to cycle stage and side of ovulation. Progesterone concentrations were high in oviductal tissue and fluid ipsilateral to the ovulation side during dioestrus, whereas other steroid hormone concentrations were not influenced by the side of ovulation. These results suggest that the high ipsilateral progesterone concentration is caused by: (1) contributions from the follicular fluid in the oviduct and diffusion of follicular fluid steroids after ovulation; (2) local transfer of steroids via blood or lymph; (3) local synthesis of progesterone in the oviduct, as evidenced by the expression of steroidogenic enzymes; and (4) a paracrine contribution from follicular cells. These data provide a basis for the study of the importance of endocrine and paracrine signalling during early embryonic development in the horse.
Collapse
|
29
|
Starlard-Davenport A, Orloff MS, Dhakal I, Penney RB, Kadlubar SA. Genotypic and allelic variability in CYP19A1 among populations of African and European ancestry. PLoS One 2015; 10:e0117347. [PMID: 25647083 PMCID: PMC4315570 DOI: 10.1371/journal.pone.0117347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
CYP19A1 facilitates the bioconversion of estrogens from androgens. CYP19A1 intron single nucleotide polymorphisms (SNPs) may alter mRNA splicing, resulting in altered CYP19A1 activity, and potentially influencing disease susceptibility. Genetic studies of CYP19A1 SNPs have been well documented in populations of European ancestry; however, studies in populations of African ancestry are limited. In the present study, ten 'candidate' intronic SNPs in CYP19A1 from 125 African Americans (AA) and 277 European Americans (EA) were genotyped and their frequencies compared. Allele frequencies were also compared with HapMap and ASW 1000 Genomes populations. We observed significant differences in the minor allele frequencies between AA and EA in six of the ten SNPs including rs10459592 (p<0.0001), rs12908960 (p<0.0001), rs1902584 (p = 0.016), rs2470144 (p<0.0001), rs1961177 (p<0.0001), and rs6493497 (p = 0.003). While there were no significant differences in allele frequencies between EA and CEU in the HapMap population, a 1.2- to 19-fold difference in allele frequency for rs10459592 (p = 0.004), rs12908960 (p = 0.0006), rs1902584 (p<0.0001), rs2470144 (p = 0.0006), rs1961177 (p<0.0001), and rs6493497 (p = 0.0092) was observed between AA and the Yoruba (YRI) population. Linkage disequilibrium (LD) blocks and haplotype clusters that is unique to the EA population but not AA was also observed. In summary, we demonstrate that differences in the allele frequencies of CYP19A1 intron SNPs are not consistent between populations of African and European ancestry. Thus, investigations into whether CYP19A1 intron SNPs contribute to variations in cancer incidence, outcomes and pharmacological response seen in populations of different ancestry may prove beneficial.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Mohammed S. Orloff
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Ishwori Dhakal
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Rosalind B. Penney
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| | - Susan A. Kadlubar
- Department of Medical Genetics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States of America
| |
Collapse
|
30
|
Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Evidence of androgen action in endometrial and ovarian cancers. Endocr Relat Cancer 2014; 21:T203-18. [PMID: 24623742 DOI: 10.1530/erc-13-0551] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endometrial cancer (EC) and ovarian cancer are common gynaecological malignancies. The impact of androgen action in these cancers is poorly understood; however, there is emerging evidence to suggest that targeting androgen signalling may be of therapeutic benefit. Epidemiological evidence suggests that there is an increased risk of EC associated with exposure to elevated levels of androgens, and genetic variants in genes related to both androgen biosynthesis and action are associated with an increased risk of both EC and ovarian cancer. Androgen receptors (ARs) may be a potential therapeutic target in EC due to reported anti-proliferative activities of androgens. By contrast, androgens may promote growth of some ovarian cancers and anti-androgen therapy has been proposed. Introduction of new therapies targeting ARs expressed in EC or ovarian cancer will require a much greater understanding of the impacts of cell context-specific AR-dependent signalling and how ARs can crosstalk with other steroid receptors during progression of disease. This review considers the evidence that androgens may be important in the aetiology of EC and ovarian cancer with discussion of evidence for androgen action in normal and malignant endometrial and ovarian tissue.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioannis Simitsidellis
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Frances Collins
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Philippa T K Saunders
- MRC Centre for Reproductive HealthThe University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
31
|
Pabalan N, Pineda MR, Jarjanazi H, Christofolini DM, Barbosa CP, Bianco B. Association of the +331G/A progesterone receptor gene (PgR) polymorphism with risk of endometrial cancer in Caucasian women: a meta-analysis. Arch Gynecol Obstet 2014; 291:115-22. [DOI: 10.1007/s00404-014-3344-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 11/29/2022]
|
32
|
Assessing the effect of food mycotoxins on aromatase by using a cell-based system. Toxicol In Vitro 2014; 28:640-6. [DOI: 10.1016/j.tiv.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 11/21/2022]
|
33
|
Brodowska A, Brodowski J, Laszczyńska M, Słuczanowska-Głąbowska S, Rumianowski B, Rotter I, Starczewski A, Ratajczak MZ. Immunoexpression of aromatase cytochrome P450 and 17β-hydroxysteroid dehydrogenase in women's ovaries after menopause. J Ovarian Res 2014; 7:52. [PMID: 24855493 PMCID: PMC4030461 DOI: 10.1186/1757-2215-7-52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/05/2014] [Indexed: 11/25/2022] Open
Abstract
Background Menopause results in a lack of regular menstrual cycles, leading to the reduction of estrogen production. On the other hand, ovarian androgen synthesis is still present at reduced levels and requires expression of several steroidogenic enzymes. Methods This study was performed on 104 postmenopausal women hospitalized due to uterine leiomyomas, endometriosis, and/or a prolapsed uterus. Patients were divided into three groups depending on the time from menopause. Group A patients experienced menopause 1–5 years before enrollment in the study (42 women). Group B included women who had their last menstruation 5–10 years before the study (40 women). Group C consisted of 22 women who were more than 10 years past menopause. Hysterectomy or removal of the uterine corpus with adnexa was performed during laparotomy. We evaluated the expression of aromatase cytochrome P450 (CYP 19) and 17β-hydroxysteroid dehydrogenase (17β HSD) by employing immunohistochemistry. Results Activity of 17β-HSD and CYP19 was demonstrated in the cytoplasm of stromal cells of postmenopausal ovaries, epithelium cells coating the ovaries, vascular endothelial cells, and epithelial inclusion cysts. However, overall expression of both 17β-HSD and CYP 19 decreased with time after menopause. Conclusion Demonstration of the activity of the key enzymes of ovarian steroidogenesis, CYP 19 and 17β-HSD, confirms steroidogenic activity in the ovaries of postmenopausal women. Nevertheless, ovarian steroidogenic activity decreases with time, and its significant decrease occurs 10 years after menopause.
Collapse
Affiliation(s)
- Agnieszka Brodowska
- Department of Gynaecology and Urogynaecology, Pomeranian Medical University, Siedlecka 2, 72 - 010 Police, Poland
| | - Jacek Brodowski
- Laboratory of Primary Health Care, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | | | - Bogdan Rumianowski
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - Iwona Rotter
- Laboratory of Medical Rehabilitation, Pomeranian Medical University, Grudziądzka 31, 70-103 Szczecin, Poland
| | - Andrzej Starczewski
- Department of Gynaecology and Urogynaecology, Pomeranian Medical University, Siedlecka 2, 72 - 010 Police, Poland
| | - Mariusz Z Ratajczak
- Department of Physiology Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland ; Stem Cell Biology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
34
|
Zhao J, Jiang CQ, Lam TH, Liu B, Cheng KK, Kavikondala S, Zhang WS, Leung GM, Schooling CM. Genetically predicted 17β-estradiol and systemic inflammation in women: a separate-sample Mendelian randomisation analysis in the Guangzhou Biobank Cohort Study. J Epidemiol Community Health 2014; 68:780-5. [DOI: 10.1136/jech-2013-203451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
CYP17 polymorphism (rs743572) is associated with increased risk of gallbladder cancer in tobacco users. Tumour Biol 2014; 35:6531-7. [DOI: 10.1007/s13277-014-1876-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/19/2014] [Indexed: 12/16/2022] Open
|
36
|
Ghisari M, Eiberg H, Long M, Bonefeld-Jørgensen EC. Polymorphisms in phase I and phase II genes and breast cancer risk and relations to persistent organic pollutant exposure: a case-control study in Inuit women. Environ Health 2014; 13:19. [PMID: 24629213 PMCID: PMC4234380 DOI: 10.1186/1476-069x-13-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/04/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND We have previously reported that chemicals belonging to the persistent organic pollutants (POPs) such as perfluorinated compounds (PFAS) and polychlorinated biphenyls (PCBs) are risk factors in Breast Cancer (BC) development in Greenlandic Inuit women. The present case-control study aimed to investigate the main effect of polymorphisms in genes involved in xenobiotic metabolism and estrogen biosynthesis, CYP1A1, CYP1B1, COMT and CYP17, CYP19 and the BRCA1 founder mutation in relation to BC risk and to explore possible interactions between the gene polymorphisms and serum POP levels on BC risk in Greenlandic Inuit women. METHODS The study population consisted of 31 BC cases and 115 matched controls, with information on serum levels of POPs. Genotyping was conducted for CYP1A1 (Ile462Val; rs1048943), CYP1B1 (Leu432Val; rs1056836), COMT (Val158Met; rs4680), CYP17A1 (A1> A2; rs743572); CYP19A1 (C> T; rs10046) and CYP19A1 ((TTTA)n repeats) polymorphisms and BRCA1 founder mutation using TaqMan allelic discrimination method and polymerase chain reaction based restriction fragment length polymorphism. The χ2 -test was used to compare categorical variables between cases and controls and the odds ratios were estimated by unconditional logistic regression models. RESULTS We found an independent association of CYP1A1 (Val) and CYP17 (A1) with BC risk.Furthermore, an increased BC risk was observed for women with high serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) and carriers of at least: one CYP1A1 variant Val allele; one variant COMT Met allele; or the common CYP17 A1 allele. No combined effects were seen between PFAS exposure and CYP1B1 and CYP19 polymorphisms. The risk of BC was not found significantly associated with exposure to PCBs and OCPs, regardless of genotype for all investigated SNPs. The frequency of the Greenlandic founder mutation in BRCA1 was as expected higher in cases than in controls. CONCLUSIONS The BRCA1 founder mutation and polymorphisms in CYP1A1 (Val) and CYP17 (A1) can increase the BC risk among Inuit women and the risk increases with higher serum levels of PFOS and PFOA. Serum PFAS levels were a consistent risk factor of BC, but inter-individual polymorphic differences might cause variations in sensitivity to the PFAS/POP exposure.
Collapse
Affiliation(s)
- Mandana Ghisari
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Álle 2, Build 1260, 8000 Aarhus C, Denmark
| | - Hans Eiberg
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manhai Long
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Álle 2, Build 1260, 8000 Aarhus C, Denmark
| | - Eva C Bonefeld-Jørgensen
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Bartholins Álle 2, Build 1260, 8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Schulze JJ, Mullen JE, Berglund Lindgren E, Ericsson M, Ekström L, Hirschberg AL. The impact of genetics and hormonal contraceptives on the steroid profile in female athletes. Front Endocrinol (Lausanne) 2014; 5:50. [PMID: 24782830 PMCID: PMC3989562 DOI: 10.3389/fendo.2014.00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/26/2014] [Indexed: 11/15/2022] Open
Abstract
The steroid module of the Athlete Biological Passport, the newest innovation in doping testing, is currently being finalized for implementation. Several factors, other than doping, can affect the longitudinal steroid profile. In this study, we investigated the effect of hormonal contraceptives (HC) as well as the effect of three polymorphisms on female steroid profiles in relation to doping controls. The study population consisted of 79 female elite athletes between the ages of 18 and 45. HC were used by 32% of the subjects. A full urinary steroid profile was obtained using World Anti-Doping Agency accredited methods. In addition all subjects were genotyped for copy number variation of UGT2B17 and SNPs in UGT2B7 and CYP17. Subjects using HC excreted 40% less epitestosterone as compared to non-users (p = 0.005) but showed no difference in testosterone excretion. When removing individuals homozygous for the deletion in UGT2B17, the testosterone to epitestosterone (T/E) ratio was 29% higher in the HC group (p = 0.016). In agreement with previous findings in men, copy number variation of UGT2B17 had significant effect on female urinary testosterone excretion and therefore also the T/E ratio. Subjects homozygous for the T allele of CYP17 showed a lower urinary epitestosterone concentration than the other CYP17 genotypes. It is of great importance that the athlete's steroidal passport can compensate for all possible normal variability in steroid profiles from women. Therefore, considering the large impact of HC on female steroid profiles, we suggest that the use of HC should be a mandatory question on the doping control form.
Collapse
Affiliation(s)
- Jenny J. Schulze
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jenny E. Mullen
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Jenny E. Mullen, Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, C1:68, Huddinge, Stockholm 141 86, Sweden e-mail:
| | - Emma Berglund Lindgren
- Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Ericsson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Ekström
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Warodomwichit D, Sritara C, Thakkinstian A, Chailurkit LO, Yamwong S, Ratanachaiwong W, Ongphiphadhanakul B, Sritara P. Causal inference of the effect of adiposity on bone mineral density in adults. Clin Endocrinol (Oxf) 2013; 78:694-9. [PMID: 23045999 DOI: 10.1111/cen.12061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/01/2012] [Accepted: 09/21/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The causal effect of adipose tissue on bone mass and the direction of its net influence have not been directly assessed in adult humans. Using the Mendelian randomization analysis, we assessed the causality of adiposity in measurements of bone mass in adult males and females. DESIGN AND METHODS Subjects consisted of 2154 adults aged 25-54 years from a cross-sectional cohort of the employees of the Electricity Generating Authority of Thailand. Body composition was determined after at least 3 h of fasting using multifrequency bioelectrical impedance analysis. Bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. A polymorphism in the fat mass and obesity-associated gene (FTO rs9939609) was used as an instrument in the Mendelian randomization analysis. RESULTS The genotype distribution of the FTO rs9939609 polymorphism was 61·1% TT, 33·9% AT and 5·0% AA. The average body mass index (BMI), body fat mass and percentage body fat were 23·9 kg/m(2) (SD = 3·6), 17·9 kg (SD = 6·6) and 26·8% (SD = 7·2), respectively. The FTO rs9939609 polymorphism was significantly correlated with BMI (coefficient = 0·673 kg/m(2) , P < 0·001), body fat mass (coefficient = 0·948 kg, P < 0·001) and percentage body fat (coefficient = 0·759%, P < 0·01). An instrumental variable (IV) regression model, using BMI as the intermediate phenotype, suggested that FTO was a strong IV. Also, the FTO-BMI polymorphism was significantly associated with total hip and femoral neck BMD but was not correlated with total spine BMD, with estimated correlation coefficients of 0·0189 (95% CI: 0·0046, 0·0332), 0·0149 (95% CI: 0·0030, 0·0268) and 0·0025 (95% CI: -0·0131, 0·0136) g/cm(2) , respectively. The variances of BMDs explained by the FTO-BMI were 19·0%, 21·3% and 1·1%, respectively. Similar trends were also observed for the FTO-body fat mass and FTO-percentage body fat correlations. CONCLUSIONS Mendelian randomization analysis suggests that adiposity might be causally related to BMD at the femur but not at the spine.
Collapse
Affiliation(s)
- Daruneewan Warodomwichit
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang X, Feng A, Liu F, Li Q, Zhang J, Yang C, An Y. CYP17A1 T-34C polymorphism is not associated with endometrial cancer risk. Tumour Biol 2013; 34:2583-7. [PMID: 23609033 DOI: 10.1007/s13277-013-0805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/10/2013] [Indexed: 01/31/2023] Open
Abstract
The association between CYP17A1 T-34C polymorphism and endometrial cancer risk has been inconsistent and underpowered. To clarify the effect of CYP17A1 T-34C polymorphism on the risk of endometrial cancer, a meta-analysis of all available studies relating CYP17A1 T-34C polymorphism to the risk of endometrial cancer was conducted. The authors searched PubMed, EMBASE, Scopus, and VisionCite databases updated on March 2013. Data were extracted by two independent authors and pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated. Finally, seven studies with 1,570 endometrial cancer cases and 2,474 controls were included in the meta-analysis. There was no statistically significant association between CYP17A1 T-34C polymorphism and endometrial cancer under heterogeneous codominant model (OR = 0.91, 95 %CI = 0.68-1.21). Although CYP17A1 T-34C polymorphism was marginally associated with endometrial cancer risk under homogeneous codominant model (OR = 0.69, 95 %CI = 0.49-0.99), the significant association was not stable after sensitivity analysis. We concluded that CYP17A1 T-34C polymorphism might not be one risk factor in the carcinogenesis of endometrial cancer. Further large and well-designed studies are needed to confirm this association.
Collapse
Affiliation(s)
- Xueying Yang
- Department of Gynaecology and Obstetrics, The Fourth People's Hospital of Jinan, Jinan, 250000, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhou X, Gu Y, Wang DN, Ni S, Yan J. Eight functional polymorphisms in the estrogen receptor 1 gene and endometrial cancer risk: a meta-analysis. PLoS One 2013; 8:e60851. [PMID: 23593326 PMCID: PMC3620469 DOI: 10.1371/journal.pone.0060851] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/03/2013] [Indexed: 12/04/2022] Open
Abstract
Background and Objective Emerging evidence indicates that common functional polymorphisms in the estrogen receptor 1 (ESR1) gene may have an impact on an individual’s susceptibility to endometrial cancer, but individually published results are inconclusive. The aim of this meta-analysis is to derive a more precise estimation of the associations between eight polymorphisms in the ESR1 gene and endometrial cancer risk. Methods A literature search of PubMed, Embase, Web of Science and China Biology Medicine (CBM) databases was conducted on publications published before November 1st, 2012. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Statistical analyses were performed using the STATA 12.0 software. Results Thirteen case-control studies were included with a total of 7,649 endometrial cancer cases and 16,855 healthy controls. When all the eligible studies were pooled into the meta-analysis, the results indicated that PvuII (C>T) polymorphism was associated with an increased risk of endometrial cancer, especially among Caucasian populations. There were also significant associations between rs3020314 (C>T) polymorphism and an increased risk of endometrial cancer. Furthermore, rs2234670 (S/L) polymorphism may decrease the risk of endometrial cancer. However, no statistically significant associations were found in XbaI (A>G), Codon 325 (C>G), Codon 243 (C>T), VNTR (S/L) and rs2046210 (G>A) polymorphisms. Conclusion The current meta-analysis suggests that PvuII (C>T) and rs3020314 (C>T) polymorphisms may be risk factors for endometrial cancer, especially among Caucasian populations.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, Shenyang, China
- * E-mail:
| | - Yang Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, Shenyang, China
| | - Ding-ning Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, Shenyang, China
| | - Sha Ni
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, Shenyang, China
| | - Jun Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, Shenyang, China
| |
Collapse
|
41
|
Li X, Ling Y, Lu D, Lu Z, Liu Y, Chen H, Gao X. Common polymorphism rs11191548 near the CYP17A1 gene is associated with hypertension and systolic blood pressure in the Han Chinese population. Am J Hypertens 2013; 26:465-72. [PMID: 23467202 DOI: 10.1093/ajh/hps066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The single-nucleotide polymorphism (SNP) rs11191548, near the CYP17A1 gene, has been identified as being associated with hypertension and systolic blood pressure (SBP) in genome-wide association studies (GWAS) in a European population. The CYP17A1 gene encodes cytochrome P450c17alpha and plays an important role in the steroidogenic pathway, which includes mineralocorticoids. Methods We investigated the SNP rs11191548 in a case-control study of 1,102 subjects with essential hypertension (EH) and 1,109 normotensive controls. Results The SNP rs11191548 was significantly associated with hypertension in an additive genetic model (genotypes CC vs. TC vs. TT; odds ratio (OR) = 1.27 (95% CI, 1.10-1.47; P = 0.001)). The ORs of the TC vs. TT and CC vs. TT genotypes were 1.34 (95% CI, 1.10-1.63; P = 0.003) and 1.52 (95% CI, 1.10-2.12; P = 0.014), respectively. The risk C-allele was associated with increased SBP (βadj ± SEM = 1.307±0.515; P = 0.011) levels in the controls and decreased plasma renin activity (PRA) (βadj ± SEM = -0.053±0.016; P = 0.001) in the subjects with EH. In a stratified analysis of renin-angiotensin-aldosterone-system (RAAS)-related antagonists, the C-allele was significantly associated with decreased serum potassium (K(+)) (βadj ± SEM = -0.093±0.028; P = 0.001) and PRA (βadj ± SEM = -0.067±0.023; P = 0.003) levels in patients with EH who were not taking RAAS-related antagonists. These results remained statistically significant after correction for multiple corrections. Conclusions The SNP rs11191548, near the CYP17A1 gene, was associated with hypertension and SBP in a Chinese Han population. The rs11191548 polymorphism was also related to lower PRA and K(+) levels, suggesting that it has an effect on the enzymatic activity of CYP17A1.
Collapse
Affiliation(s)
- Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Duell EJ, Travier N, Lujan-Barroso L, Dossus L, Boutron-Ruault MC, Clavel-Chapelon F, Tumino R, Masala G, Krogh V, Panico S, Ricceri F, Redondo ML, Dorronsoro M, Molina-Montes E, Huerta JM, Barricarte A, Khaw KT, Wareham NJ, Allen NE, Travis R, Siersema PD, Peeters PHM, Trichopoulou A, Fragogeorgi E, Oikonomou E, Boeing H, Schuetze M, Canzian F, Lukanova A, Tjønneland A, Roswall N, Overvad K, Weiderpass E, Gram IT, Lund E, Lindkvist B, Johansen D, Ye W, Sund M, Fedirko V, Jenab M, Michaud DS, Riboli E, Bueno-de-Mesquita HB. Menstrual and reproductive factors in women, genetic variation in CYP17A1, and pancreatic cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. Int J Cancer 2012; 132:2164-75. [PMID: 23015357 DOI: 10.1002/ijc.27875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/18/2012] [Indexed: 12/14/2022]
Abstract
Menstrual and reproductive factors and exogenous hormone use have been investigated as pancreatic cancer risk factors in case-control and cohort studies, but results have been inconsistent. We conducted a prospective examination of menstrual and reproductive factors, exogenous hormone use and pancreatic cancer risk (based on 304 cases) in 328,610 women from the EPIC cohort. Then, in a case-control study nested within the EPIC cohort, we examined 12 single nucleotide polymorphisms (SNPs) in CYP17A1 (an essential gene in sex steroid metabolism) for association with pancreatic cancer in women and men (324 cases and 353 controls). Of all factors analyzed, only younger age at menarche (<12 vs. 13 years) was moderately associated with an increased risk of pancreatic cancer in the full cohort; however, this result was marginally significant (HR = 1.44; 95% CI = 0.99-2.10). CYP17A1 rs619824 was associated with HRT use (p value = 0.037) in control women; however, none of the SNPs alone, in combination, or as haplotypes were associated with pancreatic cancer risk. In conclusion, with the possible exception of an early age of menarche, none of the menstrual and reproductive factors, and none of the 12 common genetic variants we evaluated at the CYP17A1 locus makes a substantial contribution to pancreatic cancer susceptibility in the EPIC cohort.
Collapse
Affiliation(s)
- Eric J Duell
- Unit of Nutrition, Environment and Cancer, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Polymorphisms in the maternal sex steroid pathway are associated with behavior problems in male offspring. Psychiatr Genet 2012; 22:115-22. [PMID: 22336992 DOI: 10.1097/ypg.0b013e328351850b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Slight perturbations in maternal sex steroid production and metabolism may interfere with normal fetal neurodevelopment. The balance of maternal estrogens and androgens may have direct fetal effects, may influence the fetal hypothalamic-pituitary-gonadal axis, or may alter local hormonal activity within the fetal brain. We investigated maternal functional polymorphisms of CYP17, CYP19, and CYP1B1, which control three major enzymatic steps in sex steroid biosynthesis and metabolism, in relation to childhood behaviors. METHODS The Mount Sinai Children's Environmental Health Study enrolled a multiethnic urban pregnancy cohort from 1998 to 2002 (n=404). DNA was obtained from maternal blood (n=149) and from neonatal cord blood (n=53). At each visit, mothers completed the Behavior Assessment System for Children, a parent-reported questionnaire used to evaluate children for behavior problems. We focused on problem behaviors more commonly associated with attention deficit-hyperactivity disorder (Hyperactivity, Attention Problems, Externalizing Behaviors, Conduct Disorder, Poor Adaptability) to determine whether maternal genetic variants in sex steroid production and metabolism influence sexually dimorphic behaviors in offspring. RESULTS The more active gene variants were significantly associated with Attention Problems and poorer Adaptive Skills in male compared with female offspring. The CYP19 variant allele was also significantly associated with worse scores for boys on the Hyperactivity, Externalizing Problems Composite, and Adaptive Skills Composite scales (P<0.05). CONCLUSION We observed maladaptive behaviors in the male offspring of mothers who carried functional polymorphisms in the sex steroid pathway. The strongest associations were in domains commonly affected in attention deficit-hyperactivity disorder.
Collapse
|
45
|
Li Y, Low HQ, Foo JN, Darabi H, Einarsdόttir K, Humphreys K, Spurdle A, Easton DF, Thompson DJ, Dunning AM, Pharoah PDP, Czene K, Chia KS, Hall P, Liu J. Genetic variants in ER cofactor genes and endometrial cancer risk. PLoS One 2012; 7:e42445. [PMID: 22876322 PMCID: PMC3411617 DOI: 10.1371/journal.pone.0042445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/06/2012] [Indexed: 01/09/2023] Open
Abstract
Given that the transcriptional regulatory activity of estrogen receptor (ER) is modulated by its biochemical cofactors, genetic variation within the ER cofactor genes may alter cellular response to estrogen exposure and consequently modify the risk for endometrial cancer. We genotyped 685 tagging SNPs within 60 ER cofactor genes in 564 endometrial cancer cases and 1,510 controls from Sweden, and tested their associations with the risk of endometrial cancer. We investigated the associations of individual SNPs by using a trend test as well as multiple SNPs within a gene or gene complex by using multi-variant association analysis. No significant association was observed for any individual SNPs or genes, but a marginal association of the cumulative genetic variation of the NCOA2 complex as a whole (NCOA2, CARM1, CREBBP, PRMT1 and EP300) with endometrial cancer risk was observed (Padjusted = 0.033). However, the association failed to be replicated in an independent European dataset of 1265 cases and 5190 controls (P = 0.71). The results indicate that common genetic variants within ER cofactor genes are unlikely to play a significant role in endometrial cancer risk in European population.
Collapse
Affiliation(s)
- Yuqing Li
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Hui-Qi Low
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kristjana Einarsdόttir
- Telethon Institute for Child Health Research, University of Western Australia, Western Australia, Australia
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Amanda Spurdle
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - ANECS Group
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- The Australian National Endometrial Cancer Study (ANECS) Group, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Douglas F. Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Deborah J. Thompson
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Paul D. P. Pharoah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kee Seng Chia
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
46
|
The rat prepubertal uterine myometrium and not the luminal epithelium is predominantly affected by a chronic dietary genistein exposure. Arch Toxicol 2012; 86:1899-910. [DOI: 10.1007/s00204-012-0907-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022]
|
47
|
Association between polymorphisms in COMT, PLCH1, and CYP17A1, and non-small-cell lung cancer risk in Chinese nonsmokers. Clin Lung Cancer 2012; 14:45-9. [PMID: 22658813 DOI: 10.1016/j.cllc.2012.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Recently, polymorphisms in COMT (catechol-O-methyltransferase), PLCH1 (phosphoinositide-specific phospholipase C eta 1), and CYP17A1 (cytochrome P450 17A1) were found to be associated with the development of lung cancer in a non-Chinese population. AIMS To explore the potential association between single-nucleotide polymorphism (SNP) in COMT, PLCH1, CYP17A1, and non-small-cell lung cancer (NSCLC) susceptibility in Chinese patients who were nonsmokers. METHODS A case-controlled study was conducted in 200 patients with NSCLC and 200 healthy controls who were age and sex matched. SNPs rs4680, rs181696, and rs743572 from the COMT, PLCH1, and CYP17A1 genes, respectively, were selected for genotyping. The association between genotype and lung cancer risk was evaluated by computing the odds ratio and 95% confidence interval from multivariate unconditional logistic regression analyses with adjustment for sex and age. RESULTS The frequency of the G genotype in COMT rs4680 was statistically different between patients with NSCLC and controls (P = .04), and between patients with adenocarcinomas (ADC) and controls (P = .02). The frequency of the A genotype in PLCH1 rs181696 occurred more frequently in squamous cell carcinomas (SQC) than in controls (P = .02). The G/G homozygous genotype in COMT rs4680 and A/A homozygous genotype in PLCH1 rs181696 were associated with ADC and SQC, respectively (odds ratio [OR] 0.61 and OR 2.01, respectively). CONCLUSION In this study, we found that the COMT rs4680 SNP was significantly associated with a reduced risk of NSCLC, especially ADC, which suggests that this SNP may have a protective effect. Moreover, the PLCH1 rs181696 SNP was strongly associated with an increased risk of SQC, which suggests that this SNP may be a risk factor for developing SQC.
Collapse
|
48
|
Lundin E, Wirgin I, Lukanova A, Afanasyeva Y, Krogh V, Axelsson T, Hemminki K, Clendenen TV, Arslan AA, Ohlson N, Sieri S, Roy N, Koenig KL, Idahl A, Berrino F, Toniolo P, Hallmans G, Försti A, Muti P, Lenner P, Shore RE, Zeleniuch-Jacquotte A. Selected polymorphisms in sex hormone-related genes, circulating sex hormones and risk of endometrial cancer. Cancer Epidemiol 2012; 36:445-52. [PMID: 22633539 DOI: 10.1016/j.canep.2012.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND The role of estrogen and progesterone in the development of endometrial cancer is well documented. Few studies have examined the association of genetic variants in sex hormone-related genes with endometrial cancer risk. METHODS We conducted a case-control study nested within three cohorts to examine the association of endometrial cancer risk with polymorphisms in hormone-related genes among 391 cases (92% postmenopausal at diagnosis) and 712 individually-matched controls. We also examined the association of these polymorphisms with circulating levels of sex hormones and SHBG in a cross-sectional analysis including 596 healthy postmenopausal women at blood donation (controls from this nested case-control study and from a nested case-control study of breast cancer in one of the three cohorts). RESULTS Adjusting for endometrial cancer risk factors, the A allele of rs4775936 in CYP19 was significantly associated (OR(per allele)=1.22, 95% CI=1.01-1.47, p(trend)=0.04), while the T allele of rs10046 was marginally associated with increased risk of endometrial cancer (OR(per allele)=1.20, 95% CI=0.99-1.45, p(trend)=0.06). PGR rs1042838 was also marginally associated with risk (OR(per allele)=1.25, 95% CI=0.96-1.61, p(trend)=0.09). No significant association was found for the other polymorphisms, i.e. CYP1B1 rs1800440 and rs1056836, UGT1A1 rs8175347, SHBG rs6259 and ESR1 rs2234693. Rs8175347 was significantly associated with postmenopausal levels of estradiol, free estradiol and estrone and rs6259 with SHBG and estradiol. CONCLUSION Our findings support an association between genetic variants in CYP19, and possibly PGR, and risk of endometrial cancer.
Collapse
Affiliation(s)
- Eva Lundin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Johnson N, Walker K, Gibson LJ, Orr N, Folkerd E, Haynes B, Palles C, Coupland B, Schoemaker M, Jones M, Broderick P, Sawyer E, Kerin M, Tomlinson IP, Zvelebil M, Chilcott-Burns S, Tomczyk K, Simpson G, Williamson J, Hillier SG, Ross G, Houlston RS, Swerdlow A, Ashworth A, Dowsett M, Peto J, dos Santos Silva I, Fletcher O. CYP3A Variation, Premenopausal Estrone Levels, and Breast Cancer Risk. J Natl Cancer Inst 2012; 104:657-669. [DOI: 10.1093/jnci/djs156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
50
|
Long J, Zheng W, Xiang YB, Lose F, Thompson D, Tomlinson I, Yu H, Wentzensen N, Lambrechts D, Dörk T, Dubrowinskaja N, Goodman MT, Salvesen HB, Fasching PA, Scott RJ, Delahanty R, Zheng Y, O'Mara T, Healey CS, Hodgson S, Risch H, Yang HP, Amant F, Turmanov N, Schwake A, Lurie G, Trovik J, Beckmann MW, Ashton K, Ji BT, Bao PP, Howarth K, Lu L, Lissowska J, Coenegrachts L, Kaidarova D, Dürst M, Thompson PJ, Krakstad C, Ekici AB, Otton G, Shi J, Zhang B, Gorman M, Brinton L, Coosemans A, Matsuno RK, Halle MK, Hein A, Proietto A, Cai H, Lu W, Dunning A, Easton D, Gao YT, Cai Q, Spurdle AB, Shu XO. Genome-wide association study identifies a possible susceptibility locus for endometrial cancer. Cancer Epidemiol Biomarkers Prev 2012; 21:980-7. [PMID: 22426144 DOI: 10.1158/1055-9965.epi-11-1160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified more than 100 genetic loci for various cancers. However, only one is for endometrial cancer. METHODS We conducted a three-stage GWAS including 8,492 endometrial cancer cases and 16,596 controls. After analyzing 585,963 single-nucleotide polymorphisms (SNP) in 832 cases and 2,682 controls (stage I) from the Shanghai Endometrial Cancer Genetics Study, we selected the top 106 SNPs for in silico replication among 1,265 cases and 5,190 controls from the Australian/British Endometrial Cancer GWAS (stage II). Nine SNPs showed results consistent in direction with stage I with P < 0.1. These nine SNPs were investigated among 459 cases and 558 controls (stage IIIa) and six SNPs showed a direction of association consistent with stages I and II. These six SNPs, plus two additional SNPs selected on the basis of linkage disequilibrium and P values in stage II, were investigated among 5,936 cases and 8,166 controls from an additional 11 studies (stage IIIb). RESULTS SNP rs1202524, near the CAPN9 gene on chromosome 1q42.2, showed a consistent association with endometrial cancer risk across all three stages, with ORs of 1.09 [95% confidence interval (CI), 1.03-1.16] for the A/G genotype and 1.17 (95% CI, 1.05-1.30) for the G/G genotype (P = 1.6 × 10(-4) in combined analyses of all samples). The association was stronger when limited to the endometrioid subtype, with ORs (95% CI) of 1.11 (1.04-1.18) and 1.21 (1.08-1.35), respectively (P = 2.4 × 10(-5)). CONCLUSIONS Chromosome 1q42.2 may host an endometrial cancer susceptibility locus. IMPACT This study identified a potential genetic locus for endometrial cancer risk.
Collapse
Affiliation(s)
- Jirong Long
- Department of Medicine, Vanderbilt University Schoolof Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|