1
|
Chien CS, Chien Y, Lin YY, Tsai PH, Chou SJ, Yarmishyn AA, Rastegari E, Wang TX, Leu HB, Yang YP, Wang ML, Jheng YC, Lai HIAM, Ching LJ, Huo TI, Cherng JY, Wang CY. Dual DNA Transfection Using 1,6-Hexanedithiol-Conjugated Maleimide-Functionalized PU-PEI 600 For Gene Correction in a Patient iPSC-Derived Fabry Cardiomyopathy Model. Front Cell Dev Biol 2021; 9:634190. [PMID: 34422789 PMCID: PMC8371449 DOI: 10.3389/fcell.2021.634190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Non-viral gene delivery holds promises for treating inherited diseases. However, the limited cloning capacity of plasmids may hinder the co-delivery of distinct genes to the transfected cells. Previously, the conjugation of maleimide-functionalized polyurethane grafted with small molecular weight polyethylenimine (PU-PEI600-Mal) using 1,6-hexanedithiol (HDT) could promote the co-delivery and extensive co-expression of two different plasmids in target cells. Herein, we designed HDT-conjugated PU-PEI600-Mal for the simultaneous delivery of CRISPR/Cas9 components to achieve efficient gene correction in the induced pluripotent stem cell (iPSC)-derived model of Fabry cardiomyopathy (FC) harboring GLA IVS4 + 919 G > A mutation. This FC in vitro model recapitulated several clinical FC features, including cardiomyocyte hypertrophy and lysosomal globotriaosylceramide (Gb3) deposition. As evidenced by the expression of two reporter genes, GFP and mCherry, the addition of HDT conjugated two distinct PU-PEI600-Mal/DNA complexes and promoted the co-delivery of sgRNA/Cas9 and homology-directed repair DNA template into target cells to achieve an effective gene correction of IVS4 + 919 G > A mutation. PU-PEI600-Mal/DNA with or without HDT-mediated conjugation consistently showed neither the cytotoxicity nor an adverse effect on cardiac induction of transfected FC-iPSCs. After the gene correction and cardiac induction, disease features, including cardiomyocyte hypertrophy, the mis-regulated gene expressions, and Gb3 deposition, were remarkably rescued in the FC-iPSC-differentiated cardiomyocytes. Collectively, HDT-conjugated PU-PEI600-Mal-mediated dual DNA transfection system can be an ideal approach to improve the concurrent transfection of non-viral-based gene editing system in inherited diseases with specific mutations.
Collapse
Affiliation(s)
- Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jie Chou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan
| | - Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Xian Wang
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chiayi County, Taiwan
| | - Hsin-Bang Leu
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,Heath Care and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,School of Pharmaceutical Sciences, Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,School of Pharmaceutical Sciences, Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Chun Jheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henkie Isahwan Ahmad Mulyadi Lai
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Laboratory, Faculty of Health Sciences, University of Selangor, Selangor, Malaysia
| | - Lo-Jei Ching
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jong-Yuh Cherng
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chiayi County, Taiwan
| | - Chien-Ying Wang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan.,Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Zimmermann A, Jaber QZ, Koch J, Riebe S, Vallet C, Loza K, Hayduk M, Steinbuch KB, Knauer SK, Fridman M, Voskuhl J. Luminescent Amphiphilic Aminoglycoside Probes to Study Transfection. Chembiochem 2021; 22:1563-1567. [PMID: 33410196 PMCID: PMC8248372 DOI: 10.1002/cbic.202000725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Indexed: 12/26/2022]
Abstract
We report the characterization of amphiphilic aminoglycoside conjugates containing luminophores with aggregation-induced emission properties as transfection reagents. These inherently luminescent transfection vectors are capable of binding plasmid DNA through electrostatic interactions; this binding results in an emission "on" signal due to restriction of intramolecular motion of the luminophore core. The luminescent cationic amphiphiles effectively transferred plasmid DNA into mammalian cells (HeLa, HEK 293T), as proven by expression of a red fluorescent protein marker. The morphologies of the aggregates were investigated by microscopy as well as ζ-potential and dynamic light-scattering measurements. The transfection efficiencies using luminescent cationic amphiphiles were similar to that of the gold-standard transfection reagent Lipofectamine® 2000.
Collapse
Affiliation(s)
- Alexander Zimmermann
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Qais Z. Jaber
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Johannes Koch
- Center for Medical Biotechnology (ZMB)University of Duisburg EssenUniversitätsstrasse 245141EssenGermany
| | - Steffen Riebe
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Cecilia Vallet
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Matthias Hayduk
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Kfir B. Steinbuch
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Shirley K. Knauer
- Institute for Molecular BiologyCentre for Medical Biotechnology (ZMB)University of Duisburg-EssenUniversitätsstrasse 245117EssenGermany
| | - Micha Fridman
- School of ChemistryRaymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Jens Voskuhl
- Faculty of chemistry (Organic Chemistry) andCentre for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| |
Collapse
|
3
|
Götz C, Warnke PH, Kolk A. Current and future options of regeneration methods and reconstructive surgery of the facial skeleton. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:315-23. [PMID: 26297391 DOI: 10.1016/j.oooo.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
Abstract
Musculoskeletal defects attributable to trauma or infection or as a result of oncologic surgery present a common challenge in reconstructive maxillofacial surgery. The autologous vascularized bone graft still represents the gold standard for salvaging these situations. Preoperative virtual planning offers great potential and provides assistance in reconstructive surgery. Nevertheless, the applicability of autologous bone transfer might be limited within the medically compromised patient or because of the complexity of the defect and the required size of the graft to be harvested. The development of alternative methods are urgently needed in the field of regenerative medicine to enable the regeneration of the original tissue. Since the first demonstration of de novo bone formation by regenerative strategies and the application of bone growth factors some decades ago, further progress has been achieved by tissue engineering, gene transfer, and stem cell application concepts. This review summarizes recent approaches and current developments in regenerative medicine.
Collapse
Affiliation(s)
- Carolin Götz
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Patrick H Warnke
- Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany; Belegärztliche Gemeinschaftspraxis für Oral-, Mund- und Kieferchirurgie und plastische Gesichtschirurgie Dres. Sprengel und Klebe, Flensburg, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
4
|
Nakamura J, Fumoto S, Ariyoshi K, Kodama Y, Nishi J, Nakashima M, Sasaki H, Nishida K. Unilateral Lung-Selective Gene Transfer Following the Administration of Naked Plasmid DNA onto the Pulmonary Pleural Surface in Mice. Biol Pharm Bull 2007; 30:729-32. [PMID: 17409511 DOI: 10.1248/bpb.30.729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to examine unilateral lung-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the pulmonary pleural surface in mice. Naked pDNA was administered intravenously, intraperitoneally, and instilled onto the right pulmonary pleural surface. Four hours later, right pulmonary pleural surface instillation of naked pDNA resulted in high gene expression in the right lung. On the contrary, intravenous and intraperitoneal administration of naked pDNA resulted in no detectable gene expression. After instilling naked pDNA onto the right or left pulmonary pleural surface, gene expressions in the applied lung were significantly higher than those in the other lung and tissues. In addition, gene expressions were detected only in the intrathoracic tissues, not in the intraperitoneal tissues. Four hours after instillation of naked pDNA onto the right pulmonary pleural surface, gene expression in the right lung was the highest, and thereafter gene expression in the right lung decreased gradually. This novel gene transfer method is expected to be a safe and effective treatment against serious lung diseases.
Collapse
Affiliation(s)
- Junzo Nakamura
- Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hirayama R, Fumoto S, Nishida K, Nakashima M, Sasaki H, Nakamura J. Effect of solution composition of plasmid DNA on gene transfection following liver surface administration in mice. Biol Pharm Bull 2005; 28:2166-9. [PMID: 16272713 DOI: 10.1248/bpb.28.2166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of plasmid DNA (pDNA) solution composition on gene transfection following liver surface administration in mice. Gene transfection experiments in situ and in vivo were performed using the following pDNA solutions: dextrose solution, NaCl solution, phosphate buffer, phosphate-buffered saline, Tris/HCl buffer with EDTA, Tris/HCl buffer with EDTA and Triton X-100, and water. In in situ experiments, we used a glass cylindrical diffusion cell that limited the contact area between the liver surface and the naked pDNA solution. The gene transfection at the site of diffusion cell attachment increased in hypotonic solution, and decreased in hypertonic solution, compared with isotonic solution. In in vivo experiments, instillation of naked pDNA solution onto the liver surface using a micropipette caused no significant differences in gene transfection in the applied lobe. These results suggest that it is important to select the optimal pDNA solution composition to control the gene transfection.
Collapse
Affiliation(s)
- Ryu Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Hirayama R, Nishida K, Fumoto S, Nakashima M, Sasaki H, Nakamura J. Unilateral Kidney-Selective Gene Transfer Following the Administration of Naked Plasmid DNA to the Kidney Surface in Mice. Biol Pharm Bull 2005; 28:181-4. [PMID: 15635189 DOI: 10.1248/bpb.28.181] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a gene transfer following the administration of naked plasmid DNA (pDNA) to the kidney surface in mice, and found that the luciferase levels produced in the applied kidney were significantly higher than those produced in another kidney. In contrast, stable renal gene expression was not observed in the case of intraperitoneal or intravenous administration of pDNA. The level of gene expression after instillation of pDNA to the kidney surface reached maximum at 12 h and gradually diminished thereafter. The production of luciferase was saturated at 5 microg of pDNA, and was not affected by instillation volume. Furthermore, pDNA uptake from the kidney surface was proved by in situ experiments using a glass-made diffusion cell. We demonstrated a novel unilateral kidney-selective gene transfer following the administration of naked pDNA to the kidney surface in mice.
Collapse
Affiliation(s)
- Ryu Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Hirayama R, Nishida K, Fumoto S, Nakashima M, Sasaki H, Nakamura J. Liver site-specific gene transfer following the administration of naked plasmid DNA to the liver surface in mice. Biol Pharm Bull 2004; 27:1697-9. [PMID: 15467224 DOI: 10.1248/bpb.27.1697] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to investigate liver site-specific gene transfer following the administration of naked plasmid DNA (pDNA) to the liver surface in mice. We examined whether genes could be delivered to the liver site specifically by utilizing the glass-made diffusion cell that is able to limit the contact dimension between the liver surface and pDNA solution administered. Gene expression was detected at the site of diffusion cell attachment (site 1) and was significantly higher than in other liver sites and tissues. Moreover, gene expression was also detected at deeper site from the liver surface (noncontact side with pDNA solution). The level of gene expression at site 1 did not change significantly with pDNA treatment for 10, 30, and 60 min. In conclusion, we demonstrated that naked pDNA administered to the liver surface in mice was taken up from its surface, and subsequently the protein encoded by pDNA could be produced site specifically.
Collapse
Affiliation(s)
- Ryu Hirayama
- Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
OBJECTIVE This article reviews the potential utilization of various growth factors to enhance spinal fusion and outlines the principles of gene therapy and its application to spinal fusion surgery. SUMMARY OF BACKGROUND DATA Gene therapy offers an exciting new way to potentially deliver growth factors locally in a targeted fashion with physiologic doses. In its current definition, gene therapy is defined as the use of nucleic acid transfer, either RNA or DNA, to treat or prevent a disease. The scope of gene therapy has expanded beyond its initial application as a method of replacing genetic defects, and its potential to facilitate spinal fusions is currently being evaluated. CONCLUSIONS Gene therapy strategies for spine fusion are appealing because the setting is uniquely suited for genetic manipulation. The intervention is locally applied. Only a short duration of transgene response by the cells is necessary to establish a spine fusion, and a variety of osteoinductive growth factors have been identified and are available for use. Attempts at spine fusion using gene therapy in the lower animals have been successful using both in vivo and ex vivo approaches. Before human clinical trials can be established, further testing is required in more challenging animal models of bone induction such as nonhuman primates. Should a successful clinical program of gene therapy for spine fusion be established, the use of autograft and its associated morbidities could be eliminated. In fact, gene therapy offers the potential for minimally invasive applications that could bypass the need for an open procedure altogether. It is likely that gene therapy will be a powerful therapeutic tool for the spine surgeon in the new millennium.
Collapse
Affiliation(s)
- Charles W Cha
- Emory Spine Center, Department of Orthopaedic Surgery, Emory University School of Medicine, Atlanta, Georgia 30033, USA
| | | |
Collapse
|
9
|
Keller M, Harbottle RP, Perouzel E, Colin M, Shah I, Rahim A, Vaysse L, Bergau A, Moritz S, Brahimi-Horn C, Coutelle C, Miller AD. Nuclear localisation sequence templated nonviral gene delivery vectors: investigation of intracellular trafficking events of LMD and LD vector systems. Chembiochem 2003; 4:286-98. [PMID: 12672108 DOI: 10.1002/cbic.200390049] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The impact of a peptide that contains a nuclear localisation sequence (NLS) on intracellular DNA trafficking was studied. We used the adenoviral core peptide mu and an SV40 NLS peptide to condense plasmid DNA (pDNA) prior to formulation with 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol/dioleoyl-L-alpha-phosphatidyl ethanolamine (DC-Chol/DOPE) liposomes to give LMD and LND vectors, respectively. Fluorescent-labelled lipid and peptides plus dye-labelled pDNA components were used to investigate gene delivery in dividing and S-phase growth-arrested cells. Confocal microscopic analyses reveal little difference in intracellular trafficking events. Strikingly, mu peptide associates with nuclei and nucleoli of cells within less than 15 mins incubation of LMD with cells, which suggests that mu peptide has an NLS function. These NLS properties were confirmed by cloning of a mu-beta-galactosidase fusion protein that localises in the nuclei of cells after cytosolic translation. In dividing cells both LMD and LND deliver pDNA(Cy3) to nuclei within 30-45 min incubation with cells. By contrast, pDNA is detected only in the cytoplasm in growth-arrested cells over the period of time investigated, and not in the nuclei. LD systems prepared from DC-Chol/DOPE cationic liposomes and pDNA(Cy3) behave similarly to LMD systems, which suggests that mu peptide is unable to influence trafficking events in this current LMD formulation, in spite of its strong NLS capacity. We further describe the effect of polyethyleneglycol (PEG) on cellular uptake. "Stealth" systems obtained by post-coating LMD particles with fluorescent-labelled PEG molecules (0.5, 5 and 10 mol % fluorescein-PEG(5000)-N-hydroxysuccinimide) were prepared and shown to be internalised rapidly (mins) by cells, without detectable transgene expression. This result indicates that PEG blocks intracellular trafficking of pDNA.
Collapse
Affiliation(s)
- Michael Keller
- IC-Vec Ltd, Flowers Building, Armstrong Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Francis SC, Katovich MJ, Gelband CH, Raizada MK. Gene therapy in cardiovascular disease. Current status. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2002; 1:55-66. [PMID: 12173315 DOI: 10.2165/00129785-200101010-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cardiovascular disease is the leading cause of mortality and morbidity in developed countries. Most conventional therapy is often inefficacious and tends to treat the symptoms rather than the underlying causes of the disorder. Gene therapy offers a novel approach for prevention and treatment of cardiovascular diseases. Technical advances in viral vector systems and the development of fusigenic liposome vectors have been crucial to the development of effective gene therapy strategies directed at the vasculature and myocardium in animal models. Gene transfer techniques are being evaluated as potential treatment alternatives for both genetic (familial hypercholesterolemia) and acquired occlusive vascular diseases (atherosclerosis, restenosis, arterial thrombosis) as well as for cardiac disorders including heart failure, myocardial ischemia, graft coronary arteriosclerosis and hypertension. Continued technologic advances in vector systems and promising results in human and animal gene transfer studies make the use of gene therapy a promising strategy for the treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- S C Francis
- Department of Physiology, College of Medicine, University of Florida Brain Institute, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
11
|
Lee JY, Musgrave D, Pelinkovic D, Fukushima K, Cummins J, Usas A, Robbins P, Fu FH, Huard J. Effect of bone morphogenetic protein-2-expressing muscle-derived cells on healing of critical-sized bone defects in mice. J Bone Joint Surg Am 2001; 83:1032-9. [PMID: 11451972 DOI: 10.2106/00004623-200107000-00008] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cells that express bone morphogenetic protein-2 (BMP-2) can now be prepared by transduction with adenovirus containing BMP-2 cDNA. Skeletal muscle tissue contains cells that differentiate into osteoblasts on stimulation with BMP-2. The objectives of this study were to prepare BMP-2-expressing muscle-derived cells by transduction of these cells with an adenovirus containing BMP-2 cDNA and to determine whether the BMP-2-expressing muscle-derived cells would elicit the healing of critical-sized bone defects in mice. METHODS Primary cultures of muscle-derived cells from a normal male mouse were transduced with adenovirus encoding the recombinant human BMP-2 gene (adBMP-2). These cells (5 yen 10(5)) were implanted into a 5-mm-diameter critical-sized skull defect in female SCID (severe combined immunodeficiency strain) mice with use of a collagen sponge as a scaffold. Healing in the treatment and control groups was examined grossly and histologically at two and four weeks. Implanted cells were identified in vivo with use of the Y-chromosome-specific fluorescent in situ hybridization (FISH) technique, and their differentiation into osteogenic cells was demonstrated by osteocalcin immunohistochemistry. RESULTS Skull defects treated with muscle cells that had been genetically engineered to express BMP-2 had >85% closure within two weeks and 95% to 100% closure within four weeks. Control groups in which the defect was not treated (group 1), treated with collagen only (group 2), or treated with collagen and muscle cells without adBMP-2 (group 3) showed at most 30% to 40% closure of the defect by four weeks, and the majority of the skull defects in those groups showed no healing. Analysis of injected cells in group 4, with the Y-chromosome-specific FISH technique showed that the majority of the transplanted cells were located on the surfaces of the newly formed bone, but a small fraction (approximately 5%) was identified within the osteocyte lacunae of the new bone. Implanted cells found in the new bone stained immunohistochemically for osteocalcin, indicating that they had differentiated in vivo into osteogenic cells. CONCLUSIONS This study demonstrates that cells derived from muscle tissue that have been genetically engineered to express BMP-2 elicit the healing of critical-sized skull defects in mice. The cells derived from muscle tissue appear to enhance bone-healing by differentiating into osteoblasts in vivo. CLINICAL RELEVANCE Ex vivo gene therapy with muscle-derived cells that have been genetically engineered to express BMP-2 may be used to treat nonhealing bone defects. In addition, muscle-derived cells appear to include stem cells, which are easily obtained with muscle biopsy and could be used in gene therapy to deliver BMP-2.
Collapse
Affiliation(s)
- J Y Lee
- Children's Hospital of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Levy RJ, Song C, Tallapragada S, DeFelice S, Hinson JT, Vyavahare N, Connolly J, Ryan K, Li Q. Localized adenovirus gene delivery using antiviral IgG complexation. Gene Ther 2001; 8:659-67. [PMID: 11406760 DOI: 10.1038/sj.gt.3301452] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2000] [Accepted: 02/06/2001] [Indexed: 11/09/2022]
Abstract
Gene therapy with viral vectors has progressed to clinical trials. However, the localization of viral vector delivery to diseased target sites remains a challenge. We tested the hypothesis that an adenoviral vector could be successfully delivered by complexation with a specific antibody that is bound to a biodegradable matrix designed for achieving localized gene transduction. We report the first successful delivery system based upon antibody immobilization of virions in a type I collagen-avidin gel using a polyclonal biotinylated IgG specific for the adenovirus hexon. In vitro stability studies demonstrated retention of viral vector activity with antibody-complexed adenovirus collagen gel preparations, in comparison to loss of vector activity from collagen gels prepared with nonspecific biotinylated IgG. Cell culture investigations using this antibody-controlled release system for adenoviral vector transduction of rat aortic smooth muscle cells (A10) demonstrated a significantly more localized reporter expression (beta-galactosidase) compared with non-antibody-complexed controls. Herpes simplex thymidine kinase (HSVtk) adenoviral vectors were immobilized on avidin-collagen gels via this antibody-complexation approach, and ganciclovir was added to rat smooth muscle cells (A10) in culture with the gels. With complexed HSVtk adenovirus, only cells either in contact with the virus-containing gel or within 50 microm were killed. By comparison, at the same adenovirus and ganciclovir dose, non-antibody-complexed HSVtk adenoviral delivery with ganciclovir resulted in the death of virtually all cells. Myocardial gene transfer studies in pigs demonstrated significantly more efficient right ventricular adenoviral GFP expression with anti-hexon antibody-complexed matrix injections, compared with direct vector injections. Thus, our results show that matrix formulations based on antibody-complexation delivery of adenovirus resulted in site-specific localization of transgene expression that enhances the efficiency of therapeutic vector strategies and provides a potent means for localization, to avoid distal side-effects. This approach has therapeutic potential as an implantable preparation that through the means of antibody-complexation, can localize and optimize viral vector gene therapy.
Collapse
Affiliation(s)
- R J Levy
- Division of Cardiology, Children's Hospital of Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shirahata Y, Ohkohchi N, Itagak H, Satomi S. New technique for gene transfection using laser irradiation. J Investig Med 2001; 49:184-90. [PMID: 11288759 DOI: 10.2310/6650.2001.34045] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND We have developed a gene transfection system using laser beams. The principle of this procedure is that a small hole is made in a cell membrane by pulse laser irradiation, and a gene contained in a medium is transferred into the cytoplasm through the hole. This hole disappears immediately with the application of laser irradiation of the appropriate power. METHODS A pulse-wave Nd:YAG laser with a wavelength of 355 nm was used to make a hole in a cell membrane. To trap a cell, a continuous-wave Nd:YAG laser with a wavelength of 1015 nm was used. Plasmids that encode the enhanced green fluorescent protein (EGFP) gene were contained in a medium and transferred to HuH-7 and NIH/3T3 cells with pulse laser irradiation. We evaluated transfection efficiency on the basis of the number of cells that expressed EGFP. Stimulatory protein 2 cells in suspension were fixed using a trapping laser and the neomycin-resistance gene was transfected by pulse laser irradiation. We examined cell proliferation in the selection medium. RESULTS Cells that expressed EGFP were recognized in the group that was irradiated by pulse laser. No cells expressed EGFP without irradiation. Transfection efficiency was approximately 10% at a plasmid concentration of 10.0 microg/mL. At concentrations greater than 20 microg/mL, the transfection rate reached a plateau. We also successfully transfected neomycin-resistance genes to cells floating in suspension after fixation that was achieved with trapping laser irradiation. CONCLUSIONS This method enables us to transfect targeted cells, ie, cells in suspension as well as attached cells, with a simple technique that does not involve harmful vectors. The present method is very useful for gene transfection in cellular biotechnology.
Collapse
Affiliation(s)
- Y Shirahata
- Division of Advanced Surgical Science and Technology, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
14
|
|
15
|
Affiliation(s)
- P L Zeitlin
- Johns Hopkins Hospital, Baltimore, Maryland 21287, USA.
| |
Collapse
|
16
|
McCluskie MJ, Weeratna RD, Davis HL. The role of CpG in DNA vaccines. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:125-32. [PMID: 10944807 DOI: 10.1007/s002810000014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
One of the most exciting developments in the field of vaccine research in recent years has been DNA vaccines, with which immune responses are induced subsequent to the in vivo expression of antigen from directly introduced plasmid DNA. Strong immune responses have been demonstrated in a number of animal models against many viral, bacterial and parasitic pathogens, and several human clinical trials have been undertaken. The strong and long-lasting antigen-specific humoral (antibodies) and cell-mediated (T help, other cytokine functions and cytotoxic T cells) immune responses induced by DNA vaccines appear to be due to the sustained in vivo expression of antigen, efficient antigen presentation and the presence of stimulatory CpG motifs. These features are desirable for the development of prophylactic vaccines against numerous infectious agents. Furthermore, the strong cellular responses are also very desirable for the development of therapeutic DNA vaccines to treat chronic viral infections or cancer. Efforts are now focusing on understanding the mechanisms for the induction of these immune responses, which in turn should aid in the optimization of DNA vaccines. This review will focus on the role of CpG motifs in DNA vaccines.
Collapse
Affiliation(s)
- M J McCluskie
- Loeb Health Research Institute at the Ottawa Hospital, Canada
| | | | | |
Collapse
|
17
|
Baumgartner TL, Baumgartner BJ, Hudon L, Moise KJ. Ultrasonographically guided direct gene transfer in utero: successful induction of beta-galactosidase in a rabbit model. Am J Obstet Gynecol 1999; 181:848-52. [PMID: 10521740 DOI: 10.1016/s0002-9378(99)70312-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We sought to determine whether the transfer of enzyme-encoding genes in utero can be detected after birth. STUDY DESIGN An adenoviral vector carrying the gene for beta-galactosidase was injected under ultrasonographic guidance into the livers of 4 rabbit fetuses per litter (3 litters total) at 27 days' gestation. On delivery of the pups 2 to 3 days later, the livers were analyzed for beta-galactosidase activity by using 5-bromo-4-chloro-3-indolyl-beta-D -galactopyranoside (X-gal) staining. Polymerase chain reaction was also performed on liver extracts as an additional independent measure of successful vector delivery. RESULTS Successful targeting of the livers of fetal rabbits was demonstrated by beta-galactosidase activity in the nuclei of liver serosal cells, parenchymal hepatocytes, or columnar cells of the gallbladder in 7 (58%) of 12 injected pups and by polymerase chain reaction in liver extracts from 10 (83%) of 12 injected pups. CONCLUSIONS These results suggest that vectors that carry genes for specific enzymes can be delivered to fetal organs in utero and that expression of the enzyme can be detected after delivery.
Collapse
Affiliation(s)
- T L Baumgartner
- Department of Obstetrics, University of Texas Health Science Center at Houston, Division of Neurosurgery, Houston, Texas, USA
| | | | | | | |
Collapse
|
18
|
Von Gruenigen VE, O'Boyle JD, Coleman RL, Wilson D, Miller DS, Mathis JM. Efficacy of intraperitoneal adenovirus-mediated p53 gene therapy in ovarian cancer. Int J Gynecol Cancer 1999; 9:365-372. [PMID: 11240795 DOI: 10.1046/j.1525-1438.1999.99040.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the efficacy of adenovirus-based p53 gene therapy in the treatment of ovarian cancer using an intraperitoneal microscopic tumor animal model system. Adenovirus-mediated wild-type p53 gene was introduced into the NIH:OVCAR-3 human ovarian cancer cell line in vitro and in vivo. In order to study microscopic intraperitoneal tumor, athymic nude mice were inoculated intraperitoneally (i.p.) with 1 x 107 OVCAR-3 cells and observed for tumor growth. Three days after inoculation with OVCAR-3 cells, the mice were divided into 3 treatment groups. One group received three daily i.p. injections of 1 x 108 pfu Ad-CMV-p53, a second group received three daily i.p. injection of 1 x 108 pfu of the control adenovirus construct expressing beta galactosidase (Ad-CMV-betagal) and a third group received three daily i.p. injections of normal saline. Adenovirus-mediated introduction of the wild-type p53 gene in the ovarian cancer cell line resulted in transient high levels of p53 protein for 24-48 h. Cell cycle analysis revealed G1 arrest, as well as the appearance of apoptosis. In vitro cell growth assays showed growth inhibition of cancer cells infected with Ad-CMV-p53 compared to cells infected with Ad-CMV-betagal or normal saline. There was a significant increase in survival in the Ad-CMV-p53 adenovirus treated animals compared to the PBS treated animals (P = 0.004). Likewise, the survival in Ad-CMV-p53 treated mice was also significantly greater than mice treated with Ad-CMV-betagal (P < 0.0001). These results demonstrated that Ad-CMV-p53 treatment is effective in inhibiting tumor growth and prolonging survival in this microscopic cancer xenograft model. The results of this study constitute a step in translating promising in vitro and in vivo data from an adenovirus-based gene therapeutic model system into practical and scientifically based human cancer therapeutic trials.
Collapse
Affiliation(s)
- V. E. Von Gruenigen
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology and Biochemistry, Hammon Center for Therapeutic Oncologic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, and Introgen Therapeutics, Inc., Houston, Texas USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Gene therapy is now being studied for the treatment of a wide variety of acquired and inherited diseases. Viruses used as vectors for gene transfer include retroviruses, adenoviruses, vaccinia viruses, adeno-associated viruses, and herpesviruses. These vectors, developed in the laboratory and in animal studies, are now being introduced into the clinical arena Infection control practitioners will be involved invariably in reviewing the use of these agents in their clinics and hospitals. This review summarizes key aspects of the more common vectors and makes recommendations for infection control.
Collapse
Affiliation(s)
- M E Evans
- University of Kentucky Medical Center, T.H. Morgan School of Biological Sciences, University of Kentucky, Lexington 40536-0293, USA
| | | |
Collapse
|
20
|
Martinez-Fong D, Navarro-Quiroga I, Ochoa I, Alvarez-Maya I, Meraz MA, Luna J, Arias-Montaño JA. Neurotensin-SPDP-poly-L-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:249-62. [PMID: 10366746 DOI: 10.1016/s0169-328x(99)00114-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report herein the synthesis of a novel DNA delivery system and in vitro evidence of its ability to transfect cell lines by binding to the high-affinity neurotensin receptor and subsequent internalization of ligand-receptor complexes. The targeting vehicle consisted of neurotensin crosslinked with poly-L-lysine via N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP). The SPDP-derivatives with either neurotensin or poly-L-lysine were purified by gel filtration. The conjugate resulting of the reaction of neurotensin-SPDP with HS-SPDP-poly-L-lysine was purified through Biogel A 1.5. The neurotensin-SPDP-poly-L-lysine conjugate was able to bind plasmidic DNAs (pSV2cat and pGreen Lantern-1) at optimal molar ratios of 1:5 and 1:6 (DNA: conjugate), respectively. The conjugate internalized those plasmids in the cell lines (N1E-115 and HT-29) bearing the high-affinity neurotensin receptor. Expression of the plasmid products, chloramphenicol acetyltransferase and green fluorescent protein, was observed in such cell lines. Both internalization and expression of the plasmids transferred by the neurotensin-SPDP-poly-L-lysine conjugate were prevented by neurotensin (1 microM) and SR-48692 (100 nM), a specific antagonist of the high-affinity neurotensin receptor. The neurotensin-SPDP-poly-L-lysine conjugate was unable to transfect cell lines lacking the neurotensin receptor (COS-7 and L-929). In rat brain, the high-affinity neurotensin receptor is expressed by specific neurons such as those of the nigrostriatal and mesolimbic dopaminergic systems. Therefore, the neurotensin-SPDP-poly-L-lysine conjugate could be a useful tool for gene delivery to those neuronal systems.
Collapse
Affiliation(s)
- D Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional de México, Apartado postal 14-740, 07000, Mexico D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|