1
|
Darbakk C, Graff P, Olsen R. Assessment of Occupational Exposure to Inhalable Aerosols in an Instant Powdered Food Manufacturing Plant in Norway. Saf Health Work 2024; 15:360-367. [PMID: 39309284 PMCID: PMC11410500 DOI: 10.1016/j.shaw.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024] Open
Abstract
Background In the food manufacturing industry, exposure to inhalable aerosols contributes to respiratory illnesses such as occupational asthma and rhinitis. However, there is a lack of comprehensive exposure assessment studies. This study evaluated occupational exposure to inhalable aerosols in an instant powdered food manufacturing plant during work operations involving dried food and powders. Methods In total, 50 workers from an instant powdered food manufacturing plant were recruited. Personal inhalable aerosol exposure measurements were taken for both full-shift and task-based activities. The concentrations of inhalable aerosols were analyzed to identify any variation within and across departments, as well as between seasons, handedness, and sex. Results In total, 134 personal air samples were collected, and the particulate mass was determined gravimetrically. The concentrations of inhalable aerosols ranged from 0.1 to 27 mg/m3 for full-shift exposure measurements and 3.1 to 73 mg/m3 for task-based measurements. Statistically significant differences in mean aerosol concentrations were found across departments (A:B p < 0.001, A:C p < 0.05, B:C p < 0.001) and between seasons (p < 0.001). Conclusion This study revealed high exposure to inhalable aerosols among workers, particularly those involved in manual weighing, mixing, and adding powders. The significant differences between departments highlight the specific activities contributing to increased inhalable aerosol concentrations. Seasonal variations were also evident, with autumn showing higher concentrations of inhalable aerosols in all departments compared with summer. These findings emphasize the importance of understanding the distribution of aerosol concentrations across different work tasks and departments, particularly during different seasons.
Collapse
Affiliation(s)
- Christine Darbakk
- National Institute of Occupational Health (STAMI), Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Pål Graff
- National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Raymond Olsen
- National Institute of Occupational Health (STAMI), Oslo, Norway
| |
Collapse
|
2
|
Ndaw S, Remy A, Jargot D, Antoine G, Denis F, Robert A. Mycotoxins Exposure of French Grain Elevator Workers: Biomonitoring and Airborne Measurements. Toxins (Basel) 2021; 13:toxins13060382. [PMID: 34071776 PMCID: PMC8229223 DOI: 10.3390/toxins13060382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023] Open
Abstract
It is now recognized that additional exposure to mycotoxins may occur through inhalation of contaminated dust at a workplace. The aim of this study was to characterize the multi-mycotoxin exposure of French grain elevator workers using biomonitoring and airborne measurements. Eighteen workers participated in the study. Personal airborne dust samples were analyzed for their mycotoxin concentrations. Workers provided multiple urine samples including pre-shift, post-shift and first morning urine samples or 24 h urine samples. Mycotoxin urinary biomarkers (aflatoxin B1, aflatoxin M1, ochratoxin A, ochratoxin α, deoxynivalenol, zearalenone, α-zearalenol, β-zearalenol, fumonisin B1, HT-2 toxin and T-2 toxin) were measured using a liquid chromatography–high-resolution mass spectrometry method. Grain elevator workers were highly exposed to organic airborne dust (median 4.92 mg.m−3). DON, ZEN and FB1 were frequent contaminants in 54, 76 and 72% of air samples, respectively. The mycotoxin biomarkers quantified were DON (98%), ZEN (99%), α-ZEL (52%), β-ZEL (33%), OTA (76%), T-2 (4%) and HT-2 (4%). DON elimination profiles showed highest concentrations in samples collected after the end of the work shift and the urinary DON concentrations were significantly higher in post-shift than in pre-shift-samples (9.9 and 22.1 µg/L, respectively). ZEN and its metabolites concentrations did not vary according to the sampling time. However, the levels of α-/β-ZEL were consistent with an additional occupational exposure. These data provide valuable information on grain worker exposure to mycotoxins. They also highlight the usefulness of multi-mycotoxin methods in assessing external and internal exposures, which shed light on the extent and pathways of exposure occurring in occupational settings.
Collapse
Affiliation(s)
- Sophie Ndaw
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (A.R.); (G.A.); (F.D.); (A.R.)
- Correspondence:
| | - Aurélie Remy
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (A.R.); (G.A.); (F.D.); (A.R.)
| | - Danièle Jargot
- Pollutant Metrology Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France;
| | - Guillaume Antoine
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (A.R.); (G.A.); (F.D.); (A.R.)
| | - Flavien Denis
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (A.R.); (G.A.); (F.D.); (A.R.)
| | - Alain Robert
- Toxicology and Biomonitoring Department, INRS—French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, 54500 Vandoeuvre-Lés-Nancy, France; (A.R.); (G.A.); (F.D.); (A.R.)
| |
Collapse
|
3
|
Straumfors A, Mundra S, Foss OAH, Mollerup SK, Kauserud H. The airborne mycobiome and associations with mycotoxins and inflammatory markers in the Norwegian grain industry. Sci Rep 2021; 11:9357. [PMID: 33931660 PMCID: PMC8087811 DOI: 10.1038/s41598-021-88252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Grain dust exposure is associated with respiratory symptoms among grain industry workers. However, the fungal assemblage that contribute to airborne grain dust has been poorly studied. We characterized the airborne fungal diversity at industrial grain- and animal feed mills, and identified differences in diversity, taxonomic compositions and community structural patterns between seasons and climatic zones. The fungal communities displayed strong variation between seasons and climatic zones, with 46% and 21% of OTUs shared between different seasons and climatic zones, respectively. The highest species richness was observed in the humid continental climate of the southeastern Norway, followed by the continental subarctic climate of the eastern inland with dryer, short summers and snowy winters, and the central coastal Norway with short growth season and lower temperature. The richness did not vary between seasons. The fungal diversity correlated with some specific mycotoxins in settled dust and with fibrinogen in the blood of exposed workers, but not with the personal exposure measurements of dust, glucans or spore counts. The study contributes to a better understanding of fungal exposures in the grain and animal feed industry. The differences in diversity suggest that the potential health effects of fungal inhalation may also be different.
Collapse
Affiliation(s)
- Anne Straumfors
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, P.O. Box 5330, 0304, Majorstuen, Oslo, Norway.
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, Abu Dhabi, UAE
| | - Oda A H Foss
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, P.O. Box 5330, 0304, Majorstuen, Oslo, Norway
| | - Steen K Mollerup
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, P.O. Box 5330, 0304, Majorstuen, Oslo, Norway
| | - Håvard Kauserud
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Vijayakumar R, Abdulaziz Alfaiz F, Al-Malki ES, Sandle T. Assessment of airborne endotoxin in sandstorm dust and indoor environments using a novel passive sampling device in Al Zulfi city, Saudi Arabia - Establishing threshold exposure levels. Saudi J Biol Sci 2021; 28:1257-1266. [PMID: 33613055 PMCID: PMC7878821 DOI: 10.1016/j.sjbs.2020.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
The impact of sandstorm dust events affects local air quality and public health. These issues are becoming of greater concern in Saudi Arabia. There is a significant lack of research on airborne endotoxin exposure and analysis in the Middle East countries and no coherent body of research exists focusing on sandstorm dust in worldwide. In this study, we used a novel design of an aluminum foil plate (AFP) electrostatic dust cloth (EDC) for the passive air sampling of sandstorm dust. A total of 38 sandstorm dust samples were collected during sandstorm episodes occurring between January and April 2020 in both indoor (7 days, n = 20) and outdoor environments (24 h, n = 18). After exposure, and following an extraction procedure, bacterial endotoxin levels were measured using the Limulus Amoebocyte Lysate (LAL) gel clot method. The study highlights that the airborne endotoxin level observed was between 10 and 200 EU/m2 in both indoor and outdoor environments, during a sandstorm event. Agricultural activities and farmhouses observed higher airborne endotoxin levels. In general, increased endotoxin levels were related to the severity of the sandstorms. Given that the observed values were high as per existing guidelines for respiratory health, we recommend the setting an occupational airborne exposure limit for bacterial endotoxin. This is the first report and further studies across various sandstorm-hit regions will need to be undertaken, together with various sampling methods, in order to assess for seasonal and geographic trends.
Collapse
Affiliation(s)
- Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
- Corresponding author at: Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Esam S. Al-Malki
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Tim Sandle
- Head of Microbiology, Risk Management and Sterility Assurance, Bio Products Laboratory, Elstree, United Kingdom
| |
Collapse
|
5
|
Liebers V, Brüning T, Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol 2020; 94:3629-3644. [DOI: 10.1007/s00204-020-02905-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
6
|
Straumfors A, Duale N, Foss OAH, Mollerup S. Circulating miRNAs as molecular markers of occupational grain dust exposure. Sci Rep 2020; 10:11317. [PMID: 32647120 PMCID: PMC7347934 DOI: 10.1038/s41598-020-68296-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Dust from grain and feed production may cause adverse health effects in exposed workers. In this study we explored circulating miRNAs as potential biomarkers of occupational grain dust exposure. Twenty-two serum miRNAs were analyzed in 44 grain dust exposed workers and 22 controls. Exposed workers had significantly upregulated miR-18a-5p, miR-124-3p and miR-574-3p, and downregulated miR-19b-3p and miR-146a-5p, compared to controls. Putative target genes for the differentially expressed miRNAs were involved in a range of Kyoto Encyclopedia of Genes and Genomes signaling pathways, and ‘Pathways in cancer’ and ‘Wnt signaling pathway’ were common for all the five miRNAs. MiRNA-diseases association analysis showed a link between the five identified miRNAs and several lung diseases terms. A positive correlation between miR-124-3p, miR-18a-5p, and miR-574-3p and IL-6 protein level was shown, while miR-19b-3p was inversely correlated with CC-16 and sCD40L protein levels. Receiver-operating characteristic analysis of the five miRNA showed that three miRNAs (miR-574-3p, miR-124-3p and miR-18a-5p) could distinguish the grain dust exposed group from the control group, with miR-574-3p as the strongest predictor of grain dust exposure. In conclusion, this study identified five signature miRNAs as potential novel biomarkers of grain dust exposure that may have potential as early disease markers.
Collapse
Affiliation(s)
- Anne Straumfors
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway.
| | - Nur Duale
- Department of Molecular Biology, Norwegian Institute of Public Health, PO Box 222, 0213, Skøyen, Oslo, Norway
| | - Oda A H Foss
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway
| | - Steen Mollerup
- National Institute of Occupational Health, Gydas vei 8, PO Box 5330, 0304, Majorstuen, Oslo, Norway
| |
Collapse
|
7
|
Sauvé JF, Locke SJ, Josse PR, Stapleton EM, Metwali N, Altmaier RW, Andreotti G, Thorne PS, Hofmann JN, Beane Freeman LE, Friesen MC. Characterization of inhalable endotoxin, glucan, and dust exposures in Iowa farmers. Int J Hyg Environ Health 2020; 228:113525. [PMID: 32311660 PMCID: PMC8010939 DOI: 10.1016/j.ijheh.2020.113525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The observed deficit of lung cancer in farmers has been partly attributed to exposure to organic dusts and endotoxins based largely on surrogate metrics. To move beyond these surrogates for etiological studies, we characterized task-based and time-weighted average (TWA) exposure to inhalable endotoxin, (1 → 3)-β-D-glucan, and dust in Iowa farmers. METHODS We collected 320 personal inhalable dust samples from 32 farmers during 69 sample days in 2015 and 2016. Samples were collected using Button aerosol samplers and analyzed for endotoxin using a kinetic chromogenic amebocyte lysate assay, and for (1 → 3)-β-D-glucan using a Limulus endpoint assay. We assessed relationships between bioaerosol concentrations and selected tasks and farm characteristics using linear mixed-effects models. RESULTS Bedding work, hog handling, and working in barn/confinement buildings, grain bins, and grain elevators were associated with higher endotoxin exposure. We found a monotonic trend between higher endotoxin concentrations and increasing number of animals. Bedding work, cleaning, and feed/grain storage work were associated with higher (1 → 3)-β-D-glucan concentrations. The median concentrations by task spanned one order of magnitude for inhalable dust and two orders of magnitude for endotoxin and (1 → 3)-β-D-glucan. Pearson correlations between endotoxin and glucan concentrations were 0.22 for TWA exposure and 0.56 for task samples. CONCLUSIONS This characterization of exposure factors that influence bioaerosol concentrations can support the development of refined bioaerosol exposure metrics for future etiologic analyses of cancer and other health outcomes in farmers.
Collapse
Affiliation(s)
- Jean-François Sauvé
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Sarah J Locke
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Pabitra R Josse
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Emma M Stapleton
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Nervana Metwali
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Ralph W Altmaier
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
8
|
Schlosser O, Robert S, Debeaupuis C, Huyard A. Inhalable dust as a marker of exposure to airborne biological agents in composting facilities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 81:78-87. [PMID: 30527046 DOI: 10.1016/j.wasman.2018.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/27/2018] [Accepted: 09/29/2018] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Industrial composting is associated with high levels of worker exposure to bioaerosols. Measurement of airborne microorganisms and endotoxin is complex and the related cost is high. The objective was therefore to examine whether dust measurement could be used as a marker of exposure to bioaerosols in composting facilities. METHODS A dataset of 110 measurements carried out in eight sludge composting plants was explored. Mixed-effects models were constructed to explain between-site and within-site variability in concentration of endotoxin and culturable mesophilic bacteria, mesophilic moulds and thermophilic actinomycetes in air. Fixed-effects variables were inhalable dust concentration, the season, the outdoor/indoor location of sampling and the process area. RESULTS The level of dust was a highly significant determinant of concentration for all biological agents. Within-site variability was always larger than between-site variability. The proportion of within-site variability explained by determinants was 68%, 65%, 56% and 60% for endotoxin, bacteria, moulds and actinomycetes, respectively. Inclusion of dust in the final model resulted in an increase of 24, 20, 12 and 17 points of percentage within-site variability, respectively. Inclusion of season resulted in an increase of 9, 12, 12 and 15 points, respectively. Within-site variability was less influenced by outdoor/indoor location and process area, except for moulds. CONCLUSION Dust was the factor that most influenced within-site variability in endotoxin and culturable bacteria concentration. Measurement of dust can efficiently assist decision making for prevention measures against endotoxin and bacteria in sludge composting plants. Our results are not as conclusive for actinomycetes and especially for moulds.
Collapse
Affiliation(s)
| | - Samuel Robert
- SUEZ, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| | | | - Alain Huyard
- SUEZ, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| |
Collapse
|
9
|
Marchand G, Gardette M, Nguyen K, Amano V, Neesham-Grenon E, Debia M. Assessment of Workers' Exposure to Grain Dust and Bioaerosols During the Loading of Vessels' Hold: An Example at a Port in the Province of Québec. Ann Work Expo Health 2018. [PMID: 28637341 DOI: 10.1093/annweh/wxx045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Longshoremen are exposed to large amounts of grain dust while loading of grain into the holds of vessels. Grain dust inhalation has been linked to respiratory diseases such as chronic bronchitis, hypersensitivity, pneumonitis, and toxic pneumonitis. Our objective was to characterize the exposure of longshoremen to inhalable and total dust, endotoxins, and cultivable bacteria and fungi during the loading of grain in a vessel's hold at the Port of Montreal in order to assess the potential health risks. Sampling campaigns were conducted during the loading of two different types of grain (wheat and corn). Environmental samples of microorganisms (bacteria, fungus, and actinomycetes) were taken near the top opening of the ship's holds while personal breathing zone measurements of dust and endotoxins were sampled during the worker's 5-hour shifts. Our study show that all measurements are above the recommendations with concentration going up to 390 mg m-3 of total dust, 89 mg m-3 of inhalable fraction, 550 000 EU m-3 of endotoxins, 20 000 CFU m-3 of bacteria, 61 000 CFU m-3 of fungus and 2500 CFU m-3 of actinomycetes. In conclusion, longshoremen are exposed to very high levels of dust and of microorganisms and their components during grain loading work. Protective equipment needs to be enforced for all workers during such tasks in order to reduce their exposure.
Collapse
Affiliation(s)
- Geneviève Marchand
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), 505 Boul de Maisonneuve Ouest, Montréal, QC H3A 3C2, Canada.,Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Marie Gardette
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Kiet Nguyen
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Valérie Amano
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Eve Neesham-Grenon
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| | - Maximilien Debia
- Institut de Recherche en Santé Publique de l'Université de Montréal (IRSPUM), Department of Environmental and Occupational Health, École de santé publique de l'Université de Montréal, Pavillon Marguerite d'Youville, 2375 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1A8, Canada
| |
Collapse
|
10
|
Straumfors A, Eduard W, Heldal KK, Skogstad M, Barregård L, Ellingsen DG. Pneumoproteins and markers of inflammation and platelet activation in the blood of grain dust exposed workers. Biomarkers 2018; 23:748-755. [DOI: 10.1080/1354750x.2018.1485057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Lars Barregård
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
11
|
Exposure to field vs. storage wheat dust: different consequences on respiratory symptoms and immune response among grain workers. Int Arch Occup Environ Health 2018; 91:745-757. [PMID: 29804141 DOI: 10.1007/s00420-018-1322-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/22/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to understand the differential acute effects of two distinct wheat-related dusts, such as field or stored wheat dust handling, on workers' health and how those effects evolved at 6 month intervals. METHODS Exposure, work-related symptoms, changes in lung function, and blood samples of 81 workers handling wheat and 61 controls were collected during the high exposure season and 6 months after. Specific IgG, IgE, and precipitins against 12 fungi isolated from wheat dust were titrated by enzyme-linked immunosorbent assay, dissociation-enhanced lanthanide fluorescence immunoassay, and electrosyneresis. The level of fungi was determined in the workers' environment. Levels of exhaled fraction of nitrogen monoxide (FENO) and total IgE were obtained. Exposure response associations were investigated by mixed logistic and linear regression models. RESULTS The recent exposure to field wheat dust was associated with a higher prevalence for five of six self-reported airway symptoms and with a lower FENO than those in the control population. Exposure to stored wheat dust was only associated with cough. No acute impact of exposure on respiratory function was observed. Exposure to field wheat dust led to workers' sensitization against the three field fungi Aureobasidum, Cryptococcus, and Phoma, although exposure to storage wheat dust was associated with tolerance. The level of Ig remained stable 6 months after exposure. CONCLUSION The clinical picture of workers exposed to field or storage wheat dust differed. The systematic characterization of the aerosol microbial profile may help to understand the reasons for those differences.
Collapse
|
12
|
Rodríguez-Zamora MG, Medina-Escobar L, Mora G, Zock JP, van Wendel de Joode B, Mora AM. Dust exposure in workers from grain storage facilities in Costa Rica. Int J Hyg Environ Health 2017; 220:1039-1045. [PMID: 28663028 DOI: 10.1016/j.ijheh.2017.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. OBJECTIVES (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. METHODS We measured inhalable (<100μm) dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (<4μm) and thoracic (<10μm) dust particles in several areas of the storage facilities. RESULTS Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m3 and 7.8 (range=<0.2-275.4mg/m3). Personal inhalable dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m3 and 4.5) and maize (3.0mg/m3 and 3.9) storage facilities, and in grain drying (2.3mg/m3 and 3.1) and unloading (1.5mg/m3 and 4.8) areas. CONCLUSIONS Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed.
Collapse
Affiliation(s)
- María G Rodríguez-Zamora
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental (EISLHA), Instituto Tecnológico de Costa Rica, Cartago, Costa Rica.
| | - Lourdes Medina-Escobar
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental (EISLHA), Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Glend Mora
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental (EISLHA), Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Jan-Paul Zock
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; University Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Center Network for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Berna van Wendel de Joode
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Ana M Mora
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, United States
| |
Collapse
|
13
|
Niculita-Hirzel H, Hantier G, Storti F, Plateel G, Roger T. Frequent Occupational Exposure to Fusarium Mycotoxins of Workers in the Swiss Grain Industry. Toxins (Basel) 2016; 8:E370. [PMID: 27973454 PMCID: PMC5198564 DOI: 10.3390/toxins8120370] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023] Open
Abstract
Type B trichotecens such as deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and zearalenone (ZEN) are mycotoxins contaminating wheat and wheat dust. Mycotoxins are toxic upon ingestion and considered potentially toxic when inhaled. Whereas dietary exposure to mycotoxins is controlled in food, data on occupational exposure by inhalation by grain workers are scarce. The objectives of this study were to determine the incidence of DON, 3-ADON, 15-ADON, NIV and ZEN in aerosols generated during grain harvesting and unloading and the risk of exposure of grain workers. Aerosols were collected during the threshing of 78 winter wheat fields and grain unloading of 59 grain lots in six grain terminals in the Vaud region (Switzerland). The samples represented the diversity of the winter wheat cultivar and of the farming system (88 treated with fungicides, 46 untreated). Using a HPLC MS/MS method developed to quantify mycotoxins in aerosols, we report that the mycotoxin content of aerosols was not affected by the wheat cultivars or farming system, but that the incidence of the mycotoxins differed between activities. While wheat harvesting generated on average 28, 20 and 1 ng·m-3 of DON, NIV and ZEN, respectively, grain unloading generated 53, 46 and 4 ng·m-3. Personal sampling revealed that working in a cab was an efficient protective measure. However, it was not sufficient to avoid chronic exposure to multiple mycotoxins. The most exposed activity was the cleaning, exposing workers to DON, NIV and ZEN at concentrations as high as 65, 59 and 3 ng·m-3. These data provide valuable information for future studies of mycotoxin toxicity at relevant concentrations on respiratory health.
Collapse
Affiliation(s)
- Hélène Niculita-Hirzel
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Gregoire Hantier
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Ferdinand Storti
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Gregory Plateel
- Service of Occupational Hygiene, Institute for Work and Health (IST), University of Lausanne and Geneva, 1066 Epalinges-Lausanne, Switzerland.
| | - Thierry Roger
- Infectious Diseases Service, Lausanne University Hospital, 1066 Epalinges-Lausanne, Switzerland.
| |
Collapse
|
14
|
Straumfors A, Heldal KK, Eduard W, Wouters IM, Ellingsen DG, Skogstad M. Cross-shift study of exposure-response relationships between bioaerosol exposure and respiratory effects in the Norwegian grain and animal feed production industry. Occup Environ Med 2016; 73:685-93. [PMID: 27473330 PMCID: PMC5036228 DOI: 10.1136/oemed-2015-103438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/12/2016] [Indexed: 01/07/2023]
Abstract
Objective We have studied cross-shift respiratory responses of several individual bioaerosol components of the dust in the grain and feed industry in Norway. Methods Cross-shift changes in lung function and nasal congestion, as well as in respiratory and systemic symptoms of 56 exposed workers and 36 referents, were recorded on the same day as full-shift exposure to the inhalable aerosol fraction was assessed. Exposure–response associations were investigated by regression analysis. Results The workers were exposed on average to 1.0 mg/m3 of grain dust, 440 EU/m3 of endotoxin, 6 µg/m3 of β-1,3-glucans, 17×104/m3 of bacteria and 4×104/m3 of fungal spores during work. The exposure was associated with higher prevalence of self-reported eye and airway symptoms, which were related to the individual microbial components in a complex manner. Fatigue and nose symptoms were strongest associated with fungal spores, cough with or without phlegm was associated with grain dust and fungal spores equally strong and wheeze/tight chest/dyspnoea was strongest associated with grain dust. Bioaerosol exposure did not lead to cross-shift lung function decline, but several microbial components had influence on nose congestion. Conclusions Exposure to fungal spores and dust showed stronger associations with respiratory symptoms and fatigue than endotoxin exposure. The associations with dust suggest that there are other components in dust than the ones studied that induce these effects.
Collapse
Affiliation(s)
- Anne Straumfors
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Kari Kulvik Heldal
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Wijnand Eduard
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Inge M Wouters
- Faculty of Veterinary Medicine, Institute of Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Dag G Ellingsen
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Marit Skogstad
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|