1
|
Kim HS, Kim Y, Lee HS. Clinicopathologic Characteristics of Trop Family Proteins (Trop-2 and EpCAM) in Gastric Carcinoma. J Gastric Cancer 2024; 24:391-405. [PMID: 39375055 PMCID: PMC11471318 DOI: 10.5230/jgc.2024.24.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE Trop family proteins, including epithelial cell adhesion molecule (EpCAM) and Trop-2, have garnered attention as potential therapeutic and diagnostic targets for various malignancies. This study aimed to elucidate the clinicopathological significance of these proteins in gastric carcinoma (GC) and to reinforce their potential as biomarkers for patient stratification in targeted therapies. MATERIALS AND METHODS Immunohistochemical (IHC) analyses of EpCAM and Trop-2 were performed on GC and precancerous lesions, following rigorous orthogonal validation of the antibodies to ensure specificity and sensitivity. RESULTS Strong membranous staining (3+) for Trop-2 was observed in 49.3% of the GC cases, whereas EpCAM was strongly expressed in almost all cases (93.2%), indicating its widespread expression in GC. A high Trop-2 expression level, characterized by an elevated H-score, was significantly associated with intestinal type by Lauren classification, gastric mucin type, presence of lymph node metastasis, human epidermal growth factor receptor 2-positivity, and Epstein-Barr virus (EBV)-positivity. Patients with a high Trop-2 expression level exhibited poorer survival outcomes on univariate and multivariate analyses. High EpCAM expression levels were prevalent in differentiated histologic type, microsatellite instability-high, and EBV-negative cancer, and were correlated with high densities of CD3 and CD8 T cells and elevated combined positive score for programmed death-ligand 1. CONCLUSIONS These results highlight the differential expression of Trop-2 and EpCAM and their prognostic implications in GC. The use of meticulously validated antibodies ensured the reliability of our IHC data, thereby offering a robust foundation for future therapeutic strategies targeting Trop family members in GC.
Collapse
Affiliation(s)
- Hye Sung Kim
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Younghoon Kim
- Department of Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
2
|
Xu D, Zhang Y, Huang W, Pan X, An S, Wang C, Huang G, Liu J, Wei W. ImmunoPET imaging of EpCAM in solid tumours with nanobody tracers: a preclinical study. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06910-8. [PMID: 39249490 DOI: 10.1007/s00259-024-06910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Epithelial cell adhesion molecule (EpCAM) is a potential therapeutic target and anchoring molecule for circulating and disseminated tumour cells (CTC/DTC) in liquid biopsy. In this study, we aimed to construct EpCAM-specific immuno-positron emission tomography (immunoPET) imaging probes and assess the diagnostic abilities in preclinical cancer models. METHODS By engineering six single-domain antibodies (e.g., EPCD1 - 6) targeting EpCAM of different binding properties and labelling with 68Ga (T1/2 = 1.1 h) and 18F (T1/2 = 110 min), we developed a series of EpCAM-targeted immunoPET imaging probes. The probes' pharmacokinetics and diagnostic accuracies were investigated in cell-derived human colorectal (LS174T) and esophageal cancer (OE19) tumour models. RESULTS Based on in vitro binding affinities and in vivo pharmacokinetics of the first three tracers ([68Ga]Ga-NOTA-EPCD1, [68Ga]Ga-NOTA-EPCD2, and [68Ga]Ga-NOTA-EPCD3), we selected [68Ga]Ga-NOTA-EPCD3 for tumour imaging which showed an average tumour uptake of 2.06 ± 0.124%ID/g (n = 3) in LS174T cell-derived tumour model. Development and characterisation of [18F]AIF-RESCA-EPCD3 showed comparable tumour uptake of 1.73 ± 0.0471%ID/g (n = 3) in the same tumour model. Further validation of [68Ga]Ga-NOTA-EPCD3 in OE19 cell-derived tumour model showed an average tumour uptake of 4.27 ± 1.16%ID/g and liver uptake of 13.5 ± 1.30%ID/g (n = 3). Near-infrared fluorescence imaging with Cy7-EPCD3 confirmed the in vivo pharmacokinetics and relatively high liver accumulation. We further synthesized another three 18F-labeled nanobody tracers ([18F]AIF-RESCA-EPCD4, [18F]AIF-RESCA-EPCD5, and [18F]AIF-RESCA-EPCD6) and found that [18F]AIF-RESCA-EPCD6 had the best pharmacokinetics with low background. [18F]AIF-RESCA-EPCD6 showed explicit uptake in the subcutaneously inoculated OE19 tumour model with an average uptake of 4.70 ± 0.26%ID/g (n = 3). In comparison, the corresponding tumour uptake (0.17 ± 0.25%ID/g, n = 3) in the EPCD6 blocking group was substantially lower (P < 0.001), indicating the targeting specificity of the tracer. CONCLUSIONS We developed a series of 68Ga/18F-labeled nanobody tracers targeting human EpCAM. ImmunoPET imaging with [18F]AIF-RESCA-EPCD6 may facilitate better use of EpCAM-targeted therapeutics by noninvasively displaying the target's expression dynamics.
Collapse
Affiliation(s)
- Dongsheng Xu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinbing Pan
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuxian An
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
3
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Mueller JPJ, Dobosz M, O’Brien N, Abdoush N, Giusti AM, Lechmann M, Osl F, Wolf AK, Arellano-Viera E, Shaikh H, Sauer M, Rosenwald A, Herting F, Umaña P, Colombetti S, Pöschinger T, Beilhack A. ROCKETS - a novel one-for-all toolbox for light sheet microscopy in drug discovery. Front Immunol 2023; 14:1034032. [PMID: 36845124 PMCID: PMC9945347 DOI: 10.3389/fimmu.2023.1034032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advancing novel immunotherapy strategies requires refined tools in preclinical research to thoroughly assess drug targets, biodistribution, safety, and efficacy. Light sheet fluorescence microscopy (LSFM) offers unprecedented fast volumetric ex vivo imaging of large tissue samples in high resolution. Yet, to date laborious and unstandardized tissue processing procedures have limited throughput and broader applications in immunological research. Therefore, we developed a simple and harmonized protocol for processing, clearing and imaging of all mouse organs and even entire mouse bodies. Applying this Rapid Optical Clearing Kit for Enhanced Tissue Scanning (ROCKETS) in combination with LSFM allowed us to comprehensively study the in vivo biodistribution of an antibody targeting Epithelial Cell Adhesion Molecule (EpCAM) in 3D. Quantitative high-resolution scans of whole organs did not only reveal known EpCAM expression patterns but, importantly, uncovered several new EpCAM-binding sites. We identified gustatory papillae of the tongue, choroid plexi in the brain and duodenal papillae as previously unanticipated locations of high EpCAM expression. Subsequently, we confirmed high EpCAM expression also in human tongue and duodenal specimens. Choroid plexi and duodenal papillae may be considered as particularly sensitive sites due to their importance for liquor production or as critical junctions draining bile and digestive pancreatic enzymes into the small bowel, respectively. These newly gained insights appear highly relevant for clinical translation of EpCAM-addressing immunotherapies. Thus, ROCKETS in combination with LSFM may help to set new standards for preclinical evaluation of immunotherapeutic strategies. In conclusion, we propose ROCKETS as an ideal platform for a broader application of LSFM in immunological research optimally suited for quantitative co-localization studies of immunotherapeutic drugs and defined cell populations in the microanatomical context of organs or even whole mice.
Collapse
Affiliation(s)
- Joerg P. J. Mueller
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Michael Dobosz
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nils O’Brien
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Nassri Abdoush
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Anna Maria Giusti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Martin Lechmann
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Franz Osl
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Ann-Katrin Wolf
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Estibaliz Arellano-Viera
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Haroon Shaikh
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Frank Herting
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Pablo Umaña
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Sara Colombetti
- Roche Pharmaceutical Research and Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Thomas Pöschinger
- Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research Laboratory (IZKF) Würzburg, Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, Würzburg, Germany
| |
Collapse
|
5
|
Tapia-Galisteo A, Sánchez Rodríguez Í, Aguilar-Sopeña O, Harwood SL, Narbona J, Ferreras Gutierrez M, Navarro R, Martín-García L, Corbacho C, Compte M, Lacadena J, Blanco FJ, Chames P, Roda-Navarro P, Álvarez-Vallina L, Sanz L. Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer. Oncoimmunology 2022; 11:2034355. [PMID: 35154908 PMCID: PMC8837253 DOI: 10.1080/2162402x.2022.2034355] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Antonio Tapia-Galisteo
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Íñigo Sánchez Rodríguez
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Spain
- Lymphocyte Immunobiology Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Seandean Lykke Harwood
- Protein Science, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Javier Narbona
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
| | | | - Rocío Navarro
- Department of Antibody Engineering, Leadartis Sl, Madrid, Spain
| | - Laura Martín-García
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Cesáreo Corbacho
- Pathology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis Sl, Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
| | - Francisco J. Blanco
- Biomolecular NMR, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patrick Chames
- Antibody Therapeutics and Immunotargeting Group, Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, Marseille, France
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Spain
- Lymphocyte Immunobiology Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
6
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
7
|
Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, Rautenberg B, Atanackovic D, Kratzer A, Rottman JB, Friedrich M, Vieser E, Elm S, Patzak I, Wessiepe D, Stienen S, Fiedler W. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018; 7:e1450710. [PMID: 30221040 PMCID: PMC6136859 DOI: 10.1080/2162402x.2018.1450710] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
We assessed the tolerability and antitumor activity of solitomab, a bispecific T-cell engager (BiTE®) antibody construct targeting epithelial cell adhesion molecule (EpCAM). Patients with relapsed/refractory solid tumors not amenable to standard therapy received solitomab as continuous IV infusion in a phase 1 dose-escalation study with six different dosing schedules. The primary endpoint was frequency and severity of adverse events (AEs). Secondary endpoints included pharmacokinetics, pharmacodynamics, immunogenicity, and antitumor activity. Sixty-five patients received solitomab at doses between 1 and 96 µg/day for ≥28 days. Fifteen patients had dose-limiting toxicities (DLTs): eight had transient abnormal liver parameters shortly after infusion start or dose escalation (grade 3, n = 4; grade 4, n = 4), and one had supraventricular tachycardia (grade 3); all events resolved with solitomab discontinuation. Six patients had a DLT of diarrhea: four events resolved (grade 3, n = 3; grade 4, n = 1), one (grade 3) was ongoing at the time of treatment-unrelated death, and one (grade 3) progressed to grade 5 after solitomab discontinuation. The maximum tolerated dose was 24 µg/day. Overall, 95% of patients had grade ≥3 treatment-related AEs, primarily diarrhea, elevated liver parameters, and elevated lipase. Solitomab half-life was 4.5 hours; serum levels plateaued within 24 hours. One unconfirmed partial response was observed. In this study of a BiTE® antibody construct targeting solid tumors, treatment of relapsed/refractory EpCAM-positive solid tumors with solitomab was associated with DLTs, including severe diarrhea and increased liver enzymes, which precluded dose escalation to potentially therapeutic levels.
Collapse
Affiliation(s)
- Maxim Kebenko
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Annette Hasenburg
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | | | - Beate Rautenberg
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Djordje Atanackovic
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Eva Vieser
- Amgen Research (Munich) GmbH, Munich, Germany
| | | | | | | | | | - Walter Fiedler
- Department of Oncology/Hematology, Bone Marrow Transplantation and Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Viala M, Vinches M, Alexandre M, Mollevi C, Durigova A, Hayaoui N, Homicsko K, Cuenant A, Gongora C, Gianni L, Tosi D. Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: tested doses and rationale for dose selection. Br J Cancer 2018; 118:679-697. [PMID: 29438365 PMCID: PMC5846071 DOI: 10.1038/bjc.2017.473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Our previous survey on first-in-human trials (FIHT) of monoclonal antibodies (mAbs) showed that, due to their limited toxicity, the recommended phase II dose (RP2D) was only tentatively defined. METHODS We identified, by MEDLINE search, articles on single-agent trials of mAbs with an FIHT included in our previous survey. For each mAb, we examined tested dose(s) and dose selection rationale in non-FIHTs (NFIHTs). We also assessed the correlation between doses tested in the registration trials (RTs) of all FDA-approved mAbs and the corresponding FIHT results. RESULTS In the 37 dose-escalation NFIHTs, the RP2D indication was still poorly defined. In phase II-III NFIHTs (n=103 on 37 mAbs), the FIHT RP2D was the only dose tested for five mAbs. For 16 mAbs, only doses different from the FIHT RP2D or the maximum administered dose (MAD) were tested and the dose selection rationale infrequently indicated. In the 60 RTs on 27 FDA-approved mAbs with available FIHT, the FIHT RP2D was tested only for two mAbs, and RT doses were much lower than the FIHT MAD. CONCLUSIONS The rationale beyond dose selection in phase II and III trials of mAbs is often unclear in published articles and not based on FIHT data.
Collapse
Affiliation(s)
- Marie Viala
- Institut du Cancer de Montpellier, Montpellier, France
| | - Marie Vinches
- Institut du Cancer de Montpellier, Montpellier, France
| | | | | | | | - Nadia Hayaoui
- Institut du Cancer de Montpellier, Montpellier, France
| | | | - Alice Cuenant
- Institut du Cancer de Montpellier, Montpellier, France
| | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Montpellier, France
| | - Luca Gianni
- San Raffaele – Scientific Institute, Milan, Italy
| | - Diego Tosi
- Institut du Cancer de Montpellier, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Montpellier, France
| |
Collapse
|
9
|
Treatment of hepatocellular carcinoma with a GPC3-targeted bispecific T cell engager. Oncotarget 2017; 8:52866-52876. [PMID: 28881778 PMCID: PMC5581077 DOI: 10.18632/oncotarget.17905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 12/23/2022] Open
Abstract
There are limited strategies for the treatment of hepatocellular carcinoma (HCC). In this study, we prepared a Bispecific T cell engager (BiTE) targeting Glypican 3 (GPC3) and CD3. The GPC3/CD3 BiTE was prepared by fusing the single-chain variable fragment (scFv) of the humanized anti-GPC3 antibody (9F2) with the scFv of the anti-CD3 antibody (OKT3). The in vitro and in vivo cytotoxic activities of the GPC3/CD3 BiTE were evaluated against various HCC cell lines. The GPC3/CD3 BiTE could efficiently mediate the T cell killing of GPC3-positive HCC in vitro, which was dependent on GPC3 expression on the surface of HCC cells. Moreover, our study indicates that, in the presence of the GPC3/CD3 BiTE, T cells could efficiently destroy GPC3-positive human HCC cells in vitro and in vivo. Additionally, our study further proved that GPC3 is not expressed in normal tissues. Thus, GPC3 may be a cancer-specific antigen. Collectively, these findings suggest that this anti-GPC3 BiTE might be a promising anti-tumor reagent for patients with GPC3-positive HCC.
Collapse
|
10
|
Liao MY, Kuo MYP, Lu TY, Wang YP, Wu HC. Generation of an anti-EpCAM antibody and epigenetic regulation of EpCAM in colorectal cancer. Int J Oncol 2015; 46:1788-800. [PMID: 25652097 DOI: 10.3892/ijo.2015.2876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/15/2015] [Indexed: 11/06/2022] Open
Abstract
We have generated a novel monoclonal antibody (mAb), OCAb9-1, which specifically binds to various types of cancer cell lines, but not to normal cells. According to the results of immunoaffinity chromatography, LC-MS/MS analysis, co-immunoprecipitation, and RNA interference studies, the target protein of OCAb9-1 is the epithelial cell adhesion molecule (EpCAM). EpCAM is a type I transmembrane glycoprotein which is highly expressed in epithelial-transformed neoplasia and tumor-initiating cells (TICs). However, regulation of EpCAM gene expression in tumors and its role in tumorigenesis are not fully understood. In the present study, we show that EpCAM expression is elevated in several cancer cell lines and tumor tissues. Loss-of-function experiments were performed to demonstrate that EpCAM negatively regulates expression of p53 and p21, and promotes tumor cell growth, colony formation, migration and invasion. The median overall survival of tumor-bearing mice treated with OCAb9-1 was significantly higher than that of PBS-treated mice. Moreover, we report that the interplay between SUZ12 and JMJD3 results in dynamic regulation of lysine 27 trimethylation of histone 3 (H3K27me3). Taken together, our findings suggest that the anti-EpCAM mAb may be suitable for use in cancer diagnosis, prognosis, imaging and therapy. Furthermore, EpCAM overexpression in cancer cells is strongly associated with tumor progression, and may be regulated by epigenetic mechanisms.
Collapse
Affiliation(s)
- Mei-Ying Liao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Tung-Ying Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | - Yi-Ping Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Han-Chung Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan, R.O.C
| |
Collapse
|
11
|
Oishi N, Yamashita T, Kaneko S. Molecular biology of liver cancer stem cells. Liver Cancer 2014. [PMID: 24944998 DOI: 10.1159/+000343863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. Hepatic progenitor cells (HPCs) could form the basis of some hepatocellular carcinomas (HCC) and cholangiocarcinomas. Liver CSCs have been reported in multiple subtypes of HCC and are considered as the master regulators of HCC initiation, tumor metastasis, and progression. HPCs activators such as epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin, transforming growth factor-beta (TGF-β), Notch and Hedgehog signaling systems expedite tumorigenesis or conversely, serve as a powerful cancer-prevention tool. Recent work has also identified Sal-like protein 4 (SALL4) and some epigenetic regulations as important molecules, while several therapeutic drugs that directly control HPCs have been tested both in vivo and in vitro. However, liver CSCs clearly have a complex pathogenesis, with the potential for considerable crosstalk and redundancy in signaling pathways. Hence, the targeting of single molecules or pathways may have limited benefit for treatment. In addition to the direct control of liver CSCs, many other factors are needed for CSC maintenance including angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance. Here, we provide a brief review of molecular signaling in liver CSCs and present insights into new therapeutic strategies for their targeting.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Gastroenterology, Kanazawa University Hospital, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Hospital, Ishikawa, Japan
| |
Collapse
|
12
|
Gammaitoni L, Leuci V, Mesiano G, Giraudo L, Todorovic M, Carnevale-Schianca F, Aglietta M, Sangiolo D. Immunotherapy of cancer stem cells in solid tumors: initial findings and future prospective. Expert Opin Biol Ther 2014; 14:1259-70. [PMID: 24835841 DOI: 10.1517/14712598.2014.918099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Conventional chemotherapies seemed to have reached a therapeutic plateau in the treatment of solid tumors and many metastatic diseases are still incurable. Events of chemo-resistance and relapses appear to be sustained by a subset of putative cancer stem cells (CSCs). New anticancer strategies need to face this new challenge exploring their efficacy against CSCs. Immunotherapy has raised enthusiasms in cancer therapy and its potential against CSCs is an intriguing field of research. AREAS COVERED In this work we reviewed the immunotherapy approaches directed against CSCs in solid tumors. We schematically divided adaptive immunotherapy strategies, mainly based on dendritic cell-vaccination, and strategies exploiting MHC-unrestricted effectors like natural killer cells, γδ T lymphocytes and cytokine-induced killer cells. Findings, strength and limitations of these models are discussed and compared highlighting their potential clinical relevance. EXPERT OPINION The important biologic role and clinical relevance of CSCs introduced a 'noble target' for immunotherapy and cancer treatments in general. Initial evidences suggest that CSCs may be susceptible to various types of immunotherapy attacks, overcoming their chemo-resistance. Investigation of important safety issues, based on shared features with 'normal' stem cells, along with intriguing synergisms with modulatory agents are open challenges for the next future and effective clinical translation.
Collapse
|
13
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. Hepatic progenitor cells (HPCs) could form the basis of some hepatocellular carcinomas (HCC) and cholangiocarcinomas. Liver CSCs have been reported in multiple subtypes of HCC and are considered as the master regulators of HCC initiation, tumor metastasis, and progression. HPCs activators such as epithelial cell adhesion molecule (EpCAM), Wnt/β-catenin, transforming growth factor-beta (TGF-β), Notch and Hedgehog signaling systems expedite tumorigenesis or conversely, serve as a powerful cancer-prevention tool. Recent work has also identified Sal-like protein 4 (SALL4) and some epigenetic regulations as important molecules, while several therapeutic drugs that directly control HPCs have been tested both in vivo and in vitro. However, liver CSCs clearly have a complex pathogenesis, with the potential for considerable crosstalk and redundancy in signaling pathways. Hence, the targeting of single molecules or pathways may have limited benefit for treatment. In addition to the direct control of liver CSCs, many other factors are needed for CSC maintenance including angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance. Here, we provide a brief review of molecular signaling in liver CSCs and present insights into new therapeutic strategies for their targeting.
Collapse
Affiliation(s)
| | - Taro Yamashita
- *Taro Yamashita, MD, PhD, Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 (Japan), E-Mail
| | | |
Collapse
|
14
|
Targeted therapy aimed at cancer stem cells: Wilms' tumor as an example. Pediatr Nephrol 2014; 29:815-23; quiz 821. [PMID: 23760992 DOI: 10.1007/s00467-013-2501-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
Wilms' tumor (WT), a common renal pediatric solid tumor, serves as a model for a malignancy formed by renal precursor cells that have failed to differentiate properly. Here we review recent evidence showing that the tumors' heterogeneous cell population contains a small fraction of cancer stem cells (CSC) identified by two markers: Neural Cell Adhesion Molecule 1 (NCAM1) expression and Aldehyde dehydrogenase 1 (ALDH1) enzymatic activity. In vivo studies show these CSCs to both self-renew and differentiate to give rise to all tumor components. Similar to other malignancies, the identification of a specific CSC fraction has allowed the examination of a novel targeted therapy, aimed at eradicating the CSC population. The loss of CSCs abolishes the tumor's ability to sustain and propagate, hence, causing tumor degradation with minimal damage to normal tissue.
Collapse
|
15
|
Noguchi T, Ritter G, Nishikawa H. Antibody-based therapy in colorectal cancer. Immunotherapy 2013; 5:533-45. [PMID: 23638747 DOI: 10.2217/imt.13.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment in patients with nonresectable and resectable colorectal cancer at the advanced stage is challenging, therefore intensive strategies such as chemotherapy, signaling inhibitors and monoclonal antibodies (mAbs) to control the disease are required. mAbs are particularly promising tools owing to their target specificities and strong antitumor activities through multiple mechanisms, as shown by rituximab in B-cell non-Hodgkin's lymphoma and trastuzumab in breast cancer. Three mAbs (cetuximab, bevacizumab and panitumumab) have been approved for the treatment of colorectal cancer in the USA and many other mAbs are being tested in clinical trials. The potential of antibody therapy is associated with several mechanisms including interference of vital signaling pathways targeted by the antibody and immune cytotoxicity selectively directed against tumor cells by tumor-bound antibody through the Fc portion of the antibody, such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Moreover, recent experimental findings have shown that immune complexes formed by therapeutic mAbs with tumor-released antigens could augment the induction of tumor-specific cytotoxic CD8(+) T cells through activation of APCs. In addition, antibodies targeting immune checkpoints on hematopoietic cells have recently opened a new avenue for the treatment of cancer. In this review, we focus on mAb treatment in colorectal cancer and its immunological aspects.
Collapse
Affiliation(s)
- Takuro Noguchi
- Ludwig Institute for Cancer Research, New York Branch, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
16
|
Abstract
Despite significant advances in surgery, radiotherapy and chemotherapy to treat prostate cancer (CaP), many patients die of secondary disease (metastases). Current therapeutic approaches are limited, and there is no cure for metastatic castration-resistant prostate cancer (CRPC). Epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is highly expressed in rapidly proliferating carcinomas and plays an important role in the prevention of cell-cell adhesion, cell signalling, migration, proliferation and differentiation. Stably and highly expressed EpCAM has been found in primary CaP tissues, effusions and CaP metastases, making it an ideal candidate of tumour-associated antigen to detect metastasis of CaP cells in the circulation as well as a promising therapeutic target to control metastatic CRPC disease. In this review, we discuss the implications of the newly identified roles of EpCAM in terms of its diagnostic and metastatic relevance to CaP. We also summarize EpCAM expression in human CaP and EpCAM-mediated signalling pathways in cancer metastasis. Finally, emerging and innovative approaches to the management of the disease and expanding potential therapeutic applications of EpCAM for targeted strategies in future CaP therapy will be explored.
Collapse
|
17
|
Entwistle J, Brown JG, Chooniedass S, Cizeau J, MacDonald GC. Preclinical Evaluation of VB6-845: An Anti-EpCAM Immunotoxin with Reduced Immunogenic Potential. Cancer Biother Radiopharm 2012; 27:582-92. [DOI: 10.1089/cbr.2012.1200.271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Joycelyn Entwistle
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Jennifer G. Brown
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Shilpa Chooniedass
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Jeannick Cizeau
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Glen C. MacDonald
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Münz M, Murr A, Kvesic M, Rau D, Mangold S, Pflanz S, Lumsden J, Volkland J, Fagerberg J, Riethmüller G, Rüttinger D, Kufer P, Baeuerle PA, Raum T. Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int 2010; 10:44. [PMID: 21044305 PMCID: PMC2989956 DOI: 10.1186/1475-2867-10-44] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 11/02/2010] [Indexed: 12/12/2022] Open
Abstract
Background Epithelial cell adhesion molecule (EpCAM) is frequently and highly expressed on human carcinomas. The emerging role of EpCAM as a signalling receptor and activator of the wnt pathway, and its expression on tumor-initiating cells, further add to its attractiveness as target for immunotherapy of cancer. Thus far, five conventional monoclonal IgG antibodies have been tested in cancer patients. These are murine IgG2a edrecolomab and its murine/human chimeric IgG1 antibody version, and humanized, human-engineered and fully human IgG1 antibodies 3622W94, ING-1, and adecatumumab (MT201), respectively. Here we compared all anti-EpCAM antibodies in an attempt to explain differences in clinical activity and safety. Methods We recombinantly produced all antibodies but murine edrecolomab and investigated them for binding affinity, EpCAM epitope recognition, ADCC and CDC, and inhibition of breast cancer cell proliferation. Results ING-1 and 3622W94 bound to EpCAM with much higher affinity than adecatumumab and edrecolomab. Edrecolomab, ING-1, and 3622W94 all recognized epitopes in the exon 2-encoded N-terminal domain of EpCAM, while adecatumumab recognized a more membrane proximal epitope encoded by exon 5. All antibodies induced lysis of EpCAM-expressing cancer cell lines by both ADCC and CDC with potencies that correlated with their binding affinities. The chimeric version of edrecolomab with a human Fcγ1 domain was much more potent in ADCC than the murine IgG2a version. Only adecatumumab showed a significant inhibition of MCF-7 breast cancer cell proliferation in the absence of complement and immune cells. Conclusion A moderate binding affinity and recognition of a distinct domain of EpCAM may best explain why adecatumumab showed a larger therapeutic window in cancer patients than the two high-affinity IgG1 antibodies ING-1 and 3622W94, both of which caused acute pancreatitis.
Collapse
Affiliation(s)
- Markus Münz
- Micromet AG, Staffelseestr, 2, 81477 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Deonarain MP, Kousparou CA, Epenetos AA. Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 2010; 1:12-25. [PMID: 20046569 DOI: 10.4161/mabs.1.1.7347] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/05/2008] [Indexed: 12/14/2022] Open
Abstract
Antibody targeting of cancer is showing clinical and commercial success after much intense research and development over the last 30 years. They still have the potential to delivery long-term cures but a shift in thinking towards a cancer stem cell (CSC) model for tumor development is certain to impact on how antibodies are selected and developed, the targets they bind to and the drugs used in combination with them. CSCs have been identified from many human tumors and share many of the characteristics of normal stem cells. The ability to renew, metabolically or physically protect themselves from xenobiotics and DNA damage and the range of locomotory-related receptors expressed could explain the observations of drug resistance and radiation insensitivity leading to metastasis and patient relapse.Targeting CSCs could be a strategy to improve the outcome of cancer therapy but this is not as simple as it seems. Targets such as CD133 and EpCAM/ESA could mark out CSCs from normal cells enabling specific intervention but indirect strategies such as interfering with the establishment of a supportive niche through anti-angiogenic or anti-stroma therapy could be more effective.This review will outline the recent discoveries for CSCs across the major tumor types highlighting the possible molecules for intervention. Examples of antibody-directed CSC therapies and the outlook for the future development of this emerging area will be given.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, UK.
| | | | | |
Collapse
|
20
|
Engineering and Biological Characterization of VB6-845, an Anti-EpCAM Immunotoxin Containing a T-cell Epitope-depleted Variant of the Plant Toxin Bouganin. J Immunother 2009; 32:574-84. [DOI: 10.1097/cji.0b013e3181a6981c] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Janssens L, Eycken M, Vanderschueren D, Van Baarle A, Beelaerts W, Denekens J, De Baere H. Collagenous colitis. Report of three cases and review of the literature. Acta Clin Belg 1988; 6:30-8. [PMID: 3364135 DOI: 10.4161/cam.18953] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|