1
|
Shi L, Zhang Y, Wu J, Li J, Zhu J, Xu Y, Li N, Li Q, Zhang W. A case report and literature review on a rare subtype of triple-negative breast cancer in children. BMC Pediatr 2023; 23:494. [PMID: 37773118 PMCID: PMC10540381 DOI: 10.1186/s12887-023-04286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a type of breast tumor with a poor prognosis because it lacks or expresses low levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2). TNBC is more common in middle-aged and older women, and cases of TNBC in children are rarely reported. This is the only case of childhood SBC in our hospital in more than 70 years, and the disease is extremely rare internationally. We analyzed and studied the disease and TNBC from both clinical and pathological aspects and found that SBC is very different from TNBC. CASE PRESENTATION We report a case of secretory breast cancer (SBC), a subtype of TNBC, in an 8-year-old girl from our institution. The child presented with a single mass in the left breast only, with no skin rupture and no enlargement of the surrounding lymph nodes. The child underwent two surgeries and was followed up for one year with a good prognosis. CONCLUSIONS SBC is highly prevalent among the multiple pathological types of pediatric breast cancer. Almost all pediatric SBC patients are characterized by the ETV6-NTRK3 fusion gene, which has a good prognosis and a 10-year survival rate of more than 90% when compared with other TNBC subtypes. According to the patient, we performed local mass resection and a postoperative pathological diagnosis of SBC (a subtype of BL-TNBC). The TNBC case had a good prognosis and differed from basal TNBC in several aspects, including clinical presentation, treatment, and prognosis. It is necessary to exclude SBC from BL-type TNBC, enhance understanding of the disease, and individualize the treatment plan, so as to avoid medical errors.
Collapse
Affiliation(s)
- Lexiang Shi
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Yinan Zhang
- Department of Pediatric Surgery, Huzhou Maternity & Child Health Care Hospital, No. 2 East Street, Wuxing DistrictZhejiang Province, Huzhou City, China
| | - Jingcheng Wu
- Mudanjiang Medical University, Mudanjiang, China
| | - Jinping Li
- Mudanjiang Medical University, Mudanjiang, China
| | - Junzhao Zhu
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Youbo Xu
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Nie Li
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Qin Li
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Wanli Zhang
- Department of Pediatric Surgery, Huzhou Maternity & Child Health Care Hospital, No. 2 East Street, Wuxing DistrictZhejiang Province, Huzhou City, China.
| |
Collapse
|
2
|
Chen H, Liu Y, Yin Z, Chen H, Wang Y, Qian Y. Homologous repair deficiency-associated genes in invasive breast cancer revealed by WGCNA co-expression network analysis and genetic perturbation similarity analysis. Cell Cycle 2023; 22:1077-1100. [PMID: 36757135 PMCID: PMC10081085 DOI: 10.1080/15384101.2023.2174339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Homologous repair deficiency (HRD) causes double-strand break repair to be impeded, which is a common driver of carcinogenesis. However, the therapeutic and prognostic potential of HRD in invasive breast cancer (BRCA) has not been fully explored using comprehensive bioinformatics analysis. MATERIALS AND METHODS HRD score was defined as the unweighted sum of LOH, TAI, and LST scores and obtained from the previous study according to Theo A et al. To characterize BRCA tumor microenvironment (TME) subtypes, "ConsensusClusterPlus" R package was used to conduct unsupervised clustering. The xCell algorithm was utilized for tumor composition analysis to estimate the TME in TCGA-BRCA. A WGCNA analysis was conducted to uncover the gene coexpression modules and hub genes in the HRD-related gene module of BRCA. The functional enrichment study was carried out using Metascape. A novel analysis pipeline, Genetic Perturbation Similarity Analysis (GPSA), was used to explore the single-gene perturbation closely related to HRD based on 3048 stable knockdown/knockout cell lines. The prognostic variables were evaluated using univariate COX analysis. Kaplan-Meier (KM) survival analysis was performed to assess the prognostic potential of HRD score. Receiver operator characteristic (ROC) curve was utilized to judge the diagnostic utility. Drug sensitivity was estimated through the R package "oncoPredict" and Genomics of Drug Sensitivity in Cancer (GDSC) database. XSum algorithm was performed to screen the candidate small molecule drugs based on the connectivity map (CMAP) database. RESULTS Low HRD score suggested a better prognosis in BRCA patients. The tumor with low HRD score had considerably greater degree of infiltration of stromal cells and infiltration of immunocytes was significantly enhanced in the high HRD score group. Using WGCNA, ten co-expression modules were obtained. The turquoise module and 25 hub genes were identified as the most correlated with HRD in BRCA. Functional enrichment analysis revealed that the turquoise gene module was mainly concentrated in the "cell cycle" pathways. Candidate HRD-related gene signatures (MELK) were screened out through WGCNA and GPSA analysis pipeline and then validated on independent validation sets. A small molecule drug (Clofibrate) that has the potential to reverse the increase of high HRD score was screened out to improve oncological outcomes in BRCA. Molecular docking suggested MELK to be one of possible molecular targets in the Clofibrate treatment of BRCA. CONCLUSION Based on bioinformatic analysis, we fully explored the therapeutic and prognostic potential of HRD in BRCA. A novel HRD-related gene signature (MELK) were identified through the combination of WGCNA and GPSA analysis. In addition, we detailed the TME landscape in BRCA and identified four unique TME subtypes in group with high or low HRD score group. Moreover, Clofibrate were screened out to improve oncological outcomes in BRCA by reversing the increase of high HRD score. Thus, our study contributes to the development of personalized clinical management and treatment regimens of BRCA.
Collapse
Affiliation(s)
- Haohao Chen
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenglang Yin
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Wang
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yeben Qian
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
de Jong VMT, Pruntel R, Steenbruggen TG, Bleeker FE, Nederlof P, Hogervorst FBL, Linn SC. Identifying the BRCA1 c.-107A > T variant in Dutch patients with a tumor BRCA1 promoter hypermethylation. Fam Cancer 2023; 22:151-154. [PMID: 36112334 PMCID: PMC10020283 DOI: 10.1007/s10689-022-00314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022]
Abstract
An inherited single nucleotide variant (SNV) in the 5'UTR of the BRCA1 gene c.-107A > T was identified to be related to BRCA1 promoter hypermethylation and a hereditary breast and ovarian cancer phenotype in two UK families. We investigated whether this BRCA1 variant was also present in a Dutch cohort of breast and ovarian cancer patients with tumor BRCA1 promoter hypermethylation. We selected all breast and ovarian cancer cases that tested positive for tumor BRCA1 promoter hypermethylation at the Netherlands Cancer Institute and Sanger sequenced the specific mutation in the tumor DNA. In total, we identified 193 tumors with BRCA1 promoter hypermethylation in 178 unique patients. The wild-type allele was identified in 100% (193/193) of sequenced tumor samples. In a large cohort of 178 patients, none had tumors harboring the previously identified c.-107A > T SNV in BRCA1. We therefore can conclude that the germline SNV is not pervasive in patients with tumor BRCA1 promoter hypermethylation.
Collapse
Affiliation(s)
- Vincent M T de Jong
- Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, Netherlands
| | - Roelof Pruntel
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tessa G Steenbruggen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Petra Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frans B L Hogervorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, Netherlands.
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
4
|
Meijer TG, Nguyen L, Van Hoeck A, Sieuwerts AM, Verkaik NS, Ladan MM, Ruigrok-Ritstier K, van Deurzen CHM, van de Werken HJG, Lips EH, Linn SC, Memari Y, Davies H, Nik-Zainal S, Kanaar R, Martens JWM, Cuppen E, Jager A, van Gent DC. Functional RECAP (REpair CAPacity) assay identifies homologous recombination deficiency undetected by DNA-based BRCAness tests. Oncogene 2022; 41:3498-3506. [PMID: 35662281 PMCID: PMC9232391 DOI: 10.1038/s41388-022-02363-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022]
Abstract
Germline BRCA1/2 mutation status is predictive for response to Poly-[ADP-Ribose]-Polymerase (PARP) inhibitors in breast cancer (BC) patients. However, non-germline BRCA1/2 mutated and homologous recombination repair deficient (HRD) tumors are likely also PARP-inhibitor sensitive. Clinical validity and utility of various HRD biomarkers are under investigation. The REpair CAPacity (RECAP) test is a functional method to select HRD tumors based on their inability to form RAD51 foci. We investigated whether this functional test defines a similar group of HRD tumors as DNA-based tests. An HRD enriched cohort (n = 71; 52 primary and 19 metastatic BCs) selected based on the RECAP test (26 RECAP-HRD; 37%), was subjected to DNA-based HRD tests (i.e., Classifier of HOmologous Recombination Deficiency (CHORD) and BRCA1/2-like classifier). Whole genome sequencing (WGS) was carried out for 38 primary and 19 metastatic BCs. The RECAP test identified all bi-allelic BRCA deficient samples (n = 15) in this cohort. RECAP status partially correlated with DNA-based HRD test outcomes (70% concordance for both RECAP-CHORD and RECAP-BRCA1/2-like classifier). RECAP selected additional samples unable to form RAD51 foci, suggesting that this functional assay identified deficiencies in other DNA repair genes, which could also result in PARP-inhibitor sensitivity. Direct comparison of these HRD tests in clinical trials will be required to evaluate the optimal predictive test for clinical decision making.
Collapse
Affiliation(s)
- Titia G Meijer
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Luan Nguyen
- Oncode Institute, Utrecht, The Netherlands
- Department of Molecular Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arne Van Hoeck
- Oncode Institute, Utrecht, The Netherlands
- Department of Molecular Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole S Verkaik
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Marjolijn M Ladan
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kirsten Ruigrok-Ritstier
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther H Lips
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Yasin Memari
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Helen Davies
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- MRC Cancer Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edwin Cuppen
- Oncode Institute, Utrecht, The Netherlands
- Department of Molecular Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Science Park, Hartwig Medical Foundation, Amsterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
5
|
Koole SN, Schouten PC, Hauke J, Kluin RJC, Nederlof P, Richters LK, Krebsbach G, Sikorska K, Alkemade M, Opdam M, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT, Mom CH, Arts HJG, van Ham M, van Dam P, Vuylsteke P, Sanders J, Horlings HM, van de Vijver KK, Hahnen E, van Driel WJ, Schmutzler R, Sonke GS, Linn SC. Effect of HIPEC according to HRD/BRCAwt genomic profile in stage III ovarian cancer - results from the phase III OVHIPEC trial. Int J Cancer 2022; 151:1394-1404. [PMID: 35583992 DOI: 10.1002/ijc.34124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022]
Abstract
The addition of hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin to interval cytoreductive surgery improves recurrence-free (RFS) and overall survival (OS) in patients with stage III ovarian cancer. Homologous recombination deficient (HRD) ovarian tumors are usually more platinum sensitive. Since hyperthermia impairs BRCA1/2 protein function, we hypothesized that HRD tumors respond best to treatment with HIPEC. We analyzed the effect of HIPEC in patients in the OVHIPEC trial, stratified by HRD status and BRCAm status. Clinical data and tissue samples were collected from patients included in the randomized, phase III OVHIPEC-1 trial. DNA copy number variation (CNV) profiles, HRD-related pathogenic mutations, and BRCA1 promotor hypermethylation were determined. CNV-profiles were categorized as HRD or non-HRD, based on a previously validated algorithm-based BRCA1-like classifier. Hazard ratios (HR) and corresponding 99% confidence intervals (CI) for the effect of RFS and OS of HIPEC in the BRCAm, the HRD/BRCAwt and the non-HRD group were estimated using Cox proportional hazard models. DNA was available from 200/245 (82%) patients. Seventeen (9%) tumors carried a pathogenic mutation in BRCA1 and 14 (7%) in BRCA2. Ninety-one (46%) tumors classified as BRCA1-like. The effect of HIPEC on RFS and OS was absent in BRCAm tumors (HR 1.25; 99%CI 0.48-3.29), and most present in HRD/BRCAwt (HR 0.44; 99%CI 0.21-0.91), and non-HRD/BRCAwt tumors (HR 0.82; 99%CI 0.48-1.42), interaction p-value: 0.024. Patients with HRD tumors without pathogenic BRCA1/2 mutation appear to benefit most from treatment with HIPEC, while benefit in patients with BRCA1/2 pathogenic mutations and patients without HRD seems less evident.
Collapse
Affiliation(s)
- Simone N Koole
- Department of Gynecology, The Netherlands Cancer Institute, Center of Gynecologic Oncology Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philip C Schouten
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan Hauke
- Faculty of Medicine and Center for Familial Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), Cologne, University Hospital Cologne, Cologne, Germany
| | - Roel J C Kluin
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa K Richters
- Faculty of Medicine and Center for Familial Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), Cologne, University Hospital Cologne, Cologne, Germany
| | - Gabriele Krebsbach
- Faculty of Medicine and Center for Familial Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), Cologne, University Hospital Cologne, Cologne, Germany
| | - Karolina Sikorska
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maartje Alkemade
- Core Facility of Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Core Facility of Molecular Pathology and Biobanking, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Henk W R Schreuder
- Department of Gynecological Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ralph H M Hermans
- Department of Gynecology and Obstetrics, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Constantijne H Mom
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Center of Gynecologic Oncology Amsterdam, Amsterdam, The Netherlands
| | - Henriette J G Arts
- Department of Gynecological Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Maaike van Ham
- Department of Gynecological Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter van Dam
- Department of Gynecologic Oncology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter Vuylsteke
- Department of Medical Oncology, UCL Louvain, CHU Namur Sainte-Elisabeth, Namur, Belgium
- University of Botswana, Gaborone, Botswana
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hugo M Horlings
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Eric Hahnen
- Faculty of Medicine and Center for Familial Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), Cologne, University Hospital Cologne, Cologne, Germany
| | - Willemien J van Driel
- Department of Gynecology, The Netherlands Cancer Institute, Center of Gynecologic Oncology Amsterdam, Amsterdam, The Netherlands
| | - Rita Schmutzler
- Faculty of Medicine and Center for Familial Breast and Ovarian Cancer and Center for Integrated Oncology (CIO), Cologne, University Hospital Cologne, Cologne, Germany
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
|
7
|
Zhu H, Yue H, Xie Y, Chen B, Zhou Y, Liu W. Bioinformatics and integrated analyses of prognosis-associated key genes in lung adenocarcinoma. J Thorac Dis 2021; 13:1172-1186. [PMID: 33717590 PMCID: PMC7947492 DOI: 10.21037/jtd-21-49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The objective of the present study was to predict candidate genes with prognostic information for lung adenocarcinoma (LUAD). Methods Weighted correlation network analysis (WGCNA) was utilized to build the co-expression network of deferentially expressed genes (DEGs) in GSE32863. Key genes were identified as the intersecting genes of the modules of WGCNA and DEGs. Kaplan-Meier plotter was employed to conduct survival analysis. Enrichment analysis was performed. The expression of key genes in LUAD was validated. Then, we performed in vitro experiments to explore functions of key genes. We overexpressed DYNLRB2 in A549 cell. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were test expression levels and functional analyses were performed, including cell viability, apoptosis. Results A total of 1,587 DEGs in GSE32863 were identified, including 649 up-regulated genes and 938 down-regulated genes. In coexpression analysis, there were 1,271 hubgenes from the modules that were chosen for further analysis. 15 key genes were identified as the intersecting genes of the modules of WGCNA and DEGs. The expressions of dynein light chain roadblock-type 2 (DYNLRB2) and mouse homolog of ß1 spectrin (SPTBN1) were lower in LUAD, and were associated with survival time of LUAD patients. GSEA results showed that high expressed DYNLRB2 and SPTBN1 were enriched in Drug metabolism cytochrome P450, Cardiac muscle contraction, Retinol metabolism. Down-regulated DYNLRB2 and SPTBN1 were associated with Homologous recombination, Progesterone mediated oocyte maturation, Base excision repair. The in vitro experiment confirmed the overexpression of DYNLRB2 in A549 transferred cells. The overexpress DYNLRB2 inhibited cell viability and induced apoptosis. Conclusions Our study suggested that DYNLRB2 and SPTBN1 might be potential tumor suppressor genes and could serve as biomarkers for predicting the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haiying Yue
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiting Xie
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binlin Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanhua Zhou
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Rojas-Jiménez E, Mejía-Gómez JC, Díaz-Velásquez C, Quezada-Urban R, Martínez Gregorio H, Vallejo-Lecuona F, de la Cruz-Montoya A, Porras Reyes FI, Pérez-Sánchez VM, Maldonado-Martínez HA, Robles-Estrada M, Bargalló-Rocha E, Cabrera-Galeana P, Ramos-Ramírez M, Chirino YI, Alonso Herrera L, Terrazas LI, Oliver J, Frecha C, Perdomo S, Vaca-Paniagua F. Comprehensive Genomic Profile of Heterogeneous Long Follow-Up Triple-Negative Breast Cancer and Its Clinical Characteristics Shows DNA Repair Deficiency Has Better Prognostic. Genes (Basel) 2020; 11:E1367. [PMID: 33227964 PMCID: PMC7699204 DOI: 10.3390/genes11111367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) presents a marked diversity at the molecular level, which promotes a clinical heterogeneity that further complicates treatment. We performed a detailed whole exome sequencing profile of 29 Mexican patients with long follow-up TNBC to identify genomic alterations associated with overall survival (OS), disease-free survival (DFS), and pathologic complete response (PCR), with the aim to define their role as molecular predictive factors of treatment response and prognosis. We detected 31 driver genes with pathogenic mutations in TP53 (53%), BRCA1/2 (27%), CDKN1B (9%), PIK3CA (9%), and PTEN (9%), and 16 operative mutational signatures. Moreover, tumors with mutations in BRCA1/2 showed a trend of sensitivity to platinum salts. We found an association between deficiency in DNA repair and surveillance genes and DFS. Across all analyzed tumors we consistently found a heterogeneous molecular complexity in terms of allelic composition and operative mutational processes, which hampered the definition of molecular traits with clinical utility. This work contributes to the elucidation of the global molecular alterations of TNBC by providing accurate genomic data that may help forthcoming studies to improve treatment and survival. This is the first study that integrates genomic alterations with a long follow-up of clinical variables in a Latin American population that is an underrepresented ethnicity in most of the genomic studies.
Collapse
Affiliation(s)
- Ernesto Rojas-Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (H.M.G.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Javier César Mejía-Gómez
- Division of Breast Cancer, Department of Medical Oncology, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada;
| | - Clara Díaz-Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (H.M.G.); (F.V.-L.); (L.I.T.)
| | - Rosalía Quezada-Urban
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (H.M.G.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Héctor Martínez Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (H.M.G.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Fernando Vallejo-Lecuona
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (H.M.G.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Aldo de la Cruz-Montoya
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Fany Iris Porras Reyes
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Víctor Manuel Pérez-Sánchez
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Héctor Aquiles Maldonado-Martínez
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | | | - Enrique Bargalló-Rocha
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Paula Cabrera-Galeana
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Maritza Ramos-Ramírez
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| | - Yolanda Irasema Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Luis Alonso Herrera
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
- Instituto Nacional de Medicina Genómica, CDMX 14610, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas-Instituto Nacional de Cancerología, CDMX 14080, Mexico
| | - Luis Ignacio Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (H.M.G.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
| | - Javier Oliver
- Medical Oncology Service, Hospitales Universitarios Regional y Virgen de la Victoria, Institute of Biomedical Research in Malaga, CIMES, University of Málaga, 29010 Málaga, Spain;
| | - Cecilia Frecha
- Unidad de Producción Celular del Hospital Regional Universitario de Málaga—IBIMA—Málaga, 29010 Málaga, Spain;
| | - Sandra Perdomo
- Instituto de Nutrición, Genética y Metabolismo, Facultad de Medicina, Universidad El Bosque, Bogotá 110121, Colombia;
- International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Estado de México 54090, Mexico; (E.R.-J.); (C.D.-V.); (R.Q.-U.); (H.M.G.); (F.V.-L.); (L.I.T.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México 54090, Mexico; (A.d.l.C.-M.); (Y.I.C.)
- Instituto Nacional de Cancerología, CDMX 14080, Mexico; (F.I.P.R.); (V.M.P.-S.); (H.A.M.-M.); (E.B.-R.); (P.C.-G.); (M.R.-R.); (L.A.H.)
| |
Collapse
|
9
|
Lips EH, Benard-Slagter A, Opdam M, Scheerman CE, Wesseling J, Hogervorst FBL, Linn SC, Savola S, Nederlof PM. BRCAness digitalMLPA profiling predicts benefit of intensified platinum-based chemotherapy in triple-negative and luminal-type breast cancer. Breast Cancer Res 2020; 22:79. [PMID: 32711554 PMCID: PMC7382055 DOI: 10.1186/s13058-020-01313-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We previously showed that BRCA-like profiles can be used to preselect individuals with the highest risk of carrying BRCA mutations but could also indicate which patients would benefit from double-strand break inducing chemotherapy. A simple, robust, and reliable assay for clinical use that utilizes limited amounts of formalin-fixed, paraffin-embedded tumor tissue to assess BRCAness status in both ER-positive and ER-negative breast cancer (BC) is currently lacking. METHODS A digital multiplex ligation-dependent probe amplification (digitalMLPA) assay was designed to detect copy number alterations required for the classification of BRCA1-like and BRCA2-like BC. The BRCA1-like classifier was trained on 71 tumors, enriched for triple-negative BC; the BRCA2-like classifier was trained on 55 tumors, enriched for luminal-type BC. A shrunken centroid-based classifier was developed and applied on an independent validation cohort. A total of 114 cases of a randomized controlled trial were analyzed, and the association of the classifier result with intensified platinum-based chemotherapy response was assessed. RESULTS The digitalMLPA BRCA1-like classifier correctly classified 91% of the BRCA1-like samples and 82% of the BRCA2-like samples. Patients with a BRCA-like tumor derived significant benefit of high-dose chemotherapy (adjusted hazard ratio (HR) 0.12, 95% CI 0.04-0.44) which was not observed in non-BRCA-like patients (HR 0.9, 95% CI 0.37-2.18) (p = 0.01). Analysis stratified for ER status showed borderline significance. CONCLUSIONS The digitalMLPA is a reliable method to detect a BRCA1- and BRCA2-like pattern on clinical samples and predicts platinum-based chemotherapy benefit in both triple-negative and luminal-type BC.
Collapse
Affiliation(s)
- Esther H Lips
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | - Mark Opdam
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Caroline E Scheerman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle Wesseling
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans B L Hogervorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Suvi Savola
- Department of Oncogenetics, MRC Holland, Amsterdam, The Netherlands
| | - Petra M Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Qi J, Zhou J, Tang XQ, Wang Y. Gene Biomarkers Derived from Clinical Data of Hepatocellular Carcinoma. Interdiscip Sci 2020; 12:226-236. [PMID: 32297074 DOI: 10.1007/s12539-020-00366-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer of high mortality, mainly due to the difficulty in diagnosis during its clinical stage. Here we aim to find the gene biomarkers, which are of important significance for diagnosis and treatment. In this work, 3682 differentially expressed genes on HCC were firstly differentiated based on the Cancer Genome Atlas database (TCGA). Co-expression modules of these differentially expressed genes were then constructed based on the weighted correlation network algorithm. The correlation coefficient between the co-expression module and clinical data from the Broad GDAC Firehose was thereafter derived. Finally, the interactive network of genes was then constructed. Then, the hub genes were used to implement enrichment analysis and pathway analysis in the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Results revealed that the abnormally expressed genes in the module played an important role in the biological process including cell division, sister chromatid cohesion, DNA repair, and G1/S transition of mitotic cell cycle. Meanwhile, these genes also enriched in a few crucial pathways related to Cell cycle, Oocyte meiosis, and p53 signaling. Via investigating the closeness centrality of the interactive network, eight gene biomarkers including the CKAP2, TPX2, CDCA8, KIFC1, MELK, SGO1, RACGAP1, and KIAA1524 gene were discovered, whose functions had been indeed revealed to be correlated with HCC. This study, therefore, suggests that the abnormal expression of those eight genes may be taken as gene biomarkers of HCC.
Collapse
Affiliation(s)
- Jiaming Qi
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Jiaxing Zhou
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Jiangnan University, Wuxi, 214122, China.
| | - Yaolai Wang
- Wuxi Engineering Research Center for Biocomputing, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Jacot W, Lopez-Crapez E, Mollevi C, Boissière-Michot F, Simony-Lafontaine J, Ho-Pun-Cheung A, Chartron E, Theillet C, Lemoine A, Saffroy R, Lamy PJ, Guiu S. BRCA1 Promoter Hypermethylation is Associated with Good Prognosis and Chemosensitivity in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12040828. [PMID: 32235500 PMCID: PMC7225997 DOI: 10.3390/cancers12040828] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The aberrant hypermethylation of BRCA1 promoter CpG islands induces the decreased expression of BRCA1 (Breast Cancer 1) protein. It can be detected in sporadic breast cancer without BRCA1 pathogenic variants, particularly in triple-negative breast cancers (TNBC). We investigated BRCA1 hypermethylation status (by methylation-specific polymerase chain reaction (MS-PCR) and MassARRAY® assays), and BRCA1 protein expression using immunohistochemistry (IHC), and their clinicopathological significance in 248 chemotherapy-naïve TNBC samples. Fifty-five tumors (22%) exhibited BRCA1 promoter hypermethylation, with a high concordance rate between MS-PCR and MassARRAY® results. Promoter hypermethylation was associated with reduced IHC BRCA1 protein expression (p = 0.005), and expression of Programmed death-ligand 1 protein (PD-L1) by tumor and immune cells (p = 0.03 and 0.011, respectively). A trend was found between promoter hypermethylation and basal marker staining (p = 0.058), and between BRCA1 expression and a basal-like phenotype. In multivariate analysis, relapse-free survival was significantly associated with N stage, adjuvant chemotherapy, and histological subtype. Overall survival was significantly associated with T and N stage, histology, and adjuvant chemotherapy. In addition, patients with tumors harboring BRCA1 promoter hypermethylation derived the most benefit from adjuvant chemotherapy. In conclusion, BRCA1 promoter hypermethylation is associated with TNBC sensitivity to adjuvant chemotherapy, basal-like features and PD-L1 expression. BRCA1 IHC expression is not a good surrogate marker for promoter hypermethylation and is not independently associated with prognosis. Association between promoter hypermethylation and sensitivity to Poly(ADP-ribose) polymerase PARP inhibitors needs to be evaluated in a specific series of patients.
Collapse
Affiliation(s)
- William Jacot
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Faculty of Medicine, Montpellier University, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Correspondence: ; Tel.: +33-4-67-61-31-00; Fax: +33-4-67-63-28-73
| | - Evelyne Lopez-Crapez
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Caroline Mollevi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
- Biometrics Unit, Institut du Cancer Montpellier (ICM), Université de Montpellier, 208 rue des Apothicaires, F-34298 Montpellier, France
| | - Florence Boissière-Michot
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Joelle Simony-Lafontaine
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Alexandre Ho-Pun-Cheung
- Translational Research Unit, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.L.-C.); (F.B.-M.); (J.S.-L.); (A.H.-P.-C.)
| | - Elodie Chartron
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| | - Antoinette Lemoine
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Raphael Saffroy
- Department of Oncogenetics, APHP, GH Paris-Sud, Hôpital Paul Brousse, Inserm UMR-S 1193, Université Paris-Saclay, 14 Avenue Paul Vaillant Couturier, 94800 Villejuif, France; (A.L.); (R.S.)
| | - Pierre-Jean Lamy
- Institut d’Analyse Génomique, Imagenome-Inovie, Clinique BeauSoleil, 34070 Montpellier, France;
- Biological Resources Center, Montpellier Cancer Institute Val d’Aurelle, F-34298 Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Montpellier Cancer Institute Val d’Aurelle, 208 rue des Apothicaires, F-34298 Montpellier, France; (E.C.); (S.G.)
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut du Cancer Montpellier (ICM), F-34298 Montpellier, France; (C.M.); (C.T.)
| |
Collapse
|
12
|
Geenen JJJ, Linn SC, Beijnen JH, Schellens JHM. PARP Inhibitors in the Treatment of Triple-Negative Breast Cancer. Clin Pharmacokinet 2019; 57:427-437. [PMID: 29063517 DOI: 10.1007/s40262-017-0587-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breast cancer is a heterogeneous disease, manifesting in a broad differentiation in phenotypes and morphologic profiles, resulting in variable clinical behavior. Between 10 and 20% of all breast cancers are triple negative. Triple-negative breast cancer (TNBC) lacks the expression of human epidermal growth factor receptor 2 (HER2) and hormone receptors; therefore, to date, chemotherapy remains the backbone of treatment. TNBC tends to be aggressive and has a high histological grade, resulting in a poor 5-year prognosis. It has a high prevalence of BRCA1 mutations and an increased Ki-67 expression. This subtype usually responds well to taxanes and/or platinum compounds and poly (ADP-ribose) polymerase (PARP) inhibitors. Studies with PARP inhibitors have demonstrated promising results in the treatment of BRCA-mutated breast and ovarian cancer, and PARP inhibitors have been studied as monotherapy and in combination with cytotoxic therapy or radiotherapy. PARP inhibitor efficacy on poly (ADP-ribose) polymer (PAR) formation in vivo can be quantified by pharmacodynamic assays that measure PAR activity in peripheral blood mononuclear cells (PBMC). Biomarkers such as TP53, ATM, PALB2 and RAD51C might be prognostic or predictive indicators for treatment response, and could also provide targets for novel treatment strategies. In summary, this review provides an overview of the treatment options for basal-like TNBC, including PARP inhibitors, and focuses on the pharmacotherapeutic options in these patients.
Collapse
Affiliation(s)
- Jill J J Geenen
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Pathology, Utrecht University Medical Center, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Department of Pharmacy, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands. .,Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands. .,Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Department of Pharmacy, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands. .,Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
DNA Repair Deficiency in Breast Cancer: Opportunities for Immunotherapy. JOURNAL OF ONCOLOGY 2019; 2019:4325105. [PMID: 31320901 PMCID: PMC6607732 DOI: 10.1155/2019/4325105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/04/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Historically the development of anticancer treatments has been focused on their effect on tumor cells alone. However, newer treatments have shifted attention to targets on immune cells, resulting in dramatic responses. The effect of DNA repair deficiency on the microenvironment remains an area of key interest. Moreover, established therapies such as DNA damaging treatments such as chemotherapy and PARP inhibitors further modify the tumor microenvironment. Here we describe DNA repair pathways in breast cancer and activation of innate immune pathways in DNA repair deficiency, in particular, the STING (STimulator of INterferon Genes) pathway. Breast tumors with DNA repair deficiency are associated with upregulation of immune checkpoints including PD-L1 (Programmed Death Ligand-1) and may represent a target population for single agent or combination immunotherapy treatment.
Collapse
|
14
|
Tian T, Shan L, Yang W, Zhou X, Shui R. Evaluation of the BRCAness phenotype and its correlations with clinicopathological features in triple-negative breast cancers. Hum Pathol 2019; 84:231-238. [DOI: 10.1016/j.humpath.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
|
15
|
Chen Y, Wang Y, Salas LA, Miller TW, Mark K, Marotti JD, Kettenbach AN, Cheng C, Christensen BC. Molecular and epigenetic profiles of BRCA1-like hormone-receptor-positive breast tumors identified with development and application of a copy-number-based classifier. Breast Cancer Res 2019; 21:14. [PMID: 30683142 PMCID: PMC6347811 DOI: 10.1186/s13058-018-1090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/20/2018] [Indexed: 02/09/2023] Open
Abstract
Background BRCA1-mutated cancers exhibit deficient homologous recombination (HR) DNA repair, resulting in extensive copy number alterations and genome instability. HR deficiency can also arise in tumors without a BRCA1 mutation. Compared with other breast tumors, HR-deficient, BRCA1-like tumors exhibit worse prognosis but selective chemotherapeutic sensitivity. Presently, patients with triple negative breast cancer (TNBC) who do not respond to hormone endocrine-targeting therapy are given cytotoxic chemotherapy. However, more recent evidence showed a similar genomic profile between BRCA1-deficient TNBCs and hormone-receptor-positive tumors. Characterization of the somatic alterations of BRCA1-like hormone-receptor-positive breast tumors as a group, which is currently lacking, can potentially help develop biomarkers for identifying additional patients who might respond to chemotherapy. Methods We retrained and validated a copy-number-based support vector machine (SVM) classifier to identify HR-deficient, BRCA1-like breast tumors. We applied this classifier to The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast tumors. We assessed mutational profiles and proliferative capacity by covariate-adjusted linear models and identified differentially methylated regions using DMRcate in BRCA1-like hormone-receptor-positive tumors. Results Of the breast tumors in TCGA and METABRIC, 22% (651/2925) were BRCA1-like. Stratifying on hormone-receptor status, 13% (302/2405) receptor-positive and 69% (288/417) triple-negative tumors were BRCA1-like. Among the hormone-receptor-positive subgroup, BRCA1-like tumors showed significantly increased mutational burden and proliferative capacity (both P < 0.05). Genome-scale DNA methylation analysis of BRCA1-like tumors identified 202 differentially methylated gene regions, including hypermethylated BRCA1. Individually significant CpGs were enriched for enhancer regions (P < 0.05). The hypermethylated gene sets were enriched for DNA and chromatin conformation (all Bonferroni P < 0.05). Conclusions To provide insights into alternative classification and potential therapeutic targeting strategies of BRCA1-like hormone-receptor-positive tumors we developed and applied a novel copy number classifier to identify BRCA1-like hormone-receptor-positive tumors and their characteristic somatic alteration profiles. Electronic supplementary material The online version of this article (10.1186/s13058-018-1090-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youdinghuan Chen
- Department of Epidemiology, Lebanon, USA.,Department of Molecular and Systems Biology, Lebanon, USA
| | - Yue Wang
- Department of Molecular and Systems Biology, Lebanon, USA
| | - Lucas A Salas
- Department of Epidemiology, Lebanon, USA.,Department of Molecular and Systems Biology, Lebanon, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Lebanon, USA
| | - Kenneth Mark
- Department of Molecular and Systems Biology, Lebanon, USA
| | | | - Arminja N Kettenbach
- Department of Molecular and Systems Biology, Lebanon, USA.,Department of Biochemistry and Cell Biology, Lebanon, USA
| | - Chao Cheng
- Department of Molecular and Systems Biology, Lebanon, USA. .,Department of Biomedical Data Science, Lebanon, USA. .,Present address: Department of Medicine, Baylor College of Medicine, Room ICTR 100D, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Brock C Christensen
- Department of Epidemiology, Lebanon, USA. .,Department of Molecular and Systems Biology, Lebanon, USA. .,Department of Community and Family Medicine, Dartmouth-Hitchcock Medical Center, 660 Williamson, HB 7650. One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
16
|
Imanishi S, Naoi Y, Shimazu K, Shimoda M, Kagara N, Tanei T, Miyake T, Kim SJ, Noguchi S. Clinicopathological analysis of homologous recombination-deficient breast cancers with special reference to response to neoadjuvant paclitaxel followed by FEC. Breast Cancer Res Treat 2019; 174:627-637. [DOI: 10.1007/s10549-018-05120-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022]
|
17
|
Chartron E, Theillet C, Guiu S, Jacot W. Targeting homologous repair deficiency in breast and ovarian cancers: Biological pathways, preclinical and clinical data. Crit Rev Oncol Hematol 2018; 133:58-73. [PMID: 30661659 DOI: 10.1016/j.critrevonc.2018.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/25/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Mutation or epigenetic silencing of homologous recombination (HR) repair genes is characteristic of a growing proportion of triple-negative breast cancers (TNBCs) and high-grade serous ovarian carcinomas. Defects in HR lead to genome instability, allowing cells to acquire the multiple genetic alterations essential for cancer development. However, this deficiency can also be exploited by using DNA damaging agents or by targeting compensatory repair pathways. A noteworthy example is treatment of TNBC and epithelial ovarian cancer harboring BRCA1/2 germline mutations using platinum salts and/or PARP inhibitors. Dramatic responses to PARP inhibitors may support a wider use in the HR-deficient population beyond those with mutated germline BRCA1 and 2. In this review, we discuss HR deficiency hallmarks as predictive biomarkers for platinum salt and PARP inhibitor sensitivity for selecting patients affected by TNBC or epithelial ovarian cancer who could benefit from these therapeutic options.
Collapse
Affiliation(s)
- Elodie Chartron
- Department of medical oncology, Montpellier Academic Hospital, Montpellier, France
| | - Charles Theillet
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France
| | - Séverine Guiu
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - William Jacot
- IRCM, INSERM, Université de Montpellier, ICM, Montpellier, France; Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Comprehensive Proteomic Profiling–derived Immunohistochemistry-based Prediction Models for BRCA1 and BRCA2 Germline Mutation-related Breast Carcinomas. Am J Surg Pathol 2018; 42:1262-1272. [DOI: 10.1097/pas.0000000000001115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Triple-Negative Breast Cancers: Systematic Review of the Literature on Molecular and Clinical Features with a Focus on Treatment with Innovative Drugs. Curr Oncol Rep 2018; 20:76. [PMID: 30128845 DOI: 10.1007/s11912-018-0726-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Triple-negative breast cancer (TNBC) accounts for 15-20% of diagnosed breast tumours, with higher incidence in young and African-American women, and it is frequently associated with BRCA germline mutations. Chemotherapy is the only well-established therapeutic option in both early- and advanced-stages of the disease. TNBC tumours relapse earlier after standard anthracycline- and/or taxane-based chemotherapy treatments, generally within 1-3 years after the diagnosis, and often develop visceral metastases, representing the subtype with a worse prognosis among all breast cancers. In the present review, we will provide an updated overview of the available results of recent clinical trials for this disease and we will describe the implications of the known molecular pathways representing novel targets for development of future therapies for TNBC patients. RECENT FINDINGS Over the past decade, the advent of gene expression micro-array technology has led to the identification of different actionable targets including various genomic alterations, androgen receptor, PARP, PI3K, VEGF and other proteins of the angiogenic pathway. Thus, novel targeted drugs have been tested in clinical trials reporting promising results in specific TNBC molecular subgroups. Although cytotoxic chemotherapy remains the mainstay of treatment for TNBC patients, the identification of novel 'drugable' targets and pathways for developing personalized treatments represents a promising investigational approach in the management of the TNBC subtype.
Collapse
|
20
|
Steenbruggen TG, van Ramshorst MS, Kok M, Linn SC, Smorenburg CH, Sonke GS. Neoadjuvant Therapy for Breast Cancer: Established Concepts and Emerging Strategies. Drugs 2018; 77:1313-1336. [PMID: 28616845 DOI: 10.1007/s40265-017-0774-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the last decade, the systemic treatment approach for patients with early breast cancer has partly shifted from adjuvant treatment to neoadjuvant treatment. Systemic treatment administration started as a 'one size fits all' approach but is currently customized according to each breast cancer subtype. Systemic treatment in a neoadjuvant setting is at least as effective as in an adjuvant setting and has several additional advantages. First, it enables response monitoring and provides prognostic information; second, it downstages the tumor, allowing for less extensive surgery, improved cosmetic outcomes, and reduced postoperative complications such as lymphedema; and third, it enables early development of new treatment strategies by using pathological complete remission as a surrogate outcome of event-free and overall survival. In this review we give an overview of the current standard of neoadjuvant systemic treatment strategies for the three main subtypes of breast cancer: hormone receptor-positive, triple-negative, and human epidermal growth factor receptor 2-positive. Additionally, we summarize drugs that are under investigation for use in the neoadjuvant setting.
Collapse
Affiliation(s)
- Tessa G Steenbruggen
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Mette S van Ramshorst
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Sabine C Linn
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Carolien H Smorenburg
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
den Brok WD, Schrader KA, Sun S, Tinker AV, Zhao EY, Aparicio S, Gelmon KA. Homologous Recombination Deficiency in Breast Cancer: A Clinical Review. JCO Precis Oncol 2017; 1:1-13. [DOI: 10.1200/po.16.00031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BRCA1 and BRCA2 germline mutation–associated breast cancers are known to be deficient in the process of homologous recombination and often respond favorably to drugs targeting this important DNA repair pathway. There is emerging evidence that a significant proportion of patients with BRCA1/ BRCA2 wild-type breast cancer are also deficient in homologous recombination, and it is hypothesized that these patients may derive similar benefit from drugs targeting this pathway. Current research has focused on the development of a companion diagnostic to identify these sporadic BRCA-like tumors. This review outlines the various approaches that researchers have taken to predict homologous recombination deficiency as part of correlative biomarker work in various studies and clinical trials in breast cancer. As some of these tests of homologous recombination deficiency move closer to clinical use, understanding the approach and limitations of each is of relevance to clinicians who treat patients with breast cancer.
Collapse
Affiliation(s)
- Wendie D. den Brok
- Wendie D. den Brok, Sophie Sun, Anna V. Tinker, Samuel Aparicio, and Karen A. Gelmon, BC Cancer Agency; and Kasmintan A. Schrader and Eric Yang Zhao, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kasmintan A. Schrader
- Wendie D. den Brok, Sophie Sun, Anna V. Tinker, Samuel Aparicio, and Karen A. Gelmon, BC Cancer Agency; and Kasmintan A. Schrader and Eric Yang Zhao, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Sun
- Wendie D. den Brok, Sophie Sun, Anna V. Tinker, Samuel Aparicio, and Karen A. Gelmon, BC Cancer Agency; and Kasmintan A. Schrader and Eric Yang Zhao, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna V. Tinker
- Wendie D. den Brok, Sophie Sun, Anna V. Tinker, Samuel Aparicio, and Karen A. Gelmon, BC Cancer Agency; and Kasmintan A. Schrader and Eric Yang Zhao, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Yang Zhao
- Wendie D. den Brok, Sophie Sun, Anna V. Tinker, Samuel Aparicio, and Karen A. Gelmon, BC Cancer Agency; and Kasmintan A. Schrader and Eric Yang Zhao, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel Aparicio
- Wendie D. den Brok, Sophie Sun, Anna V. Tinker, Samuel Aparicio, and Karen A. Gelmon, BC Cancer Agency; and Kasmintan A. Schrader and Eric Yang Zhao, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen A. Gelmon
- Wendie D. den Brok, Sophie Sun, Anna V. Tinker, Samuel Aparicio, and Karen A. Gelmon, BC Cancer Agency; and Kasmintan A. Schrader and Eric Yang Zhao, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Jelinic P, Eccles LA, Tseng J, Cybulska P, Wielgos M, Powell SN, Levine DA. The EMSY threonine 207 phospho-site is required for EMSYdriven suppression of DNA damage repair. Oncotarget 2017; 8:13792-13804. [PMID: 28099152 PMCID: PMC5355139 DOI: 10.18632/oncotarget.14637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 01/07/2023] Open
Abstract
BRCA1 and BRCA2 are essential for the repair of double-strand DNA breaks, and alterations in these genes are a hallmark of breast and ovarian carcinomas. Other functionally related genes may also play important roles in carcinogenesis. Amplification of EMSY, a putative BRCAness gene, has been suggested to impair DNA damage repair by suppressing BRCA2 function. We employed direct repeat GFP (DR-GFP) and RAD51 foci formation assays to show that EMSY overexpression impairs the repair of damaged DNA, suggesting that EMSY belongs to the family of BRCAness proteins. We also identified a novel phospho-site at threonine 207 (T207) and demonstrated its role in EMSY-driven suppression of DNA damage repair. In vitro kinase assays established that protein kinase A (PKA) directly phosphorylates the T207 phospho-site. Immunoprecipitation experiments suggest that EMSY-driven suppression of DNA damage repair is a BRCA2-independent process. The data also suggest that EMSY amplification is a BRCAness feature, and may help to expand the population of patients who could benefit from targeted therapies that are also effective in BRCA1/2-mutant cancers.
Collapse
Affiliation(s)
- Petar Jelinic
- Laura and Isaac Perlmutter Cancer Center, Division of Gynecologic Oncology, Department of OB/GYN, NYU Langone Medical Center, New York, USA
| | - Laura A Eccles
- Departments of Radiation Oncology and Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jill Tseng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Paulina Cybulska
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Monicka Wielgos
- Laura and Isaac Perlmutter Cancer Center, Division of Gynecologic Oncology, Department of OB/GYN, NYU Langone Medical Center, New York, USA
| | - Simon N Powell
- Departments of Radiation Oncology and Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Douglas A Levine
- Laura and Isaac Perlmutter Cancer Center, Division of Gynecologic Oncology, Department of OB/GYN, NYU Langone Medical Center, New York, USA
| |
Collapse
|
23
|
Severson TM, Wolf DM, Yau C, Peeters J, Wehkam D, Schouten PC, Chin SF, Majewski IJ, Michaut M, Bosma A, Pereira B, Bismeijer T, Wessels L, Caldas C, Bernards R, Simon IM, Glas AM, Linn S, van ‘t Veer L. The BRCA1ness signature is associated significantly with response to PARP inhibitor treatment versus control in the I-SPY 2 randomized neoadjuvant setting. Breast Cancer Res 2017; 19:99. [PMID: 28851423 PMCID: PMC5574249 DOI: 10.1186/s13058-017-0861-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with BRCA1-like tumors correlate with improved response to DNA double-strand break-inducing therapy. A gene expression-based classifier was developed to distinguish between BRCA1-like and non-BRCA1-like tumors. We hypothesized that these tumors may also be more sensitive to PARP inhibitors than standard treatments. METHODS A diagnostic gene expression signature (BRCA1ness) was developed using a centroid model with 128 triple-negative breast cancer samples from the EU FP7 RATHER project. This BRCA1ness signature was then tested in HER2-negative patients (n = 116) from the I-SPY 2 TRIAL who received an oral PARP inhibitor veliparib in combination with carboplatin (V-C), or standard chemotherapy alone. We assessed the association between BRCA1ness and pathologic complete response in the V-C and control arms alone using Fisher's exact test, and the relative performance between arms (biomarker × treatment interaction, likelihood ratio p < 0.05) using a logistic model and adjusting for hormone receptor status (HR). RESULTS We developed a gene expression signature to identify BRCA1-like status. In the I-SPY 2 neoadjuvant setting the BRCA1ness signature associated significantly with response to V-C (p = 0.03), but not in the control arm (p = 0.45). We identified a significant interaction between BRCA1ness and V-C (p = 0.023) after correcting for HR. CONCLUSIONS A genomic-based BRCA1-like signature was successfully translated to an expression-based signature (BRC1Aness). In the I-SPY 2 neoadjuvant setting, we determined that the BRCA1ness signature is capable of predicting benefit of V-C added to standard chemotherapy compared to standard chemotherapy alone. TRIAL REGISTRATION I-SPY 2 TRIAL beginning December 31, 2009: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer (I-SPY 2), NCT01042379 .
Collapse
Affiliation(s)
- Tesa M. Severson
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | - Philip C. Schouten
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ian J. Majewski
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Current address: Division of Cancer and Haematology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Magali Michaut
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Tycho Bismeijer
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Sabine Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Timme S, Sillem M, Bronsert P, Bogatyreva L, Hauschke D, Zur Hausen A, Werner M, Stickeler E. Anti-Phosphohistone H3-Positive Mitoses Are Linked to Pathological Response in Neoadjuvantly Treated Breast Cancer. Breast Care (Basel) 2017; 12:244-250. [PMID: 29070988 DOI: 10.1159/000463377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We evaluated breast cancer (BC) core biopsies taken before neoadjuvant chemotherapy (NACT) by immunohistochemistry using anti-phosphohistone H3 (PHH3) antibody to determine mitosis, and correlated the results to clinicopathological data and histopathological regression of resected tumor specimens after NACT. METHODS 72 patients with either triple-negative (TN) or luminal type BC received NACT with epirubicin/cyclophosphamide (EC) and Taxotere®. Tumor regression was analyzed in resected specimens; pathological complete response (pCR) was achieved in 22.2%. Immunohistochemistry with PHH3 was performed on biopsy samples taken before treatment, and mitotic figures were evaluated in 10 high-power fields (HPF). RESULTS PHH3-detected mitoses correlated significantly with tumor grading (p = 0.001). TNBC showed > 10 PHH3-positive mitoses/10 HPF significantly more frequently than luminal type BC (p = 0.003). Tumors with > 10 PHH3-positive mitoses/10 HPF achieved pCR significantly more often than those with ≤ 10 PHH3-positive mitoses/10 HPF (p = 0.031). Even luminal type BC with > 10 PHH3-positive mitoses/10 HPF was associated significantly with pCR compared to luminal type BC with ≤ 10 PHH3-positive mitoses/10 HPF (p = 0.016). CONCLUSION NACT with EC and Taxotere is suitable for strong proliferating TNBC and luminal BC (> 10 PHH3-positive mitoses/10 HPF). Immunohistochemical determination of mitoses using anti-PHH3 antibody is a simple and robust method for predicting therapy response to NACT in BC tissue.
Collapse
Affiliation(s)
| | - Martin Sillem
- Institute of Pathology, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Peter Bronsert
- Institute of Pathology, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Lioudmila Bogatyreva
- Institute of Medical Biometry and Medical Informatics, Freiburg University, Freiburg i.Br., Germany
| | - Dieter Hauschke
- Institute of Medical Biometry and Medical Informatics, Freiburg University, Freiburg i.Br., Germany
| | - Axel Zur Hausen
- Department of Pathology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martin Werner
- Institute of Pathology, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
25
|
Cardillo TM, Sharkey RM, Rossi DL, Arrojo R, Mostafa AA, Goldenberg DM. Synthetic Lethality Exploitation by an Anti-Trop-2-SN-38 Antibody-Drug Conjugate, IMMU-132, Plus PARP Inhibitors in BRCA1/2-wild-type Triple-Negative Breast Cancer. Clin Cancer Res 2017; 23:3405-3415. [PMID: 28069724 DOI: 10.1158/1078-0432.ccr-16-2401] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Both PARP inhibitors (PARPi) and sacituzumab govitecan (IMMU-132) are currently under clinical evaluation in triple-negative breast cancer (TNBC). We sought to investigate the combined DNA-damaging effects of the topoisomerase I (Topo I)-inhibitory activity of IMMU-132 with PARPi disruption of DNA repair in TNBC.Experimental Design:In vitro, human TNBC cell lines were incubated with IMMU-132 and various PARPi (olaparib, rucaparib, or talazoparib) to determine the effect on growth, double-stranded DNA (dsDNA) breaks, and cell-cycle arrest. Mice bearing BRCA1/2-mutated or -wild-type human TNBC tumor xenografts were treated with the combination of IMMU-132 and PARPi (olaparib or talazoparib). Study survival endpoint was tumor progression to >1.0 cm3 and tolerability assessed by hematologic changes.Results: Combining IMMU-132 in TNBC with all three different PARPi results in synergistic growth inhibition, increased dsDNA breaks, and accumulation of cells in the S-phase of the cell cycle, regardless of BRCA1/2 status. A combination of IMMU-132 plus olaparib or talazoparib produces significantly improved antitumor effects and delay in time-to-tumor progression compared with monotherapy in mice bearing BRCA1/2-mutated HCC1806 TNBC tumors. Furthermore, in mice bearing BRCA1/2-wild-type tumors (MDA-MB-468 or MDA-MB-231), the combination of IMMU-132 plus olaparib imparts a significant antitumor effect and survival benefit above that achieved with monotherapy. Most importantly, this combination was well tolerated, with no substantial changes in hematologic parameters.Conclusions: These data demonstrate the added benefit of combining Topo I inhibition mediated by IMMU-132 with synthetic lethality provided by PARPi in TNBC, regardless of BRCA1/2 status, thus supporting the rationale for such a combination clinically. Clin Cancer Res; 23(13); 3405-15. ©2017 AACR.
Collapse
|
26
|
Murria Estal R, Palanca Suela S, de Juan Jiménez I, Alenda Gonzalez C, Egoavil Rojas C, García-Casado Z, López Guerrero JA, Juan Fita MJ, Sánchez Heras AB, Segura Huerta Á, Santaballa Bertrán A, Chirivella González I, Llop García M, Pérez Simó G, Barragán González E, Bolufer Gilabert P. Relationship of immunohistochemistry, copy number aberrations and epigenetic disorders with BRCAness pattern in hereditary and sporadic breast cancer. Fam Cancer 2016; 15:193-200. [PMID: 26723934 DOI: 10.1007/s10689-015-9864-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study aims to identify the relevance of immunohistochemistry (IHC), copy number aberrations (CNA) and epigenetic disorders in BRCAness breast cancers (BCs). We studied 95 paraffin included BCs, of which 41 carried BRCA1/BRCA2 germline mutations and 54 were non hereditary (BRCAX/Sporadic). Samples were assessed for BRCA1ness and CNAs by Multiplex Ligation-dependent Probe Amplification (MLPA); promoter methylation (PM) was assessed by methylation-specific-MLPA and the expression of miR-4417, miR-423-3p, miR-590-5p and miR-187-3p by quantitative RT-PCR. IHC markers Ki67, ER, PR, HER2, CK5/6, EGFR and CK18 were detected with specific primary antibodies (DAKO, Denmark). BRCAness association with covariates was performed using multivariate binary logistic regression (stepwise backwards Wald option). BRCA1/2 mutational status (p = 0.027), large tumor size (p = 0.041) and advanced histological grade (p = 0.017) among clinic-pathological variables; ER (p < 0.001) among IHC markers; MYC (p < 0.001) among CNA; APC (p = 0.065), ATM (p = 0.014) and RASSF1 (p = 0.044) among PM; and miR-590-5p (p = 0.001), miR-4417 (p = 0.019) and miR-423 (p = 0.013) among microRNA expression, were the selected parameters significantly related with the BRCAness status. The logistic regression performed with all these parameters selected ER+ as linked with the lack of BRCAness (p = 0.001) and MYC CNA, APC PM and miR-590-5p expression with BRCAness (p = 0.014, 0.045 and 0.007, respectively). In conclusion, the parameters ER expression, APC PM, MYC CNA and miR-590-5p expression, allowed detection of most BRCAness BCs. The identification of BRCAness can help establish a personalized medicine addressed to predict the response to specific treatments.
Collapse
Affiliation(s)
- Rosa Murria Estal
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Sarai Palanca Suela
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Inmaculada de Juan Jiménez
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | - Marta Llop García
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Gema Pérez Simó
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Eva Barragán González
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain
| | - Pascual Bolufer Gilabert
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, Torre A 4ª planta, Avenida de Fernando Abril Martorell, no 106, 46026, Valencia, Spain.
| |
Collapse
|
27
|
Gross E, van Tinteren H, Li Z, Raab S, Meul C, Avril S, Laddach N, Aubele M, Propping C, Gkazepis A, Schmitt M, Meindl A, Nederlof PM, Kiechle M, Lips EH. Identification of BRCA1-like triple-negative breast cancers by quantitative multiplex-ligation-dependent probe amplification (MLPA) analysis of BRCA1-associated chromosomal regions: a validation study. BMC Cancer 2016; 16:811. [PMID: 27756336 PMCID: PMC5070367 DOI: 10.1186/s12885-016-2848-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) with a BRCA1-like molecular signature has been demonstrated to remarkably respond to platinum-based chemotherapy and might be suited for a future treatment with poly(ADP-ribose)polymerase (PARP) inhibitors. In order to rapidly assess this signature we have previously developed a multiplex-ligation-dependent probe amplification (MLPA)-based assay. Here we present an independent validation of this assay to confirm its important clinical impact. Methods One-hundred-forty-four TNBC tumor specimens were analysed by the MLPA-based “BRCA1-like” test. Classification into BRCA1-like vs. non-BRCA1-like samples was performed by our formerly established nearest shrunken centroids classifier. Data were subsequently compared with the BRCA1-mutation/methylation status of the samples. T-lymphocyte infiltration and expression of the main target of PARP inhibitors, PARP1, were assessed on a subset of samples by immunohistochemistry. Data acquisition and interpretation was performed in a blinded manner. Results In the studied TNBC cohort, 63 out of 144 (44 %) tumors were classified into the BRCA1-like category. Among these, the MLPA test correctly predicted 15 out of 18 (83 %) samples with a pathogenic BRCA1-mutation and 20 of 22 (91 %) samples exhibiting BRCA1-promoter methylation. Five false-negative samples were observed. We identified high lymphocyte infiltration as one possible basis for misclassification. However, two falsely classified BRCA1-mutated tumors were also characterized by rather non-BRCA1-associated histopathological features such as borderline ER expression. The BRCA1-like vs. non-BRCA1-like signature was specifically enriched in high-grade (G3) cancers (90 % vs. 58 %, p = 0.0004) and was also frequent in tumors with strong (3+) nuclear PARP1 expression (37 % vs. 16 %; p = 0.087). Conclusions This validation study confirmed the good performance of the initial MLPA assay which might thus serve as a valuable tool to select patients for platinum-based chemotherapy regimens. Moreover, frequent PARP1 upregulation in BRCA1-like tumors may also point to susceptibility to treatment with PARP inhibitors. Limitations are the requirement of high tumor content and high-quality DNA.
Collapse
Affiliation(s)
- Eva Gross
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany.
| | - Harm van Tinteren
- Biometrics Department, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Zhou Li
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Sandra Raab
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Christina Meul
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Stefanie Avril
- Institute of Pathology, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany.,Present address: Department of Pathology, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Nadja Laddach
- MRC-Holland, Willem Schoutenstraat 6, 1057 DN, Amsterdam, The Netherlands
| | - Michaela Aubele
- Helmholtz Zentrum München, Institute of Pathology, Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany
| | - Corinna Propping
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Apostolos Gkazepis
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Manfred Schmitt
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Petra M Nederlof
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marion Kiechle
- Department of Gynecology and Obstetrics, Technische Universität München, Ismaninger Strasse 22, D-81675, Munich, Germany
| | - Esther H Lips
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Molecular Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Sharma P. Biology and Management of Patients With Triple-Negative Breast Cancer. Oncologist 2016; 21:1050-62. [PMID: 27401886 PMCID: PMC5016071 DOI: 10.1634/theoncologist.2016-0067] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED : Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is associated with poor long-term outcomes compared with other breast cancer subtypes. Because of the lack of approved targeted therapy, at present chemotherapy remains the mainstay of treatment for early and advanced disease. TNBC is enriched for germline BRCA mutation, providing a foundation for the use of this as a biomarker to identify patients suitable for treatment with DNA-damaging agents. Inherited and acquired defects in homologous recombination DNA repair, a phenotype termed "BRCAness," may be present in a large proportion of TNBC cases, making it an attractive selection and response biomarker for DNA-damaging therapy. Triple-negative breast cancer is a diverse entity for which additional subclassifications are needed. Increasing understanding of biologic heterogeneity of TNBC has provided insight into identifying potentially effective systemic therapies, including cytotoxic and targeted agents. Numerous experimental approaches are under way, and several encouraging drug classes, such as immune checkpoint inhibitors, poly(ADP-ribose) polymerase inhibitors, platinum agents, phosphatidylinositol-3-kinase pathway inhibitors, and androgen receptor inhibitors, are being investigated in TNBC. Molecular biomarker-based patient selection in early-phase trials has the potential to accelerate development of effective therapies for this aggressive breast cancer subtype. TNBC is a complex disease, and it is likely that several different targeted approaches will be needed to make meaningful strides in improving the outcomes. IMPLICATIONS FOR PRACTICE Triple-negative breast cancer (TNBC) is an aggressive subtype that is associated with poor outcomes. This article reviews clinical features and discusses the molecular diversity of this unique subtype. Current treatment paradigms, the role of germline testing, and platinum agents in TNBC are reviewed. Results and observations from pertinent clinical trials with potential implications for patient management are summarized. This article also discusses the clinical development and ongoing clinical trials of novel promising therapeutic agents in TNBC.
Collapse
|
29
|
Dębska-Szmich S, Krakowska M, Czernek U, Habib-Lisik M, Zięba A, Potemski P. The role of preoperative systemic treatment in patients with breast cancer. Contemp Oncol (Pozn) 2016; 20:93-101. [PMID: 27358586 PMCID: PMC4925732 DOI: 10.5114/wo.2016.60067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 05/29/2014] [Indexed: 12/31/2022] Open
Abstract
The goal of preoperative pharmacotherapy in patients with breast cancer is to enable breast conserving surgery in stage T3N0-1M0 or radical mastectomy in patients with primary inoperative tumors (T1-4N0-3M0). The choice of optimal treatment should be based not only on risk factors resulting from the stage but also on predicted cancer responsiveness to the treatment. The breast cancer subtypes defined by immunohistochemical profile (expression of ER, PR, HER2 and Ki67) are characterized by different responsiveness to therapy. Complete response confirmed by histopathological evaluation after neoadjuvant chemotherapy is a positive prognostic factor in some breast cancer subtypes. This marker is not of value in postmenopausal patients with ER/PR+ HER2- tumors, who are candidates for neoadjuvant hormone therapy. These patients have a good prognosis if in a histopathological report after surgery there are features such as pT1, pN0, Ki67 < 3%, and ER Allred score ≥ 3. The goal of the paper is to present current knowledge about preoperative pharmacotherapy of breast cancer.
Collapse
Affiliation(s)
- Sylwia Dębska-Szmich
- Department of Chemotherapy, Chair of Oncology, Medical University of Lodz, Poland
| | - Magdalena Krakowska
- Department of Chemotherapy, Chair of Oncology, Medical University of Lodz, Poland
| | - Urszula Czernek
- Department of Chemotherapy, Chair of Oncology, Medical University of Lodz, Poland
| | - Maja Habib-Lisik
- Department of Chemotherapy, Chair of Oncology, Medical University of Lodz, Poland
| | - Agnieszka Zięba
- Department of Chemotherapy, Chair of Oncology, Medical University of Lodz, Poland
| | - Piotr Potemski
- Department of Chemotherapy, Chair of Oncology, Medical University of Lodz, Poland
| |
Collapse
|
30
|
Gerratana L, Fanotto V, Pelizzari G, Agostinetto E, Puglisi F. Do platinum salts fit all triple negative breast cancers? Cancer Treat Rev 2016; 48:34-41. [PMID: 27343437 DOI: 10.1016/j.ctrv.2016.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options and poor prognosis once metastatic. Pre-clinical and clinical data suggest that TNBC could be more sensitive to platinum-based chemotherapy, especially among BRCA1/2-mutated patients. In recent years, several randomised trials have been conducted to evaluate platinum efficacy in both early-stage and advanced TNBC, with conflicting results especially for long-term outcomes. Experimental studies are now focusing on identifying biomarkers of response to help selecting patients who may benefit most from platinum-based therapies, including BRCA1/2 mutational status and genomic instability signatures (such as HRD-LOH or HRD-LST scores). A standard therapy for TNBC is still missing and platinum-based regimens represent an emerging therapeutic option for selected patients with a defect in the homologous recombination repair system. The identification of these patients through validated biomarker assays will be crucial to optimize the use of currently approved agents in TNBC.
Collapse
Affiliation(s)
- L Gerratana
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy; Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - V Fanotto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy; Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - G Pelizzari
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy; Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - E Agostinetto
- Department of Medical Oncology, University Hospital of Udine, Udine, Italy
| | - F Puglisi
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy; Department of Medical Oncology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
31
|
Lim D, Ngeow J. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. Endocr Relat Cancer 2016; 23:R267-85. [PMID: 27226207 DOI: 10.1530/erc-16-0116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
The effectiveness of poly (ADP-ribose) polymerase inhibitors (PARPi) in treating cancers associated with BRCA1/2 mutations hinges upon the concept of synthetic lethality and exemplifies the principles of precision medicine. Currently, most clinical trials are recruiting patients based on pathological subtypes or have included BRCA mutation analysis (germ line and/or somatic) as part of the selection criteria. Mounting evidence, however, suggests that these drugs may also be efficacious in tumors with defects in other genes involved in the homologous recombination repair pathway. Advances in molecular profiling techniques together with increased research efforts have led to a better understanding of the molecular aberrations underlying this BRCA-like phenotype and helped broaden the concept of BRCAness. Hence, it is likely that the list of predictive biomarkers for PARPi therapy will increase in future. There is currently no gold standard method of testing for PARPi response and no universal guidelines are in place on how to incorporate biomarker testing into routine clinical diagnostics. In this review, we explore the concept of BRCAness and highlight the different methods that have been used to identify patients who may benefit from the use of these anticancer agents. The identification of predictive biomarkers is crucial in improving patient selection and expanding the clinical applications of PARPi therapy.
Collapse
Affiliation(s)
- Diana Lim
- Department of PathologyNational University Health System, Singapore, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of MedicineNanyang Technological University, Singapore, Singapore Cancer Genetics ServiceDivision of Medical Oncology, National Cancer Centre, Singapore, Singapore
| |
Collapse
|
32
|
Schouten PC, Gluz O, Harbeck N, Mohrmann S, Diallo-Danebrock R, Pelz E, Kruizinga J, Velds A, Nieuwland M, Kerkhoven RM, Liedtke C, Frick M, Kates R, Linn SC, Nitz U, Marme F. BRCA1-like profile predicts benefit of tandem high dose epirubicin-cyclophospamide-thiotepa in high risk breast cancer patients randomized in the WSG-AM01 trial. Int J Cancer 2016; 139:882-9. [PMID: 26946057 DOI: 10.1002/ijc.30078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/13/2016] [Indexed: 01/07/2023]
Abstract
BRCA1 is an important protein in the repair of DNA double strand breaks (DSBs), which are induced by alkylating chemotherapy. A BRCA1-like DNA copy number signature derived from tumors with a BRCA1 mutation is indicative for impaired BRCA1 function and associated with good outcome after high dose (HD) and tandem HD DSB inducing chemotherapy. We investigated whether BRCA1-like status was a predictive biomarker in the WSG AM 01 trial. WSG AM 01 randomized high-risk breast cancer patients to induction (2× epirubicin-cyclophosphamide) followed by tandem HD chemotherapy with epirubicin, cyclophosphamide and thiotepa versus dose dense chemotherapy (4× epirubicin-cyclophospamide followed by 3× cyclophosphamide-methotrexate-5-fluorouracil). We generated copy number profiles for 143 tumors and classified them as being BRCA1-like or non-BRCA1-like. Twenty-six out of 143 patients were BRCA1-like. BRCA1-like status was associated with high grade and triple negative tumors. With regard to event-free-survival, the primary endpoint of the trial, patients with a BRCA1-like tumor had a hazard rate of 0.2, 95% confidence interval (CI): 0.07-0.63, p = 0.006. In the interaction analysis, the combination of BRCA1-like status and HD chemotherapy had a hazard rate of 0.19, 95% CI: 0.067-0.54, p = 0.003. Similar results were observed for overall survival. These findings suggest that BRCA1-like status is a predictor for benefit of tandem HD chemotherapy with epirubicin-thiotepa-cyclophosphamide.
Collapse
Affiliation(s)
- Philip C Schouten
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oleg Gluz
- West German Study Group, Germany.,Breast Centre Niederrhein, Moenchengladbach, Germany
| | - Nadia Harbeck
- West German Study Group, Germany.,Brustzentrum, Ludwig-Maximillian University Munich, Germany
| | | | | | - Enrico Pelz
- Breast Centre Niederrhein, Moenchengladbach, Germany
| | | | - Arno Velds
- Genomics Core Facility, NKI-AVL, Amsterdam, The Netherlands
| | | | | | - Cornelia Liedtke
- West German Study Group, Germany.,Universitäts-Frauenklinik Lübeck, Germany
| | | | | | - Sabine C Linn
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ulrike Nitz
- West German Study Group, Germany.,Breast Centre Niederrhein, Moenchengladbach, Germany
| | - Frederik Marme
- Universitäts-Frauenklinik, University of Heidelberg, Germany.,National Center for Tumour Diseases, University of Heidelberg, Germany
| |
Collapse
|
33
|
Abstract
Over the past 20 years, there has been considerable progress in our understanding of the biological functions of the BRCA1 and BRCA2 cancer susceptibility genes. This has led to the development of new therapeutic approaches that target tumours with loss-of-function mutations in either BRCA1 or BRCA2. Tumours that share molecular features of BRCA-mutant tumours - that is, those with 'BRCAness' - may also respond to similar therapeutic approaches. Several paradigm shifts require a reassessment of the concept of BRCAness, how this property is assayed and its relevance to our understanding of tumour biology and the treatment of cancer.
Collapse
Affiliation(s)
- Christopher J Lord
- Cancer Research UK Gene Function Laboratory and Breast Cancer Now Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| |
Collapse
|
34
|
BRCAness revisited. NATURE REVIEWS. CANCER 2016. [PMID: 26775620 DOI: 10.1038/nrc.2015.21]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the past 20 years, there has been considerable progress in our understanding of the biological functions of the BRCA1 and BRCA2 cancer susceptibility genes. This has led to the development of new therapeutic approaches that target tumours with loss-of-function mutations in either BRCA1 or BRCA2. Tumours that share molecular features of BRCA-mutant tumours - that is, those with 'BRCAness' - may also respond to similar therapeutic approaches. Several paradigm shifts require a reassessment of the concept of BRCAness, how this property is assayed and its relevance to our understanding of tumour biology and the treatment of cancer.
Collapse
|
35
|
Abstract
Over the past 20 years, there has been considerable progress in our understanding of the biological functions of the BRCA1 and BRCA2 cancer susceptibility genes. This has led to the development of new therapeutic approaches that target tumours with loss-of-function mutations in either BRCA1 or BRCA2. Tumours that share molecular features of BRCA-mutant tumours - that is, those with 'BRCAness' - may also respond to similar therapeutic approaches. Several paradigm shifts require a reassessment of the concept of BRCAness, how this property is assayed and its relevance to our understanding of tumour biology and the treatment of cancer.
Collapse
|
36
|
Jacot W, Theillet C, Guiu S, Lamy PJ. Targeting triple-negative breast cancer and high-grade ovarian carcinoma: refining BRCAness beyond BRCA1/2 mutations? Future Oncol 2015; 11:557-9. [PMID: 25686112 DOI: 10.2217/fon.14.268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- William Jacot
- Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM) - Val d'Aurelle, 208 rue des Apothicaires, 34298 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
37
|
Lips EH, Michaut M, Hoogstraat M, Mulder L, Besselink NJM, Koudijs MJ, Cuppen E, Voest EE, Bernards R, Nederlof PM, Wesseling J, Rodenhuis S, Wessels LFA. Next generation sequencing of triple negative breast cancer to find predictors for chemotherapy response. Breast Cancer Res 2015; 17:134. [PMID: 26433948 PMCID: PMC4592753 DOI: 10.1186/s13058-015-0642-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction In triple negative breast cancers (TNBC) the initial response to chemotherapy is often favorable, but relapse and chemotherapy resistance frequently occur in advanced disease. Hence there is an urgent need for targeted treatments in this breast cancer subtype. In the current study we deep sequenced DNA of tumors prior to chemotherapy to search for predictors of response or resistance. Methods Next generation sequencing (NGS) was performed for 1,977 genes involved in tumorigenesis. DNA from 56 pre-treatment TNBC-biopsies was sequenced, as well as matched normal DNA. Following their tumor biopsy, patients started neoadjuvant chemotherapy with doxorubicin and cyclophosphamide. We studied associations between genetic alterations and three clinical variables: chemotherapy response, relapse-free survival and BRCA proficiency. Results The mutations observed were diverse and few recurrent mutations were detected. Most mutations were in TP53, TTN, and PIK3CA (55 %, 14 %, and 9 %, respectively). The mutation rates were similar between responders and non-responders (average mutation rate 9 vs 8 mutations). No recurrent mutations were associated with chemotherapy response or relapse. Interestingly, PIK3CA mutations were exclusively observed in patients proficient for BRCA1. Samples with a relapse had a higher copy number alteration rate, and amplifications of TTK and TP53BP2 were associated with a poor chemotherapy response. Conclusions In this homogenous cohort of TNBCs few recurrent mutations were found. However, PIK3CA mutations were associated with BRCA proficiency, which can have clinical consequences in the near future. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0642-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther H Lips
- Department of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Department of Pathology, Amsterdam, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Magali Michaut
- Department of Molecular Carcinogenesis, the Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| | - Marlous Hoogstraat
- Department of Molecular Carcinogenesis, the Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Department of Medical Oncology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Lennart Mulder
- Department of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Nicolle J M Besselink
- Department of Medical Oncology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Marco J Koudijs
- Department of Medical Oncology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Edwin Cuppen
- Department of Medical Genetics, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Emile E Voest
- Department of Medical Oncology, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. .,Department of Medical Oncology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Rene Bernards
- Department of Molecular Carcinogenesis, the Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| | - Petra M Nederlof
- Department of Pathology, Amsterdam, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Jelle Wesseling
- Department of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. .,Department of Pathology, Amsterdam, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Sjoerd Rodenhuis
- Department of Medical Oncology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Lodewyk F A Wessels
- Department of Molecular Carcinogenesis, the Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Department of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands.
| | | |
Collapse
|
38
|
Schouten PC, Grigoriadis A, Kuilman T, Mirza H, Watkins JA, Cooke SA, van Dyk E, Severson TM, Rueda OM, Hoogstraat M, Verhagen CVM, Natrajan R, Chin SF, Lips EH, Kruizinga J, Velds A, Nieuwland M, Kerkhoven RM, Krijgsman O, Vens C, Peeper D, Nederlof PM, Caldas C, Tutt AN, Wessels LF, Linn SC. Robust BRCA1-like classification of copy number profiles of samples repeated across different datasets and platforms. Mol Oncol 2015; 9:1274-86. [PMID: 25825120 PMCID: PMC5528812 DOI: 10.1016/j.molonc.2015.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/01/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Breast cancers with BRCA1 germline mutation have a characteristic DNA copy number (CN) pattern. We developed a test that assigns CN profiles to be 'BRCA1-like' or 'non-BRCA1-like', which refers to resembling a BRCA1-mutated tumor or resembling a tumor without a BRCA1 mutation, respectively. Approximately one third of the BRCA1-like breast cancers have a BRCA1 mutation, one third has hypermethylation of the BRCA1 promoter and one third has an unknown reason for being BRCA1-like. This classification is indicative of patients' response to high dose alkylating and platinum containing chemotherapy regimens, which targets the inability of BRCA1 deficient cells to repair DNA double strand breaks. We investigated whether this classification can be reliably obtained with next generation sequencing and copy number platforms other than the bacterial artificial chromosome (BAC) array Comparative Genomic Hybridization (aCGH) on which it was originally developed. We investigated samples from 230 breast cancer patients for which a CN profile had been generated on two to five platforms, comprising low coverage CN sequencing, CN extraction from targeted sequencing panels (CopywriteR), Affymetrix SNP6.0, 135K/720K oligonucleotide aCGH, Affymetrix Oncoscan FFPE (MIP) technology, 3K BAC and 32K BAC aCGH. Pairwise comparison of genomic position-mapped profiles from the original aCGH platform and other platforms revealed concordance. For most cases, biological differences between samples exceeded the differences between platforms within one sample. We observed the same classification across different platforms in over 80% of the patients and kappa values of at least 0.36. Differential classification could be attributed to CN profiles that were not strongly associated to one class. In conclusion, we have shown that the genomic regions that define our BRCA1-like classifier are robustly measured by different CN profiling technologies, providing the possibility to retro- and prospectively investigate BRCA1-like classification across a wide range of CN platforms.
Collapse
Affiliation(s)
- Philip C Schouten
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anita Grigoriadis
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Thomas Kuilman
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hasan Mirza
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Johnathan A Watkins
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Saskia A Cooke
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Ewald van Dyk
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar M Rueda
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Marlous Hoogstraat
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands; Netherlands Center for Personalized Cancer Treatment, Utrecht, The Netherlands
| | - Caroline V M Verhagen
- Division of Biological Stress Response, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK
| | - Esther H Lips
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Janneke Kruizinga
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Arno Velds
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron M Kerkhoven
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Conchita Vens
- Division of Biological Stress Response, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Peeper
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra M Nederlof
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK; Department of Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical, Research Centre, Cambridge University Hospitals NHS, Cambridge, UK
| | - Andrew N Tutt
- Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, King's College London School of Medicine, London, United Kingdom
| | - Lodewyk F Wessels
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Waisbren J, Uthe R, Siziopikou K, Kaklamani V. BRCA 1/2 gene mutation and gastrointestinal stromal tumours: a potential association. BMJ Case Rep 2015; 2015:bcr-2014-208830. [PMID: 26150619 DOI: 10.1136/bcr-2014-208830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutations of the BRCA1/2 genes have been described in association with a number of malignancies including cancers of the breast, ovary, prostate and stomach, but have never been described in relation to gastrointestinal stromal tumours (GIST). We describe a patient with a BRCA2 8642del3insC mutation who developed prostate cancer, breast cancer and GIST. GIST has been shown to be associated with a number of malignancies, including some of the common BRCA1/2-related cancers, but it has never been associated with BRCA1/2 gene mutations. This report highlights the potential association between BRCA1/2 mutations and GIST, and aims to raise awareness for further genetic screening in GIST patients.
Collapse
Affiliation(s)
- Julie Waisbren
- Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Regina Uthe
- Department of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | | | - Virginia Kaklamani
- Department of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
40
|
Massink MPG, Kooi IE, van Mil SE, Jordanova ES, Ameziane N, Dorsman JC, van Beek DM, van der Voorn JP, Sie D, Ylstra B, van Deurzen CHM, Martens JW, Smid M, Sieuwerts AM, de Weerd V, Foekens JA, van den Ouweland AMW, van Dyk E, Nederlof PM, Waisfisz Q, Meijers-Heijboer H. Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes. Mol Oncol 2015; 9:877-88. [PMID: 25616998 PMCID: PMC5528776 DOI: 10.1016/j.molonc.2014.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. METHODS For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n = 27) were compared with basal-like familial BRCAX (non-BRCA1/2/CHEK2*1100delC) tumors (n = 14) in a familial cohort of 120 breast carcinomas. RESULTS Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identified varying amounts of tumor infiltrating lymphocytes (TILs) as a major cause for this heterogeneity. Indeed, selecting tumors with relative low amounts of TILs, resulted in the identification of three known but also five previously unrecognized BRCA1-associated copy number aberrations. Moreover, these aberrations occurred with high frequencies in the BRCA1-mutated tumor samples. Using these regions it was possible to discriminate BRCA1-mutated from BRCAX breast carcinomas, and they were validated in two independent cohorts. To further substantiate our findings, we used flow cytometry to isolate cancer cells from formalin-fixed, paraffin-embedded, BRCA1-mutated triple negative breast carcinomas with estimated TIL percentages of 40% and higher. Genomic profiles of sorted and unsorted fractions were compared by shallow whole genome sequencing and confirm our findings. CONCLUSION This study shows that genomic profiling of in particular basal-like, and thus BRCA1-mutated, breast carcinomas is severely affected by the presence of high numbers of TILs. Previous reports on genomic profiling of BRCA1-mutated breast carcinomas have largely neglected this. Therefore, our findings have direct consequences on the interpretation of published genomic data. Also, these findings could prove valuable in light of currently used genomic tools for assessing BRCA1-involvement in breast cancer patients and pathogenicity assessment of BRCA1 variants of unknown significance. The BRCA1-associated genomic aberrations identified in this study provide possible leads to a better understanding of BRCA1-associated oncogenesis.
Collapse
Affiliation(s)
- Maarten P G Massink
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Irsan E Kooi
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Saskia E van Mil
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Ekaterina S Jordanova
- Department of Obstetrics and Gynaecology, Center for Gynaecologic Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Najim Ameziane
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Daphne M van Beek
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Daoud Sie
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Carolien H M van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John W Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Vanja de Weerd
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Ewald van Dyk
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Petra M Nederlof
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Hanne Meijers-Heijboer
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Hu XC, Zhang J, Xu BH, Cai L, Ragaz J, Wang ZH, Wang BY, Teng YE, Tong ZS, Pan YY, Yin YM, Wu CP, Jiang ZF, Wang XJ, Lou GY, Liu DG, Feng JF, Luo JF, Sun K, Gu YJ, Wu J, Shao ZM. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 2015; 16:436-46. [PMID: 25795409 DOI: 10.1016/s1470-2045(15)70064-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Platinum chemotherapy has a role in the treatment of metastatic triple-negative breast cancer but its full potential has probably not yet been reached. We assessed whether a cisplatin plus gemcitabine regimen was non-inferior to or superior to paclitaxel plus gemcitabine as first-line therapy for patients with metastatic triple-negative breast cancer. METHODS For this open-label, randomised, phase 3, hybrid-designed trial undertaken at 12 institutions or hospitals in China, we included Chinese patients aged 18-70 years with previously untreated, histologically confirmed metastatic triple-negative breast cancer, and an ECOG performance status of 0-1. These patients were randomly assigned (1:1) to receive either cisplatin plus gemcitabine (cisplatin 75 mg/m(2) on day 1 and gemcitabine 1250 mg/m(2) on days 1 and 8) or paclitaxel plus gemcitabine (paclitaxel 175 mg/m(2) on day 1 and gemcitabine 1250 mg/m(2) on days 1 and 8) given intravenously every 3 weeks for a maximum of eight cycles. Randomisation was done centrally via an interactive web response system using block randomisation with a size of eight, with no stratification factors. Patients and investigator were aware of group assignments. The primary endpoint was progression-free survival and analyses were based on all patients who received at least one dose of assigned treatment. The margin used to establish non-inferiority was 1·2. If non-inferiority of cisplatin plus gemcitabine compared with paclitaxel plus gemcitabine was achieved, we would then test for superiority. The trial is registered with ClinicalTrials.gov, number NCT01287624. FINDINGS From Jan 14, 2011, to Nov 14, 2013, 240 patients were assessed for eligibility and randomly assigned to treatment (120 in the cisplatin plus gemcitabine group and 120 in the paclitaxel plus gemcitabine group). 236 patients received at least one dose of assigned chemotherapy and were included in the modified intention-to-treat analysis (118 per group). After a median follow-up of 16·3 months (IQR 14·4-26·8) in the cisplatin plus gemcitabine group and 15·9 months (10·7-25·4) in the paclitaxel plus gemcitabine group, the hazard ratio for progression-free survival was 0·692 (95% CI 0·523-0·915; pnon-inferiority<0·0001, psuperiority=0·009, thus cisplatin plus gemcitabine was both non-inferior to and superior to paclitaxel plus gemcitabine. Median progression-free survival was 7·73 months (95% CI 6·16-9·30) in the cisplatin plus gemcitabine group and 6·47 months (5·76-7·18) in the paclitaxel plus gemcitabine group. Grade 3 or 4 adverse events that differed significantly between the two groups included nausea (eight [7%] vs one [<1%]), vomiting (13 [11%] vs one [<1%]), musculoskeletal pain (none vs ten [8%]), anaemia (39 [33%] vs six [5%]), and thrombocytopenia (38 [32%] vs three [3%]), for the cisplatin plus gemcitabine compared with the paclitaxel plus gemcitabine groups, respectively. In addition, patients in the cisplatin plus gemcitabine group had significantly fewer events of grade 1-4 alopecia (12 [10%] vs 42 [36%]) and peripheral neuropathy (27 [23%] vs 60 [51%]), but more grade 1-4 anorexia (33 [28%] vs 10 [8%]), constipation (29 [25%] vs 11 [9%]), hypomagnesaemia (27 [23%] vs five [4%]), and hypokalaemia (10 [8%] vs two [2%]). Serious drug-related adverse events were seen in three patients in the paclitaxel plus gemcitabine group (interstitial pneumonia, anaphylaxis, and severe neutropenia) and four in the cisplatin plus gemcitabine group (pathological bone fracture, thrombocytopenia with subcutaneous haemorrhage, severe anaemia, and cardiogenic syncope). There were no treatment-related deaths. INTERPRETATION Cisplatin plus gemcitabine could be an alternative or even the preferred first-line chemotherapy strategy for patients with metastatic triple-negative breast cancer. FUNDING Shanghai Natural Science Foundation.
Collapse
Affiliation(s)
- Xi-Chun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Centre, Collaborative Innovation Centre for Cancer Medicine, Shanghai, China; Department of Oncology, Shanghai Medical College, Shanghai, China.
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Centre, Collaborative Innovation Centre for Cancer Medicine, Shanghai, China; Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Bing-He Xu
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Cai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Joseph Ragaz
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Zhong-Hua Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Centre, Collaborative Innovation Centre for Cancer Medicine, Shanghai, China; Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Bi-Yun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Centre, Collaborative Innovation Centre for Cancer Medicine, Shanghai, China; Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yue-E Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Zhong-Sheng Tong
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yue-Yin Pan
- Department of Medical Oncology, The First Hospital, Anhui Medical University, Hefei, China
| | - Yong-Mei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang-Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | | | - Xiao-Jia Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Gu-Yin Lou
- Breast Cancer Centre, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong-Geng Liu
- Cancer Centre, Sun Yat-sen University, Guangzhou, China
| | | | - Jian-Feng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Kang Sun
- Biostatistics, Incyte Corporation, Wilmington DE, USA
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Centre, Collaborative Innovation Centre for Cancer Medicine, Shanghai, China; Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Centre, Collaborative Innovation Centre for Cancer Medicine, Shanghai, China; Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Centre, Collaborative Innovation Centre for Cancer Medicine, Shanghai, China; Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|
42
|
Jaspers JE, Sol W, Kersbergen A, Schlicker A, Guyader C, Xu G, Wessels L, Borst P, Jonkers J, Rottenberg S. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance. Cancer Res 2014; 75:732-41. [PMID: 25511378 DOI: 10.1158/0008-5472.can-14-0839] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pan- or multidrug resistance is a central problem in clinical oncology. Here, we use a genetically engineered mouse model of BRCA2-associated hereditary breast cancer to study drug resistance to several types of chemotherapy and PARP inhibition. We found that multidrug resistance was strongly associated with an EMT-like sarcomatoid phenotype and high expression of the Abcb1b gene, which encodes the drug efflux transporter P-glycoprotein. Inhibition of P-glycoprotein could partly resensitize sarcomatoid tumors to the PARP inhibitor olaparib, docetaxel, and doxorubicin. We propose that multidrug resistance is a multifactorial process and that mouse models are useful to unravel this.
Collapse
Affiliation(s)
- Janneke E Jaspers
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands. Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Sol
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ariena Kersbergen
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andreas Schlicker
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Charlotte Guyader
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Guotai Xu
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Piet Borst
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands. Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
43
|
Audeh MW. Novel treatment strategies in triple-negative breast cancer: specific role of poly(adenosine diphosphate-ribose) polymerase inhibition. Pharmgenomics Pers Med 2014; 7:307-16. [PMID: 25342917 PMCID: PMC4205934 DOI: 10.2147/pgpm.s39765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inhibitors of the poly(adenosine triphosphate-ribose) polymerase (PARP)-1 enzyme induce synthetic lethality in cancers with ineffective DNA (DNA) repair or homologous repair deficiency, and have shown promising clinical activity in cancers deficient in DNA repair due to germ-line mutation in BRCA1 and BRCA2. The majority of breast cancers arising in carriers of BRCA1 germ-line mutations, as well as half of those in BRCA2 carriers, are classified as triple-negative breast cancer (TNBC). TNBC is a biologically heterogeneous group of breast cancers characterized by the lack of immunohistochemical expression of the ER, PR, or HER2 proteins, and for which the current standard of care in systemic therapy is cytotoxic chemotherapy. Many "sporadic" cases of TNBC appear to have indicators of DNA repair dysfunction similar to those in BRCA-mutation carriers, suggesting the possible utility of PARP inhibitors in a subset of TNBC. Significant genetic heterogeneity has been observed within the TNBC cohort, creating challenges for interpretation of prior clinical trial data, and for the design of future clinical trials. Several PARP inhibitors are currently in clinical development in BRCA-mutated breast cancer. The use of PARP inhibitors in TNBC without BRCA mutation will require biomarkers that identify cancers with homologous repair deficiency in order to select patients likely to respond. Beyond mutations in the BRCA genes, dysfunction in other genes that interact with the homologous repair pathway may offer opportunities to induce synthetic lethality when combined with PARP inhibition.
Collapse
Affiliation(s)
- M William Audeh
- Division of Medical Oncology, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
44
|
Vollebergh MA, Klijn C, Schouten PC, Wesseling J, Israeli D, Ylstra B, Wessels LF, Jonkers J, Linn SC. Lack of genomic heterogeneity at high-resolution aCGH between primary breast cancers and their paired lymph node metastases. PLoS One 2014; 9:e103177. [PMID: 25083859 PMCID: PMC4118860 DOI: 10.1371/journal.pone.0103177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/29/2014] [Indexed: 11/18/2022] Open
Abstract
Lymph-node metastasis (LNM) predict high recurrence rates in breast cancer patients. Systemic treatment aims to eliminate (micro)metastatic cells. However decisions regarding systemic treatment depend largely on clinical and molecular characteristics of primary tumours. It remains, however, unclear to what extent metastases resemble the cognate primary breast tumours, especially on a genomic level, and as such will be eradicated by the systemic therapy chosen. In this study we used high-resolution aCGH to investigate DNA copy number differences between primary breast cancers and their paired LNMs. To date, no recurrent LNM-specific genomic aberrations have been identified using array comparative genomic hybridization (aCGH) analysis. In our study we employ a high-resolution platform and we stratify on different breast cancer subtypes, both aspects that might have underpowered previously performed studies.To test the possibility that genomic instability in triple-negative breast cancers (TNBCs) might cause increased random and potentially also recurrent copy number aberrations (CNAs) in their LNMs, we studied 10 primary TNBC–LNM pairs and 10 ER-positive (ER+) pairs and verified our findings adding additionally 5 TNBC-LNM and 22 ER+-LNM pairs. We found that all LNMs clustered nearest to their matched tumour except for two cases, of which one was due to the presence of two distinct histological components in one tumour. We found no significantly altered CNAs between tumour and their LNMs in the entire group or in the subgroups. Within the TNBC subgroup, no absolute increase in CNAs was found in the LNMs compared to their primary tumours, suggesting that increased genomic instability does not lead to more CNAs in LNMs. Our findings suggest a high clonal relationship between primary breast tumours and its LNMs, at least prior to treatment, and support the use of primary tumour characteristics to guide adjuvant systemic chemotherapy in breast cancer patients.
Collapse
Affiliation(s)
- Marieke A. Vollebergh
- Division of Molecular Pathology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Christiaan Klijn
- Division of Molecular Pathology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Philip C. Schouten
- Division of Molecular Pathology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Jelle Wesseling
- Department of Pathology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Danielle Israeli
- Department of Pathology, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Department of Pathology, Vrije Universiteit University Medical Center, Amsterdam, the Netherlands
| | - Lodewyk F.A. Wessels
- Department of Bioinformatics and Statistics, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Sabine C. Linn
- Division of Molecular Pathology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- Division of Medical Oncology, Netherlands Cancer Institute–Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
45
|
Stecklein SR, Sharma P. Tumor homologous recombination deficiency assays: another step closer to clinical application? Breast Cancer Res 2014; 16:409. [PMID: 25928813 PMCID: PMC4448910 DOI: 10.1186/s13058-014-0409-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 12/18/2022] Open
Abstract
Inherited and acquired defects in homologous recombination, a phenotype termed 'BRCAness', may lend to therapeutic exploitation in breast cancer. To this end, development and clinical evaluation of platforms to identify signatures of BRCAness are of immense interest. In this issue of Breast Cancer Research, Vollebergh and colleagues report that a BRCA-like array comparative genomic hybridization (aCGH) genomic instability signature is associated with benefit from high-dose cyclophosphamide-thiotepa-carboplatin chemotherapy. We discuss the strengths and weaknesses of this study and consider the clinical significance and applicability of this aCGH BRCAness signature in the context of other existing homologous recombination deficiency detection platforms.
Collapse
Affiliation(s)
- Shane R Stecklein
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS1016, Kansas City, KS, 66160, USA.
| | - Priyanka Sharma
- Division of Hematology/Oncology, Department of Internal Medicine, University of Kansas Medical Center, 2330 Shawnee Mission Parkway, MS5003, Westwood, KS, 66205, USA.
| |
Collapse
|
46
|
Watkins JA, Irshad S, Grigoriadis A, Tutt ANJ. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res 2014; 16:211. [PMID: 25093514 PMCID: PMC4053155 DOI: 10.1186/bcr3670] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapies have been found to be particularly effective in tumors that harbor deleterious germline or somatic mutations in the BRCA1 or BRCA2 genes, the products of which contribute to the conservative homologous recombination repair of DNA double-strand breaks. Nonetheless, several setbacks in clinical trial settings have highlighted some of the issues surrounding the investigation of PARP inhibitors, especially the identification of patients who stand to benefit from such drugs. One potential approach to finding this patient subpopulation is to examine the tumor DNA for evidence of a homologous recombination defect. However, although the genomes of many breast and ovarian cancers are replete with aberrations, the presence of numerous factors able to shape the genomic landscape means that only some of the observed DNA abnormalities are the outcome of a cancer cell’s inability to faithfully repair DNA double-strand breaks. Consequently, recently developed methods for comprehensively capturing the diverse ways in which homologous recombination deficiencies may arise beyond BRCA1/2 mutation have used DNA microarray and sequencing data to account for potentially confounding features in the genome. Scores capturing telomeric allelic imbalance, loss of heterozygosity (LOH) and large scale transition score, as well as the total number of coding mutations are measures that summarize the total burden of certain forms of genomic abnormality. By contrast, other studies have comprehensively catalogued different types of mutational pattern and their relative contributions to a given tumor sample. Although at least one study to explore the use of the LOH scar in a prospective clinical trial of a PARP inhibitor in ovarian cancer is under way, limitations that result in a relatively low positive predictive value for these biomarkers remain. Tumors whose genome has undergone one or more events that restore high-fidelity homologous recombination are likely to be misclassified as double-strand break repair-deficient and thereby sensitive to PARP inhibitors and DNA damaging chemotherapies as a result of prior repair deficiency and its genomic scarring. Therefore, we propose that integration of a genomic scar-based biomarker with a marker of resistance in a high genomic scarring burden context may improve the performance of any companion diagnostic for PARP inhibitors.
Collapse
|
47
|
Zhang J, Wang Z, Hu X, Wang B, Wang L, Yang W, Liu Y, Liu G, Di G, Hu Z, Wu J, Shao Z. Cisplatin and gemcitabine as the first line therapy in metastatic triple negative breast cancer. Int J Cancer 2014; 136:204-11. [PMID: 24824628 DOI: 10.1002/ijc.28966] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
No standard first-line treatment exists for patients with metastatic triple-negative breast cancer (mTNBC). In this single-arm, phase II study (NCT00601159), we evaluated the efficacy and tolerability of cisplatin and gemcitabine (GP) as the first-line therapy in mTNBC. Eligible women were those who had measurable disease with no prior chemotherapy for mTNBC. All patients received 21-day-cycle of cisplatin 25 mg/m(2) on days 1-3 and gemcitabine 1,000 mg/m(2) on days 1 and 8. Treatment was continued until disease progression, unacceptable toxicity or up to 8 cycles. BRCA1/2 mutation status and immunohistochemical basal markers were included in the correlative studies. Sixty-four patients with the median age of 49 years were enrolled. Thirty patients (46.9%) had ≤1 year from diagnosis to recurrence. The median progression free survival (PFS) was 7.2 months (95%CI, 5.6-8.9 months) and overall survival (OS) was 19.1 months (95%CI, 12.4-25.8 months) with median follow-up 42 months. Patients received treatment for a median of six cycles. The overall response rate was 62.5%. The most common grades 3/4 toxicities were neutropenia (42.2%), thrombocytopenia (29.7%), anemia (18.8%) and nausea/vomiting (15.6%).No specific BRCA1/2 mutation carriers were identified. The efficacy of responses and basal-like subtype were independent favorable factors for PFS and OS, respectively. We conclude that the combination of GP has significant activity and a favorable safety profile as the first-line chemotherapy in mTNBC patients, in particular patients with basal-like subtype. The promising role of this combination as the front-line treatment for mTNBC continued to be evaluated in our ongoing phase III trial (CBCSG006).
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vollebergh MA, Lips EH, Nederlof PM, Wessels LFA, Wesseling J, Vd Vijver MJ, de Vries EGE, van Tinteren H, Jonkers J, Hauptmann M, Rodenhuis S, Linn SC. Genomic patterns resembling BRCA1- and BRCA2-mutated breast cancers predict benefit of intensified carboplatin-based chemotherapy. Breast Cancer Res 2014; 16:R47. [PMID: 24887359 PMCID: PMC4076636 DOI: 10.1186/bcr3655] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 05/02/2014] [Indexed: 12/12/2022] Open
Abstract
Introduction BRCA-mutated breast cancer cells lack the DNA-repair mechanism homologous recombination that is required for error-free DNA double-strand break (DSB) repair. Homologous recombination deficiency (HRD) may cause hypersensitivity to DNA DSB-inducing agents, such as bifunctional alkylating agents and platinum salts. HRD can be caused by BRCA mutations, and by other mechanisms. To identify HRD, studies have focused on triple-negative (TN) breast cancers as these resemble BRCA1-mutated breast cancer closely and might also share this hypersensitivity. However, ways to identify HRD in non-BRCA-mutated, estrogen receptor (ER)-positive breast cancers have remained elusive. The current study provides evidence that genomic patterns resembling BRCA1- or BRCA2-mutated breast cancers can identify breast cancer patients with TN as well as ER-positive, HER2-negative tumors that are sensitive to intensified, DSB-inducing chemotherapy. Methods Array comparative genomic hybridization (aCGH) was used to classify breast cancers. Patients with tumors with similar aCGH patterns as BRCA1- and/or BRCA2-mutated breast cancers were defined as having a BRCA-likeCGH status, others as non-BCRA-likeCGH. Stage-III patients (n = 249) had participated in a randomized controlled trial of adjuvant high-dose (HD) cyclophosphamide-thiotepa-carboplatin (CTC) versus 5-fluorouracil-epirubicin-cyclophosphamide (FE90C) chemotherapy. Results Among patients with BRCA-likeCGH tumors (81/249, 32%), a significant benefit of HD-CTC compared to FE90C was observed regarding overall survival (adjusted hazard ratio 0.19, 95% CI: 0.08 to 0.48) that was not seen for patients with non-BRCA-likeCGH tumors (adjusted hazard ratio 0.90, 95% CI: 0.53 to 1.54) (P = 0.004). Half of all BRCA-likeCGH tumors were ER-positive. Conclusions Distinct aCGH patterns differentiated between HER2-negative patients with a markedly improved outcome after adjuvant treatment with an intensified DNA-DSB-inducing regimen (BRCA-likeCGH patients) and those without benefit (non-BRCA-likeCGH patients).
Collapse
|
49
|
Choi YE, Pan Y, Park E, Konstantinopoulos P, De S, D'Andrea A, Chowdhury D. MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. eLife 2014; 3:e02445. [PMID: 24843000 PMCID: PMC4031983 DOI: 10.7554/elife.02445] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR)-mediated repair of DNA double-strand break (DSB)s is restricted to the post-replicative phases of the cell cycle. Initiation of HR in the G1 phase blocks non-homologous end joining (NHEJ) impairing DSB repair. Completion of HR in G1 cells can lead to the loss-of-heterozygosity (LOH), which is potentially carcinogenic. We conducted a gain-of-function screen to identify miRNAs that regulate HR-mediated DSB repair, and of these miRNAs, miR-1255b, miR-148b*, and miR-193b* specifically suppress the HR-pathway in the G1 phase. These miRNAs target the transcripts of HR factors, BRCA1, BRCA2, and RAD51, and inhibiting miR-1255b, miR-148b*, and miR-193b* increases expression of BRCA1/BRCA2/RAD51 specifically in the G1-phase leading to impaired DSB repair. Depletion of CtIP, a BRCA1-associated DNA end resection protein, rescues this phenotype. Furthermore, deletion of miR-1255b, miR-148b*, and miR-193b* in independent cohorts of ovarian tumors correlates with significant increase in LOH events/chromosomal aberrations and BRCA1 expression. DOI:http://dx.doi.org/10.7554/eLife.02445.001 The DNA in a cell is damaged thousands of times every day. One of the most serious types of damage involves something breaking both of the strands in the double helix. Such a double-strand break can delete genes or even kill the cell. In fact, conventional cancer therapy kills cancer cells by causing irreparable double-strand breaks. Conversely, a normal cell that is constantly exposed to DNA damaging agents can become a tumor if double-strand breaks are incorrectly repaired. An efficient and accurate double-strand break repair system needs to be in place to prevent this transformation. Therefore, an in-depth understanding of double-strand break repair and the factors involved are important for both gaining insight into the cause of cancer and to improve cancer therapy. Cells have evolved several different ways to detect and repair double-strand breaks. A method called homologous recombination, for example, uses an undamaged DNA molecule as a template that can be copied to make new DNA. Since it needs a readily available DNA template, this method only works in phases of the cell growth cycle where there are many copies of DNA—that is, in the post-DNA replication phases. In particular, homologous recombination does not work during the pre-replication, G1 phase. If homologous recombination is attempted during G1, it will block the other methods employed by cells to repair broken strands of DNA. An important challenge is to understand how homologous recombination is restricted to particular parts of the cell cycle. Although certain proteins associated with the early stages of double-strand repair are thought to determine the type of DNA repair that occurs, the details of this process are not fully understood. One group of molecules that are thought to be involved are microRNAs, which normally limit the number of proteins produced from certain genes. However, since a single microRNA molecule can be associated with several proteins, and since a single protein can be associated with several microRNA molecules, it has proved difficult to establish the exact effects of a specific microRNA molecule. Choi et al. now show that seven microRNA molecules can control homologous recombination, and three microRNAs in particular restrict homologous recombination during the G1 phase of the cell cycle. If these microRNAs are inhibited during the G1 phase, which allows homologous recombination to start, and counter-intuitively more double-stranded breaks are seen. However, if a gene involved in starting homologous repair–called CtIP—is silenced while the microRNAs are inhibited, then the DNA breaks are repaired. Exactly, how the microRNA molecules produce different effects during different phases of the cell cycle will be need to be investigated by future studies. DOI:http://dx.doi.org/10.7554/eLife.02445.002
Collapse
Affiliation(s)
- Young Eun Choi
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Yunfeng Pan
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Eunmi Park
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | | | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, United States
| | - Alan D'Andrea
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
50
|
Hou J, Wang Z, Yang L, Guo X, Yang G. The function of EMSY in cancer development. Tumour Biol 2014; 35:5061-6. [PMID: 24609898 DOI: 10.1007/s13277-013-1584-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022] Open
Abstract
EMSY was first reported to bind BRCA2 and to inactivate the function of BRCA2, leading to the development of sporadic breast and ovarian cancers. The function of EMSY may also be involved in DNA damage repair, genomic instability, and chromatin remolding. Recent studies have shown that amplification of EMSY was also associated with other cancers such as prostate and pancreatic cancers and linked to tumor phenotypes and clinical outcomes. By reviewing literatures published since 2003, here, we have summarized the recent advances of EMSY in cancer development.
Collapse
Affiliation(s)
- Jing Hou
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|