1
|
Zhu H, Jiang W, Zhang Q, Yu C. The role of UPK1B in gastric cancer: multi-omics analysis and experimental validation. Discov Oncol 2025; 16:476. [PMID: 40189715 PMCID: PMC11973043 DOI: 10.1007/s12672-025-02263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND UPK1B has been implicated in various cancers; however, its mechanism of action in gastric cancer remains elusive. METHODS We utilized transcriptional data and clinical information, and mutation profiles from The Cancer Genome Atlas (TCGA) database to analyze UPK1B's expression and clinical relevance. Biological enrichment, immune microenvironment characterization, and drug sensitivity analyses were conducted. Functional assays, including proliferation, migration, invasion, and in vivo metastasis models, were used to validate UPK1B's role in gastric cancer. RESULTS UPK1B was significantly upregulated in gastric cancer and correlated with worse clinical outcomes, including advanced stages and reduced survival rates. Biological enrichment analysis revealed its involvement in cancer-related pathways such as DNA replication and immune regulation. UPK1B was negatively correlated with NK cells and M1 macrophages, indicating its role in immune evasion. Functional experiments demonstrated that knockdown of UPK1B significantly suppressed gastric cancer cell proliferation, invasion, and migration in vitro and reduced pulmonary metastases in vivo. Drug sensitivity analysis suggested that high UPK1B expression was associated with increased sensitivity to lapatinib and resistance to cisplatin. CONCLUSIONS UPK1B promotes tumor progression and modulates the immune microenvironment in gastric cancer, making it a potential therapeutic target for future research and clinical applications.
Collapse
Affiliation(s)
- Haixing Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China
| | - Changjun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People's Republic of China.
| |
Collapse
|
2
|
Sun A, Chen H, Shi X, Shang Z, Zhang J. Diagnostic Value of Joint Detection of Serum TK1, TSGF, CA199, and CA724 for Gastric Cancer and Its Relationship With Clinicopathologic Features and Prognosis. Am Surg 2025; 91:570-578. [PMID: 39668434 DOI: 10.1177/00031348241307397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ObjectiveTo assess the diagnostic value of joint detection of serum TK1, TSGF, CA199, and CA724 for gastric cancer and its relationship with clinicopathologic features and prognosis.MethodsThe 105 gastric cancer patients were enrolled. The diagnostic value of serum TK1, TSGF, CA199, and CA724 for gastric cancer and the relationship between these indicators and the clinicopathologic characteristics of gastric cancer patients were evaluated. During the follow-up period, recurrence, metastasis, and death were considered as poor prognosis. The relationships between serum TK1, TSGF, CA199, and CA724 levels and poor prognosis and factors affecting the poor prognosis of gastric cancer patients were analyzed.ResultsTK1, TSGF, CA199, and CA724 levels in the gastric cancer group were higher; serum TK1, TSGF, CA199, and CA724 levels were higher in gastric cancer patients with tumor diameters ≥3 cm, TNM stages III and IV, low/moderate degree of differentiation, infiltration depths of the muscular or plasma layer, and lymphatic metastases; AUC of combined TK1, TSGF, CA199, and CA724 (0.894) was higher than that of the four indicators alone; the percentage of gastric cancer patients with poor prognosis in patients with low serum TK1, TSGF, CA199, and CA724 levels was lower; serum TK1, TSGF, CA199, and CA724 levels were factors influencing poor prognosis of gastric cancer patients (all P < 0.05).ConclusionElevated serum levels of TK1, TSGF, CA199, and CA724 are associated with clinicopathologic features and poor prognosis of gastric cancer and may be used as serum biomarkers for prognostic evaluation of gastric cancer patients.
Collapse
Affiliation(s)
- Aiwen Sun
- Clinical Laboratory, The Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hui Chen
- Department of Gastroenterology, The Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Shi
- Department of Gastroenterology, The Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhanmin Shang
- Department of Gastroenterology, The Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jishun Zhang
- Department of Gastroenterology, The Affiliated Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Li N, Zhang Y, Zhang Q, Jin H, Han M, Guo J, Zhang Y. Machine learning reveals glycolytic key gene in gastric cancer prognosis. Sci Rep 2025; 15:8688. [PMID: 40082583 PMCID: PMC11906761 DOI: 10.1038/s41598-025-93512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Glycolysis is recognized as a central metabolic pathway in the neoplastic evolution of gastric cancer, exerting profound effects on the tumor microenvironment and the neoplastic growth trajectory. However, the identification of key glycolytic genes that significantly affect gastric cancer prognosis remains underexplored. In this work, five machine-learning algorithms were used to elucidate the intimate association between the glycolysis-associated gene phosphofructokinase fructose-bisphosphate 3 (PFKFB3) and the prognosis of gastric cancer patients. Validation across multiple independent datasets confirmed the prognostic significance of PFKFB3. Further, we delved into the functional implications of PFKFB3 in modulating immune responses and biological processes within gastric cancer patients, as well as its broader relevance across multiple cancer types. Results underscore the potential of PFKFB3 as a prognostic biomarker and therapeutic target in gastric cancer. Our project can be found at https://github.com/PiPiNam/ML-GCP .
Collapse
Affiliation(s)
- Nan Li
- China Academy of Electronics and Information Technology, National Engineering Research Center for Public Safety Risk Perception and Control by Big Data (RPP), Beijing, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Qianyue Zhang
- China Academy of Electronics and Information Technology, National Engineering Research Center for Public Safety Risk Perception and Control by Big Data (RPP), Beijing, China
| | - Hao Jin
- China Academy of Electronics and Information Technology, National Engineering Research Center for Public Safety Risk Perception and Control by Big Data (RPP), Beijing, China
| | - Mengfei Han
- China Academy of Electronics and Information Technology, National Engineering Research Center for Public Safety Risk Perception and Control by Big Data (RPP), Beijing, China
| | - Junhan Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
5
|
Chen D, Zhang P, Gong L, Wei H, Yu G, Zhang T, Bai C. Integrative analysis of single-cell and bulk RNA sequencing reveals the oncogenic role of ANXA5 in gastric cancer and its association with drug resistance. Front Immunol 2025; 16:1562395. [PMID: 40124374 PMCID: PMC11925758 DOI: 10.3389/fimmu.2025.1562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Background Gastric cancer (GC) remains a leading cause of cancer-related mortality, with over one million new cases and 769,000 deaths reported in 2020. Despite advancements in chemotherapy, surgery, and targeted therapies, delayed diagnosis due to overlooked early symptoms leads to poor prognosis. Methods We integrated bulk RNA sequencing and single-cell RNA sequencing datasets from TCGA, GEO, and OMIX001073, employing normalization, batch effect correction, and dimensionality reduction methods to identify key cell populations associated with GC invasion and epithelial-mesenchymal transition (EMT), as well as analyze the tumor immune microenvironment. Results Our analysis identified the MUC5AC+ malignant epithelial cell cluster as a significant player in GC invasion and EMT. Cluster 1, representing this cell population, exhibited higher invasion and EMT scores compared to other clusters. Survival analysis showed that high abundance in cluster 0 correlated with improved survival rates (P=0.012), whereas cluster 1 was associated with poorer outcomes (P=0.045). A prognostic model highlighted ANXA5 and GABARAPL2 as two critical genes upregulated in GC tumors. High-risk patients demonstrated increased immune cell infiltration and worse prognosic. Analysis of tumor mutation burden (TMB) indicated that patients with low TMB in the high-risk group had the worst prognosis. Wet-lab validation experiments confirmed the oncogenic role of ANXA5, showing its facilitation of cell proliferation, invasion, and migration while suppressing apoptosis. Conclusion This study offers novel insights into the subpopulations of malignant epithelial cells in GC and their roles in tumor progression. It provides a prognostic model and potential therapeutic targets to combat GC, contributing crucial understanding to the fundamental mechanisms of drug resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Denggang Chen
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Li Gong
- Department of Endocrinology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hailang Wei
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guanghui Yu
- College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - Tingting Zhang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chen Bai
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
6
|
Tang J, Yang J, Yin LK. Prognostic value of disulfidptosis-associated genes in gastric cancer: a comprehensive analysis. Front Oncol 2025; 15:1512394. [PMID: 40104507 PMCID: PMC11913695 DOI: 10.3389/fonc.2025.1512394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Objective Disulfidptosis is a newly identified type of nonapoptotic programmed cell death related to mechanisms such as ferroptosis, cuproptosis, pyroptosis, and necrotic apoptosis. This study explores the role of disulfidptosis-related long non-coding RNAs (DRLs) in gastric cancer and their potential as prognostic biomarkers. Method We developed a prognostic model using DRL scores to classify patients based on disulfidptosis activity. We evaluated these scores for correlations with drug sensitivity, tumor microenvironment (TME) features, tumor mutational burden (TMB), and prognosis. Potential disulfidptosis-related signaling pathways were screened, identifying FRMD6-AS as a promising therapeutic target. FRMD6-AS expression was further validated using real-time fluorescent quantitative PCR (qRT-PCR). Results The DRL-based prognostic model, established through univariate and multivariate Cox regression and LASSO regression analyses, outperformed traditional models in predicting prognosis. We divided samples into high-risk and low-risk groups based on DRL scores, finding that the low-risk group had a significantly higher survival rate (P < 0.05). A high-precision prediction model incorporating DRL scores, age, sex, grade, and stage showed strong predictive value and consistency with actual outcomes. High DRL scores correlated with higher TME scores and lower TMB. Key signaling axes identified were AC129507.1/(FLNA, TLN1)/FOCAL ADHESION and AC107021.2/MYH10/(TIGHT JUNCTION, VIRAL MYOCARDITIS, REGULATION OF ACTIN CYTOSKELETON). Potentially effective drugs, including BMS-754807, dabrafenib, and JQ1, were identified. FRMD6-AS emerged as a potential target for gastric cancer treatment. Conclusions This study developed a novel prognostic model for gastric cancer using DRLs, identifying two key signaling axes related to prognosis. JQ1 may be an effective treatment, and FRMD6-AS could be a promising therapeutic target.
Collapse
Affiliation(s)
- Jin Tang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jing Yang
- Department of Rheumatology and Immunology, Nanchong Central Hospital, Beijing Anzhen Hospital affiliated to Capital Medical University, Nanchong, Sichuan, China
| | - Long-Kuan Yin
- Department of Gastrointestinal Surgery, People's Hospital of Fushun County, Zigong, Sichuan, China
| |
Collapse
|
7
|
Antonella C, Kroopa J, Farah A, Rachel W, Rafael G, Anja W, Catherine SE, Elisa F. Outcomes of patients with refractory upper GI cancers enrolled in phase I trials: a 10-year analysis from the Sarah Cannon Research Institute UK Drug Development Unit. Ther Adv Med Oncol 2025; 17:17588359251318864. [PMID: 39975511 PMCID: PMC11837055 DOI: 10.1177/17588359251318864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Background Patients with unresectable upper gastrointestinal (UGI) cancers have limited treatment options and poor prognosis. Although phase I trials provide access to novel therapies, their benefits in this population are unclear. Objectives We aimed to assess efficacy and survival outcomes of patients with refractory UGI cancers within phase I trials. Design We conducted a retrospective pooled analysis of phase I trials enrolling patients with advanced UGI cancers who received at least one dose of the study drug at SCRI UK between 2011 and 2023. Methods Efficacy and survival outcomes, including objective response rate (ORR), clinical benefit rate (CBR), disease control rate (DCR), duration of response, progression-free survival (PFS) and overall survival (OS), were assessed. Analyses were conducted for the entire cohort and stratified by trial agent class, molecularly matched therapy allocation and receipt of the recommended phase II dose (RP2D). Patients participating in multiple trials were analysed separately for each study. Results From 1796 screened patients, 124 with UGI cancers were included in 37 phase I trials. Most were male (75%), with liver or peritoneal metastases (73%), treated with a median of 2 prior therapy lines. Of these, 60% received immunotherapy, 30% small molecules and 10% antibody-drug conjugates. Molecularly matched therapy was given to 22% and 86% received treatment at RP2D. In response-evaluable patients, ORR was 15%, CBR 40%, DCR 86% and median OS was 9.7 months. Treatment at RP2D was significantly associated with higher CBR (odds ratio 4.75, p = 0.04) and prolonged PFS (p = 0.04). Depth of response and treatment at RP2D were independent prognostic factors. Conclusions Participation in phase I trials offers benefits in refractory upper gastrointestinal cancers with compelling results in late-line settings and potential early access to new therapies.
Collapse
Affiliation(s)
- Cammarota Antonella
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Joshi Kroopa
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | - Aghayeva Farah
- UCL Cancer Institute, University College London, London, UK
| | - Woodford Rachel
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
- HRMC Clinical Trials Centre, University of Sydney, Parramatta, NSW, Australia
| | - Grochot Rafael
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | - Williams Anja
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| | | | - Fontana Elisa
- Drug Development Unit, Sarah Cannon Research Institute UK, London, UK
| |
Collapse
|
8
|
Liu Z, Shi Z, Jiang W, Shen Z, Chen W, Shen K, Sun Y, Tang Z, Wang X. Circulating tumor DNA analysis for prediction of prognosis and molecular insights in patients with resectable gastric cancer: results from a prospective study. MedComm (Beijing) 2025; 6:e70065. [PMID: 39830022 PMCID: PMC11742430 DOI: 10.1002/mco2.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
This study aimed to evaluate the prognostic value of plasma circulating tumor DNA (ctDNA) level in patients with resectable gastric cancer (GC). A total of 59 patients were prospectively enrolled, with their ctDNA detected and paired tumor tissue collected at various peri-operative time points. Patients with higher 1-month post-operative ctDNA levels demonstrated shorter overall survival status (hazard ratio [HR] = 5.30, p = 0.0022) and a higher risk of recurrence (HR = 3.85, p = 0.011). The model combining ctDNA with conventional serum tumor markers for GC, including carcinoembryonic antigen, carbohydrate antigen 19-9, and CA72-4, shows high predictive effectiveness for GC prognosis with an area under the curve of 0.940 (p = 0.002), which is higher than net ctDNA and other models without ctDNA. Patients with lower ctDNA levels were more likely to have positive stromal programmed cell death ligand 1 expression (p = 0.046). Additionally, DCAF4L2 mutation was identified as the crucial gene mutation in ctDNA suggesting poor prognosis of patients with GC. Overall, this study highlights that post-operative ctDNA can serve as an effective biomarker for prognostic prediction and recurrence surveillance in resectable GC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhongyi Shi
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Wenchao Jiang
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhenbin Shen
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Weidong Chen
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Kuntang Shen
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Yihong Sun
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Department of General SurgeryZhongshan Hospital (Xiamen Branch)Fudan UniversityShanghaiChina
| | - Zhaoqing Tang
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Department of General SurgeryZhongshan Hospital (Xiamen Branch)Fudan UniversityShanghaiChina
| | - Xuefei Wang
- Department of Gastrointestinal SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Gastric Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
- Department of General SurgeryZhongshan Hospital (Xiamen Branch)Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Liu Y, Huang T, Wang L, Wang Y, Liu Y, Bai J, Wen X, Li Y, Long K, Zhang H. Traditional Chinese Medicine in the treatment of chronic atrophic gastritis, precancerous lesions and gastric cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118812. [PMID: 39260710 DOI: 10.1016/j.jep.2024.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic atrophic gastritis (CAG), precancerous lesions of gastric cancer (PLGC), and gastric cancer (GC), seriously threaten human health. Traditional Chinese medicine (TCM) has been employed in the treatment of chronic diseases for a long time and has shown remarkable efficacy. AIM OF THE STUDY Recently, there has been an increasing use of TCM in treating CAG, PLGC, and GC. The objective of this study is to compile a comprehensive overview of the existing research on the effects and molecular mechanisms of TCM, including formulas, single herbs, and active components. MATERIALS AND METHODS To obtain a comprehensive understanding of traditional use of TCM in treating these diseases, we reviewed ancient books and Chinese literature. In addition, keywords such as "TCM", "CAG", "PLGC", "GC", and "active ingredients" were used to collect modern research on TCM published in databases such as CNKI, Web of Science, and Pubmed up to April 2024. All collected information was then summarized and analyzed. RESULTS This study analyzed 174 articles, which covered the research progress of 20 TCM formulas, 14 single herbs, and 50 active ingredients in treating CAG, PLGC, and GC. Sources, effects, and molecular mechanisms of the TCM were summarized. CONCLUSIONS This article reviews the progress of TCM in the management of CAG, PLGC, and GC, which will provide a foundation for the clinical application and further development of TCM.
Collapse
Affiliation(s)
- Yuxi Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Tingting Huang
- Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| | - Lu Wang
- Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| | - Yuan Wang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Jingyi Bai
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Xinli Wen
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Ye Li
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Kaihua Long
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China; Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China; Shaanxi University of Chinese Medicine, Middle section of Century Avenue, Xianyang, 712046, China.
| |
Collapse
|
10
|
Xu T, Zhang T, Sun Y, Wu S. To describe the subsets of malignant epithelial cells in gastric cancer, their developmental trajectories and drug resistance characteristics. Discov Oncol 2025; 16:93. [PMID: 39869282 PMCID: PMC11772634 DOI: 10.1007/s12672-024-01715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g., T cells, monocytes) and epithelial subpopulations. Among 27 epithelial subgroups, five malignant subpopulations were identified, each defined by unique marker gene expressions and playing diverse roles in tumor progression. Developmental trajectory analysis revealed potential stem-like characteristics in certain clusters, suggesting their involvement in therapeutic resistance and disease recurrence. Cell-cell communication analysis uncovered a dynamic network of interactions within the tumor microenvironment, potentially influencing tumor growth and metastasis. Differential gene expression analysis identified key genes (LDHA, GPC3, MIF, CD44, and TFF3) that were used to construct a prognostic risk score model. This model demonstrated robust predictive power, achieving AUC values of 0.77, 0.77, and 0.76 for 1-, 3-, and 5-year overall survival in the TCGA training dataset, with validation across independent cohorts. These findings deepen our understanding of gastric cancer's cellular and molecular heterogeneity, offering insights into potential therapeutic targets and biomarkers. By facilitating the development of targeted therapies and personalized treatment strategies, these results hold promise for improving clinical outcomes in gastric cancer patients.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Tianying Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Sun
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Sijia Wu
- West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Liao W, Wang Y, Wang R, Fu B, Chen X, Ouyang Y, Bai B, Jin Y, Lu Y, Liu F, Zhang Y, Shi D, Zhang D. Signature Construction Associated with Tumor-Infiltrating Macrophages Identifies IRF8 as a Novel Biomarker for Immunotherapy in Advanced Gastric Cancer. Int J Mol Sci 2025; 26:1089. [PMID: 39940857 PMCID: PMC11817691 DOI: 10.3390/ijms26031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Advanced gastric cancer (AGC) is characterized by poor prognosis and limited responsiveness to immunotherapy. Tumor-associated macrophages (TAMs) play a pivotal role in cancer progression and therapeutic outcomes. In this study, we developed a novel gene signature associated with M1-like TAMs using data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) to predict prognosis and immunotherapy response. This gene signature was determined as an independent prognostic indicator for AGC, with high-risk patients exhibiting an immunosuppressive tumor immune microenvironment (TIME) and poorer survival outcomes. Furthermore, Interferon regulatory factor 8 (IRF8) was identified as a key gene and validated through in vitro and in vivo experiments. IRF8 overexpression reshaped the suppressive TIME, leading to an increased presence of M1-like TAMs, IFN-γ+ CD8+ T cells, and Granzyme B+ CD8+ T cells. Notably, the combination of IRF8 overexpression and anti-PD-1 therapy significantly inhibited tumor growth in syngeneic mouse models. AGC patients with elevated IRF8 expression were found to be more responsive to anti-PD-1 treatment. These findings highlight potential biomarkers for prognostic evaluation and immunotherapy in AGC, offering insights that could guide personalized treatment strategies.
Collapse
Affiliation(s)
- Wanqian Liao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Yu Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Rui Wang
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bibo Fu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Xiangfu Chen
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bing Bai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Ying Jin
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Yunxin Lu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Furong Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Yang Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| | - Dongni Shi
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongsheng Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (W.L.); (Y.W.); (B.F.); (B.B.); (Y.J.); (Y.L.); (F.L.); (Y.Z.)
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.W.); (X.C.); (Y.O.)
| |
Collapse
|
12
|
Zhang T, Xu B. Didymin Inhibits Proliferation and Induces Apoptosis in Gastric Cancer Cells by Modulating the PI3K/Akt Pathway. Nutr Cancer 2025; 77:537-552. [PMID: 39849840 DOI: 10.1080/01635581.2025.2454050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Gastric cancer (GC) is a malignant tumor with high morbidity and mortality rates worldwide. This study aimed to investigate the effects and mechanisms of action of didymin, a dietary flavonoid glycoside, on GC treatment. Human GC cell lines Hs-746T and AGS were used to assess the effects of didymin on cell viability, cell proliferation, and cell cycle. The results showed that didymin decreased the proliferative capacity of GC cells and blocked cell cycle. Didymin decreased wound healing, invasion, and migration capacities of GC cells. Mitochondrial reactive oxygen species (ROS) levels and mitochondrial membrane potentials were reduced in cells treated with didymin. Network pharmacology analysis revealed that the therapeutic effects of didymin on AGS cells were related to the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. In vivo mouse xenograft studies confirmed that didymin treatment decreased tumor cell proliferation, cell cycle protein levels, and Akt phosphorylation. The present study demonstrated that didymin regulates mitochondrial function and the PI3K/Akt pathway to inhibit cell proliferation and induce apoptosis in GC cells in vitro and in vivo. Therefore, didymin is a promising drug for the treatment of GC.
Collapse
Affiliation(s)
- Tong Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Bin Xu
- Department of General Surgery, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
13
|
Bao B, Tian M, Wang X, Yang C, Qu J, Zhou S, Cheng Y, Tong Q, Zheng L. SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing. J Exp Clin Cancer Res 2025; 44:15. [PMID: 39815331 PMCID: PMC11737211 DOI: 10.1186/s13046-025-03278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive. METHODS High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events. Biotin-labeled RNA pull-down, mass spectrometry, cross-linking RNA immunoprecipitation, and in vitro binding assays were applied to explore interaction of snoRNAs with protein partners. Alternative splicing and gene expression was observed by real-time quantitative RT-PCR and western blot assays. In vitro and in vivo studies were performed to investigate biological effects of snoRNAs and their protein partners in gastric cancer. Survival analysis was undertaken by using Kaplan-Meier method and log-rank test. RESULTS SNORA37 was identified as an up-regulated snoRNA essential for tumorigenesis and aggressiveness of gastric cancer. Gain- and loss-of-function studies indicated that SNORA37 promoted the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, as an ELAV like RNA binding protein 1 (ELAVL1)-generated snoRNA, SNORA37 directly bound to cap methyltransferase 1 (CMTR1) to facilitate its interaction with ELAVL1, resulting in nuclear retention and activity of ELAVL1 in regulating alternative splicing of CD44. Rescue studies revealed that SNORA37 exerted oncogenic roles in gastric cancer progression via facilitating CMTR1-ELAVL1 interaction. In clinical gastric cancer cases, high levels of SNORA37, CMTR1, ELAVL1, or CD44 were associated with shorter survival and poor outcomes of patients. CONCLUSIONS These results indicated that SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.
Collapse
Affiliation(s)
- Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| |
Collapse
|
14
|
Xiao Y, Zhu J, Xie H, Wang Z, Huang Z, Su M. Intratumoral and peritumoral radiomics for forecasting microsatellite status in gastric cancer: a multicenter study. BMC Cancer 2025; 25:66. [PMID: 39794732 PMCID: PMC11724602 DOI: 10.1186/s12885-025-13450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE This investigation attempted to examine the effectiveness of CT-derived peritumoral and intratumoral radiomics in forecasting microsatellite instability (MSI) status preoperatively among gastric cancer (GC) patients. METHODS A retrospective analysis was performed on GC patients from February 2019 to December 2023 across three healthcare institutions. 364 patients (including 41 microsatellite instability-high (MSI-H) and 323 microsatellite instability-low/stable (MSI-L/S)) were stratified into a training set (n = 202), an internal validation set (n = 84), and an external validation set (n = 78). Radiomics features were obtained from both the intratumoral region (IR) and the intratumoral plus 3-mm peritumoral region (IPR) on preoperative contrast-enhanced CT images. After standardizing and reducing the dimensionality of these features, six radiomic models were constructed utilizing three machine learning techniques: Support Vector Machine (SVM), Linear Support Vector Classification (LinearSVC), and Logistic Regression (LR). The optimal model was determined by evaluating the Receiver Operating Characteristic (ROC) curve's Area Under the Curve (AUC), and the radiomics score (Radscore) was computed. A clinical model was developed using clinical characteristics and CT semantic features, with the Radscore integrated to create a combined model. Used ROC curves, calibration plots, and Decision Curve Analysis (DCA) to assess the performance of radiomics, clinical, and combined models. RESULTS The LinearSVC model using the IPR achieved the highest AUC of 0.802 in the external validation set. The combined model yielded superior AUCs in internal and external validation sets (0.891 and 0.856) in comparison to clinical model [(0.724, P = 0.193) and (0.655, P = 0.072)] and radiomics model [(0.826, P = 0.160) and (0.802, P = 0.068)]. Furthermore, results from calibration and DCA underscored the model's suitability and clinical relevance. CONCLUSION The combined model, which integrates IPR radiomics with clinical characteristics, accurately predicts MSI status and supports the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yunzhou Xiao
- Department of Radiology, The People's Hospital of PingYang, Wenzhou Medical University, Wenzhou, 325400, China
| | - Jianping Zhu
- Department of Radiology, Ningbo Yinzhou NO.2 Hospital, Ningbo, 315100, China
| | - Huanhuan Xie
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhongchu Wang
- Department of Radiology, The People's Hospital of PingYang, Wenzhou Medical University, Wenzhou, 325400, China
| | - Zhaohai Huang
- Department of Radiology, The People's Hospital of PingYang, Wenzhou Medical University, Wenzhou, 325400, China.
| | - Miaoguang Su
- Department of Radiology, The People's Hospital of PingYang, Wenzhou Medical University, Wenzhou, 325400, China.
| |
Collapse
|
15
|
Zhang X, Shi L, Xing M, Li C, Ma F, Ma Y, Ma Y. Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review). Int J Mol Med 2025; 55:15. [PMID: 39513614 PMCID: PMC11573320 DOI: 10.3892/ijmm.2024.5456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Long non‑coding RNA (lncRNA) is a class of non‑coding RNA molecules located in the cytoplasm or nucleus, which can regulate chromosome structure and function by interacting with DNA, RNA, proteins and other molecules; binding to mRNA bases in a complementary manner, affecting the splicing, stabilization, translation and degradation of mRNA; acting as competing endogenous RNA competitively binds to microRNAs to regulate gene expression and participate in the regulation of various vital activities of the body. The PI3K/AKT signalling pathway plays a key role in numerous biological and cellular processes, such as cell proliferation, invasion, migration and angiogenesis. It has been found that the lncRNA/PI3K/AKT axis regulates the expression of cancer‑related genes and thus tumour progression. The abnormal regulation of lncRNA expression in the lncRNA/PI3K/AKT axis is clearly associated with clinicopathological features and plays an important role in regulating biological functions. In the present review, the expression and biological functions of PI3K/AKT‑related lncRNAs both in vitro and in vivo over recent years, were comprehensively summarized and analyzed. Their correlation with clinicopathological features was also evaluated, with the objective of furnishing a solid theoretical foundation for clinical diagnosis and the monitoring of efficacy in digestive system neoplasms. The present review aimed to provide a comprehensive overview of the expression and biological functions of PI3K/AKT‑related lncRNAs in digestive system neoplasms and to assess their correlation with clinicopathological features. This endeavor seeks to establish a solid theoretical foundation for the clinical diagnosis and efficacy monitoring of digestive system tumors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
16
|
Ye X, Wu Y, Zhang H. Emerging Claudin18.2-targeting Therapy for Systemic Treatment of Gastric Cancer: Seeking Nobility Amidst Danger. Anticancer Agents Med Chem 2025; 25:223-231. [PMID: 39364863 DOI: 10.2174/0118715206329892240927081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Gastric cancer in advanced stages lacked effective treatment options. claudin18.2 (CLDN18.2) is a membrane protein that is crucial for close junctions in the differentiated epithelial cells of the gastric mucosa, playing a vital role in barrier function, and can be hardly recognized by immune cells due to its polarity pattern. As the polarity of gastric tumor cells changes, claudin18.2 is exposed on the cell surface, resulting in immune system recognition, and making it an ideal target. In this review, we summarized the expression regulation mechanism of claudin18.2 both in normal cells and malignant tumor cells. Besides, we analyzed the available clinical results and potential areas for future research on claudin18.2-positive gastric cancer and claudin18.2-targeting therapy. In conclusion, claudin18.2 is an ideal target for gastric cancer treatment, and the claudin18.2-targeting therapy has changed the treatment pattern of gastric cancer.
Collapse
Affiliation(s)
- Xueshuai Ye
- School of Clinical Medicine, Hebei University of Engineering, Handan, 056002, China
| | - Yongqiang Wu
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Haiqiang Zhang
- Department of Surgery, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050051, China
| |
Collapse
|
17
|
Song Y, Zhao H, Yu R, Zhang Y, Zou Y, Liu X, Sun S. Wogonin suppresses proliferation, invasion and migration in gastric cancer cells via targeting the JAK-STAT3 pathway. Sci Rep 2024; 14:30803. [PMID: 39730467 DOI: 10.1038/s41598-024-81196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Wogonin is a compound extracted from the medicinal plant Scutellaria baicalensis Geogi and has been found to exert antitumor activities in a variety of malignancies. However, the molecular mechanisms involved in the anti-gastric cancer (GC) effects of wogonin remain poorly understood. In the present study, we found that wogonin treatment inhibited the proliferation of GC cells, induced apoptosis and G0/G1 cell arrest, and suppressed the migration and invasion of SGC-7901 and BGC-823 cells in vitro. In addition, wogonin inhibited in vivo tumor growth in SGC-7901 xenograft mice. Transcriptomic analysis suggested that wogonin affected several signaling pathways closely related to tumor proliferation and metastasis, including the STAT3 signaling pathway. Further research indicated that wogonin may exert antitumor effects in GC cells by downregulating the JAK-STAT3 pathway. Altogether, our results demonstrate that wogonin exerts antitumor effects by perturbing JAK-STAT3 signaling in GC cells and that wogonin may be a potential therapeutic option for GC.
Collapse
Affiliation(s)
- Yang Song
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Hui Zhao
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Runze Yu
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yang Zhang
- Department of Pulmonary and Critial Care Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Xiaofei Liu
- Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| | - Shuna Sun
- Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
18
|
Gao R, Hu Y, Yuan Q. ADAMTS12 serves as a novel prognostic biomarker and promotes proliferation and invasion in gastric cancer. Discov Oncol 2024; 15:837. [PMID: 39720953 DOI: 10.1007/s12672-024-01724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) remains a prevalent and aggressive malignancy with a poor prognosis. This study aimed to identify diagnostic and prognostic biomarkers while exploring their potential functions in GC. A total of 598 upregulated and 506 downregulated genes were identified in GC patients. Among these, survival-related differentially expressed genes (DEGs), including ADAMTS12, F5, and VCAN, were highlighted. Pan-cancer analyses revealed their dysregulation across multiple tumor types. A novel prognostic signature, incorporating ADAMTS12 and F5, effectively stratified GC patients into low- and high-risk groups, demonstrating significant differences in overall survival and robust predictive performance. ADAMTS12, strongly associated with advanced clinical stages and poor prognosis, was validated in an independent cohort and exhibited promising diagnostic potential. RT-PCR and western blot analyses confirmed its high expression in GC tissues and cell lines. Functional assays further demonstrated that ADAMTS12 promotes GC cell proliferation and invasion. In summary, this study provides critical insights into the molecular landscape of GC, offering a potential prognostic tool and therapeutic target.
Collapse
Affiliation(s)
- Ruimei Gao
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Yalan Hu
- Department of Anorectal Surgery, Qingdao Eighth People's Hospital, Qingdao, China
| | - Qiuxiang Yuan
- Department of Gastroenterology, Qingdao Chengyang People's Hospital, Qingdao, China.
| |
Collapse
|
19
|
Yuan W, Shi Y, Dai S, Deng M, Zhu K, Xu Y, Chen Z, Xu Z, Zhang T, Liang S. The role of MAPK pathway in gastric cancer: unveiling molecular crosstalk and therapeutic prospects. J Transl Med 2024; 22:1142. [PMID: 39719645 PMCID: PMC11667996 DOI: 10.1186/s12967-024-05998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer remains a significant health burden globally, especially prevalent in Asian and European regions. Despite a notable decline in incidence in the United States and Western Europe over recent decades, the disease's persistence underscores the urgency for advanced research in its pathogenesis and treatment strategies. Central to this pursuit is the exploration of the mitogen-activated protein kinase (MAPK) pathway, a pivotal cellular mechanism implicated in the complex processes of gastric cancer development, including cellular proliferation, invasion, migration, and metastasis. The MAPK or extracellular signal-regulated kinase pathway serves as a crucial conduit for transmitting extracellular signals to elicit intracellular responses, with its signaling cascades subject to alterations due to genetic and epigenetic variations across various diseases, prominently cancer. This review delves into the intricate role of the MAPK signaling pathway in the pathogenesis of gastric cancer, drawing upon the most recent and critical studies that shed light on MAPK pathway alterations as a gateway to the disease. It highlights the pathway's involvement in Helicobacter pylori-mediated gastric carcinogenesis and the tumorigenic processes induced by the Epstein-Barr virus, showcasing the substantial influence of miRNAs and lncRNAs in modulating gastric cancer's biological properties through their interaction with the MAPK pathway. Furthermore, the review extends into the therapeutic arena, discussing the promising impacts of herbal medicines, MAPK pathway inhibitors, and immunosuppressants on mitigating gastric cancer's progression. Through an exhaustive examination of the MAPK pathway's multifaceted role in gastric cancer, from molecular crosstalks to therapeutic prospects, this review aspires to contribute to the ongoing efforts in understanding and combating this global health challenge, paving the way for novel therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Yin Shi
- Department of Internal Medicine, Yiwu Maternity and Children Hospital, Yiwu, Zhejiang, China
| | - Shiping Dai
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Mao Deng
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Kai Zhu
- Department of General Surgery, Wuwei City People's Hospital, No.256, West Street, Wuwei, 238300, China
| | - Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhou Xu
- Department of Thyroid Surgery, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China.
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Song Liang
- Department of General Surgery, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an People's Hospital, Lu'an, 237000, China.
| |
Collapse
|
20
|
Chen X, Zhou B, Wang S, Jiang X, Ping Y, Xia J, Yu F, Li Y, Zhang M, Ding Y. Intestinal metaplasia key molecules and UPP1 activation via Helicobacter pylori /NF-kB: drivers of malignant progression in gastric cancer. Cancer Cell Int 2024; 24:399. [PMID: 39695769 DOI: 10.1186/s12935-024-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge due to its high morbidity and mortality rates. The development of GC is a multi-hit process and the exploration of precancerous lesions is crucial. To elucidate the molecular and cellular dynamics underlying gastric carcinogenesis, we conducted an integrative single-cell RNA sequencing analysis of 26,028 high-quality cells from gastric antral mucosa biopsies across various stages, including non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, and early gastric cancer. By constructing a detailed single-cell atlas, we identified distinct epithelial cell subpopulations and their corresponding molecular signatures. We focused on the biological link between gastric epithelial cells and cancer cells. Notably, we observed that gland mucous cells acquired an intestinal-like stem cell phenotype during metaplasia, with MUC6, MUC2 and OLFM4 emerging as the specific markers for unique endocrine cells in early malignant lesions. Additionally, our analysis highlighted UPP1 as a key oncogene, with its expression progressively increasing from normal epithelial cells to malignant cells. UPP1 upregulation was shown to promote GC cell proliferation and migration, implicating it in the oncogenic process. Further, we explored the impact of Helicobacter pylori infection on gene expression, revealing that Helicobacter pylori infection upregulates UPP1 via the NF-κB pathway. Our cell-cell communication analysis underscored the significant role of the Macrophage migration inhibitory factor pathway in the tumor microenvironment, contributing to GC progression. Various key molecules involved in intestinal metaplasia, along with UPP1 and the Macrophage migration inhibitory factor pathway, collectively illustrate the multifaceted nature and complexity of gastric cancer evolution, highlighting the cumulative impacts that drive tumorigenesis.
Collapse
Affiliation(s)
- Xuyu Chen
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bengang Zhou
- Dalian Medical University, Dalian, Liaoning, China
| | - Siying Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Jiang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yukun Ping
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jianlei Xia
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Feiyu Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Min Zhang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
Liu S, Liu Y, Zhou Y, Xia G, Liu H, Zeng Y, Pei Z, Cao J, Jing G, Zou H, Liao C. NSUN5 promotes tumorigenic phenotypes through the WNT signaling pathway and immunosuppression of CD8+ T cells in gastric cancer. Cell Signal 2024; 124:111475. [PMID: 39428025 DOI: 10.1016/j.cellsig.2024.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
NSUN5, a key member of the M5C methylation family, plays a significant role in fundamental biological processes like cell proliferation and differentiation. However, its specific function and mechanisms in gastric cancer remain insufficiently understood. Initially, we examined NSUN5's differential expression in gastric cancer versus normal tissues, along with survival trends, associated signaling pathways, and immune infiltration using the TCGA database. Subsequently, we conducted immunohistochemistry experiments to assess NSUN5 expression in gastric cancer tissues. Gain-and loss-of-function experiments were carried out to investigate NSUN5's impact on the proliferation, stemness, and migratory capabilities of gastric cancer cells, as well as the expression of vital proteins in pertinent signaling pathways. Our findings demonstrate that NSUN5 is not only overexpressed in gastric cancer tissues, but also positively associated with tumor stage and inversely linked with patient prognosis. NSUN5 promotes the in vitro proliferation, stemness, and migration of gastric cancer cells, and the in vivo growth of these cells, chiefly through the activation of the WNT/β-catenin signaling pathway. Additionally, NSUN5 appears to diminish the infiltration of CD8+ T cells in gastric cancer, contributing to immune evasion. In conclusion, NSUN5 functions as a proto-oncogene in the progression of gastric cancer and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Shuhao Liu
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Yong Liu
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, PR China.; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, PR China
| | - Yijun Zhou
- School of Medicine, Sun Yat-sen University (Shenzhen), Shenzhen 518107, China
| | - Gaoshui Xia
- Nanchang Medical College. No. 689, Huiren Avenue, Nanchang Xiaolan Economic And Technological Development Zone, Nanchang City 330052, Jiangxi Province, PR China
| | - Haibo Liu
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Yu Zeng
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China; Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City 330006, Jiangxi Province, PR China
| | - Zhihui Pei
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China; Jiangxi Medical College, Nanchang University, No. 461, Bayi Avenue, Nanchang City 330006, Jiangxi Province, PR China
| | - Jing Cao
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Guifang Jing
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, PR China.
| | - Chuanwen Liao
- Gastrointestinal Hernia Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang City 330006, Jiangxi Province, PR China
| |
Collapse
|
22
|
Li CF, Lian LL, Li QR, Jiao Y. Immunotherapy for metastatic gastric cancer. World J Gastrointest Surg 2024; 16:3408-3412. [PMID: 39649204 PMCID: PMC11622096 DOI: 10.4240/wjgs.v16.i11.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 10/30/2024] Open
Abstract
This editorial discusses the article written by Chen et al that was published in the latest edition of the World Journal of Gastrointestinal Surgery. The current study found that programmed cell death 1 ligand 1 (PD-L1) expression is considered as one of the pan-cancer biomarkers of immune checkpoint inhibitors (ICIs) treatment response. Four molecular subtypes are widely used to guide and evaluate the prognosis and diagnosis and treatment of gastric cancer (GC) patients. Clinical trials of ICI treatment including Nivolumab, Pembrolizumab, Avelumab have been conducted for metastatic GC (mGC). The effects of various single agent ICIs on mGC therapy varied. ICIs combined with chemotherapy can indeed bring survival benefits to patients with mGC. Combining ICIs with chemotherapy can give more patients the chance of surgery in the treatment of GC transformation. However, not all PD-L1 positive patients can benefit from it. It is urgent to find better biomarkers to predict the response of ICIs for more precise clinical treatment.
Collapse
Affiliation(s)
- Chang-Fei Li
- Department of Patient Service Center, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Li-Li Lian
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qiu-Ru Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
23
|
Estaji F, Zibaee S, Torabi M, Moghim S. Epstein-Barr Virus and gastric carcinoma pathogenesis with emphasis on underlying epigenetic mechanisms. Discov Oncol 2024; 15:719. [PMID: 39601901 PMCID: PMC11602878 DOI: 10.1007/s12672-024-01619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC) remains one of the top causes of cancer-related mortality around the world. The pathogenesis of GC is attributed to lifestyle, family history, genetic mutations, epigenetic alterations, as well as infectious agents such as Epstein-Barr Virus (EBV). EBV, a ubiquitous human gamma herpes virus, with latent asymptomatic infection in more than 95% of the world's population, is able to infect through the oral epithelium. EBV is described as the first virus found in human neoplastic, when it was detected in Burkitt lymphoma tumor biopsy. Nowadays this virus is considered to be involved in various human malignancies such as GC. Despite comprehensive efforts and immense studies, the main underlying mechanism is not well described as there are crucial contradictions regarding the presence of this virus and the prognosis of the disease. Immunological alterations, genetic mutations, and epigenetic modifications are among the most important criteria presented in EBV- associated gastric cancer (EBVaGC), leading to its consideration as a separate subtype with unique clinical, histological, biochemical, and genetic characteristics. The current study aimed to review the association between EBV and GC with an emphasis on the role of epigenetic modifications in the suppression or progression of carcinogenesis. To put all findings in a nutshell, several genes and chromatin mutations, promoter hypermethylation and subsequent silencing of related genes, and histone modifications and aberrant micro RNAs (miRNAs) expression were considered as the major altered mechanisms in the pathogenesis of EBVaGC, most of which able to be suggested as therapeutic targets. However, the current knowledge appeared to be imperfect, hence further studies are encouraged.
Collapse
Affiliation(s)
- Fatemeh Estaji
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Saeed Zibaee
- Department of Research and Development of Biological Products, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Mashhad, Iran
| | - Maryam Torabi
- Department of Biotechnology, Molecular Biology Laboratory of Khorasan Razavi Veterinary Head Office, Mashhad, Iran
| | - Sharareh Moghim
- Department of Bacteriology & Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
24
|
Zhang Y, Xue Y, Gao Y, Zhang Y. Prognostic and predictive value of pathohistological features in gastric cancer and identification of SLITRK4 as a potential biomarker for gastric cancer. Sci Rep 2024; 14:29241. [PMID: 39587240 PMCID: PMC11589652 DOI: 10.1038/s41598-024-80292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
The aim of this study was to develop a quantitative feature-based model from histopathologic images to assess the prognosis of patients with gastric cancer. Whole slide image (WSI) images of H&E-stained histologic specimens of gastric cancer patients from The Cancer Genome Atlas were included and randomly assigned to training and test groups in a 7:3 ratio. A systematic preprocessing approach was employed as well as a non-overlapping segmentation method that combined patch-level prediction with a multi-instance learning approach to integrate features across the slide images. Subjects were categorized into high- or low-risk groups based on the median risk score derived from the model, and the significance of this stratification was assessed using a log-rank test. In addition, combining transcriptomic data from patients and data from other large cohort studies, we further searched for genes associated with pathological features and their prognostic value. A total of 165 gastric cancer patients were included for model training, and a total of 26 features were integrated through multi-instance learning, with each process generating 11 probabilistic features and 2 predictive labeling features. We applied a 10-fold Lasso-Cox regression model to achieve dimensionality reduction of these features. The predictive accuracy of the model was verified using Kaplan-Meyer (KM) curves for stratification with a consistency index of 0.741 for the training set and 0.585 for the test set. Deep learning-based resultant supervised pathohistological features have the potential for superior prognostic stratification of gastric cancer patients, transforming image pixels into an effective and labor-saving tool to optimize the clinical management of gastric cancer patients. Also, SLITRK4 was identified as a prognostic marker for gastric cancer.
Collapse
Affiliation(s)
- Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Yuhang Xue
- Henan Key Laboratory for Molecular Nuclear Medicine and Translational Medicine, Department of Nuclear Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yongju Gao
- Henan Key Laboratory for Molecular Nuclear Medicine and Translational Medicine, Department of Nuclear Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
25
|
Shi Y, An K, ShaoX zhou, Zhang X, Kan Q, Tian X. Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF + stem-like tumor cells using artificial neural network in gastric cancer. Heliyon 2024; 10:e38662. [PMID: 39524750 PMCID: PMC11547969 DOI: 10.1016/j.heliyon.2024.e38662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gastric cancer stem cells (GCSCs) are important tumour cells involved in tumourigenesis and gastric cancer development. However, their clinical value remains unclear due to the limitations of the available technologies. This study aims to explore the clinical significance of GCSCs, their connection to the tumour microenvironment, and their underlying molecular mechanisms. Methods Stem-like tumour cells were identified by mining single-cell transcriptomic data from multiple samples. Integrated analysis of single-cell and bulk transcriptome data was performed to analyse the role of stem-like tumour cells in predicting clinical outcomes by introducing the intermediate variable mRNA stemness degree (SD). Consensus clustering analysis was performed to develop an SD-related molecular classification strategy to assess the clinical characteristics in gastric cancer. A prognostic model was constructed using a customized approach that comprehensively considered SD-related gene signatures based on an artificial neural network. Results By analysing single-cell data and validating immunofluorescence results, we identified a PCLAF+ stem-like tumour cell population in GC. By calculating SD, we observed that PCLAF+ stem-like tumour cells were associated with poor prognosis and certain clinical features. The SD was negatively correlated with the abundance of most immune cell types. Furthermore, we proposed an SD-related classification method and prognostic model. In addition, the customised prognostic model can be used to predict whether a patient respond to PD-1/PD-L1 immunotherapy. Conclusion We identified a cluster of stem-like cells and elucidated their clinical significance, highlighting the possibility of their use as immunotherapeutic targets.
Collapse
Affiliation(s)
- Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - ShaoX zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - XuR. Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - QuanC. Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
26
|
Dai YJ, Tang HD, Jiang GQ, Xu ZY. The immunological landscape and silico analysis of key paraptosis regulator LPAR1 in gastric cancer patients. Transl Oncol 2024; 49:102110. [PMID: 39182362 PMCID: PMC11388017 DOI: 10.1016/j.tranon.2024.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
This study aims to identify key regulators of paraptosis in gastric cancer (GC) and explore their potential in guiding therapeutic strategies, especially in stomach adenocarcinoma (STAD). Genes associated with paraptosis were identified from the references and subjected to Cox regression analysis in the TCGA-STAD cohort. Using machine learning models, LPAR1 consistently ranked highest in feature importance. Multiple sequencing data showed that LPAR1 was significantly overexpressed in cancer-associated fibroblasts (CAFs). LPAR1 expression was significantly higher in normal tissues, and ROC analysis demonstrated its discriminative ability. Copy number alterations and microsatellite instability were significantly associated with LPAR1 expression. High LPAR1 expression correlated with advanced tumor grades and specific cancer immune subtypes, and multivariate analysis confirmed LPAR1 as an independent predictor of poor prognosis. LPAR1 expression was associated with different immune response metrics, including immune effector activation and upregulated chemokine secretion. High LPAR1 expression also correlated with increased sensitivity to compounds, such as BET bromodomain inhibitors I-BET151 and RITA, suggesting LPAR1 as a biomarker for predicting drug activity. FOXP2 showed a strong positive correlation with LPAR1 transcriptional regulation, while increased methylation of LPAR1 promoter regions was negatively correlated with gene expression. Knockdown of LPAR1 affected cell growth in most tumor cell lines, and in vitro experiments demonstrated that LPAR1 influenced extracellular matrix (ECM) contraction and cell viability in the paraptosis of CAFs. These findings suggest that LPAR1 is a critical regulator of paraptosis in GC and a potential biomarker for drug sensitivity and immunotherapy response. This underscores the role of CAFs in mediating tumorigenic effects and suggests that targeting LPAR1 could be a promising strategy for precision medicine in GC.
Collapse
Affiliation(s)
- Ya-Jie Dai
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Hao-Dong Tang
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Guang-Qing Jiang
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhai-Yue Xu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| |
Collapse
|
27
|
Sugai T, Uesugi N, Osakabe M, Yamamoto R, Hamada K, Honda M, Yanagawa N, Suzuki H. The molecular profile of gastric intraepithelial foveolar type neoplasia based on somatic copy number alterations and multiple mutation analysis. Gastric Cancer 2024; 27:1220-1228. [PMID: 39133395 PMCID: PMC11513720 DOI: 10.1007/s10120-024-01543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Gastric foveolar type neoplasia is a rare histological variant of gastric tumors. It is very difficult to differentiate between benign and malignant intraepithelial foveolar neoplasia (IFN). Although limited molecular alterations have been identified in IFNs, somatic copy number alterations (SCNAs), which are linked to tumor progression, have not been systematically evaluated in IFN. METHODS The aim of the present study was to comprehensively examine SCNAs using a SNP array in 37 cases of IFN, compared with intestinal type dysplasia, including 39 low grade (LGD) and 32 high grade dysplasia (HGD) cases. In addition, gene mutations were evaluated using a gene panel. Finally, we attempted to determine molecular profiles using a hierarchical clustering analysis. RESULTS Two patterns could be categorized according to the SCNAs in 108 tumors examined: high (subgroup 1) and low (subgroup 2) frequencies of SCNAs. Although IFN and LGD were associated with subgroup 2, HGD was found in both subgroups. The median numbers of total SCNAs and copy number gains were higher in IFN or HGD than in LGD. In addition, the IFN genotype was characterized by altered genes located at 4p13-4q35.2, including RAP1GDS1 and LEF1, which may be associated with IFN development. Finally, no significant mutations were found in IFNs using a gene panel. CONCLUSIONS The current molecular profiles of IFN may help elucidate the mechanisms of IFN development.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan.
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Kooriyama City, Fukushima, 963-8563, Japan.
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan
- Diagnostic Pathology Center, Southern Tohoku General Hospital, 7-115, Yatsuyamada, Kooriyama City, Fukushima, 963-8563, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan
| | - Ryuya Yamamoto
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern-Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama City, Fukushima, 963-8563, Japan
| | - Koichi Hamada
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Michitaka Honda
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
- Department of Surgery, Southern-Tohoku General Hospital, 7-115, Yatsuyamada, Koriyama City, Fukushima, 963-8563, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1, Shiwagun'yahabachou, 028-3695, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
28
|
Guo L, Zhou Y, Ma R. Exploring the anti-gastric cancer mechanism of action of Bidentis Bipinnatae Herba based on network pharmacology, molecular docking, and cellular experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8681-8690. [PMID: 38822119 DOI: 10.1007/s00210-024-03169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
The purpose of this study is to explore the potential molecular mechanism of Bidentis Bipinnatae Herba against gastric cancer by using network pharmacology methods, molecular docking, and cellular experimental validation. Medicinal plants related to gastric cancer were queried through TCMSP, SymMap, and Herb databases. The TCSMP database (drug-likeness ≥ 0.18) was used to retrieve the bioactive constituents. TCSMP, SwissTargetPrediction, and Herb databases were used to retrieve the target genes, and Cytoscape software was used to construct the "active ingredient-target" network. After protein interaction analysis using String 11.0 platform, the hub genes were screened using CytoHubba. The obtained hub genes were uploaded to the cBioPortal for pathway enrichment. The genes involved in gastric cancer-related RTK-RAS pathway were molecularly docked and experimentally validated. Bidentis Bipinnatae Herba was common to TCMSP, SymMap, and Herb databases. A total of nine active ingredients were obtained in Bidentis Bipinnatae Herba, acting on 192 targets. Seven hub genes were obtained from these target genes and enriched in the RTK-RAS pathway in gastric cancer. MAPK1 and EGFR had good molecular docking results with their corresponding chemicals. Cellular experiments showed that the treatment of luteolin, quercetin, and Okanin reduced the expression of EGFR in AGS cells; the treatment of luteolin and quercetin could reduce the expression of MAPK1. Bidentis Bipinnatae Herba contained active components, which may be anti-gastric cancer in a multi-target (MAPK1 and EGFR) manner.
Collapse
Affiliation(s)
- Linglong Guo
- Department of Oncology, Yizheng Hospital of TCM, Yizheng, 211400, China
| | - Yuyi Zhou
- Graduate School, Zhejiang Chinese Medical University, Zhejiang, 310053, China
| | - Rui Ma
- Department of Traditional Chinese Medicine, Nanjing Luhe People's Hospital, No. 9, Jiankang Lane, Xiongzhou Street, Luhe District, Nanjing, 211500, China.
| |
Collapse
|
29
|
Yin X, Xing W, Yi N, Zhou Y, Chen Y, Jiang Z, Ma C, Xia C. Comprehensive analysis of lactylation-related gene sets and mitochondrial functions in gastric adenocarcinoma: implications for prognosis and therapeutic strategies. Front Immunol 2024; 15:1451725. [PMID: 39478860 PMCID: PMC11521809 DOI: 10.3389/fimmu.2024.1451725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Gastric adenocarcinoma (STAD) is characterized by high heterogeneity and aggressiveness, leading to poor prognostic outcomes worldwide. This study explored the prognostic significance of lactylation-related gene sets and mitochondrial functions in STAD by integrating large-scale genomic datasets, including TCGA and several GEO datasets. We utilized Spatial transcriptomics and single-cell RNA sequencing to delineate the tumor microenvironment and assess the heterogeneity of cellular responses within the tumor. Additionally, the study identified distinct molecular subtypes within STAD that correspond with unique survival outcomes and immune profiles, enhancing the molecular classification beyond current paradigms. Prognostic models incorporating these molecular markers demonstrated superior predictive capabilities over existing models across multiple validation datasets. Furthermore, our analysis of immune landscapes revealed that variations in lactylation could influence immune cell infiltration and responsiveness, pointing towards novel avenues for tailored immunotherapy approaches. These comprehensive insights provide a foundation for targeted therapeutic strategies and underscore the potential of metabolic and immune modulation in improving STAD treatment outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Cunbing Xia
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
30
|
Rogers JE, Gan Q, Waters RE, Horak AA, Ajani JA. Targeted and combination immunotherapies using biologics for gastric cancer: the state-of-the-art. Expert Opin Biol Ther 2024; 24:1005-1015. [PMID: 39315517 DOI: 10.1080/14712598.2024.2401622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Gastric adenocarcinoma (GAC) remains a prevalent cancer worldwide and its incidence is increasing in South America. The heterogenous nature of GAC makes advances in management challenging. AREAS COVERED Despite challenges, recent therapeutic targets are individualizing treatment. For localized disease with microsatellite-instability-high/deficient mismatch repair, immunotherapy is now an adopted practice. In the advanced unresectable setting, those harboring human epidermal growth factor receptor-2 (HER2) expression continue to be a separate entity. EXPERT OPINION Future targets are developing. Among these include claudin 18.2 (CLDN18.2), fibroblast growth factor receptor 2b (FGFR2b), and trophoblast cell surface antigen-2 (TROP-2). FDA approval of zolbetuximab's, an anti-CLDN 18.2 monoclonal antibody, is expected soon. Additionally, bemarituzumab, ananti-FGFR2b monoclonal antibody, has shown improvements in combination with chemotherapy in those with HER2 negative GAC with FGFR2 overexpression. This combination is now being investigated in a phase 3 trial. Lastly, TROP-2 has emerged as an exciting solid tumor target and study is expected in GAC. All three of these therapeutic targets have seen an abundance of drug development in recent years, and we anticipate newer targeted agents driving therapeutic decisions in GAC in the coming years.
Collapse
Affiliation(s)
- Jane E Rogers
- Pharmacy Clinical Programs, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Qiong Gan
- Department of Pathology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rebecca E Waters
- Department of Pathology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ashley A Horak
- Department of Gastrointestinal Medical Oncology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Yang Y, Gu X, Weng W, Cheng J, Huang O, Pan SJ, Li Y. SUMOylation-induced membrane localization of TRPV1 suppresses proliferation and migration in gastric cancer cells. Cell Commun Signal 2024; 22:465. [PMID: 39350261 PMCID: PMC11441086 DOI: 10.1186/s12964-024-01850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Gastric cancer (GC) remains a significant health challenge due to its high mortality rate and the limited efficacy of current targeted therapies. A critical barrier in developing more effective treatments is the lack of understanding of specific mechanisms driving GC progression. This study investigates the role of Transient Receptor Potential Vanilloid 1 (TRPV1), a non-selective cation channel known for its high Ca2+ permeability and tumor-suppressive properties in gastrointestinal cancers. Specifically, we explore the impact of SUMOylation-a dynamic and reversible post-translational modification-on TRPV1's function in GC. We demonstrate that SUMOylation of TRPV1 inhibits cell proliferation and migration in MGC-803 and AGS GC cells. By mutating amino acids near TRPV1's existing SUMO motif (slKpE), we created a bidirectional SUMO motif (EψKψE) that enhances TRPV1 SUMOylation, resulting in further suppression of GC cell proliferation and migration. In vivo studies support these findings, showing that TRPV1 SUMOylation prevents spontaneous tumorigenesis in a mouse GC model. Further investigation reveals that TRPV1 SUMOylation increases the protein's membrane expression by inhibiting its interaction with the adaptor-related protein complex 2 mu 1 subunit (AP2M1). This elevated membrane expression leads to increased intracellular Ca2+ influx, activating the AMP-activated protein kinase (AMPK) pathway, which in turn inhibits the proliferation and migration of GC cells.
Collapse
Affiliation(s)
- Yang Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xiaokun Gu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Weiji Weng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jinke Cheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ou Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200020, China.
| | - Si-Jian Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200020, China.
| | - Yong Li
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
32
|
Wang Y, Zheng M, Du S, Wang P, Zhang T, Zhang X, Zu G. Clinicopathological and prognostic significance of stromal cell derived factor 2 in the patients with gastric cancer. BMC Gastroenterol 2024; 24:325. [PMID: 39342109 PMCID: PMC11437680 DOI: 10.1186/s12876-024-03430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The stromal cell derived factor 2 (SDF2) relates closely to the occurrence and development of several kind of cancers. There are few studies to investigate the clinicopathological and prognostic significance of SDF2 in gastric cancer (GC) patients. METHODS We detected SDF2 expression in GC and normal gastric tissues using bioinformatics, western blot and immunohistochemistry. Furthermore, we tested the relationship between SDF2 expression and clinicopathological characteristics and prognosis of GC patients. RESULTS Bioinformatics, western blot and immunohistochemistry results showed that SDF2 expression in GC tissue was higher than that in normal gastric tissue (P < 0.01). SDF2 expression was associated with Borrmann classification III-IV (χ2 = 6.484, P = 0.011), depth of infiltration T3-T4 (χ2 = 9.140, P = 0.003), positive lymph node metastasis (χ2 = 24.945, P = 0.000) and TNM III-IV stage (χ2 = 9.945, P = 0.002) of GC patients. The Cox regression analysis indicated that distant metastasis M1 stage (HR = 6.026, 95% CI: 1.880-19.318, P = 0.003), TNM III-IV (HR = 1.833, 95% CI: 1.023-3.287, P = 0.042) and SDF2 high expression (HR = 2.091, 95% CI: 1.064-4.108, P = 0.032) were independent risk factors for OS of GC patients. Kaplan-Meier test showed that the OS of GC patients with SDF2 high expression was much poorer than that of GC patients with SDF2 low-expression (χ2 = 22.925, P = 0.000). CONCLUSION SDF2 expression is high in GC tissue and is correlated with Borrmann classification III-IV, tumor infiltration depth, positive lymph node metastasis and TNM III-IV stage of GC patients. GC patients with SDF2 high-expression have significantly poor OS.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Gastroenterology Surgery, The Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian Shahekou District Southwest Road No. 826, Dalian, 116033, PR China
- Department of Graduate School, Dalian Medical University, Dalian, 116044, China
| | - Mingcan Zheng
- Department of Gastroenterology Surgery, The Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian Shahekou District Southwest Road No. 826, Dalian, 116033, PR China
- Department of Graduate School, Dalian Medical University, Dalian, 116044, China
| | - Shaohua Du
- Department of Gastroenterology Surgery, The Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian Shahekou District Southwest Road No. 826, Dalian, 116033, PR China
- Department of Graduate School, Dalian Medical University, Dalian, 116044, China
| | - Puxu Wang
- Department of Gastroenterology Surgery, The Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian Shahekou District Southwest Road No. 826, Dalian, 116033, PR China
- Department of Graduate School, Dalian Medical University, Dalian, 116044, China
| | - Taotao Zhang
- Department of Gastroenterology Surgery, The Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian Shahekou District Southwest Road No. 826, Dalian, 116033, PR China
| | - Xiangwen Zhang
- Department of Gastroenterology Surgery, The Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian Shahekou District Southwest Road No. 826, Dalian, 116033, PR China
| | - Guo Zu
- Department of Gastroenterology Surgery, The Central Hospital of Dalian University of Technology (Dalian Municipal Central Hospital), Dalian Shahekou District Southwest Road No. 826, Dalian, 116033, PR China.
| |
Collapse
|
33
|
Bhat AA, Afzal M, Moglad E, Thapa R, Ali H, Almalki WH, Kazmi I, Alzarea SI, Gupta G, Subramaniyan V. lncRNAs as prognostic markers and therapeutic targets in cuproptosis-mediated cancer. Clin Exp Med 2024; 24:226. [PMID: 39325172 PMCID: PMC11427524 DOI: 10.1007/s10238-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, including cancer progression and stress response. Recent studies have demonstrated that copper accumulation induces a unique form of cell death known as cuproptosis, with lncRNAs playing a key role in regulating cuproptosis-associated pathways. These lncRNAs may trigger cell-specific responses to copper stress, presenting new opportunities as prognostic markers and therapeutic targets. This paper delves into the role of lncRNAs in cuproptosis-mediated cancer, underscoring their potential as biomarkers and targets for innovative therapeutic strategies. A thorough review of scientific literature was conducted, utilizing databases such as PubMed, Google Scholar, and ScienceDirect, with search terms like 'lncRNAs,' 'cuproptosis,' and 'cancer.' Studies were selected based on their relevance to lncRNA regulation of cuproptosis pathways and their implications for cancer prognosis and treatment. The review highlights the significant contribution of lncRNAs in regulating cuproptosis-related genes and pathways, impacting copper metabolism, mitochondrial stress responses, and apoptotic signaling. Specific lncRNAs are potential prognostic markers in breast, lung, liver, ovarian, pancreatic, and gastric cancers. The objective of this article is to explore the role of lncRNAs as potential prognostic markers and therapeutic targets in cancers mediated by cuproptosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
34
|
Huang H, Shi J, Chen W, Liu L. Rutin suppresses the malignant biological behavior of gastric cancer cells through the Wnt/β-catenin pathway. Discov Oncol 2024; 15:407. [PMID: 39231903 PMCID: PMC11374940 DOI: 10.1007/s12672-024-01281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Rutin is a natural flavonoid compound that is widely found in a variety of plants and has a variety of biological effects, including anti-inflammatory, antioxidant, and anti-tumor effects. Rutin has been shown to have anti-tumor effects in a variety of cancers, but its effects on gastric cancer need to be further explored. The aim of this study was to explore the effects of Rutin on gastric cancer cells and the potential molecular regulatory mechanisms. Gastric cancer cells (AGS and MGC803) were treated with different concentrations of Rutin. Cell proliferation, apoptosis, migration, and invasion were determined by MTT, flow cytometry, scratch assay, and Transwell analysis, respectively. Cell epithelial mesenchymal transition (EMT) markers and Wnt/β-catenin pathway were analyzed by RT-qPCR and western blot assay. The results showed that Rutin significantly inhibited the proliferation, migration and invasion ability of gastric cancer cells, induced apoptosis, and suppressed the EMT process. Further experiments revealed that Rutin achieved the effect of inhibiting the biological behavior of gastric cancer cells by suppressing the activation of the Wnt/β-catenin pathway. Therefore, Rutin may become a potential therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Hui Huang
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China
| | - Jianguo Shi
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China
| | - Wei Chen
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China.
| |
Collapse
|
35
|
Li X, Qian J, Xu J, Bai H, Yang J, Chen L. NRF2 inhibits RSL3 induced ferroptosis in gastric cancer through regulation of AKR1B1. Exp Cell Res 2024; 442:114210. [PMID: 39154929 DOI: 10.1016/j.yexcr.2024.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Gastric cancer is a malignant tumor associated with a high mortality rate. Recently, emerging evidence has shown that ferroptosis, a regulated form of cell death induced by iron (Fe)-dependent lipid peroxidation. Nuclear factor E2 related factor 2 (NRF2) is a key regulator of intracellular oxidation homeostasis that plays a pivotal role in controlling lipid peroxidation, which is closely related to the process of ferroptosis. However, the molecular mechanism of NRF2 on ferroptosis remains to be investigated in gastric cancer. In our study, NRF 2 was found to transcriptionally activate Aldo-keto reductase 1 member B1 (AKR1B1) expression in gastric cancer. AKR1B1 is involved in the regulation of lipid metabolism by removing the aldehyde group of glutathione. We found that AKR1B1 is highly expressed in gastric cancer and is associated with a poor prognosis of the patients. In vitro experiments found that AKR1B1 has the ability to promote the proliferation and invasion of gastric cancer cells. AKR1B1 inhibited RSL3-induced ferroptosis in gastric cancer by reducing reactive oxygen species accumulation and lipid peroxidation, as well as decreasing intracellular ferrous ion and malondialdehyde expression and increasing glutathione expression. Our study demonstrated that AKR1B1 resisted RSL3-induced ferroptosis by regulating GPX4, PTGS2 and ACSL4, which was further demonstrated in a xenograft nude mouse model. Our work reveals a critical role for the AKR1B1 in the resistance to RSL3-induced ferroptosis in gastric cancer.
Collapse
Affiliation(s)
- Xin Li
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine(TCM), Shanghai, 200032, China
| | - Jianxin Qian
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine(TCM), Shanghai, 200032, China
| | - Jiahua Xu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine(TCM), Shanghai, 200032, China
| | - Haoran Bai
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine(TCM), Shanghai, 200032, China
| | - Jinzu Yang
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine(TCM), Shanghai, 200032, China.
| | - Ling Chen
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine(TCM), Shanghai, 200437, China.
| |
Collapse
|
36
|
Wu L, Dong J, Fei D, Le T, Xiao L, Liu J, Yu Z. Fructose-1, 6-Bisphosphate Aldolase B Suppresses Glycolysis and Tumor Progression of Gastric Cancer. Dig Dis Sci 2024; 69:3290-3304. [PMID: 39068380 DOI: 10.1007/s10620-024-08568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Gastric cancer (GC) is believed to be one of the most common digestive tract malignant tumors. However, mounting evidence indicates a link between the glycolysis and tumorigenesis, including gastric cancer. METHODS Our research identified 5508 differently expressed mRNAs in gastric cancer. Then, the genes highly associated with tumorigenesis were identified through weighted correlation network analysis (WGCNA). Bioinformatics analysis observed that these hub genes were significantly linked to the regulation of cell cycle, drug metabolism, and glycolysis. Among these hub genes, there is a critical gene involved in glycolysis regulation, namely fructose-bisphosphate B (ALDOB). RESULTS Analysis based on The Cancer Genome Atlas (TCGA) and three Gene Expression Omnibus (GEO) datasets revealed that ALDOB was significantly downregulated in GC compared with normal tissues. In addition, cell viability assay confirmed that ALDOB acted as a tumor suppressor. Finally, drug sensitivity analysis revealed that ALDOB increased the sensitivity of gastric cancer cells to most antitumor drugs, especially talazoparib, XAV939, and FTI-277. Our results showed that the expression of ALDOB was significantly lower in GC tissues than in normal tissues. And ALDOB significantly inhibited proliferation and migration, delayed glycolysis in GC cells. Consequently, our study suggests that ALDOB may be a potential target for the clinical treatment of gastric cancer.
Collapse
Affiliation(s)
- Liping Wu
- The Department of Science and Education, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Jinliang Dong
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China
| | - Dailiang Fei
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China
| | - Ting Le
- The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China
| | - Liang Xiao
- The Department of Surgery and Oncology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jia Liu
- School of Agriculture, Sun Yat-Sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong, China
- Shenzhen Zhongjia Bio-Medical Technology Co., Ltd, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong, China
| | - Ze Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China.
- The Laboratory of Cytobiology and Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, No. 739 Dingshen Road, Lincheng New District, Zhoushan, Zhejiang, China.
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Biesma HD, Soeratram TTD, van Essen HF, Egthuijsen JMP, Poell JB, van Dijk E, Meershoek-Klein Kranenbarg E, Hartgrink HH, van de Velde CJH, van de Wiel MA, Ylstra B, van Grieken NCT. Chromosomal copy number based stratification of gastric cancer has added prognostic value to Lauren's histological classification. BJC REPORTS 2024; 2:58. [PMID: 39516260 PMCID: PMC11523994 DOI: 10.1038/s44276-024-00078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The Cancer Genome Atlas (TCGA) recognizes four molecular subgroups of gastric cancer: Epstein-Barr virus (EBV) positive, microsatellite instable (MSI), genomically stable (GS), and chromosomal instable (CIN). Since a GS/CIN classifier is lacking, alternative markers such as Lauren's histopathology or CDH1/p53 immunohistochemistry are commonly applied. Here we compared survival of gastric cancer subgroups determined by four methods. METHODS 309 EBV negative and microsatellite stable tumors were included from the Dutch D1/D2 trial and assigned to subgroups by: (i) TCGA's specific chromosomal copy number aberrations, (ii) genome instability index (GII), (iii) Lauren's classification, and (iv) CDH1/p53 immunohistochemistry. Subgroups were associated with cancer-related survival (CRS). RESULTS Five-year CRS was 42.0% for diffuse and 49.5% for patients with intestinal type tumors, and 57.8% for GS and 41.6% for patients with CIN tumors. Classification by GII or CDH1/p53 IHC did not correlate with CRS. The combination of TCGA and Lauren classifications resulted in four distinct subgroups. Five-year CRS for GS-intestinal (n = 24), GS-diffuse (n = 57), CIN-intestinal (n = 142) and CIN-diffuse (n = 86) was 61.4%, 56.5%, 47.6%, and 31.5%, respectively. CONCLUSIONS TCGA's GS and CIN subgroups have additional prognostic value to Lauren's classification in resectable gastric cancer. GS-intestinal, GS-diffuse, CIN-intestinal and CIN-diffuse are suggested stratification variables for future studies.
Collapse
Affiliation(s)
- H D Biesma
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - T T D Soeratram
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - H F van Essen
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - J M P Egthuijsen
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - J B Poell
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
- Department of Otolaryngology / Head and Neck Surgery, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - E van Dijk
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | | | - H H Hartgrink
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - M A van de Wiel
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - B Ylstra
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands
| | - N C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, VU University, Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Hayashi Y, Millen JC, Ramos RI, Linehan JA, Wilson TG, Hoon DSB, Bustos MA. Cell-free and extracellular vesicle microRNAs with clinical utility for solid tumors. Mol Oncol 2024. [PMID: 39129372 DOI: 10.1002/1878-0261.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
As cutting-edge technologies applied for the study of body fluid molecular biomarkers are continuously evolving, clinical applications of these biomarkers improve. Diverse forms of circulating molecular biomarkers have been described, including cell-free DNA (cfDNA), circulating tumor cells (CTCs), and cell-free microRNAs (cfmiRs), although unresolved issues remain in their applicability, specificity, sensitivity, and reproducibility. Translational studies demonstrating the clinical utility and importance of cfmiRs in multiple cancers have significantly increased. This review aims to summarize the last 5 years of translational cancer research in the field of cfmiRs and their potential clinical applications to diagnosis, prognosis, and monitoring disease recurrence or treatment responses with a focus on solid tumors. PubMed was utilized for the literature search, following rigorous exclusion criteria for studies based on tumor types, patient sample size, and clinical applications. A total of 136 studies on cfmiRs in different solid tumors were identified and divided based on tumor types, organ sites, number of cfmiRs found, methodology, and types of biofluids analyzed. This comprehensive review emphasizes clinical applications of cfmiRs and summarizes underserved areas where more research and validations are needed.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Janelle-Cheri Millen
- Department of Surgical Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Jennifer A Linehan
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Timothy G Wilson
- Department of Urology and Urologic Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
- Department of Genome Sequencing Center, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
39
|
Jian J, Feng Y, Wang R, Li C, Zhang L, Ruan Y, Luo B, Liang G, Liu T. METTL3-Regulated lncRNA SNHG7 Drives MNNG-Induced Epithelial-Mesenchymal Transition in Gastric Precancerous Lesions. TOXICS 2024; 12:573. [PMID: 39195675 PMCID: PMC11360688 DOI: 10.3390/toxics12080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
As a representative item of chemical carcinogen, MNNG is closely associated with the onset of gastric cancer (GC), where N6-methyladonosine (m6A) RNA methylation is recognized as a critical epigenetic event. In our previous study, we found that the m6A modification by methyltransferase METTL3 was up-regulated in MNNG-exposed malignant GES-1 cells (MC cells) compared to control cells in vitro, and long non-coding RNA SNHG7 as a downstream target of the METTL3. However, the functional role of METTL3 in mediating the SNHG7 axis in MNNG-induced GC remains unclear. In the present study, we continuously investigate the functional role of METTL3 in mediating the SNHG7 axis in MNNG-induced GC. RIP-PCR and m6A-IP-qPCR were used to examine the molecular mechanism underlying the METTL3/m6A/SNHG7 axis in MNNG-induced GC. A METTL3 knockout mice model was constructed and exposed by MNNG. Western blot analysis, IHC analysis, and RT-qPCR were used to measure the expression of METTL3, SNHG7, and EMT markers. In this study, we demonstrated that in MNNG-induced GC tumorigenesis, the m6A modification regulator METTL3 facilitates cellular EMT and biological functions through the m6A/SNHG7 axis using in vitro and in vivo models. In conclusion, our study provides novel insights into critical epigenetic molecular events vital to MNNG-induced gastric carcinogenesis. These findings suggest the potential therapeutic targets of METTL3 for GC treatment.
Collapse
Affiliation(s)
- Jiabei Jian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Yanlu Feng
- Qinghai Provincial Center for Disease Control and Prevention, Institute of Immunization Planning, Xining 810000, China;
| | - Ruiying Wang
- Gansu Provincial Center for Disease Prevention and Control, Lanzhou 730000, China;
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou 730000, China;
| | - Lin Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Ye Ruan
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, China;
| | - Tong Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; (J.J.); (L.Z.); (Y.R.); (B.L.)
| |
Collapse
|
40
|
Eskuri M, Birkman EM, Kauppila JH. Gastric cancer molecular classification based on immunohistochemistry and in-situ hybridisation and mortality. Histopathology 2024; 85:327-337. [PMID: 38715404 DOI: 10.1111/his.15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND AIMS Gastric cancers (GC) are divided into subtypes based on molecular profile: Epstein-Barr virus (EBV)-positive, microsatellite instability (MSI), chromosomal instability (CIN) and genomically stable (GS) tumours. The prognostic impact of this classification is unclear. The aim was to evaluate whether the molecular subtypes determined using in-situ hybridisation (ISH) and immunohistochemistry (IHC) are associated with clinicopathological parameters and prognosis. METHODS AND RESULTS The study included 503 GC patients. Based on ISH (EBV) and IHC (MSI and TP53), tumours were divided into EBV-positive, MSI, CIN (EBVneg/MSS/TP53aberrant) and GS (EBVneg/MSS/TP53wild-type) subgroups. Survival analyses with intestinal- and diffuse-type tumours were examined separately. EBV-positive tumours associated with male sex. Both EBV-positive and MSI tumours associated with intestinal type. CIN tumours associated with intestinal-type and positive lymph node status. GS tumours associated with diffuse-type and negative lymph node status. In the total cohort, no significant differences in the 5-year survival were observed. In intestinal tumours, the 5-year survival was better in EBV-positive tumours compared with GS tumours [hazard ratio (HR) = 0.57, 95% confidence interval (CI) = 0.33-0.99]. In diffuse tumours, the 5-year survival was worse in CIN tumours compared with GS tumours (HR = 1.57, 95% CI = 1.14-2.18). In radically resected diffuse tumours, the 5-year survival was worse in MSI tumours compared with GS tumours (HR = 3.26, 95% CI = 1.20-8.82). CONCLUSIONS The molecular classification is associated with histological type but not prognosis in GC. As the prognostic effects of molecular subtypes in intestinal- and diffuse-type cancers may differ, combining histological and molecular information is recommended for future studies.
Collapse
Affiliation(s)
- Maarit Eskuri
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Eva-Maria Birkman
- Department of Pathology, University of Turku, Turku University Hospital, Turku, Finland
| | - Joonas H Kauppila
- Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Xie Z, Zhao W, He Y, Ke Y, Li Z, Zhang X. Mutational and transcriptional profile predicts the prognosis of stage IV gastric cancer - Prognostic factors for metastatic gastric cancer. Arab J Gastroenterol 2024; 25:275-283. [PMID: 39043541 DOI: 10.1016/j.ajg.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/27/2024] [Accepted: 05/05/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND STUDY AIMS The clinicopathological risk factors in the prognosis of stage IV gastric cancer have been comprehensively studied. However, the influencing factors of stage IV gastric cancer prognosis at genomic and transcriptional levels have not been well defined. PATIENTS AND METHODS The mutational and transcriptional data, along with demographic, clinicopathological and prognostic information of 44 stage IV gastric cancer patients were downloaded from the TCGA database. Univariate and multivariate analyses were performed to identify the significant risk factors and a Nomogram model was established to predict the patient prognosis. RESULTS TTN, TP53, FLG, LRP1B, SYNE1 and ARID1A were among the top mutated genes without hot-spot mutations. The mutational status of AHNAK2, ASCC3, DNAH3, DOP1A, MYLK, SIPA1L1, SORBS2, SYNE1 and ANF462 significantly stratified the patient prognosis. The transcription of several genes, such as AQP10, HOXC8/9/10, COL10A1/COL11A1, WNT7B, KRT17 and KLK6 was significantly up-regulated or down-regulated. Enrichment analysis on mutations and transcription revealed cell skeleton and membrane function, extracellular matrix function, HPV infection, and several cancer-related pathways as the main aberrancies. Univariate analyses revealed a series of significant factors stratifying patient prognosis, mainly including cancer location, several mutated genes and many up- or down-regulated genes. However, subsequent multivariate analysis revealed SYNE1 mutation, DNAH3 mutation, COMMD3 transcription level, and cancer location as the independent risk factors. A Nomogram model has been established with these significant risk factors to predict the patient prognosis. Further validation is needed to ensure the effectiveness of the model in real clinical practice. CONCLUSIONS Cancer location, along with the mutational status of SYNE1 and DNAH3 and the transcriptional level of COMMD3 were independent risk factors of stage IV gastric cancer. A Nomogram model was established with these factors for prognosis prediction.
Collapse
Affiliation(s)
- Zhengyong Xie
- General Surgery Department, General Hospital of Southern Theatre Command, PLA, No.111 Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong Province, China
| | - Wenzhen Zhao
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong Province, China
| | - Yongzhong He
- Department of General Surgery, The Affiliated Hexian Memorial Hospital of Southern Medical University Guangzhou, Guangzhou 511400, Guangdong Province, China
| | - Yongli Ke
- General Surgery Department, General Hospital of Southern Theatre Command, PLA, No.111 Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong Province, China
| | - Zehang Li
- General Surgery Department, General Hospital of Southern Theatre Command, PLA, No.111 Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong Province, China
| | - Xuhui Zhang
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou 510317, Guangdong Province, China.
| |
Collapse
|
42
|
Li X, Liu D, Wu Z, Xu Y. Diffuse tumors: Molecular determinants shared by different cancer types. Comput Biol Med 2024; 178:108703. [PMID: 38850961 DOI: 10.1016/j.compbiomed.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Most cancer types have both diffuse and non-diffuse subtypes, which have rather distinct morphologies, namely scattered tiny tumors vs. one solid tumor, and different levels of aggressiveness. However, the causes for forming such distinct subtypes remain largely unknown. Using the diffuse and non-diffuse gastric cancers (GCs) as the illustrative example, we present a computational study based on the transcriptomic data from the TCGA and GEO databases, to address the following questions: (i) What are the key molecular determinants that give rise to the distinct morphologies between diffuse and non-diffuse cancers? (ii) What are the main reasons for diffuse cancers to be generally more aggressive than non-diffuse ones of the same cancer type? (iii) What are the reasons for their distinct immunoactivities? And (iv) why do diffuse cancers on average tend to take place in younger patients? The study is conducted using the framework we have previously developed for elucidation of general drivers cancer formation and development. Our main discoveries are: (a) the level of (poly-) sialic acids deployed on the surface of cancer cells is a significant factor contributing to questions (i) and (ii); (b) poly-sialic acids synthesized by ST8SIA4 are the key to question (iii); and (c) the circulating growth factors specifically needed by the diffuse subtype dictate the answer to question (iv). All these predictions are substantiated by published experimental studies. Our further analyses on breast, prostate, lung, liver, and thyroid cancers reveal that these discoveries generally apply to the diffuse subtypes of these cancer types, hence indicating the generality of our discoveries.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dingyun Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Zhipeng Wu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Ying Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
43
|
Wang Y, Li D, Xun J, Wu Y, Wang HL. Construction of prognostic markers for gastric cancer and comprehensive analysis of pyroptosis-related long non-coding RNAs. World J Gastrointest Surg 2024; 16:2281-2295. [PMID: 39087128 PMCID: PMC11287702 DOI: 10.4240/wjgs.v16.i7.2281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND China's most frequent malignancy is gastric cancer (GC), which has a very poor survival rate, and the survival rate for patients with advanced GC is dismal. Pyroptosis has been connected to the genesis and development of cancer. The function of pyroptosis-related long non-coding RNAs (PRLs) in GC, on the other hand, remains uncertain. AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA (lncRNA) related to pyroptosis in GC patients. METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples, and we obtained 28 pyroptotic genes from the Reactome database. We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient. Prognosis-related PRLs were identified through univariate Cox analysis. A predictive signature was constructed using stepwise Cox regression analysis, and its reliability and independence were assessed. To facilitate clinical application, a nomogram was created based on this signature. we analyzed differences in immune cell infiltration, immune function, and checkpoints between the high-risk group (HRG) and low-risk group (LRG). RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs (absolute correlation coefficient > 0.4, P < 0.05). Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis. We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG. The ability of the risk signature to predict the overall survival (OS) of GC is demonstrated by the Kaplan-Meier analysis, risk curve, receiver operating characteristic curve, and decision curve analysis curve. The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses. HRG showed a more efficient local immune response or modulation compared to LRG, as indicated by the predicted signal pathway analysis and examination of immune cell infiltration, function, and checkpoints (P < 0.05). CONCLUSION In general, we have created a brand-new prognostic signature using PRLs, which may provide ideas for immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Yu Wang
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Di Li
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Jing Xun
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Yu Wu
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| | - Hong-Lei Wang
- Department of Gastrointestinal Surgery, Hospital of Integrated Chinese and Western Medicine, Tianjin University, Tianjin 300100, China
| |
Collapse
|
44
|
Cui Z, Liang H, Luo R, Huang W, Yuan W, Zhang L, Luan L, Su J, Huang J, Xu C, Hou Y. IKZF3 amplification predicts worse prognosis especially in intestinal-type gastric cancer. J Cancer Res Clin Oncol 2024; 150:363. [PMID: 39052108 PMCID: PMC11272681 DOI: 10.1007/s00432-024-05868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE IKAROS family zinc finger 3 (IKZF3) is an oncogene involved in different malignancies, particularly in the development and malignant progression of lymphocytes. However, IKZF3 amplification and clinical significance in gastric cancers (GCs) remain unexplored. METHODS We examined IKZF3 amplification status in 404 GCs with HER2 amplification status using tissue microarray (TMA) and fluorescence in situ hybridization (FISH) assays. RESULTS IKZF3 amplification was detected in 6.9% (28/404) of all GC patients, with higher rates in intestinal-type gastric cancer (IGC) (11.22%, 22/196) compared to other types (2.88%, 6/208). HER2 amplification was identified in 16.09% (65/404) of all GC patients, with higher rates in IGC (20.92%, 41/196) compared to other types (11.54%, 24/208). Co-amplification of IKZF3 and HER2 was detected in 8.16% (16/196) of IGC patients and in 2.40% (5/208) of other types. IKZF3 amplification showed significant correlation with IGC (P = 0.001) and HER2 amplification (P = 0.0001). IKZF3 amplification exhibited significantly worse disease-free survival (DFS) (P = 0.014) and overall survival (OS) (P = 0.018) in GC patients, particularly in IGC (DFS: P < 0.001; OS: P < 0.001), rather than other types. Cox regression analysis demonstrate IKZF3 amplification as an independent poor prognostic factor in all GCs (P = 0.006, P = 0.004 respectively) and in IGC patients, regardless of stages I-II or III-IV (P = 0.007, P = 0.004 respectively). On the other hand, HER2 amplification was significantly associated with worse DFS (P = 0.008) and OS (P = 0.01) in IGC patients, but not in all GCs and in multivariate analysis. Within the subset of patients with HER2 amplification, those also exhibiting IKZF3 amplification displayed potential poorer prognosis (P = 0.08, P = 0.11 respectively). CONCLUSION IKZF3 amplification was detected in minority of GC patients, especially in IGC, and was an independent indicator of poor prognosis. Our study, for the first time, found the prognostic value of IKZF3 was superior to HER2 for GC patients.
Collapse
Affiliation(s)
- Zhaomeng Cui
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huaiyu Liang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wen Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Yuan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lijuan Luan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pathology, Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, 361015, Fujian, China.
| |
Collapse
|
45
|
Wang S, Zhang S, Li X, Li X, Zhao S, Guo J, Wang S, Wang R, Zhang M, Qiu W. HIGD1B, as a novel prognostic biomarker, is involved in regulating the tumor microenvironment and immune cell infiltration; its overexpression leads to poor prognosis in gastric cancer patients. Front Immunol 2024; 15:1415148. [PMID: 39108265 PMCID: PMC11300267 DOI: 10.3389/fimmu.2024.1415148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Background HIGD1B (HIG1 Hypoxia Inducible Domain Family Member 1B) is a protein-coding gene linked to the occurrence and progression of various illnesses. However, its precise function in gastric cancer (GC) remains unclear. Methods The expression of HIGD1B is determined through the TCGA and GEO databases and verified using experiments. The association between HIGD1B and GC patients' prognosis was analyzed via the Kaplan-Meier (K-M) curve. Subsequently, the researchers utilized ROC curves to assess the diagnostic capacity of HIGD1B and employed COX analysis to investigate risk factors for GC. The differentially expressed genes (DEGs) were then subjected to functional enrichment analysis, and a nomogram was generated to forecast the survival outcome and probability of GC patients. Additionally, we evaluated the interaction between HIGD1B and the immune cell infiltration and predicted the susceptibility of GC patients to therapy. Results HIGD1B is markedly elevated in GC tissue and cell lines, and patients with high HIGD1B expression have a poorer outcome. In addition, HIGD1B is related to distinct grades, stages, and T stages. The survival ROC curves of HIGD1B and nomogram for five years were 0.741 and 0.735, suggesting appropriate levels of diagnostic efficacy. According to Cox regression analysis, HIGD1B represents a separate risk factor for the prognosis of gastric cancer (p<0.01). GSEA analysis demonstrated that the HIGD1B is closely related to cancer formation and advanced pathways. Moreover, patients with high HIGD1B expression exhibited a higher level of Tumor-infiltration immune cells (TIICs) and were more likely to experience immune escape and drug resistance after chemotherapy and immunotherapy. Conclusion This study explored the potential mechanisms and diagnostic and prognostic utility of HIGD1B in GC, as well as identified HIGD1B as a valuable biomarker and possible therapeutic target for GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
46
|
Peng B, Lin Y, Yi G, Lin M, Xiao Y, Qiu Y, Yao W, Zhou X, Liu Z. Comprehensive landscape of m6A regulator-related gene patterns and tumor microenvironment infiltration characterization in gastric cancer. Sci Rep 2024; 14:16404. [PMID: 39013954 PMCID: PMC11252343 DOI: 10.1038/s41598-024-66744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The epigenetic regulation of N6-methyladenosine (m6A) has attracted considerable interest in tumor research, but the potential roles of m6A regulator-related genes, remain largely unknown within the context of gastric cancer (GC) and tumor microenvironment (TME). Here, a comprehensive strategy of data mining and computational biology utilizing multiple datasets based on 28 m6A regulators (including novel anti-readers) was employed to identify m6A regulator-related genes and patterns and elucidate their underlying mechanisms in GC. Subsequently, a scoring system was constructed to evaluate individual prognosis and immunotherapy response. Three distinct m6A regulator-related patterns were identified through the unsupervised clustering of 56 m6A regulator-related genes (all significantly associated with GC prognosis). TME characterization revealed that these patterns highly corresponded to immune-inflamed, immune-excluded, and immune-desert phenotypes, and their TME characteristics were highly consistent with different clinical outcomes and biological processes. Additionally, an m6A-related scoring system was developed to quantify the m6A modification pattern of individual samples. Low scores indicated high survival rates and high levels of immune activation, whereas high scores indicated stromal activation and tumor malignancy. Furthermore, the m6A-related scores were correlated with tumor mutation loads and various clinical traits, including molecular or histological subtypes and clinical stage or grade, and the score had predictive values across all digestive system tumors and even in all tumor types. Notably, a low score was linked to improved responses to anti-PD-1/L1 and anti-CTLA4 immunotherapy in three independent cohorts. This study has expanded the important role of m6A regulator-related genes in shaping TME diversity and clinical/biological traits of GC. The developed scoring system could help develop more effective immunotherapy strategies and personalized treatment guidance.
Collapse
Affiliation(s)
- Bin Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yinglin Lin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Gao Yi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Mingzhen Lin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yao Xiao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Yezhenghong Qiu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Wenxia Yao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| | - Xinke Zhou
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| | - Zhaoyu Liu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, Guangzhou Medical University, The Fifth Clinical College of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Zhu DH, Su KK, Ou-Yang XX, Zhang YH, Yu XP, Li ZH, Ahmadi-Nishaboori SS, Li LJ. Mechanisms and clinical landscape of N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers. Mol Cell Biochem 2024; 479:1553-1570. [PMID: 38856795 PMCID: PMC11254988 DOI: 10.1007/s11010-024-05040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Epigenetics encompasses reversible and heritable chemical modifications of non-nuclear DNA sequences, including DNA and RNA methylation, histone modifications, non-coding RNA modifications, and chromatin rearrangements. In addition to well-studied DNA and histone methylation, RNA methylation has emerged as a hot topic in biological sciences over the past decade. N6-methyladenosine (m6A) is the most common and abundant modification in eukaryotic mRNA, affecting all RNA stages, including transcription, translation, and degradation. Advances in high-throughput sequencing technologies made it feasible to identify the chemical basis and biological functions of m6A RNA. Dysregulation of m6A levels and associated modifying proteins can both inhibit and promote cancer, highlighting the importance of the tumor microenvironment in diverse biological processes. Gastrointestinal tract cancers, including gastric, colorectal, and pancreatic cancers, are among the most common and deadly malignancies in humans. Growing evidence suggests a close association between m6A levels and the progression of gastrointestinal tumors. Global m6A modification levels are substantially modified in gastrointestinal tumor tissues and cell lines compared to healthy tissues and cells, possibly influencing various biological behaviors such as tumor cell proliferation, invasion, metastasis, and drug resistance. Exploring the diagnostic and therapeutic potential of m6A-related proteins is critical from a clinical standpoint. Developing more specific and effective m6A modulators offers new options for treating these tumors and deeper insights into gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kun-Kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Xi Ou-Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yan-Hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zu-Hong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | | | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
48
|
Ishizu K, Hayashi T, Ogawa R, Nishino M, Sakon R, Wada T, Otsuki S, Yamagata Y, Katai H, Matsui Y, Yoshikawa T. Characteristics of Metachronous Remnant Gastric Cancer After Proximal Gastrectomy: A Retrospective Analysis. J Gastric Cancer 2024; 24:280-290. [PMID: 38960887 PMCID: PMC11224721 DOI: 10.5230/jgc.2024.24.e21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Despite annual endoscopy, patients with metachronous remnant gastric cancer (MRGC) following proximal gastrectomy (PG) are at times ineligible for endoscopic resection (ER). This study aimed to clarify the clinical risk factors for ER inapplicability. MATERIALS AND METHODS We reviewed the records of 203 patients who underwent PG for cT1 gastric cancer between 2006 and 2015. The remnant stomach was categorized as a pseudofornix, corpus, or antrum. RESULTS Thirty-two MRGCs were identified in the 29 patients. Twenty MRGCs were classified as ER (ER group, 62.5%), whereas 12 were not (non-ER group, 37.5%). MRGCs were located in the pseudo-fornix in 1, corpus in 5, and antrum in 14 in the ER group, and in the pseudo-fornix in 6, corpus in 4, and antrum in 2 in the non-ER group (P=0.019). Multivariate analysis revealed that the pseudo-fornix was an independent risk factor for non-ER (P=0.014). In the non-ER group, MRGCs at the pseudo-fornix (n=6) had more frequent undifferentiated-type histology (4/6 vs. 0/6), deeper (≥pT1b2; 6/6 vs. 2/6) and nodal metastasis (3/6 vs. 0/6) than non-pseudo-fornix lesions (n=6). We examined the visibility of the region developing MRGC on an annual follow-up endoscopy one year before MRGC detection. In seven lesions at the pseudofornix, visibility was only secured in two (28.6%) because of food residues. Of the 25 lesions in the non-pseudo-fornix, visibility was secured in 21 lesions (84%; P=0.010). CONCLUSIONS Endoscopic visibility increases the chances of ER applicability. Special preparation is required to ensure the complete clearance of food residues in the pseudo-fornix.
Collapse
Affiliation(s)
- Kenichi Ishizu
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
- Cancer Medicine, Cooperative Graduate School, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Tsutomu Hayashi
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Rei Ogawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Masashi Nishino
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Ryota Sakon
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Takeyuki Wada
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Sho Otsuki
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yukinori Yamagata
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
- Department of Gastrointestinal Surgery, Tachikawa Hospital, Tokyo, Japan
| | - Yoshiyuki Matsui
- Cancer Medicine, Cooperative Graduate School, Jikei University Graduate School of Medicine, Tokyo, Japan
| | - Takaki Yoshikawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
49
|
Peng Y, Shi R, Yang S, Zhu J. Cuproptosis-related gene DLAT is a biomarker of the prognosis and immune microenvironment of gastric cancer and affects the invasion and migration of cells. Cancer Med 2024; 13:e70012. [PMID: 39031012 PMCID: PMC11258438 DOI: 10.1002/cam4.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024] Open
Abstract
OBJECTIVE Cuproptosis is a novel cell death dependent on mitochondrial respiration and regulated by copper. This study aimed to investigate the cuproptosis-related gene DLAT potential value in gastric cancer (GC). METHODS Bioinformatics was used to analyze DLAT expression. DLAT expression in GC cell lines was detected using qRT-PCR. Cell proliferation ability was assessed using CCK8 and cell cycle assay. Cell migration and invasion were assessed using wound healing and transwell assay. A prognostic assessment was performed through survival and Cox regression analysis. DLAT protein expression was analyzed through HPA immunohistochemistry. Biological functions and processes were analyzed through GO and KEGG enrichment analysis and PPI. Correlation with immune cell infiltration and immune checkpoint genes was analyzed for DLAT. RESULTS DLAT expression was upregulated in GC tissues and cells and correlated with shorter survival for patients. Age, gender, histological typing, lymph node metastasis, and distant metastasis were identified as independent prognostic factors affecting OS in GC. DLAT protein was upregulated in GC. The biological functions and pathways enriched in DLAT were mainly linked to mitochondrial respiration and the TCA cycle. The expression of DLAT was found to be positively correlated with the infiltration of Th and Th2 immune cells and only positively correlated with the expression of the BTN2A1 immune checkpoint gene. CONCLUSION DLAT has the potential to serve as a prognostic assessment factor in GC. The expression of DLAT was correlated with immune infiltration and tumor immune escape, providing a new target for immunotherapy of GC.
Collapse
Affiliation(s)
- Yanyu Peng
- Department of Histology and EmbryologyShenyang Medical CollegeShenyangLiaoningChina
| | - Ruimeng Shi
- Shenyang Medical CollegeShenyangLiaoningChina
| | - Siwen Yang
- Shenyang Medical CollegeShenyangLiaoningChina
| | - Jiayi Zhu
- Shenyang Medical CollegeShenyangLiaoningChina
| |
Collapse
|
50
|
Zheng Q, Peng Y, Liu HX, Cao HQ, Li FF. Mucin phenotype and microvessels in early gastic cancer: Magnifying endoscopy with narrow band imaging. Heliyon 2024; 10:e32293. [PMID: 38975191 PMCID: PMC11225763 DOI: 10.1016/j.heliyon.2024.e32293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
Backgrounds In order to detect early gastric cancer (EGC), this research sought to assess the diagnostic utility of magnifying endoscopy (ME) as well as the significance of mucin phenotype and microvessel features. Methods 402 individuals with an EGC diagnosis underwent endoscopic submucosal dissection (ESD) at the Department of ME between 2012 and 2020. After adjusting for image distortion, high-magnification endoscopic pictures were taken and examined to find microvessels in the area of interest. The microvessel density was measured as counts per square millimeter (counts/mm2) after segmentation, and the vascular bed's size was computed as a percentage of the area of interest. To identify certain properties of the microvessels, such as end-points, crossing points, branching sites, and connection points, further processing was done using skeletonized pixels. Results According to the research, undifferentiated tumors often lacked the MS pattern and showed an oval and tubular microsurface (MS) pattern, but differentiated EGC tumors usually lacked the MS pattern and presented a corkscrew MV pattern. Submucosal invasion was shown to be more strongly associated with the destructive MS pattern in differentiated tumors as opposed to undifferentiated tumors. While lesions with a corkscrew MV pattern and an antrum or body MS pattern revealed greater MUC5AC expression, lesions with a loop MV pattern indicated higher MUC2 expression. Furthermore, CD10 expression was higher in lesions with a papillary pattern and an antrum or body MS pattern. Conclusion These results imply that evaluating mucin phenotype and microvessel features in conjunction with magnifying endoscopy (ME) may be a useful diagnostic strategy for early gastric cancer (EGC) detection. Nevertheless, further investigation is required to confirm these findings and identify the best course of action for EGC diagnosis.
Collapse
Affiliation(s)
- Qian Zheng
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| | - Yan Peng
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| | - Han Xiong Liu
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| | - Hui Qiu Cao
- Department of Pathology, Chenzhou First People's Hospital, 423000, China
| | - Fang Fang Li
- Department of Gastroenterology, Chenzhou First People's Hospital, 423000, China
| |
Collapse
|