1
|
Burke D, Brown M, O'Neill C, Coleman HG, Kuhn T, Schlesinger S, Prue G, Coyle V. The effect of lifestyle interventions on sarcopenia in advanced colorectal cancer: A systematic review. J Geriatr Oncol 2025; 16:102143. [PMID: 39472241 DOI: 10.1016/j.jgo.2024.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Sarcopenia is a common syndrome in older patients with advanced colorectal cancer that is worsened during standard-of-care chemotherapy and is associated with increased chemotherapy toxicity, impaired quality of life, and poorer survival independent of cancer stage or chemotherapy response. Physical activity and nutrition interventions have been shown to support muscle mass in patients recovering from treatment for early-stage colorectal cancer. The aim of this present review was to evaluate the effect of physical activity and nutritional interventions on sarcopenia in patients with advanced colorectal cancer. MATERIALS AND METHODS We performed a systematic literature review of studies investigating the impact of physical activity and nutritional interventions on muscle mass in patients with advanced colorectal cancer. Relevant key words were searched in appropriate databases through December 2022. Review procedures were performed in line with guidelines from the Cochrane Handbook for systematic reviews and Synthesis Without Meta-analysis (SWiM) guidelines. RESULTS Twelve studies were identified with 1461 participants of which 587 had advanced colorectal cancer. Eight studies were randomised controlled trials (RCTs). Only two studies exclusively reported on the population with advanced colorectal cancer. Physical activity and nutritional interventions explored were heterogenous. Studies reporting an improvement in muscle mass utilised protein supplementation (one study), moderate intensity aerobic exercise (one study), and assisted resistance training (two studies). However, only a small number of participants with advanced colorectal cancer were included in these studies. Risk of bias was moderate to high for most studies. Recruitment to physical activity interventions was often low although adherence to supervised interventions was high. Physical activity and nutritional interventions across studies were safe. DISCUSSION A small number of studies with limited sample size and moderate-to-high risk of bias suggest that assisted resistance training and supported protein intake improve muscle mass in participants with cancer. However, there is currently sparse evidence for the effect of physical activity and nutritional interventions on sarcopenia in the setting of advanced and incurable colorectal cancer. Given the impact of sarcopenia in this population, further research in this area is warranted.
Collapse
Affiliation(s)
- David Burke
- Patrick G. Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast BT9 7AE, UK.
| | - Malcolm Brown
- School of Sport and Exercise Sciences, Ulster University, York Street, Belfast BT15 1ED, UK
| | - Conor O'Neill
- Western Health and Social Care Trust, MDEC Building, Altnagelvin Area Hospital site, Glenshane Road, Londonderry BT476SB, UK
| | - Helen G Coleman
- Centre of Public Health, Queen's University Belfast, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Tilman Kuhn
- Institute for Global Food Security, Queen's University, 19 Chlorine Gardens, Belfast BT9 5DL, UK; Centre for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria; Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sabrina Schlesinger
- German Diabetes Center, Leibniz Center or Diabetes Research at the Heinrich Heine University Düsseldorf, Germany
| | - Gillian Prue
- School of Nursing and Midwifery, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Vicky Coyle
- Patrick G. Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast BT9 7AE, UK
| |
Collapse
|
2
|
Hjermstad MJ, Jakobsen G, Arends J, Balstad TR, Brown LR, Bye A, Coats AJ, Dajani OF, Dolan RD, Fallon MT, Greil C, Grzyb A, Kaasa S, Koteng LH, May AM, McDonald J, Ottestad I, Philips I, Roeland EJ, Sayers J, Simpson MR, Skipworth RJ, Solheim TS, Sousa MS, Vagnildhaug OM, Laird BJ. Quality of life endpoints in cancer cachexia clinical trials: Systematic review 3 of the cachexia endpoints series. J Cachexia Sarcopenia Muscle 2024; 15:794-815. [PMID: 38553255 PMCID: PMC11154790 DOI: 10.1002/jcsm.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 06/07/2024] Open
Abstract
The use of patient-reported outcomes (PROMs) of quality of life (QOL) is common in cachexia trials. Patients' self-report on health, functioning, wellbeing, and perceptions of care, represent important measures of efficacy. This review describes the frequency, variety, and reporting of QOL endpoints used in cancer cachexia clinical trials. Electronic literature searches were performed in Medline, Embase, and Cochrane (1990-2023). Seven thousand four hundred thirty-five papers were retained for evaluation. Eligibility criteria included QOL as a study endpoint using validated measures, controlled design, adults (>18 years), ≥40 participants randomized, and intervention exceeding 2 weeks. The Covidence software was used for review procedures and data extractions. Four independent authors screened all records for consensus. Papers were screened by titles and abstracts, prior to full-text reading. PRISMA guidance for systematic reviews was followed. The protocol was prospectively registered via PROSPERO (CRD42022276710). Fifty papers focused on QOL. Twenty-four (48%) were double-blind randomized controlled trials. Sample sizes varied considerably (n = 42 to 469). Thirty-nine trials (78%) included multiple cancer types. Twenty-seven trials (54%) featured multimodal interventions with various drugs and dietary supplements, 11 (22%) used nutritional interventions alone and 12 (24%) used a single pharmacological intervention only. The median duration of the interventions was 12 weeks (4-96). The most frequent QOL measure was the EORTC QLQ-C30 (60%), followed by different FACIT questionnaires (34%). QOL was a primary, secondary, or exploratory endpoint in 15, 31 and 4 trials respectively, being the single primary in six. Statistically significant results on one or more QOL items favouring the intervention group were found in 18 trials. Eleven of these used a complete multidimensional measure. Adjustments for multiple testing when using multicomponent QOL measures were not reported. Nine trials (18%) defined a statistically or clinically significant difference for QOL, five with QOL as a primary outcome, and four with QOL as a secondary outcome. Correlation statistics with other study outcomes were rarely performed. PROMs including QOL are important endpoints in cachexia trials. We recommend using well-validated QOL measures, including cachexia-specific items such as weight history, appetite loss, and nutritional intake. Appropriate statistical methods with definitions of clinical significance, adjustment for multiple testing and few co-primary endpoints are encouraged, as is an understanding of how interventions may relate to changes in QOL endpoints. A strategic and scientific-based approach to PROM research in cachexia trials is warranted, to improve the research base in this field and avoid the use of QOL as supplementary measures.
Collapse
Affiliation(s)
- Marianne J. Hjermstad
- Department of OncologyOslo University HospitalOsloNorway
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Gunnhild Jakobsen
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)OsloNorway
- Cancer Clinic, St. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Jann Arends
- Department of Medicine I, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Trude R. Balstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNTNU–Norwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical Medicine, Clinical Nutrition Research Group, UiTThe Arctic University of NorwayTromsøNorway
| | - Leo R. Brown
- Department of Clinical SurgeryUniversity of EdinburghEdinburghUK
- Royal Infirmary of EdinburghEdinburghUK
| | - Asta Bye
- Department of OncologyOslo University HospitalOsloNorway
- Department of Nursing and Health Promotion, Faculty of Health SciencesOsloMet – Oslo Metropolitan UniversityOsloNorway
| | | | - Olav F. Dajani
- Department of OncologyOslo University HospitalOsloNorway
| | - Ross D. Dolan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Marie T. Fallon
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
| | - Christine Greil
- Department of Medicine I, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | - Stein Kaasa
- Department of OncologyOslo University HospitalOsloNorway
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Lisa H. Koteng
- Department of OncologyOslo University HospitalOsloNorway
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- Department of Clinical Service, Division of Cancer Medicine, Section of Clinical NutritionOslo University HospitalOsloNorway
| | - Iain Philips
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Eric J. Roeland
- Oregon Health and Science UniversityKnight Cancer InstitutePortlandORUSA
| | - Judith Sayers
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Melanie R. Simpson
- Department of Public Health and NursingNorwegian University of Science and TechnologyTrondheimNorway
| | | | - Tora S. Solheim
- Department of Public Health and Nursing, Cancer Clinic, St Olavs HospitalTrondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Mariana S. Sousa
- Improving Palliative, Aged and Chronic Care through Clinical Research and Translation (IMPACCT)University of TechnologySydneyNSWAustralia
| | - Ola M. Vagnildhaug
- Department of Public Health and Nursing, Cancer Clinic, St Olavs HospitalTrondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | | | | |
Collapse
|
3
|
Brown LR, Sousa MS, Yule MS, Baracos VE, McMillan DC, Arends J, Balstad TR, Bye A, Dajani O, Dolan RD, Fallon MT, Greil C, Hjermstad MJ, Jakobsen G, Maddocks M, McDonald J, Ottestad IO, Phillips I, Sayers J, Simpson MR, Vagnildhaug OM, Solheim TS, Laird BJ, Skipworth RJ. Body weight and composition endpoints in cancer cachexia clinical trials: Systematic Review 4 of the cachexia endpoints series. J Cachexia Sarcopenia Muscle 2024; 15:816-852. [PMID: 38738581 PMCID: PMC11154800 DOI: 10.1002/jcsm.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 05/14/2024] Open
Abstract
Significant variation exists in the outcomes used in cancer cachexia trials, including measures of body composition, which are often selected as primary or secondary endpoints. To date, there has been no review of the most commonly selected measures or their potential sensitivity to detect changes resulting from the interventions being examined. The aim of this systematic review is to assess the frequency and diversity of body composition measures that have been used in cancer cachexia trials. MEDLINE, Embase and Cochrane Library databases were systematically searched between January 1990 and June 2021. Eligible trials examined adults (≥18 years) who had received an intervention aiming to treat or attenuate the effects of cancer cachexia for >14 days. Trials were also of a prospective controlled design and included body weight or at least one anthropometric, bioelectrical or radiological endpoint pertaining to body composition, irrespective of the modality of intervention (e.g., pharmacological, nutritional, physical exercise and behavioural) or comparator. Trials with a sample size of <40 patients were excluded. Data extraction used Covidence software, and reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. This review was prospectively registered (PROSPERO: CRD42022276710). A total of 84 clinical trials, comprising 13 016 patients, were eligible for inclusion. Non-small-cell lung cancer and pancreatic cancer were studied most frequently. The majority of trial interventions were pharmacological (52%) or nutritional (34%) in nature. The most frequently reported endpoints were assessments of body weight (68 trials, n = 11 561) followed by bioimpedance analysis (BIA)-based estimates (23 trials, n = 3140). Sixteen trials (n = 3052) included dual-energy X-ray absorptiometry (DEXA)-based endpoints, and computed tomography (CT) body composition was included in eight trials (n = 841). Discrepancies were evident when comparing the efficacy of interventions using BIA-based estimates of lean tissue mass against radiological assessment modalities. Body weight, BIA and DEXA-based endpoints have been most frequently used in cancer cachexia trials. Although the optimal endpoints cannot be determined from this review, body weight, alongside measurements from radiological body composition analysis, would seem appropriate. The choice of radiological modality is likely to be dependent on the trial setting, population and intervention in question. CT and magnetic resonance imaging, which have the ability to accurately discriminate tissue types, are likely to be more sensitive and provide greater detail. Endpoints are of particular importance when aligned with the intervention's mechanism of action and/or intended patient benefit.
Collapse
Affiliation(s)
- Leo R. Brown
- Clinical SurgeryThe University of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
| | - Mariana S. Sousa
- Improving Palliative, Aged and Chronic Care Through Clinical Research and Translation (IMPACCT)University of Technology SydneySydneyAustralia
| | - Michael S. Yule
- Clinical SurgeryThe University of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | | | - Donald C. McMillan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Jann Arends
- Department of Medicine I, Medical Centre—University of Freiburg Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Trude R. Balstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical Medicine, Clinical Nutrition Research GroupUiT The Arctic University of NorwayTromsøNorway
| | - Asta Bye
- Department of OncologyOslo University HospitalOsloNorway
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Olav Dajani
- Department of OncologyOslo University HospitalOsloNorway
| | - Ross D. Dolan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Marie T. Fallon
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | - Christine Greil
- Department of Medicine I, Medical Centre—University of Freiburg Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | - Gunnhild Jakobsen
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Cancer ClinicSt. Olav's Hospital, Trondheim University HospitalTrondheimNorway
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and RehabilitationKing's College LondonLondonUK
| | - James McDonald
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | - Inger O. Ottestad
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer MedicineOslo University HospitalOsloNorway
| | - Iain Phillips
- Edinburgh Cancer CentreWestern General HospitalEdinburghUK
| | - Judith Sayers
- Clinical SurgeryThe University of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | - Melanie R. Simpson
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Ola M. Vagnildhaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Tora S. Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Barry J.A. Laird
- Institute of Genetics and CancerThe University of Edinburgh, Western General HospitalEdinburghUK
- St Columba's Hospice CareEdinburghUK
| | | | | |
Collapse
|
4
|
Vagnildhaug OM, Balstad TR, Ottestad I, Bye A, Greil C, Arends J, Baracos V, Brown LR, Dajani OF, Dolan RD, Fallon M, Fraser E, Grzyb A, Hjermstad MJ, Jakobsen G, Kaasa S, McDonald J, Philips I, Sayers J, Simpson MR, Sousa MS, Skipworth RJ, Laird BJ, Solheim TS. Appetite and dietary intake endpoints in cancer cachexia clinical trials: Systematic Review 2 of the cachexia endpoints series. J Cachexia Sarcopenia Muscle 2024; 15:513-535. [PMID: 38343065 PMCID: PMC10995275 DOI: 10.1002/jcsm.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024] Open
Abstract
There is no consensus on the optimal endpoint(s) in cancer cachexia trials. Endpoint variation is an obstacle when comparing interventions and their clinical value. The aim of this systematic review was to summarize and evaluate endpoints used to assess appetite and dietary intake in cancer cachexia clinical trials. A search for studies published from 1 January 1990 until 2 June 2021 was conducted using MEDLINE, Embase and Cochrane Central Register of Controlled Trials. Eligible studies examined cancer cachexia treatment versus a comparator in adults with assessments of appetite and/or dietary intake as study endpoints, a sample size ≥40 and an intervention lasting ≥14 days. Reporting was in line with PRISMA guidance, and a protocol was published in PROSPERO (2022 CRD42022276710). This review is part of a series of systematic reviews examining cachexia endpoints. Of the 5975 articles identified, 116 were eligible for the wider review series and 80 specifically examined endpoints of appetite (65 studies) and/or dietary intake (21 studies). Six trials assessed both appetite and dietary intake. Appetite was the primary outcome in 15 trials and dietary intake in 7 trials. Median sample size was 101 patients (range 40-628). Forty-nine studies included multiple primary tumour sites, while 31 studies involved single primary tumour sites (15 gastrointestinal, 7 lung, 7 head and neck and 2 female reproductive organs). The most frequently reported appetite endpoints were visual analogue scale (VAS) and numerical rating scale (NRS) (40%). The appetite item from the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ) C30/C15 PAL (38%) and the appetite question from North Central Cancer Treatment Group anorexia questionnaire (17%) were also frequently applied. Of the studies that assessed dietary intake, 13 (62%) used food records (prospective registrations) and 10 (48%) used retrospective methods (24-h recall or dietary history). For VAS/NRS, a mean change of 1.3 corresponded to Hedge's g of 0.5 and can be considered a moderate change. For food records, a mean change of 231 kcal/day or 11 g of protein/day corresponded to a moderate change. Choice of endpoint in cachexia trials will depend on factors pertinent to the trial to be conducted. Nevertheless, from trials assessed and available literature, NRS or EORTC QLQ C30/C15 PAL seems suitable for appetite assessments. Appetite and dietary intake endpoints are rarely used as primary outcomes in cancer cachexia. Dietary intake assessments were used mainly to monitor compliance and are not validated in cachexia populations. Given the importance to cachexia studies, dietary intake endpoints must be validated before they are used as endpoints in clinical trials.
Collapse
Affiliation(s)
- Ola Magne Vagnildhaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Cancer Clinic, St. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Trude R. Balstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Clinical Medicine, Clinical Nutrition Research GroupUiT The Arctic University of NorwayTromsøNorway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer MedicineOslo University HospitalOsloNorway
| | - Asta Bye
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University HospitalUniversity of OsloOsloNorway
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital and Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Nursing and Health Promotion, Faculty of Health SciencesOsloMet—Oslo Metropolitan UniversityOsloNorway
| | - Christine Greil
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Jann Arends
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Vickie Baracos
- Department of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Leo R. Brown
- Clinical SurgeryUniversity of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
| | - Olav F. Dajani
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University HospitalUniversity of OsloOsloNorway
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Ross D. Dolan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Marie Fallon
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Eilidh Fraser
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Aleksandra Grzyb
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Marianne J. Hjermstad
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University HospitalUniversity of OsloOsloNorway
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Gunnhild Jakobsen
- Cancer Clinic, St. Olavs HospitalTrondheim University HospitalTrondheimNorway
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Stein Kaasa
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University HospitalUniversity of OsloOsloNorway
- European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - James McDonald
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Iain Philips
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Judith Sayers
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
| | - Melanie R. Simpson
- Department of Public Health and Nursing, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Mariana S. Sousa
- Improving Palliative, Aged and Chronic Care through Clinical Research and Translation (IMPACCT)University of Technology SydneySydneyNew South WalesAustralia
| | | | - Barry J.A. Laird
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
| | - Tora S. Solheim
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Cancer Clinic, St. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | | |
Collapse
|
5
|
Caeiro L, Jaramillo Quiroz S, Hegarty JS, Grewe E, Garcia JM, Anderson LJ. Clinical Relevance of Physical Function Outcomes in Cancer Cachexia. Cancers (Basel) 2024; 16:1395. [PMID: 38611073 PMCID: PMC11010860 DOI: 10.3390/cancers16071395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Managing clinical manifestations of cancer/treatment burden on functional status and quality of life remains paramount across the cancer trajectory, particularly for patients with cachexia who display reduced functional capacity. However, clinically relevant criteria for classifying functional impairment at a single point in time or for classifying meaningful functional changes subsequent to disease and/or treatment progression are lacking. This unmet clinical need remains a major obstacle to the development of therapies for cancer cachexia. This review aims to describe current literature-based evidence for clinically meaningful criteria for (1) functional impairment at a single timepoint between cancer patients with or without cachexia and (2) changes in physical function over time across interventional studies conducted in patients with cancer cachexia. The most common functional assessment in cross-sectional and interventional studies was hand grip strength (HGS). We observed suggestive evidence that an HGS deficit between 3 and 6 kg in cancer cachexia may display clinical relevance. In interventional studies, we observed that long-duration multimodal therapies with a focus on skeletal muscle may benefit HGS in patients with considerable weight loss. Future studies should derive cohort-specific clinically relevant criteria to confirm these observations in addition to other functional outcomes and investigate appropriate patient-reported anchors.
Collapse
Affiliation(s)
- Lucas Caeiro
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sofia Jaramillo Quiroz
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jenna S. Hegarty
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
| | - Ellen Grewe
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
| | - Jose M. Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Lindsey J. Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Ispoglou T, McCullough D, Windle A, Nair S, Cox N, White H, Burke D, Kanatas A, Prokopidis K. Addressing cancer anorexia-cachexia in older patients: Potential therapeutic strategies and molecular pathways. Clin Nutr 2024; 43:552-566. [PMID: 38237369 DOI: 10.1016/j.clnu.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
Cancer cachexia (CC) syndrome, a feature of cancer-associated muscle wasting, is particularly pronounced in older patients, and is characterised by decreased energy intake and upregulated skeletal muscle catabolic pathways. To address CC, appetite stimulants, anabolic drugs, cytokine mediators, essential amino acid supplementation, nutritional counselling, cognitive behavioural therapy, and enteral nutrition have been utilised. However, pharmacological treatments that have also shown promising results, such as megestrol acetate, anamorelin, thalidomide, and delta-9-tetrahydrocannabinol, have been associated with gastrointestinal and cardiovascular complications. Emerging evidence on the efficacy of probiotics in modulating gut microbiota also presents a promising adjunct to traditional therapies, potentially enhancing nutritional absorption and systemic inflammation control. Additionally, low-dose olanzapine has demonstrated improved appetite and weight management in older patients undergoing chemotherapy, offering a potential refinement to current therapeutic approaches. This review aims to elucidate the molecular mechanisms underpinning CC, with a particular focus on the role of anorexia in exacerbating muscle wasting, and to propose pharmacological and non-pharmacological strategies to mitigate this syndrome, particularly emphasising the needs of an older demographic. Future research targeting CC should focus on refining appetite-stimulating drugs with fewer side-effects, specifically catering to the needs of older patients, and investigating nutritional factors that can either enhance appetite or minimise suppression of appetite in individuals with CC, especially within this vulnerable group.
Collapse
Affiliation(s)
| | | | - Angela Windle
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK; School of Medicine, University of Leeds, Leeds, UK
| | | | - Natalie Cox
- Academic Geriatric Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen White
- School of Health, Leeds Beckett University, Leeds, UK
| | - Dermot Burke
- School of Medicine, University of Leeds, Leeds, UK
| | | | - Konstantinos Prokopidis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Siqueira JM, Vega MCMD, Pimentel GD. Amino acids and cancer: potential for therapies? Curr Opin Clin Nutr Metab Care 2024; 27:47-54. [PMID: 37997812 DOI: 10.1097/mco.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Cancer patients may have a variety of disorders associated with systemic inflammation caused by disease progression. Consequently, we have protein hypercatabolism. In view of this, protein and amino acid adequacy should be considered in relation to nutritional behavior. Therefore, this review aims to evaluate the influence of protein and amino acids in the nutritional therapy of cancer. RECENT FINDINGS Diets with adequate protein levels appear to be beneficial in the treatment of cancer; guidelines suggest consumption of greater than 1.0-1.5 g/kg body weight/day. In patients diagnosed with malnutrition, sarcopenia, or cachexia, it is recommended to use the maximum amount of protein (1.5 g/kg of weight/day) to adapt the diet. In addition, based on the evidence found, there is no consensus on the dose and effects in cancer patients of amino acids such as branched-chain amino acids, glutamine, arginine, and creatine. SUMMARY When evaluating the components of the diet of cancer patients, the protein recommendation should be greater than 1.0-1.5 g/kg of weight/day, with a distribution between animal and vegetable proteins. We found little evidence demonstrating clinical benefits regarding individual or combined amino acid supplementation. Still, it is unclear how the use, dose, and specificity for different types of cancer should be prescribed or at what stage of treatment amino acids should be prescribed.
Collapse
|
8
|
McDonald J, Sayers J, Anker SD, Arends J, Balstad TR, Baracos V, Brown L, Bye A, Dajani O, Dolan R, Fallon MT, Fraser E, Griel C, Grzyb A, Hjermstad M, Jamal‐Hanjani M, Jakobsen G, Kaasa S, McMillan D, Maddocks M, Philips I, Ottestad IO, Reid KF, Sousa MS, Simpson MR, Vagnildhaug OM, Skipworth RJE, Solheim TS, Laird BJA. Physical function endpoints in cancer cachexia clinical trials: Systematic Review 1 of the cachexia endpoints series. J Cachexia Sarcopenia Muscle 2023; 14:1932-1948. [PMID: 37671529 PMCID: PMC10570071 DOI: 10.1002/jcsm.13321] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
In cancer cachexia trials, measures of physical function are commonly used as endpoints. For drug trials to obtain regulatory approval, efficacy in physical function endpoints may be needed alongside other measures. However, it is not clear which physical function endpoints should be used. The aim of this systematic review was to assess the frequency and diversity of physical function endpoints in cancer cachexia trials. Following a comprehensive electronic literature search of MEDLINE, Embase and Cochrane (1990-2021), records were retrieved. Eligible trials met the following criteria: adults (≥18 years), controlled design, more than 40 participants, use of a cachexia intervention for more than 14 days and use of a physical function endpoint. Physical function measures were classified as an objective measure (hand grip strength [HGS], stair climb power [SCP], timed up and go [TUG] test, 6-min walking test [6MWT] and short physical performance battery [SPPB]), clinician assessment of function (Karnofsky Performance Status [KPS] or Eastern Cooperative Oncology Group-Performance Status [ECOG-PS]) or patient-reported outcomes (physical function subscale of the European Organisation for the Research and Treatment of Cancer Quality of Life Questionnaires [EORTC QLQ-C30 or C15]). Data extraction was performed using Covidence and followed PRISMA guidance (PROSPERO registration: CRD42022276710). A total of 5975 potential studies were examined and 71 were eligible. Pharmacological interventions were assessed in 38 trials (54%). Of these, 11 (29%, n = 1184) examined megestrol and 5 (13%, n = 1928) examined anamorelin; nutritional interventions were assessed in 21 trials (30%); and exercise-based interventions were assessed in 6 trials (8%). The remaining six trials (8%) assessed multimodal interventions. Among the objective measures of physical function (assessed as primary or secondary endpoints), HGS was most commonly examined (33 trials, n = 5081) and demonstrated a statistically significant finding in 12 (36%) trials (n = 2091). The 6MWT was assessed in 12 trials (n = 1074) and was statistically significant in 4 (33%) trials (n = 403), whereas SCP, TUG and SPPB were each assessed in 3 trials. KPS was more commonly assessed than the newer ECOG-PS (16 vs. 9 trials), and patient-reported EORTC QLQ-C30 physical function was reported in 25 trials. HGS is the most commonly used physical function endpoint in cancer cachexia clinical trials. However, heterogeneity in study design, populations, intervention and endpoint selection make it difficult to comment on the optimal endpoint and how to measure this. We offer several recommendations/considerations to improve the design of future clinical trials in cancer cachexia.
Collapse
Affiliation(s)
- James McDonald
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
| | - Judith Sayers
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
- Clinical SurgeryUniversity of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
| | - Stefan D. Anker
- Department of Cardiology (CVK), Berlin Institute of Health Center for Regenerative Therapies (BCRT), and German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité UniversitätsmedizinBerlinGermany
- Institute of Heart DiseasesWroclaw Medical UniversityWroclawPoland
- German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité Universitätsmedizin BerlinBerlinGermany
| | - Jann Arends
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Trude Rakel Balstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNTNU–Norwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical Medicine, Clinical Nutrition Research GroupUiT The Arctic University of NorwayTromsøNorway
| | - Vickie Baracos
- Division of Palliative Care Medicine, Department of OncologyUniversity of AlbertaEdmontonABCanada
| | - Leo Brown
- Clinical SurgeryUniversity of Edinburgh, Royal Infirmary of EdinburghEdinburghUK
| | - Asta Bye
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Nursing and Health Promotion, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway
| | - Olav Dajani
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Ross Dolan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Marie T. Fallon
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Eilidh Fraser
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Christine Griel
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburg im BreisgauGermany
| | - Aleksandra Grzyb
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Marianne Hjermstad
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Mariam Jamal‐Hanjani
- Cancer Research UK Lung Cancer Centre of ExcellenceUniversity College London Cancer InstituteLondonUK
- Cancer Metastasis LaboratoryUniversity College London Cancer InstituteLondonUK
- Department of OncologyUniversity College London HospitalsLondonUK
| | - Gunnhild Jakobsen
- Department of Public Health and NursingNorwegian University of Science and TechnologyTrondheimNorway
| | - Stein Kaasa
- Regional Advisory Unit for Palliative Care, Department of Oncology, Oslo University Hospital/European Palliative Care Research Centre (PRC), and Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Donald McMillan
- Academic Unit of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and RehabilitationKing's College LondonLondonUK
| | - Iain Philips
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
| | - Inger O. Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway and The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer MedicineHarvard Medical SchoolOslo University HospitalNorway
| | - Kieran F. Reid
- Laboratory of Exercise Physiology and Physical Performance, Boston Claude D. Pepper Older Americans Independence Center for Function Promoting Therapies, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Mariana S. Sousa
- Improving Palliative, Aged and Chronic Care through Clinical Research and Translation (IMPACCT)University of Technology SydneySydneyNSWAustralia
| | - Melanie R. Simpson
- Department of Public Health and NursingNorwegian University of Science and TechnologyTrondheimNorway
| | - Ola Magne Vagnildhaug
- Cancer ClinicSt Olavs Hospital – Trondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | | | - Tora S. Solheim
- Cancer ClinicSt Olavs Hospital – Trondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Barry J. A. Laird
- Edinburgh Cancer Research CentreUniversity of EdinburghEdinburghUK
- St Columba's HospiceEdinburghUK
| | | |
Collapse
|
9
|
Caeiro L, Gandhay D, Anderson LJ, Garcia JM. A Review of Nutraceuticals in Cancer Cachexia. Cancers (Basel) 2023; 15:3884. [PMID: 37568700 PMCID: PMC10417577 DOI: 10.3390/cancers15153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cachexia is largely characterized by muscle wasting and inflammation, leading to weight loss, functional impairment, poor quality of life (QOL), and reduced survival. The main barrier to therapeutic development is a lack of efficacy for improving clinically relevant outcomes, such as physical function or QOL, yet most nutraceutical studies focus on body weight. This review describes clinical and pre-clinical nutraceutical studies outside the context of complex nutritional and/or multimodal interventions, in the setting of cancer cachexia, in view of considerations for future clinical trial design. Clinical studies mostly utilized polyunsaturated fatty acids or amino acids/derivatives, and they primarily focused on body weight and, secondarily, on muscle mass and/or QOL. The few studies that measured physical function almost exclusively utilized handgrip strength with, predominantly, no time and/or group effect. Preclinical studies focused mainly on amino acids/derivatives and polyphenols, assessing body weight, muscle mass, and occasionally physical function. While this review does not provide sufficient evidence of the efficacy of nutraceuticals for cancer cachexia, more preclinical and adequately powered clinical studies are needed, and they should focus on clinically meaningful outcomes, including physical function and QOL.
Collapse
Affiliation(s)
- Lucas Caeiro
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Devika Gandhay
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
| | - Lindsey J. Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jose M. Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA (L.J.A.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Candow DG, Chilibeck PD, Forbes SC, Fairman CM, Gualano B, Roschel H. Creatine supplementation for older adults: Focus on sarcopenia, osteoporosis, frailty and Cachexia. Bone 2022; 162:116467. [PMID: 35688360 DOI: 10.1016/j.bone.2022.116467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia refers to the age-related reduction in strength, muscle mass and functionality which increases the risk for falls, injuries and fractures. Sarcopenia is associated with other age-related conditions such as osteoporosis, frailty and cachexia. Identifying treatments to overcome sarcopenia and associated conditions is important from a global health perspective. There is evidence that creatine monohydrate supplementation, primarily when combined with resistance training, has favorable effects on indices of aging muscle and bone. These musculoskeletal benefits provide some rationale for creatine being a potential intervention for treating frailty and cachexia. The purposes of this narrative review are to update the collective body of research pertaining to the effects of creatine supplementation on indices of aging muscle and bone (including bone turnover markers) and present possible justification and rationale for its utilization in the treatment of frailty and cachexia in older adults.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada.
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University Brandon, MB, Canada
| | - Ciaran M Fairman
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Patel DI, Gonzalez A, Moon C, Serra M, Bridges PB, Hughes D, Clarke G, Kilpela L, Jiwani R, Musi N. Exercise and Creatine Supplementation to Augment the Adaptation of Exercise Training Among Breast Cancer Survivors Completing Chemotherapy: Protocol for an Open-label Randomized Controlled Trial (the THRIVE Study). JMIR Res Protoc 2022; 11:e26827. [PMID: 35363152 PMCID: PMC9015753 DOI: 10.2196/26827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In breast cancer survivors, chemotherapy-induced muscle loss has been shown to be attenuated with structured resistance exercise. Creatine supplementation can increase bioenergetics in skeletal muscle, which helps to improve overall strength and endurance and reduce muscular fatigue. Therefore, we hypothesize that adding creatinine supplementation to exercise training will accelerate improvements in strength, endurance, and bioenergetics in breast cancer survivors. OBJECTIVE The primary objective is to determine the effects of combining creatine supplementation with exercise on modulating strength and physical function in breast cancer survivors by comparing these effects to those of exercise alone. The secondary objectives are to determine if creatine supplementation and exercise can increase the intramuscular storage of creatine and improve body composition by comparing this intervention to exercise alone. METHODS We aim to test our hypothesis by conducting an open-label randomized controlled trial of 30 breast cancer survivors who have completed chemotherapy within 6 months of enrollment. Eligible participants will be equally randomized (1:1) to either a creatine and exercise group or an exercise-only group for this 12-week intervention. Individuals who are randomized to receive creatine will be initially dosed at 20 g per day for 7 days to boost the availability of creatine systemically. Thereafter, the dose will be reduced to 5 g per day for maintenance throughout the duration of the 12-week protocol. All participants will engage in 3 center-based exercise sessions, which will involve completing 3 sets of 8 to 12 repetitions on chest press, leg press, seated row, shoulder press, leg extension, and leg curl machines. The primary outcomes will include changes in strength, body composition, and physical function in breast cancer survivors. The secondary outcomes will be intramuscular concentrations of creatine and adenosine triphosphate in the vastus lateralis, midthigh cross-sectional area, and quality of life. RESULTS As of October 2021, a total of 9 patients have been enrolled into the study. No unexpected adverse events have been reported. CONCLUSIONS Creatine is being studied as a potential agent for improving strength, endurance, and bioenergetics in breast cancer survivors following chemotherapy. The findings from our trial may have future implications for supporting breast cancer survivors in reversing the muscle loss experienced during chemotherapy and improving their physical function and quality of life. TRIAL REGISTRATION ClinicalTrials.gov NCT04207359; https://clinicaltrials.gov/ct2/show/NCT04207359. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/26827.
Collapse
Affiliation(s)
- Darpan I Patel
- Biobehavioral Research Laboratory, School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Angela Gonzalez
- Biobehavioral Research Laboratory, School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Crisann Moon
- Biobehavioral Research Laboratory, School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Monica Serra
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Preston Blake Bridges
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Daniel Hughes
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Institute for Health Promotion Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Geoffrey Clarke
- Research Imaging Institute, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lisa Kilpela
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rozmin Jiwani
- Biobehavioral Research Laboratory, School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Tanaka K, Nakamura S, Narimatsu H. Nutritional Approach to Cancer Cachexia: A Proposal for Dietitians. Nutrients 2022; 14:nu14020345. [PMID: 35057531 PMCID: PMC8779386 DOI: 10.3390/nu14020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Cachexia is one of the most common, related factors of malnutrition in cancer patients. Cancer cachexia is a multifactorial syndrome characterized by persistent loss of skeletal muscle mass and fat mass, resulting in irreversible and progressive functional impairment. The skeletal muscle loss cannot be reversed by conventional nutritional support, and a combination of anti-inflammatory agents and other nutrients is recommended. In this review, we reviewed the effects of nutrients that are expected to combat muscle loss caused by cancer cachexia (eicosapentaenoic acid, β-hydroxy-β-methylbutyrate, creatine, and carnitine) to propose nutritional approaches that can be taken at present. Current evidence is based on the intake of nutrients as supplements; however, the long-term and continuous intake of nutrients as food has the potential to be useful for the body. Therefore, in addition to conventional nutritional support, we believe that it is important for the dietitian to work with the clinical team to first fully assess the patient’s condition and then to safely incorporate nutrients that are expected to have specific functions for cancer cachexia from foods and supplements.
Collapse
Affiliation(s)
- Kotone Tanaka
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services 1-10-1 Heiseicho, Yokosuka-shi 238-0013, Japan
- Correspondence:
| | - Sho Nakamura
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan; (S.N.); (H.N.)
- Graduate School of Health Innovation, Kanagawa University of Human Services, 3-25-10 Research Gate Building 2-A, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hiroto Narimatsu
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan; (S.N.); (H.N.)
- Graduate School of Health Innovation, Kanagawa University of Human Services, 3-25-10 Research Gate Building 2-A, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Department of Genetic Medicine, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan
| |
Collapse
|
13
|
Zhang L, Bu P. The two sides of creatine in cancer. Trends Cell Biol 2021; 32:380-390. [PMID: 34895811 DOI: 10.1016/j.tcb.2021.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Creatine is a nitrogen-containing organic acid naturally existing in mammals. It can be converted into phosphocreatine to provide energy for muscle and nerve tissues. Creatine and its analog, cyclocreatine, have been considered cancer suppressive metabolites due to their effects on suppression of subcutaneous cancer growth. Recently, emerging studies have demonstrated the promoting effect of creatine on cancer metastasis. Orthotopic mouse models revealed that creatine promoted invasion and metastasis of pancreatic cancer, colorectal cancer, and breast cancer. Thus, creatine possesses considerably complicated roles in cancer progression. In this review, we systematically summarized the role of creatine in tumor progression, which will call to caution when considering creatine supplementation to clinically treat cancer patients.
Collapse
Affiliation(s)
- Liwen Zhang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Bu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Li B, Yang L. Creatine in T Cell Antitumor Immunity and Cancer Immunotherapy. Nutrients 2021; 13:nu13051633. [PMID: 34067957 PMCID: PMC8152274 DOI: 10.3390/nu13051633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Creatine is a broadly used dietary supplement that has been extensively studied for its benefit on the musculoskeletal system. Yet, there is limited knowledge regarding the metabolic regulation of creatine in cells beyond the muscle. New insights concerning various regulatory functions for creatine in other physiological systems are developing. Here, we highlight the latest advances in understanding creatine regulation of T cell antitumor immunity, a topic that has previously gained little attention in the creatine research field. Creatine has been identified as an important metabolic regulator conserving bioenergy to power CD8 T cell antitumor reactivity in a tumor microenvironment; creatine supplementation has been shown to enhance antitumor T cell immunity in multiple preclinical mouse tumor models and, importantly, to synergize with other cancer immunotherapy modalities, such as the PD-1/PD-L1 blockade therapy, to improve antitumor efficacy. The potential application of creatine supplementation for cancer immunotherapy and the relevant considerations are discussed.
Collapse
Affiliation(s)
- Bo Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (B.L.); (L.Y.)
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (B.L.); (L.Y.)
| |
Collapse
|
15
|
Current Evidence and Possible Future Applications of Creatine Supplementation for Older Adults. Nutrients 2021; 13:nu13030745. [PMID: 33652673 PMCID: PMC7996960 DOI: 10.3390/nu13030745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, defined as age-related reduction in muscle mass, strength, and physical performance, is associated with other age-related health conditions such as osteoporosis, osteosarcopenia, sarcopenic obesity, physical frailty, and cachexia. From a healthy aging perspective, lifestyle interventions that may help overcome characteristics and associated comorbidities of sarcopenia are clinically important. One possible intervention is creatine supplementation (CR). Accumulating research over the past few decades shows that CR, primarily when combined with resistance training (RT), has favourable effects on aging muscle, bone and fat mass, muscle and bone strength, and tasks of physical performance in healthy older adults. However, research is very limited regarding the efficacy of CR in older adults with sarcopenia or osteoporosis and no research exists in older adults with osteosarcopenia, sarcopenic obesity, physical frailty, or cachexia. Therefore, the purpose of this narrative review is (1) to evaluate and summarize current research involving CR, with and without RT, on properties of muscle and bone in older adults and (2) to provide a rationale and justification for future research involving CR in older adults with osteosarcopenia, sarcopenic obesity, physical frailty, or cachexia.
Collapse
|
16
|
Le-Rademacher J, Lopez C, Wolfe E, Foster NR, Mandrekar SJ, Wang X, Kumar R, Adjei A, Jatoi A. Weight loss over time and survival: a landmark analysis of 1000+ prospectively treated and monitored lung cancer patients. J Cachexia Sarcopenia Muscle 2020; 11:1501-1508. [PMID: 32940014 PMCID: PMC7749536 DOI: 10.1002/jcsm.12625] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Eligibility criteria and endpoints for cancer cachexia trials-and whether weight loss should be included-remain controversial. Although most cachexia trials enrol patients after initial cancer diagnosis, few studies have addressed whether weight loss well after a cancer diagnosis is prognostic. METHODS We pooled data from non-small cell lung cancer patients from prospectively conducted trials within the Alliance for Clinical Trials in Oncology (1998-2008), a nationally funded infrastructure. We examined (i) weight data availability and weight changes and (ii) survival. RESULTS A total of 822 patients were examined. Of these, 659 (80%) were on treatment at the beginning of Cycle 2 of chemotherapy; weight was available for 656 (80%). By Cycles 3 and 4, weight was available for 448 (55%) and 384 (47%), respectively. From baseline to immediately prior to Cycle 2, 208 (32%) gained weight; 225 (34%) lost <2% of baseline weight; and 223 (34% of 656) lost 2% or more. Median survival from the beginning of Cycle 2 was 13.0, 10.9, and 6.9 months for patients with weight gain, weight loss of <2%, and weight loss of 2% or more, respectively. In multivariate analyses, adjusted for age, sex, performance score, type of treatment, and body mass index, weight loss of 2% or more was associated with poor overall survival compared with weight gain [hazard ratio (HR) = 1.66; 95% confidence interval (CI): 1.33-2.07; P < 0.001] and compared with weight loss of <2% (HR = 1.57; 95% CI: 1.27-1.95; P < 0.001). Although weight loss of <2% was not associated with poorer overall survival compared with weight gain, it was associated with poorer progression-free survival (HR = 1.24; 95% CI: 1.01-1.51; P = 0.036). Similar findings were observed in a separate 255-patient validation cohort. CONCLUSIONS Weight should be integrated into cancer cachexia trials because of its ease of frequent measurement and sustained prognostic association.
Collapse
Affiliation(s)
| | - Camden Lopez
- Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Eric Wolfe
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nathan R Foster
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Xiaofei Wang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Rajiv Kumar
- Division of Nephrology, Mayo Clinic, Rochester, MN, USA
| | - Alex Adjei
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Aminah Jatoi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Le-Rademacher JG, Jatoi A. Editorial: What about weight? Advocating for simplicity in cancer cachexia trials. Curr Opin Support Palliat Care 2020; 14:302-303. [PMID: 33105242 DOI: 10.1097/spc.0000000000000527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Aminah Jatoi
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Roeland EJ, Bohlke K, Baracos VE, Bruera E, del Fabbro E, Dixon S, Fallon M, Herrstedt J, Lau H, Platek M, Rugo HS, Schnipper HH, Smith TJ, Tan W, Loprinzi CL. Management of Cancer Cachexia: ASCO Guideline. J Clin Oncol 2020; 38:2438-2453. [DOI: 10.1200/jco.20.00611] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To provide evidence-based guidance on the clinical management of cancer cachexia in adult patients with advanced cancer. METHODS A systematic review of the literature collected evidence regarding nutritional, pharmacologic, and other interventions, such as exercise, for cancer cachexia. PubMed and the Cochrane Library were searched for randomized controlled trials (RCTs) and systematic reviews of RCTs published from 1966 through October 17, 2019. ASCO convened an Expert Panel to review the evidence and formulate recommendations. RESULTS The review included 20 systematic reviews and 13 additional RCTs. Dietary counseling, with or without oral nutritional supplements, was reported to increase body weight in some trials, but evidence remains limited. Pharmacologic interventions associated with improvements in appetite and/or body weight include progesterone analogs and corticosteroids. The other evaluated interventions either had no benefit or insufficient evidence of benefit to draw conclusions on efficacy. Limitations of the evidence include high drop-out rates, consistent with advanced cancer, as well as variability across studies in outcomes of interest and methods for outcome assessment. RECOMMENDATIONS Dietary counseling may be offered with the goals of providing patients and caregivers with advice for the management of cachexia. Enteral feeding tubes and parenteral nutrition should not be used routinely. In the absence of more robust evidence, no specific pharmacological intervention can be recommended as the standard of care; therefore, clinicians may choose not to prescribe medications specifically for the treatment of cancer cachexia. Nonetheless, when it is decided to trial a drug to improve appetite and/or improve weight gain, currently available pharmacologic interventions that may be used include progesterone analogs and short-term (weeks) corticosteroids.
Collapse
Affiliation(s)
| | - Kari Bohlke
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | - Marie Fallon
- Edinburgh Oncology Centre, University of Edinburgh, UK
| | - Jørn Herrstedt
- Zealand University Hospital Roskilde and University of Copenhagen, Denmark
| | - Harold Lau
- University of Calgary, Calgary, Alberta, Canada
| | - Mary Platek
- Roswell Park Comprehensive Cancer Center and D’Youville College, Buffalo, NY
| | - Hope S. Rugo
- University of California San Francisco, San Francisco, CA
| | | | | | | | | |
Collapse
|
19
|
Roeland EJ, Bohlke K, Baracos VE, Bruera E, del Fabbro E, Dixon S, Fallon M, Herrstedt J, Lau H, Platek M, Rugo HS, Schnipper HH, Smith TJ, Tan W, Loprinzi CL. Management of Cancer Cachexia: ASCO Guideline. J Clin Oncol 2020. [DOI: 10.1200/jco.20.00611 10.1200/jco.20.00611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To provide evidence-based guidance on the clinical management of cancer cachexia in adult patients with advanced cancer. METHODS A systematic review of the literature collected evidence regarding nutritional, pharmacologic, and other interventions, such as exercise, for cancer cachexia. PubMed and the Cochrane Library were searched for randomized controlled trials (RCTs) and systematic reviews of RCTs published from 1966 through October 17, 2019. ASCO convened an Expert Panel to review the evidence and formulate recommendations. RESULTS The review included 20 systematic reviews and 13 additional RCTs. Dietary counseling, with or without oral nutritional supplements, was reported to increase body weight in some trials, but evidence remains limited. Pharmacologic interventions associated with improvements in appetite and/or body weight include progesterone analogs and corticosteroids. The other evaluated interventions either had no benefit or insufficient evidence of benefit to draw conclusions on efficacy. Limitations of the evidence include high drop-out rates, consistent with advanced cancer, as well as variability across studies in outcomes of interest and methods for outcome assessment. RECOMMENDATIONS Dietary counseling may be offered with the goals of providing patients and caregivers with advice for the management of cachexia. Enteral feeding tubes and parenteral nutrition should not be used routinely. In the absence of more robust evidence, no specific pharmacological intervention can be recommended as the standard of care; therefore, clinicians may choose not to prescribe medications specifically for the treatment of cancer cachexia. Nonetheless, when it is decided to trial a drug to improve appetite and/or improve weight gain, currently available pharmacologic interventions that may be used include progesterone analogs and short-term (weeks) corticosteroids.
Collapse
Affiliation(s)
| | - Kari Bohlke
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | - Marie Fallon
- Edinburgh Oncology Centre, University of Edinburgh, UK
| | - Jørn Herrstedt
- Zealand University Hospital Roskilde and University of Copenhagen, Denmark
| | - Harold Lau
- University of Calgary, Calgary, Alberta, Canada
| | - Mary Platek
- Roswell Park Comprehensive Cancer Center and D’Youville College, Buffalo, NY
| | - Hope S. Rugo
- University of California San Francisco, San Francisco, CA
| | | | | | | | | |
Collapse
|
20
|
Zeng Z, Mishuk AU, Qian J. Safety of dietary supplements use among patients with cancer: A systematic review. Crit Rev Oncol Hematol 2020; 152:103013. [PMID: 32570150 DOI: 10.1016/j.critrevonc.2020.103013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Dietary supplements (DS) are commonly taken by patients with cancer, but safety of DS use remains unclear. A systematic literature search was conducted using PubMed, ClinicalTrials.gov, International Pharmaceutical Abstracts and Alt HealthWatch databases from inception through October 12, 2018. Included studies were limited to clinical trials including patients with cancer, DS products as interventions, evaluation of safety endpoints of DS use, and published in English. Sixty-five studies were included to evaluate 20 different DS among patients with 12 types of cancer. Botanical DS (n = 13), vitamins (n = 8), and probiotics/synbiotics (n = 7) were the top 3 types of DS evaluated in these trials. Majority of studied DS appeared safe. Among 19 trials including patients with cancer undergoing chemotherapy, most (n = 18) of studied DS (e.g., vitamins, botanical, omega-3 fatty acid) were found to be safe. Evaluation of DS use and its safety should be regularly incorporated in clinical trials among patients with cancer.
Collapse
Affiliation(s)
- Zhen Zeng
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | | | - Jingjing Qian
- Auburn University Harrison School of Pharmacy, Auburn, AL, USA.
| |
Collapse
|
21
|
Prado CM, Purcell SA, Laviano A. Nutrition interventions to treat low muscle mass in cancer. J Cachexia Sarcopenia Muscle 2020; 11:366-380. [PMID: 31916411 PMCID: PMC7113510 DOI: 10.1002/jcsm.12525] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Many patients with cancer experience poor nutritional status, which detrimentally impacts clinical outcomes. Poor nutritional status in cancer is primarily manifested by severe muscle mass (MM) depletion, which may occur at any stage (from curative to palliative) and often co-exists with obesity. The objective of this article was to discuss gaps and opportunities related to the role of nutrition in preventing and reversing low MM in cancer. It also provides a narrative review of relevant nutritional interventions for patients capable of oral intake. The impact of nutrition interventions to prevent/treat low MM in cancer is not well understood, potentially due to the limited number of studies and of clinically viable, accurate body composition assessment tools. Additionally, the type of study designs, inclusion criteria, length of intervention, and choice of nutritional strategies have not been optimal, likely underestimating the anabolic potential of nutrition interventions. Nutrition studies are also often of short duration, and interventions that adapt to the metabolic and behavioural changes during the clinical journey are needed. We discuss energy requirements (25-30 kcal/kg/day) and interventions of protein (1.0-1.5 g/kg/day), branched-chain amino acids (leucine: 2-4 g/day), β-hydroxy β-methylbutyrate (3 g/day), glutamine (0.3 g/kg/day), carnitine (4-6 g/day), creatine (5 g/day), fish oil/eicosapentanoic acid (2.0-2.2 g/day EPA and 1.5 g/day DHA), vitamin/minerals (e.g. vitamin D: 600-800 international units per day), and multimodal approaches (nutrition, exercise, and pharmaceutical) to countermeasure low MM in cancer. Although the evidence is variable by modality type, interventions were generally not specifically studied in the context of cancer. Understanding patients' nutritional requirements could lead to targeted prescriptions to prevent or attenuate low MM in cancer, with the overall aim of minimizing muscle loss during anti-cancer therapy and maximizing muscle anabolism during recovery. It is anticipated that this will, in turn, improve overall health and prognostication including tolerance to treatment and survival. However, oncology-specific interventions with more robust study designs are needed to facilitate these goals.
Collapse
Affiliation(s)
- Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A Purcell
- Human Nutrition Research Unit, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Division of Endocrinology, Metabolism, and Diabetes, and Division of Nutrition, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, La Sapienza University, Rome, Italy
| |
Collapse
|
22
|
Effects of acute oral feeding on protein metabolism and muscle protein synthesis in individuals with cancer. Nutrition 2019; 67-68:110531. [DOI: 10.1016/j.nut.2019.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
|
23
|
Bonomi P, Fidler MJ, Shah P, Borgia J. Theoretical and Practical Implications of Treating Cachexia in Advanced Lung Cancer Patients. Cancers (Basel) 2019; 11:cancers11111619. [PMID: 31652685 PMCID: PMC6893632 DOI: 10.3390/cancers11111619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Lung cancer continues to be a major worldwide health issue, with more than 50% of patients having incurable metastatic disease at diagnosis. Fortunately, the advanced lung cancer treatment landscape is changing rapidly as a result of the positive impact of effective inhibitors of tumor driver mutations, and the more recent discovery that immune modulation with anti-PD-1/PD-L1 monoclonal antibodies results in tumor regression and prolonged survival. While a relatively small subset of lung cancer patients are candidates for inhibitors of driver mutations, the majority of advanced lung cancer patients are candidates for an immunotherapy regimen. Many of these patients have cachexia, which is associated with increased cancer therapy toxicity and possibly reduced responsiveness to immunotherapy. Two ongoing cachexia trials, one testing a ghrelin analogue and the other testing a multimodal strategy, have endpoints which assess clinical benefit-weight gain and relief of anorexia/cachexia symptoms. Provided that the trial objectives are achieved, these treatment strategies will provide a way to relieve suffering and distress for cachectic cancer patients. While awaiting the results of these trials, it would be reasonable to consider designing studies testing cachexia treatments combined with first-line immunotherapy and chemotherapy-immunotherapy in stage IV lung cancer patients, with enhanced overall survival being one of the endpoints.
Collapse
Affiliation(s)
- Philip Bonomi
- Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Mary Jo Fidler
- Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Palmi Shah
- Department of Radiology, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Jeffrey Borgia
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Fairman CM, Kendall KL, Hart NH, Taaffe DR, Galvão DA, Newton RU. The potential therapeutic effects of creatine supplementation on body composition and muscle function in cancer. Crit Rev Oncol Hematol 2018; 133:46-57. [PMID: 30661658 DOI: 10.1016/j.critrevonc.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Low muscle mass in individuals with cancer has a profound impact on quality of life and independence and is associated with greater treatment toxicity and poorer prognosis. Exercise interventions are regularly being investigated as a means to ameliorate treatment-related adverse effects, and nutritional/supplementation strategies to augment adaptations to exercise are highly valuable. Creatine (Cr) is a naturally-occurring substance in the human body that plays a critical role in energy provision during muscle contraction. Given the beneficial effects of Cr supplementation on lean body mass, strength, and physical function in a variety of clinical populations, there is therapeutic potential in individuals with cancer at heightened risk for muscle loss. Here, we provide an overview of Cr physiology, summarize the evidence on the use of Cr supplementation in various aging/clinical populations, explore mechanisms of action, and provide perspectives on the potential therapeutic role of Cr in the exercise oncology setting.
Collapse
Affiliation(s)
- C M Fairman
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.
| | - K L Kendall
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - N H Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; Institute for Health Research, University of Notre Dame Australia, Perth, Western Australia, Australia
| | - D R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - D A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - R U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia; School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Balko RA, Hendrickson AW, Grudem ME, Klampe CM, Jatoi A. Can Poly (ADP-Ribose) Polymerase Inhibitors Palliate Paclitaxel-Induced Peripheral Neuropathy in Patients With Cancer? Am J Hosp Palliat Care 2018; 36:72-75. [DOI: 10.1177/1049909118786958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Paclitaxel-treated patients can suffer from years of peripheral neuropathy with pain, numbness, and tingling. Promising preclinical data with poly (ADP-ribose) polymerase (PARP) inhibitors led us to explore this class of agents to palliate this neuropathy. Methods: We relied on a completed trial that tested the antineoplastic effects of veliparib (NCT01012817). Data from patients who had been enrolled on NCT01012817, who previously received paclitaxel, and who had completed a validated pain assessment instrument were evaluated for improvement in their pain scores. Results: All 34 eligible patients were women, and all had a metastatic gynecological malignancy. On a 10-point scale (higher numbers indicative of worse pain), the average baseline score was 3.6 (range: 0-7). Seven patients (21%; 95% confidence interval: 9%-38%) manifested a drop in pain score (1 score lower than baseline followed by at least one consecutive value also below baseline). Of note, no patients initiated other therapy for neuropathy while on NCT01012817. Conclusion: The PARP inhibitors merit further study for chemotherapy-induced peripheral neuropathy. For patients suffering from peripheral neuropathy, these putative palliative effects might prompt earlier consideration of a PARP inhibitor as part of cancer treatment.
Collapse
Affiliation(s)
- Ryan A. Balko
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Aminah Jatoi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Childs DS, Jatoi A. A hunger for hunger: a review of palliative therapies for cancer-associated anorexia. ANNALS OF PALLIATIVE MEDICINE 2018; 8:50-58. [PMID: 29860861 DOI: 10.21037/apm.2018.05.08] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/07/2018] [Indexed: 11/06/2022]
Abstract
Cancer-associated anorexia, or loss of appetite, is prevalent, distressing to patients and their families, and associated with poorer outcomes in patients with advanced cancer. A well-defined therapeutic strategy remains to be defined. We present here a review of appetite loss in cancer patients with a summary of how best to manage this symptom.
Collapse
Affiliation(s)
| | - Aminah Jatoi
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|