1
|
Nigen B, Bodergat T, Vaugier L, Pons-Tostivint E. [First-line immunotherapy in non-small cell lung cancer diagnosed with brain metastases]. Rev Mal Respir 2024; 41:571-582. [PMID: 38926022 DOI: 10.1016/j.rmr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Up to 30% patients newly diagnosed with advanced non-small cell lung cancer (NSCLC) present with brain metastases. In the absence of oncogenic addiction, first-line immunotherapy, alone or in combination with chemotherapy, is the current standard of care. This review aims to synthesize the available data regarding the efficacy of immunotherapy in these patients, and to discuss the possibility of its being coordinated with local treatments such as radiotherapy. STATE OF THE ART NSCLC patients with brain metastases appear to have survival benefits with immunotherapy similar to those of NSCLC patients without brain metastases. However, this finding is based on mainly prospective studies having included highly selected patients with pre-treated and stable brain metastases. Several retrospective studies and two prospective single-arm studies have confirmed the intracranial efficacy of immunotherapy, either alone or in combination with chemotherapy. PERSPECTIVES The indications and optimal timing for cerebral radiotherapy remain subjects of debate. To date, there exists no randomized study assessing the addition of brain radiotherapy to first-line immunotherapy. That said, a recent meta-analysis showed increased intracerebral response when radiotherapy complemented immunotherapy. CONCLUSIONS For NSCLC patients with brain metastases, the available data suggest a clear benefit of first-line immunotherapy, whether alone or combined with chemotherapy. However, most of these data are drawn from retrospective, non-randomized studies with small sample sizes.
Collapse
Affiliation(s)
- B Nigen
- Service de pneumologie, centre hospitalier Les Sables-d'Olonne, Les Sables-d'Olonne, France
| | - T Bodergat
- Oncologie médicale, centre hospitalier universitaire Nantes, Nantes université, Nantes, France
| | - L Vaugier
- Département de radiothérapie, institut de cancérologie de l'Ouest, Saint-Herblain, France
| | - E Pons-Tostivint
- Oncologie médicale, centre hospitalier universitaire Nantes, Nantes université, Nantes, France; Nantes université, Inserm UMR 1307, CNRS UMR 6075, université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
2
|
Kienzler JC, Becher B. Immunity in malignant brain tumors: Tumor entities, role of immunotherapy, and specific contribution of myeloid cells to the brain tumor microenvironment. Eur J Immunol 2024; 54:e2250257. [PMID: 37940552 DOI: 10.1002/eji.202250257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Malignant brain tumors lack effective treatment, that can improve their poor overall survival achieved with standard of care. Advancement in different cancer treatments has shifted the focus in brain tumor research and clinical trials toward immunotherapy-based approaches. The investigation of the immune cell landscape revealed a dominance of myeloid cells in the tumor microenvironment. Their exact roles and functions are the subject of ongoing research. Current evidence suggests a complex interplay of tumor cells and myeloid cells with competing functions toward support vs. control of tumor growth. Here, we provide a brief overview of the three most abundant brain tumor entities: meningioma, glioma, and brain metastases. We also describe the field of ongoing immunotherapy trials and their results, including immune checkpoint inhibitors, vaccination studies, oncolytic viral therapy, and CAR-T cells. Finally, we summarize the phenotypes of microglia, monocyte-derived macrophages, border-associated macrophages, neutrophils, and potential novel therapy targets.
Collapse
Affiliation(s)
- Jenny C Kienzler
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, Inflammation Research Lab, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Mehkri Y, Windermere SA, Still MEH, Yan SC, Goutnik M, Melnick K, Doonan B, Ghiaseddin AP, Rahman M. The Safety and Efficacy of Concurrent Immune Checkpoint Blockade and Stereotactic Radiosurgery Therapy with Practitioner and Researcher Recommendations. World Neurosurg 2024; 181:e133-e153. [PMID: 37739175 DOI: 10.1016/j.wneu.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown growing promise in the treatment of brain metastases, especially combined with stereotactic radiosurgery (SRS). The combination of ICIs with SRS has been studied for efficacy as well as increasing radiation necrosis risks. In this review, we compare clinical outcomes of radiation necrosis, intracranial control, and overall survival between patients with brain metastases treated with either SRS alone or SRS-ICI combination therapy. METHODS A literature search of PubMed, Scopus, Embase, Web of Science, and Cochrane was performed in May 2023 for articles comparing the safety and efficacy of SRS/ICI versus SRS-alone for treating brain metastases. RESULTS The search criteria identified 1961 articles, of which 48 met inclusion criteria. Combination therapy with SRS and ICI does not lead to significant increases in incidence of radiation necrosis either radiographically or symptomatically. Overall, no difference was found in intracranial control between SRS-alone and SRS-ICI combination therapy. Combination therapy is associated with increased median overall survival. Notably, some comparative studies observed decreased neurologic deaths, challenging presumptions that improved survival is due to greater systemic control. The literature supports SRS-ICI administration within 4 weeks of another for survival but remains inconclusive, requiring further study for other outcome measures. CONCLUSIONS Combination SRS-ICI therapy is associated with significant overall survival benefit for patients with brain metastases without significantly increasing radiation necrosis risks compared to SRS alone. Although intracranial control rates appear to be similar between the 2 groups, timing of treatment delivery may improve control rates and demands further study attention.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - Megan E H Still
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Sandra C Yan
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael Goutnik
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kaitlyn Melnick
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Bently Doonan
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Ashley P Ghiaseddin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Dong S, Chen C, Di C, Wang S, Dong Q, Lin W, Liu D. The Association between NADPH Oxidase 2 (NOX2) and Drug Resistance in Cancer. Curr Cancer Drug Targets 2024; 24:1195-1212. [PMID: 38362697 DOI: 10.2174/0115680096277328240110062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
NADPH oxidase, as a major source of intracellular reactive oxygen species (ROS), assumes an important role in the immune response and oxidative stress response of the body. NADPH oxidase 2 (NOX2) is the first and most representative member of the NADPH oxidase family, and its effects on the development of tumor cells are gaining more and more attention. Our previous study suggested that NCF4 polymorphism in p40phox, a key subunit of NOX2, affected the outcome of diffuse large B-cell lymphoma patients treated with rituximab. It hypothesized that NOX2-mediated ROS could enhance the cytotoxic effects of some anti-tumor drugs in favor of patients with tumors. Several reviews have summarized the role of NOX2 and its congeners-mediated ROS in anti-tumor therapy, but few studies focused on the relationship between the expression of NOX2 and anti-tumor drug resistance. In this article, we systematically introduced the NOX family, represented by NOX2, and a classification of the latest inhibitors and agonists of NOX2. It will help researchers to have a more rational and objective understanding of the dual role of NOX2 in tumor drug resistance and is expected to provide new ideas for oncology treatment and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Shiqi Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chao Chen
- Department of laboratory, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chang Di
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shufan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Quan Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Wenxin Lin
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| |
Collapse
|
5
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
6
|
Lapadula L, Piombino M, Bianculli A, Caivano R, Capobianco A, Cacciatore A, Cozzolino M, Oliviero C, D'andrea B, Mileo A, Leone A, Carbone F, Fochi NP, Landriscina M, Colamaria A, Giordano G. Third whole-brain radiation therapy for multiple brain metastases. Should it be considered in selected patients? Cancer Radiother 2023; 27:725-730. [PMID: 37777371 DOI: 10.1016/j.canrad.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 10/02/2023]
Abstract
Whole brain reirradiation for the treatment of multiple brain metastases has shown promising results. However, concerns remain over the possible neurotoxic effects of the cumulative dose as well as the questionable radiosensitivity of recurrent metastases. A second reirradiation of the whole brain is ordinarily performed in our department for palliative purposes in patients presenting with multiple metastatic brain progression. For this study, an investigational third whole brain reirradiation has been administered to highly selected patients to obtain disease control and delay progression. Clinical outcomes and neurological toxicity were also evaluated.
Collapse
Affiliation(s)
- L Lapadula
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - M Piombino
- Radiation Oncology Department AUOC, Policlinico Bari, Italy
| | - A Bianculli
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - R Caivano
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - A Capobianco
- Multidisciplinary Oncology, Health Directorate Department, IRCCS Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Italy
| | - A Cacciatore
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - M Cozzolino
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - C Oliviero
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - B D'andrea
- Radiation Oncology Department, IRCCS-CROB, Rionero in Vulture, Italy
| | - A Mileo
- Oncology Unit, IRCCS Referral Cancer Center of Basilicata (CROB), Rionero in Vulture, Italy
| | - A Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany; Faculty of Human Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - F Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany; Division of Neurosurgery, "Riuniti" Hospital, University of Foggia, FG 71121 Foggia, Italy
| | - N P Fochi
- Division of Neurosurgery, "Riuniti" Hospital, University of Foggia, FG 71121 Foggia, Italy.
| | - M Landriscina
- Unit of Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - A Colamaria
- Division of Neurosurgery, Policlinico "Riuniti", Foggia, Italy
| | - G Giordano
- Unit of Medical Oncology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
7
|
Sun L, Kienzler JC, Reynoso JG, Lee A, Shiuan E, Li S, Kim J, Ding L, Monteleone AJ, Owens GC, Phillips JJ, Everson RG, Nathanson D, Cloughesy TF, Li G, Liau LM, Hugo W, Kim W, Prins RM. Immune checkpoint blockade induces distinct alterations in the microenvironments of primary and metastatic brain tumors. J Clin Invest 2023; 133:e169314. [PMID: 37655659 PMCID: PMC10471177 DOI: 10.1172/jci169314] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/12/2023] [Indexed: 09/02/2023] Open
Abstract
In comparison with responses in recurrent glioblastoma (rGBM), the intracranial response of brain metastases (BrM) to immune checkpoint blockade (ICB) is less well studied. Here, we present an integrated single-cell RNA-Seq (scRNA-Seq) study of 19 ICB-naive and 9 ICB-treated BrM samples from our own and published data sets. We compared them with our previously published scRNA-Seq data from rGBM and found that ICB led to more prominent T cell infiltration into BrM than rGBM. These BrM-infiltrating T cells exhibited a tumor-specific phenotype and displayed greater activated/exhausted features. We also used multiplex immunofluorescence and spatial transcriptomics to reveal that ICB reduced a distinct CD206+ macrophage population in the perivascular space, which may modulate T cell entry into BrM. Furthermore, we identified a subset of progenitor exhausted T cells that correlated with longer overall survival in BrM patients. Our study provides a comprehensive immune cellular landscape of ICB's effect on metastatic brain tumors and offers insights into potential strategies for improving ICB efficacy for brain tumor patients.
Collapse
Affiliation(s)
- Lu Sun
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
| | - Jenny C. Kienzler
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Inflammation Research Group, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Alexander Lee
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
| | | | | | | | - Lizhong Ding
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Department of Medicine/Dermatology, UCLA, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | | | - Joanna J. Phillips
- Helen Diller Family Comprehensive Cancer Center and
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Richard G. Everson
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - David Nathanson
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - Timothy F. Cloughesy
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Department of Neurology/Neuro-Oncology, UCLA, Los Angeles, California, USA
| | | | - Linda M. Liau
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - Willy Hugo
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Department of Medicine/Dermatology, UCLA, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Won Kim
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
| | - Robert M. Prins
- Department of Neurosurgery, UCLA, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
- UCLA Jonsson Comprehensive Cancer Center (JCCC), and
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
8
|
Johannwerner L, Werner EM, Blanck O, Janssen S, Cremers F, Yu NY, Rades D. Radiation Necrosis Following Stereotactic Radiosurgery or Fractionated Stereotactic Radiotherapy with High Biologically Effective Doses for Large Brain Metastases. BIOLOGY 2023; 12:biology12050655. [PMID: 37237469 DOI: 10.3390/biology12050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
In Radiation Therapy Oncology Group 90-05, the maximum tolerated dose of single-fraction radiosurgery (SRS) for brain metastases of 21-30 mm was 18 Gy (biologically effective dose (BED) 45 Gy12). Since the patients in this study received prior brain irradiation, tolerable BED may be >45 Gy12 for de novo lesions. We investigated SRS and fractionated stereotactic radiotherapy (FSRT) with a higher BED for radiotherapy-naive lesions. Patients receiving SRS (19-20 Gy) and patients treated with FSRT (30-48 Gy in 3-12 fractions) with BED > 49 Gy12 for up to 4 brain metastases were compared for grade ≥ 2 radiation necrosis (RN). In the entire cohort (169 patients with 218 lesions), 1-year and 2-year RN rates were 8% after SRS vs. 2% and 13% after FSRT (p = 0.73) in per-patient analyses, and 7% after SRS vs. 7% and 10% after FSRT (p = 0.59) in per-lesion analyses. For lesions ≤ 20 mm (137 patients with 185 lesions), the RN rates were 4% (SRS) vs. 0% and 15%, respectively, (FSRT) (p = 0.60) in per-patient analyses, and 3% (SRS) vs. 0% and 11%, respectively, (FSRT) (p = 0.80) in per-lesion analyses. For lesions > 20 mm (32 patients with 33 lesions), the RN rates were 50% (SRS) vs. 9% (FSRT) (p = 0.012) in both per-patient and per-lesion analyses. In the SRS group, a lesion size > 20 mm was significantly associated with RN; in the FSRT group, lesion size had no impact on RN. Given the limitations of this study, FSRT with BED > 49 Gy12 was associated with low RN risk and may be safer than SRS for brain metastases > 20 mm.
Collapse
Affiliation(s)
- Leonie Johannwerner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Elisa M Werner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Saphir Radiosurgery Center Northern Germany, 24105 Kiel, Germany
| | - Stefan Janssen
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
- Medical Practice for Radiotherapy and Radiation Oncology, 30161 Hannover, Germany
| | - Florian Cremers
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Dirk Rades
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| |
Collapse
|
9
|
Tini P, Marampon F, Giraffa M, Bucelli S, Niyazi M, Belka C, Minniti G. Current status and perspectives of interventional clinical trials for brain metastases: analysis of ClinicalTrials.gov. Radiat Oncol 2023; 18:62. [PMID: 37016421 PMCID: PMC10074717 DOI: 10.1186/s13014-023-02243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The management of brain metastases (BM), the major cause of cancer morbidity and mortality, is becoming an emerging area of interest. Surgery, whole brain radiation therapy (WBRT), or stereotactic radiosurgery (SRS), have historically been the main focal treatments for BM. However, the introduction of innovative targeted- and immune-based therapies is progressively changing the paradigm of BM treatment, resulting in an increase in clinical trials investigating new therapeutic strategies. METHODS Using ClinicalTrials.gov, the largest clinical trial registry with over 400,000 registered trials, we performed an analysis of phase II and phase III ongoing trials evaluating different systemic therapies, radiotherapy (RT), and surgery given alone or in combination in patients with BM. RESULTS One hundred sixty-eight trials, 133 phase II and 35 phase III; the largest part having primarily the curative treatment of patients with BM from lung cancer, breast cancer and melanoma, were selected. One hundred sixty-three trials used systemic therapies. One hundred thirteen used tyrosine kinase inhibitors, more frequently Osimertinib, Icotinib and Pyrotinib, 50 used monoclonal antibodies, more frequently Trastuzumab, Pembrolizumab, Nivolumab, 20 used conventional chemotherapies whilst no oncological active drugs were used in 6 trials. Ninety-six trials include RT; 54 as exclusive treatment and 42 in combination with systemic therapies. CONCLUSION Systemic targeted- and/or immune-based therapies, combined or not with RT, are increasingly used in the routine of BM treatment. SRS is progressively replacing WBRT. All these trials intend to address multiple questions on the management of patients with BMs, including the recommended upfront treatment for different cancer histologies and the optimal timing between systemic therapies and radiation regarding brain control and neurocognitive outcome and quality of life.
Collapse
Affiliation(s)
- Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Martina Giraffa
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy
| | - Samira Bucelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy.
- IRCCS Neuromed, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
10
|
Barillaro A, Caroprese M, Cella L, Viggiano A, Buccelli F, Daponte C, Feoli C, Oliviero C, Clemente S, Farella A, Conson M, Pacelli R. Stereotactic Radiation Therapy for Brain Metastases: Factors Affecting Outcomes and Radiation Necrosis. Cancers (Basel) 2023; 15:cancers15072094. [PMID: 37046755 PMCID: PMC10093341 DOI: 10.3390/cancers15072094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic radiation therapy (SRT) is a proven effective treatment for brain metastases (BM); however, symptomatic radiation necrosis (RN) is a late effect that may impact on patient’s quality of life. The aim of our study was to retrospectively evaluate survival outcomes and characterize the occurrence of RN in a cohort of BM patients treated with ablative SRT at Federico II University Hospital. Clinical and dosimetric factors of 87 patients bearing a total of 220 BMs treated with SRT from 2016 to 2022 were analyzed. Among them, 46 patients with 127 BMs having clinical and MRI follow-up (FUP) ≥ 6 months were selected for RN evaluation. Dosimetric parameters of the uninvolved brain (brain without GTV) were extracted. The crude local control was 91% with neither clinical factors nor prescription dose correlating with local failure (LF). At a median FUP of 9 (1–68) months, the estimated median overall survival (OS), progression-free survival (PFS), and brain progression-free survival (bPFS) were 16, 6, and 9 months, respectively. The estimated OS rates at 1 and 3 years were 59.8% and 18.3%, respectively; bPFS at 1 and 3 years was 29.9% and 13.5%, respectively; PFS at 1 and 3 years was 15.7% and 0%, respectively; and local failure-free survival (LFFS) at 1 and 3 years was 87.2% and 83.8%, respectively. Extracranial disease status was an independent factor related to OS. Fourteen (30%) patients manifested RN. At multivariate analysis, adenocarcinoma histology, left location, and absence of chemotherapy were confirmed as independent risk factors for any-grade RN. Nine (20%) patients developed symptomatic (G2) RN, which improved or stabilized after 1–16 months of steroid therapy. With prompt recognition and, when necessary, medical therapy, RN radiological and clinical amelioration can be obtained.
Collapse
Affiliation(s)
- Angela Barillaro
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Mara Caroprese
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Laura Cella
- National Research Council (CNR), Institute of Biostructures and Bioimaging, 80145 Naples, Italy
| | - Anna Viggiano
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Francesca Buccelli
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Chiara Daponte
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Chiara Feoli
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | | | | | | | - Manuel Conson
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, Federico II School of Medicine, 80128 Naples, Italy
| |
Collapse
|
11
|
Nicolas E, Lucia F. Radiothérapie et thérapies ciblées : risques et opportunités. Cancer Radiother 2022; 26:973-978. [DOI: 10.1016/j.canrad.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 10/14/2022]
|
12
|
Alvarez-Breckenridge C, Remon J, Piña Y, Nieblas-Bedolla E, Forsyth P, Hendriks L, Brastianos PK. Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35522917 DOI: 10.1200/edbk_352320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of brain metastases has historically been a dreaded, end-stage complication of systemic disease. Additionally, with the increasing effectiveness of systemic therapies that prolong life expectancy and improved imaging tools, the incidence of intracranial progression is becoming more common. Within this context, there has been increasing attention directed at understanding the molecular underpinnings of intracranial progression. Exploring the unique features of brain metastases compared with their extracranial counterparts to identify aberrant signaling pathways, which can be targeted pharmacologically, may help lead to new treatments for this patient population. Additionally, critical discoveries outside the sphere of the central nervous system are increasingly being applied to brain metastases with the emergence of immune checkpoint inhibition, becoming a prevalent treatment option for patients with brain metastases across multiple histologies. As novel treatment strategies are considered, they require thoughtful incorporation of agents that can cross the blood-brain barrier and can synergize with pre-existing agents through rational combinations. Lastly, as clinicians and scientists continue to understand key molecular features of these tumors, they will continue to influence the treatment algorithms that are developing for the management of these patients. Due to the complexity of treatment decisions for patients with brain metastases, an emerging tool is the utilization of multidisciplinary brain metastasis tumor boards to ensure optimal treatment decisions are made and that patients are provided access to applicable clinical trials. Looking to the future, the collective effort to understand the various tumor-intrinsic and tumor-extrinsic factors that promote central nervous system seeding and propagation will have the potential to change the clinical trajectory for these patients.
Collapse
Affiliation(s)
| | - Jordi Remon
- Department of Medical Oncology, HM CIOCC Barcelona (Centro Integral Oncológico Clara Campal), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | | | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | - Lizza Hendriks
- Department of Pulmonary Diseases - GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
13
|
Ma Y, Lu X, Liu H. Neutropenic Diet Cannot Reduce the Risk of Infection and Mortality in Oncology Patients With Neutropenia. Front Oncol 2022; 12:836371. [PMID: 35356218 PMCID: PMC8959862 DOI: 10.3389/fonc.2022.836371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background The purpose of this systematic review and meta-analysis was to evaluate the effect of a neutropenic diet and a control diet on infection and mortality rates in oncology patients with neutropenia. Methods We searched the following English electronic databases: PubMed, Embase, Cochrane Central Register of Controlled Trials, and Google Scholar Engine. Published studies involving neutropenic diets (study group) and control diets (control group) in oncology patients with neutropenia were searched. The focus of the meta-analysis was on the outcomes of infection and mortality rates. A subgroup analysis was also performed. Results A total of 6 studies were included, with a total sample size of 1114 patients. The patients in the study group had a similar infection rate compared with the patients in the control group (P = 0.11). The patients in the study group had a similar mortality rate compared with the patients in the control group (P = 0.74). Another subgroup analysis showed that the incidence of infection was also similar for pediatric (P = 0.74) and adult (P = 0.11) oncology patients between the study and control groups. Conclusions Based on the current evidence, this meta-analysis showed that the application of a neutropenic diet cannot reduce the risk of infection and mortality in oncology patients with neutropenia. However, more rigorous randomized controlled trials are needed to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoxi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China.,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Latorzeff I, Antoni D, Josset S, Noël G, Tallet-Richard A. Radiation therapy for brain metastases. Cancer Radiother 2021; 26:129-136. [PMID: 34955413 DOI: 10.1016/j.canrad.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present the update of the recommendations of the French society for radiation oncology on radiation therapy for the management of brain metastases. It has evolved in recent years and has become more complex. As the life expectancy of patients has increased and retreatments have become more frequent, side effects must be absolutely avoided. Cognitive side effects must in particular be prevented, and the most modern radiation therapy techniques must be used systematically. New prognostic classifications specific to the primary tumour of patients, advances in imaging and radiation therapy technology and new systemic therapeutic strategies, are making treatment more relevant. Stereotactic radiation therapy has supplanted whole-brain radiation therapy both for patients with metastases in place and for those who underwent surgery. Hippocampus protection is possible with intensity-modulated radiation therapy. Its relevance in terms of cognitive functioning should be more clearly demonstrated but the requirement for its use is constantly increasing. New targeted cancer treatment therapies based on the nature of the primitive have complicated the notion of the place and timing of radiation therapy and the discussion during multidisciplinary care meeting to indicate the best sequences is becoming a challenging issue as data on the interaction between treatments remain to be documented. In the end, although aimed at patients in the palliative phase, the management of brain metastases is one of the locations for which technical reflection is the most challenging and treatment become increasingly personalized.
Collapse
Affiliation(s)
- I Latorzeff
- Service de radiothérapie, groupe Oncorad Garonne, clinique Pasteur, l'« Atrium », 1, rue de la Petite-Vitesse, 31300 Toulouse, France; Centre régional de radiochirurgie stéréotaxique, CHU Rangueil, avenue Jean-Poulhès, 31052 Toulouse cedex, France.
| | - D Antoni
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - S Josset
- Service de physique médicale, institut de cancérologie de l'Ouest, Unicancer, 44805 Saint-Herblain, France
| | - G Noël
- Département universitaire de radiothérapie, centre Paul-Strauss, Unicancer, 3, rue de la Porte-de-l'Hôpital, 67065 Strasbourg cedex, France
| | - A Tallet-Richard
- Département universitaire de radiothérapie, institut Paoli-Calmettes, Unicancer, 232, boulevard de Sainte-Marguerite, 13273 Marseille, France
| |
Collapse
|
15
|
Dalmasso C, Pagès C, Chaltiel L, Sibaud V, Moyal E, Chira C, Sol JC, Latorzeff I, Meyer N, Modesto A. Intracranial Treatment in Melanoma Patients with Brain Metastasis Is Associated with Improved Survival in the Era of Immunotherapy and Anti-BRAF Therapy. Cancers (Basel) 2021; 13:cancers13174493. [PMID: 34503304 PMCID: PMC8430519 DOI: 10.3390/cancers13174493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Metastatic melanoma patients are at high risk of brain metastases (BM). Although intracranial control is a prognostic factor for survival, impact of local (intracranial) treatment (LT), surgery and/or radiotherapy (stereotactic or whole brain) in the era of novel therapies remains unknown. We evaluated BM incidence in melanoma patients receiving immune checkpoint inhibitors (ICI) or anti-BRAF therapy and identified prognostic factors for overall survival (OS). Clinical data and treatment patterns were retrospectively collected from all patients treated for newly diagnosed locally advanced or metastatic melanoma between May 2014 and December 2017 with available BRAF mutation status and receiving systemic therapy. Prognostic factors for OS were analyzed with univariable and multivariable survival analyses. BMs occurred in 106 of 250 eligible patients (42.4%), 64 of whom received LT. Median OS in patients with BM was 7.8 months (95% CI [5.4-10.4]). In multivariable analyses, LT was significantly correlated with improved OS (HR 0.21, p < 0.01). Median OS was 17.3 months (95% CI [8.3-22.3]) versus 3.6 months (95% CI [1.4-4.8]) in patients with or without LT. LT correlates with improved OS in melanoma patients with BM in the era of ICI and anti-BRAF therapy. The use of LT should be addressed at diagnosis of BM while introducing systemic treatment.
Collapse
Affiliation(s)
- Céline Dalmasso
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
| | - Cécile Pagès
- Dermato-Oncology Department, Institut Universitaire du Cancer, CEDEX 9, 31059 Toulouse, France; (C.P.); (V.S.); (N.M.)
| | - Léonor Chaltiel
- Biostatistics Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France;
| | - Vincent Sibaud
- Dermato-Oncology Department, Institut Universitaire du Cancer, CEDEX 9, 31059 Toulouse, France; (C.P.); (V.S.); (N.M.)
| | - Elisabeth Moyal
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
- Gamma Knife Unit, CHU–Toulouse-Purpan, 31000 Toulouse, France; (J.C.S.); (I.L.)
| | - Ciprian Chira
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
| | - Jean Christophe Sol
- Gamma Knife Unit, CHU–Toulouse-Purpan, 31000 Toulouse, France; (J.C.S.); (I.L.)
- Neuro-Surgery Department, CHU de Toulouse–Purpan, 31000 Toulouse, France
| | - Igor Latorzeff
- Gamma Knife Unit, CHU–Toulouse-Purpan, 31000 Toulouse, France; (J.C.S.); (I.L.)
- Radiation Oncology Department, Oncorad, Clinique Pasteur, 31000 Toulouse, France
| | - Nicolas Meyer
- Dermato-Oncology Department, Institut Universitaire du Cancer, CEDEX 9, 31059 Toulouse, France; (C.P.); (V.S.); (N.M.)
- Dermatology Department, CHU de Toulouse, Hôpital Larrey, CEDEX 9, 31059 Toulouse, France
| | - Anouchka Modesto
- Radiation Oncology Department, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, CEDEX 9, 31059 Toulouse, France; (C.D.); (E.M.); (C.C.)
- Correspondence:
| |
Collapse
|
16
|
Survival estimation of melanoma patients with brain metastasis using the Melanoma-molGPA score: external validation from a French cohort. Melanoma Res 2021; 30:472-476. [PMID: 32404732 DOI: 10.1097/cmr.0000000000000670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
While immunotherapies and targeted therapies such as BRAF inhibitors have improved the prognosis, BM is still associated with poor outcome and a short survival. Metastatic melanoma patients are a heterogeneous subgroup with variable prognosis. As several prospective clinical trials have addressed the question of optimal therapy for these patients, an accurate validated selection tool is needed. Melanoma molecular graded prognostic assessment (Melanoma-molGPA) is a new prognostic score for BM melanoma patients. We decided to perform an external validation of this score. All consecutive patients treated between May 2014 and December 2017 for a newly diagnosed locally advanced or metastatic melanoma with available status for BRAF mutation were identified. Melanoma mol-GPA was applied in each patient with BM and correlated to overall survival. One hundred patients were included. Median follow-up was 27.8 months. Distribution for the Melanoma-molGPA groups GPA 0-1, GPA 1.5-2, GPA 2.5-3 and GPA 3.5-4 were as follows: 23, 51, 24 and 2.0%, respectively. Subgroups GPA 2.5-3 and 3.5-4 were combined. Median overall survival for groups GPA 0-1, 1.5-2 and 2.5-4.0 was 4.2, 6.9 and 18.4 months, respectively, P = 0.0032. Our study is the most recent, and with the largest cohort, to validate the Melanoma-molGPA score as an accurate and reproducible score for estimating overall survival. As several prospective clinical trials are addressing the issue of optimal therapy including the impact of local treatment for these patients, the Melanoma-molGPA is a useful tool in BM melanoma patients.
Collapse
|
17
|
Under-recognized toxicities of cranial irradiation. Cancer Radiother 2021; 25:713-722. [PMID: 34274224 DOI: 10.1016/j.canrad.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022]
Abstract
Cranial irradiation of primary or metastatic lesions is frequent, historically with 3D-conformal radiation therapy and now with stereotactic radiosurgery and intensity modulation. Evolution of radiotherapy technique is concomitant to systemic treatment evolution permitting long time survival. Thus, physicians have to face underestimated toxicities on long-survivor patients and unknown toxicities from combination of cranial radiotherapy to new therapeutics as targeted therapies and immunotherapies. This article proposes to develop these toxicities, without being exhaustive, to allow a better apprehension of cranial irradiation in current context.
Collapse
|
18
|
Lee EJ, Choi KS, Park ES, Cho YH. Single- and hypofractionated stereotactic radiosurgery for large (> 2 cm) brain metastases: a systematic review. J Neurooncol 2021; 154:25-34. [PMID: 34268640 DOI: 10.1007/s11060-021-03805-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Since frameless stereotactic radiosurgery (SRS) techniques have been recently introduced, hypofractionated SRS (HF-SRS) for large brain metastases (BMs) is gradually increasing. To verify the efficacy and safety of HF-SRS for large BMs, we aimed to perform a systematic review and compared them with SF-SRS. METHODS We systematically searched the studies regarding SF-SRS or HF-SRS for large (> 2 cm) BM from databases including PubMed, Embase, and the Cochrane Library on July 31, 2018. Biologically effective dose with the α/β ratio of 10 (BED10), 1-year local control (LC), and radiation necrosis (RN) were compared between the two groups, with the studies being weighted by the sample size. RESULTS The 15 studies with 1049 BMs that described 1-year LC and RN were included. HF-SRS tended to be performed in larger tumors; however, higher mean BED10 (50.1 Gy10 versus 40.4 Gy10, p < 0.0001) was delivered in the HF-SRS group, which led to significantly improved 1-year LC (81.6 versus 69.0%, p < 0.0001) and 1-year overall survival (55.1 versus 47.2%, p < 0.0001) in the HF-SRS group compared to the SF-SRS group. In contrast, the incidence of radiation toxicity was significantly decreased in the HF-SRS group compared to the SF-SRS group (8.0 versus 15.6%, p < 0.0001). CONCLUSION HF-SRS results in better LC of large BMs while simultaneously reducing RN compared to SF-SRS. Thus, HF-SRS should be considered a priority for SF-SRS in patients with large BMs who are not suitable to undergo surgical resection.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun Suk Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojinsunhwando-ro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Young Hyun Cho
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympicro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
19
|
Rzeniewicz K, Larkin J, Menzies AM, Turajlic S. Immunotherapy use outside clinical trial populations: never say never? Ann Oncol 2021; 32:866-880. [PMID: 33771665 PMCID: PMC9246438 DOI: 10.1016/j.annonc.2021.03.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Based on favourable outcomes in clinical trials, immune checkpoint inhibitors (ICIs), most notably programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors, are now widely used across multiple cancer types. However, due to their strict inclusion and exclusion criteria, clinical studies often do not address challenges presented by non-trial populations. DESIGN This review summarises available data on the efficacy and safety of ICIs in trial-ineligible patients, including those with autoimmune disease, chronic viral infections, organ transplants, organ dysfunction, poor performance status, and brain metastases, as well as the elderly, children, and those who are pregnant. In addition, we review data concerning other real-world challenges with ICIs, including timing of therapy switch, relationships to radiotherapy or surgery, re-treatment after an immune-related toxicity, vaccinations in patients on ICIs, and current experience around ICI and coronavirus disease-19. Where possible, we provide recommendations to aid the often-difficult decision-making process in those settings. CONCLUSIONS Data suggest that ICIs are often active and have an acceptable safety profile in the populations described above, with the exception of PD-1 inhibitors in solid organ transplant recipients. Decisions about whether to treat with ICIs should be personalised and require multidisciplinary input and careful counselling of patients with respect to potential risks and benefits. Clinical judgements need to be carefully weighed, considering factors such as underlying cancer type, feasibility of alternative treatment options, or activity in trial-eligible patients.
Collapse
Affiliation(s)
- K Rzeniewicz
- Warwick Medical School, University of Warwick, Warwick, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK
| | - J Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - A M Menzies
- Melanoma Institute Australia and The University of Sydney, Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia
| | - S Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK; Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
20
|
Vellayappan BA, McGranahan T, Graber J, Taylor L, Venur V, Ellenbogen R, Sloan AE, Redmond KJ, Foote M, Chao ST, Suh JH, Chang EL, Sahgal A, Lo SS. Radiation Necrosis from Stereotactic Radiosurgery-How Do We Mitigate? Curr Treat Options Oncol 2021; 22:57. [PMID: 34097171 DOI: 10.1007/s11864-021-00854-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Intracranial stereotactic radiosurgery (SRS) is an effective and convenient treatment for many brain conditions. Data regarding safety come mostly from retrospective single institutional studies and a small number of prospective studies. Variations in target delineation, treatment delivery, imaging follow-up protocols and dose prescription limit the interpretation of this data. There has been much clinical focus on radiation necrosis (RN) in particular, as it is being increasingly recognized on follow-up imaging. Symptomatic RN may be treated with medical therapy (such as corticosteroids and bevacizumab) with surgical resection being reserved for refractory patients. Nevertheless, RN remains a challenging condition to manage, and therefore upfront patient selection for SRS remains critical to provide complication-free control. Mitigation strategies need to be considered in situations where the baseline risk of RN is expected to be high-such as large target volume or re-irradiation. These may involve reduction in the prescribed dose or hypofractionated stereotactic radiation therapy (HSRT). Recently published guidelines and international meta-analysis report the benefit of HSRT in larger lesions, without compromising control rates. However, careful attention to planning parameters and SRS techniques still need to be adhered, even with HSRT. In cases where the risk is deemed to be high despite mitigation, a combination approach of surgery with or without post-operative radiation should be considered.
Collapse
Affiliation(s)
- Balamurugan A Vellayappan
- Department of Radiation oncology, National University Cancer Institute, 1E Kent Ridge Road, Level 7 Tower block, Singapore, 119228, Singapore.
| | - Tresa McGranahan
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Jerome Graber
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Lynne Taylor
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Vyshak Venur
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Richard Ellenbogen
- Department of Neurology, Alvord Brain Tumor Center, University of Washington, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Seidman Cancer Center and University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew Foote
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Samuel T Chao
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Rose Ella Burkhardt Brain Tumor and Neuro-oncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
21
|
Antoni D, Burckel H, Noel G. Combining Radiation Therapy with ALK Inhibitors in Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer (NSCLC): A Clinical and Preclinical Overview. Cancers (Basel) 2021; 13:2394. [PMID: 34063424 PMCID: PMC8156706 DOI: 10.3390/cancers13102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the past years, the identification of genetic alterations in oncogenic drivers in non-small cell lung cancer (NSCLC) has significantly and favorably transformed the outcome of patients who can benefit from targeted therapies such as tyrosine kinase inhibitors. Among these genetic alterations, anaplastic lymphoma kinase (ALK) rearrangements were discovered in 2007 and are present in 3-5% of patients with NSCLC. In addition, radiotherapy remains one of the cornerstones of NSCLC treatment. Moreover, improvements in the field of radiotherapy with the use of hypofractionated or ablative stereotactic radiotherapy have led to a better outcome for localized or oligometastatic NSCLC. To date, the effects of the combination of ALK inhibitors and radiotherapy are unclear in terms of safety and efficacy but could potently improve treatment. In this manuscript, we provide a clinical and preclinical overview of combining radiation therapy with ALK inhibitors in anaplastic lymphoma kinase-positive non-small cell lung cancer.
Collapse
Affiliation(s)
- Delphine Antoni
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| | - Hélène Burckel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
| | - Georges Noel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| |
Collapse
|
22
|
Watanabe J, Mitsuya K, Nakamoto S, Harada H, Deguchi S, Hayashi N, Nakasu Y. Leptomeningeal Metastasis in ER + HER2- Advanced Breast Cancer Patients: A Review of the Cases in a Single Institute Over a 15-year Period. Breast Cancer Res Treat 2021; 189:225-236. [PMID: 33966182 DOI: 10.1007/s10549-021-06246-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE While leptomeningeal metastasis (LM) from estrogen receptor-positive, HER2-negative advanced breast cancer (ER + HER2-ABC) has a poor prognosis, the details of ER + HER2-LM are unclear. We therefore retrospectively investigated patients with LM from ER + HER2-ABC. METHODS ER + HER2-ABC patients who received any therapy at Shizuoka Cancer Center between October 2002 and December 2017 were retrospectively analyzed. Patients with central nervous system (CNS) metastases were divided into three groups: brain metastasis (BM) only (B group); BM with LM (BL group); and LM only (L group). RESULTS Among 369 patients, 102 developed CNS metastases: 70 (68.6%), 13 (12.8%), and 19 (18.6%) in the B, BL, and L groups, respectively. The L group showed a later onset, poorer performance status, more symptoms, and more skull metastasis than the other groups. Radiotherapy as the initial treatment was introduced to 13/13 (100%) and 15/19 (78.9%) in the BL and L groups, respectively. Subsequent systemic therapy excluding best supportive care was introduced to 5/13 (38.5%) and 5/19 (26.3%) in the BL and L groups, respectively. The median overall survival from the diagnosis of CNS lesions was 295.0, 146.0, and 99.0 days in the B, BL, and L groups, respectively, and worsening of CNS lesions was the major cause of death in the BL and L groups. Multivariate analyses showed that concurrent soft tissue metastasis (hazard ratio, 4.620) and subsequent systemic therapy (hazard ratio, 0.063) were prognostic for the L group. CONCLUSION Management of LM from ER + HER2-ABC remains challenging, so a multimodal approach with novel systemic therapy is warranted.
Collapse
Affiliation(s)
- Junichiro Watanabe
- Division of Breast Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Shizuoka, 411-8777, Japan. .,Department of Breast Oncology, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Shizuoka, Japan
| | - Shogo Nakamoto
- Division of Breast Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Shizuoka, 411-8777, Japan.,Division of Breast and Thyroid Gland Surgery, Fukuyama City Hospital, 5-23-1 Zao-cho, Fukuyama, Hiroshima, 721-8511, Japan
| | - Hideyuki Harada
- Division of Radiation Therapy, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Shizuoka, Japan
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Shizuoka, Japan
| | - Nakamasa Hayashi
- Division of Neurosurgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Shizuoka, Japan
| | - Yoko Nakasu
- Division of Neurosurgery, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Shizuoka, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Seta-Tsukinowa-cho, Ohtsu, Shiga, 520-2192, Japan
| |
Collapse
|
23
|
Evaluation of practical experiences of German speaking radiation oncologists in combining radiation therapy with checkpoint blockade. Sci Rep 2021; 11:7624. [PMID: 33828117 PMCID: PMC8027172 DOI: 10.1038/s41598-021-86863-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
The results of this survey reveal current clinical practice in the handling of combined radioimmunotherapy with Immune Checkpoint Inhibitors (RT + ICI). We aim to provide a basis to open a discussion for clinical application of RT + ICI by analyzation of experts’ assessment. We conducted a survey with 24 items with a focus on side effects of RT + ICI, common practice of scheduling and handling of adverse events. After pilot testing by radiation oncology experts the link to the online survey was sent to all members of the German Society of Radiation Oncology (DEGRO). In total, 51 radiation oncologists completed the questionnaire. Pulmonary toxicity under RT + ICI with ICIs was reported most frequently. Consensus was observed for bone and soft tissue RT of the limbs in favor for no interruption of ICIs. For cranial RT half of the participants do not suspend ICIs during normofractionated radiotherapy (nfRT) or stereotactic hypofractionated RT (SRT). More participants pause ICIs for central than for peripheral thoracic region. Maintenance therapy with ICIs is mostly not interrupted prior to RT. For management of RT associated pneumonitis under durvalumab the majority of 86.3% suggest corticosteroid therapy and 76.5% would postpone the next cycle of ICI therapy. The here obtained assessment and experiences by radiation oncologists reveal a large variability in practical handling of combined RT + ICI. Until scientific evidence is available a discussion for current clinical application of RT + ICI should be triggered. Interdisciplinary consensus guidelines with practical recommendations are required.
Collapse
|
24
|
Khan M, Zhao Z, Arooj S, Liao G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review & meta-analysis. BMC Cancer 2021; 21:167. [PMID: 33593308 PMCID: PMC7885379 DOI: 10.1186/s12885-021-07889-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
Background Radiotherapy is the mainstay of brain metastasis (BM) management. Radiation necrosis (RN) is a serious complication of radiotherapy. Bevacizumab (BV), an anti-vascular endothelial growth factor monoclonal antibody, has been increasingly used for RN treatment. We systematically reviewed the medical literature for studies reporting the efficacy and safety of bevacizumab for treatment of RN in BM patients. Materials and methods PubMed, Medline, EMBASE, and Cochrane library were searched with various search keywords such as “bevacizumab” OR “anti-VEGF monoclonal antibody” AND “radiation necrosis” OR “radiation-induced brain necrosis” OR “RN” OR “RBN” AND “Brain metastases” OR “BM” until 1st Aug 2020. Studies reporting the efficacy and safety of BV treatment for BM patients with RN were retrieved. Study selection and data extraction were carried out by independent investigators. Open Meta Analyst software was used as a random effects model for meta-analysis to obtain mean reduction rates. Results Two prospective, seven retrospective, and three case report studies involving 89 patients with RN treated with BV were included in this systematic review and meta-analysis. In total, 83 (93%) patients had a recorded radiographic response to BV therapy, and six (6.7%) had experienced progressive disease. Seven studies (n = 73) reported mean volume reductions on gadolinium-enhanced T1 (mean: 47.03%, +/− 24.4) and T2-weighted fluid-attenuated inversion recovery (FLAIR) MRI images (mean: 61.9%, +/− 23.3). Pooling together the T1 and T2 MRI reduction rates by random effects model revealed a mean of 48.58 (95% CI: 38.32–58.85) for T1 reduction rate and 62.017 (95% CI: 52.235–71.799) for T2W imaging studies. Eighty-five patients presented with neurological symptoms. After BV treatment, nine (10%) had stable symptoms, 39 (48%) had improved, and 34 (40%) patients had complete resolution of their symptoms. Individual patient data was available for 54 patients. Dexamethasone discontinuation or reduction in dosage was observed in 30 (97%) of 31 patients who had recorded dosage before and after BV treatment. Side effects were mild. Conclusions Bevacizumab presents a promising treatment strategy for patients with RN and brain metastatic disease. Radiographic response and clinical improvement was observed without any serious adverse events. Further class I evidence would be required to establish a bevacizumab recommendation in this group of patients.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China.,Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, People's Republic of China
| | - Sumbal Arooj
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China.,Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Guixiang Liao
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, People's Republic of China.
| |
Collapse
|
25
|
Borius PY, Régis J, Carpentier A, Kalamarides M, Valery CA, Latorzeff I. Safety of radiosurgery concurrent with systemic therapy (chemotherapy, targeted therapy, and/or immunotherapy) in brain metastases: a systematic review. Cancer Metastasis Rev 2021; 40:341-354. [PMID: 33392851 DOI: 10.1007/s10555-020-09949-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Stereotactic radiosurgery (SRS) is a standard option for brain metastases (BM). There is lack of consensus when patients have a systemic treatment, if a washout is necessary. The aim of this review is to analyze the toxicity of SRS when it is concurrent with chemotherapies, immunotherapy, and/or targeted therapies. From Medline and Embase databases, we searched for English literature published up to April 2020 according to the PRISMA guidelines, using for key words the list of the main systemic therapies currently in use And "radiosurgery," "SRS," "GKRS," "Gamma Knife," "toxicity," "ARE," "radiation necrosis," "safety," "brain metastases." Studies reporting safety or toxicity with SRS concurrent with systemic treatment for BM were included. Of 852 abstracts recorded, 77 were included. The main cancers were melanoma, lung, breast, and renal carcinoma. These studies cumulate 6384 patients. The median SRS dose prescription was 20 Gy [12-30] .For some, they compared a concurrent arm with a non-concurrent or a SRS-alone arm. There were no skin toxicities, no clearly increased rate of bleeding, or radiation necrosis with significant clinical impact. SRS combined with systemic therapy appears to be safe, allowing the continuation of treatment when brain SRS is considered.
Collapse
Affiliation(s)
- Pierre-Yves Borius
- Neurosurgery Department, Pitié Salpêtrière Sorbonne University Hospital, Paris, France.
| | - Jean Régis
- Aix-Marseille Université, Institut de Neuroscience des Systèmes, Functional Neurosurgery and Radiosurgery Department, Hôpital de la Timone, APHM, Marseille, France
| | - Alexandre Carpentier
- Neurosurgery Department, Pitié Salpêtrière Sorbonne University Hospital, Paris, France
| | - Michel Kalamarides
- Neurosurgery Department, Pitié Salpêtrière Sorbonne University Hospital, Paris, France
| | | | - Igor Latorzeff
- Département de radiothérapie-oncologie, bâtiment Atrium, Clinique Pasteur, 1, rue de la Petite-Vitesse, 31300, Toulouse, France
| |
Collapse
|
26
|
Mangraviti A, Legnani FG. Commentary. Neurosurgery 2020; 87:E279-E280. [DOI: 10.1093/neuros/nyaa090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
|
27
|
Dhermain F, Noël G, Antoni D, Tallet A. Role of radiation therapy in brain metastases management. Cancer Radiother 2020; 24:463-469. [PMID: 32828669 DOI: 10.1016/j.canrad.2020.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/26/2023]
Abstract
The challenge of the management of brain metastases has not finished yet. Although new diagnosis-specific prognostic assessment classifications and guidelines for patients with brain metastases help to guide treatment more appropriately, and even if the development of modern technologies in imaging and radiation treatment, as well as improved new systemic therapies, allow to reduce cognitive side effects and make retreatment or multiple and combined treatment possible, several questions remain unanswered. However, tailoring the treatment to the patient and his expectations is still essential; in other words, patients with a poor prognosis should not be over-treated, and those with a favorable prognosis may not be subtracted to the best treatment option. Some ongoing trials with appropriate endpoints could better inform our choices. Finally, a case-by-case inter-disciplinary discussion remains essential.
Collapse
Affiliation(s)
- F Dhermain
- Département de radiothérapie-oncologique, hôpital universitaire Gustave-Roussy, université Paris Saclay, 114, rue Édouard-Vaillant, 94805 Villejuif, France.
| | - G Noël
- Département de radiothérapie-oncologique, centre Paul-Strauss, 3, rue de la-Porte-de-l'Hôpital, 67065 Strasbourg, France; Université de Strasbourg, CNRS, IHPC UMR 7178, centre Paul-Strauss, 67000 Strasbourg, France
| | - D Antoni
- Département de radiothérapie-oncologique, centre Paul-Strauss, 3, rue de la-Porte-de-l'Hôpital, 67065 Strasbourg, France; Université de Strasbourg, CNRS, IHPC UMR 7178, centre Paul-Strauss, 67000 Strasbourg, France
| | - A Tallet
- Département de radiothérapie-oncologique, institut Paoli-Calmettes, 232, boulevard Sainte-Marguerite, 13273 Marseille 09, France; CRCM, institut Paoli-Calmettes, 232, boulevard Sainte-Marguerite, 13273 Marseille 09, France
| |
Collapse
|
28
|
Validation of recursive partitioning analysis, graded prognostic assessment and basic score for brain metastases as prognostic indices among patients with brain metastases treated with radiotherapy in Indonesia. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIntroduction:Metastatic brain disease is still a major contributor to cancer treatment failure. Various treatments have improved in the recent decades, which allow for better control of brain metastatic lesions. Various prognostic scoring tools have been developed and used worldwide to stratify patients with brain metastases to determine who will benefit most from aggressive treatment. The three most commonly used prognostic scoring tools are recursive partitioning analysis (RPA), basic score for brain metastases (BSBM) and graded prognostic assessment (GPA). The aim of this study is to validate these scoring tools using an Indonesian cancer patient population.Method:A retrospective analysis of all patients presenting with brain metastases from January 2012 until December 2014, through using hospital medical records, was conducted. All patients receiving whole brain radiotherapy during this period were included in this study. A follow-up with a telephone call was carried out to determine the patient’s health and survival status. Uncontactable patients were excluded from the analysis. Survival analysis was carried out by stratifying patients based on the three prognostic scoring systems.Result:A total of 80 patients were eligible to be included in the study, with 18 excluded due to being uncontactable. The remaining 62 patients’ data were analysed and stratified with all three scoring systems. The RPA was found to confer better stratification than BSBM and GPA in our study population.Conclusion:GPA was non-prognostic in our study population and BSBM was less prognostic, especially in the middle group, class 1 and class 2. Those BSBM class 1 and class 2 did not provide good prognostic stratification in our study population, whereas RPA was proven to be the best in stratifying patients’ prognosis with brain metastases in our study population.
Collapse
|
29
|
Escoin-Perez C, Blasco S, Juan-Vidal O. Immune checkpoint inhibitors in special populations. A focus on advanced lung cancer patients. Lung Cancer 2020; 144:1-9. [PMID: 32278215 DOI: 10.1016/j.lungcan.2020.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors (ICIs), including those targeting programmed cell death 1 (PD-1), its ligand 1 (PD-L1), or cytotoxic T-lymphocyte antigen 4 (CTLA-4) have become the standard treatment for several malignancies, including lung cancer. However, some patient populations have been routinely excluded from clinical trials or are underrepresented in these studies, as is the case of elderly patients or patients with poor performance status, brain metastases, solid organ transplant, autoimmune diseases, chronic viral infections (such as human immunodeficiency virus or chronic viral hepatitis B and C), or organ dysfunction. Thus, the safety and efficacy of ICIs in these special populations is still unclear, despite regulatory approval of these agents. This review analyzes and summarizes the available information on the efficacy and safety of ICIs in these special populations, focusing on patients with lung cancer.
Collapse
Affiliation(s)
- Corina Escoin-Perez
- Department of Medical Oncology, Hospital Universitario de La Ribera, Crta. Corbera, Km1. 46600 Alzira, Valencia, Spain.
| | - Sara Blasco
- Department of Medical Oncology, Hospital de Sagunto, Av. Ramón y Cajal, s/n. 46520 Sagunto, Valencia, Spain.
| | - Oscar Juan-Vidal
- Department of Medical Oncology, Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell, 106. 46026, Valencia, Spain.
| |
Collapse
|
30
|
Appliance of Navigated Transcranial Magnetic Stimulation in Radiosurgery for Brain Metastases. J Clin Neurophysiol 2020; 37:50-55. [PMID: 31335563 DOI: 10.1097/wnp.0000000000000621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Navigated transcranial magnetic stimulation (nTMS) provides noninvasive visualization of eloquent brain areas. The nTMS is usually applied in presurgical planning to minimize the risk of surgery-related neurological deterioration. The aim of this study was to evaluate the usefulness of nTMS data for GammaKnife treatment planning for patients suffering from brain metastases. METHODS Motor cortex mapping with nTMS was performed in eight patients with brain metastases within or adjacent to the precentral gyrus. The nTMS data set was imported into the planning software and fused with anatomical MRI. Then contouring of the target and critical structures was performed. Treatment plans with and without visualization of the functional structures by nTMS were analyzed and compared by neurosurgeon and medical physicist. RESULTS The primary motor cortex was successfully delineated even in all cases despite significant peritumoral edema. Beam shaping and combined isocenters were used for conformal dose distribution and steeper dose fall-off near the identified eloquent zone. Compared with plans without nTMS data, treatment plans with integration of cortical nTMS mapping data showed a 2% to 78% (mean, 35.2% ± 22.7%) lower 12-Gy volume within the motor cortex without reduction of the dose applied to the tumor. CONCLUSIONS The presented approach allows the easy and reliable integration of neurophysiological mapping data into GammaKnife treatment plans by the standard GammaPlan software. Diminishing the dose to critical structures might help to minimize side effects and therefore improve quality of life for brain metastasis patients.
Collapse
|
31
|
Zhuang H, Tao L, Wang X, Shi S, Yuan Z, Wang E, Chang JY. Tyrosine Kinase Inhibitor Resistance Increased the Risk of Cerebral Radiation Necrosis After Stereotactic Radiosurgery in Brain Metastases of Non-small-Cell Lung Cancer: A Multi-Institutional Retrospective Case-Control Study. Front Oncol 2020; 10:12. [PMID: 32117704 PMCID: PMC7026471 DOI: 10.3389/fonc.2020.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to investigate the relationship between the timing of stereotactic radiosurgery (SRS) intervention and the complications of cerebral radiation necrosis (CRN) in patients with brain metastases of lung adenocarcinoma who received tyrosine kinase inhibitor (TKI) treatment. Methods: A total of 361 targets from 257 patients with brain oligometastases of lung adenocarcinoma who received CyberKnife treatment between 2010 and 2017 were retrospectively collected from three CyberKnife centers. The difference in brain necrosis between patients with or without TKI application was statistically counted. Logistic regression analysis was used to analyze the effect of applying TKI on the occurrence of CRN in patients and the effect of SRS before and after TKI resistance on CRN. Results: The rate of CRN in the TKI group was significantly higher than that in the non-TKI group. The incidence of brain necrosis in patients undergoing SRS after drug resistance was significantly higher than that in patients undergoing SRS before drug resistance. Regression analysis showed that combination of TKI with SRS, and SRS after TKI resistance were important influencing factors for CRN. Conclusion: Performing the SRS for brain metastases after TKI resistance worsened the occurrence of CRN of patients treated with TKI. Clinical Trial Registration: Chinese clinical trial registry, http://www.chictr.org.cn/edit.aspx?pid=38395&htm=4, Registration number: ChiCTR1900022750.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Liyuan Tao
- Clinical Epidemiology Department, Peking University Third Hospital, Beijing, China
| | - Xin Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyu Shi
- Stanford University School of Medicine, Stanford, CA, United States
| | - Zhiyong Yuan
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Radiotherapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Enmin Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Joe Y Chang
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
van Opijnen MP, Dirven L, Coremans IEM, Taphoorn MJB, Kapiteijn EHW. The impact of current treatment modalities on the outcomes of patients with melanoma brain metastases: A systematic review. Int J Cancer 2019; 146:1479-1489. [PMID: 31583684 PMCID: PMC7004107 DOI: 10.1002/ijc.32696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022]
Abstract
Patients with melanoma brain metastases (MBM) still have a very poor prognosis. Several treatment modalities have been investigated in an attempt to improve the management of MBM. This review aimed to evaluate the impact of current treatments for MBM on patient‐ and tumor‐related outcomes, and to provide treatment recommendations for this patient population. A literature search in the databases PubMed, Embase, Web of Science and Cochrane was conducted up to January 8, 2019. Original articles published since 2010 describing patient‐ and tumor‐related outcomes of adult MBM patients treated with clearly defined systemic therapy were included. Information on basic trial demographics, treatment under investigation and outcomes (overall and progression‐free survival, local and distant control and toxicity) were extracted. We identified 96 eligible articles, comprising 95 studies. A large variety of treatment options for MBM were investigated, either used alone or as combined modality therapy. Combined modality therapy was investigated in 71% of the studies and resulted in increased survival and better distant/local control than monotherapy, especially with targeted therapy or immunotherapy. However, neurotoxic side‐effects also occurred more frequently. Timing appeared to be an important determinant, with the best results when radiotherapy was given before or during systemic therapy. Improved tumor control and prolonged survival can be achieved by combining radiotherapy with immunotherapy or targeted therapy. However, more randomized controlled trials or prospective studies are warranted to generate proper evidence that can be used to change the standard of care for patients with MBM.
Collapse
Affiliation(s)
- Mark P van Opijnen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands.,Department of Radiation Oncology, Leiden University Medical Center, The Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Ellen H W Kapiteijn
- Leiden University Medical Center, Department of Clinical Oncology, Leiden, The Netherlands
| |
Collapse
|
33
|
Pembrolizumab for anaplastic thyroid cancer: a case study. Cancer Immunol Immunother 2019; 68:1921-1934. [PMID: 31637475 DOI: 10.1007/s00262-019-02416-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Blockade of the PD-1/PD-L1 pathway with targeted monoclonal antibodies has demonstrated encouraging anti-tumour activity in multiple cancer types. We present the case of a patient with BRAF-negative stage IVC anaplastic thyroid cancer (ATC) treated with the anti-PD-1 monoclonal antibody, pembrolizumab, following radiographic progression on chemoradiation. Blood samples were collected prior to and at four time points during treatment with pembrolizumab. Mass cytometry was used to determine expression of relevant biomarkers by peripheral blood mononuclear cells. Faecal samples were collected at baseline and 4 weeks following treatment initiation; taxonomic profiling using 16S ribosomal RNA (rRNA) gene sequencing was performed. Following treatment, a marked expansion in CD20+ B cell, CD16+ CD56lo NK cell and CD45RO+ CCR7+ central memory CD4+ T-cell populations was observed in the peripheral blood. Proportions of cells expressing the co-receptors TIGIT, OX40 and CD86 also increased during treatment. A high abundance of bacteria of the order Bacteroidales, specifically from the Bacteroidaceae and Rikenellaceae families, was identified in the faecal microbiota. Moreover, the patient's microbiome was enriched in Clostridiales order members Ruminococcaceae, Veillonellaceae and Lachnospiraceae. Alpha diversity of the gut microbiome was significantly higher following initiation of checkpoint therapy as assessed by the Shannon and Simpson index. Our results suggest that treatment with pembrolizumab promotes expansion of T-, B- and NK cell populations in the peripheral blood at the time of tumour regression and have the potential to be implemented as predictive biomarkers in the context of checkpoint blockade therapy. Larger studies to confirm these findings are warranted.
Collapse
|
34
|
Cadranel J, Canellas A, Matton L, Darrason M, Parrot A, Naccache JM, Lavolé A, Ruppert AM, Fallet V. Pulmonary complications of immune checkpoint inhibitors in patients with nonsmall cell lung cancer. Eur Respir Rev 2019; 28:28/153/190058. [DOI: 10.1183/16000617.0058-2019] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor-related pneumonitis (ICI-P) during cancer treatment is rarely observed (<5%). ICI-P is more often observed in patients with nonsmall cell lung cancer (NSCLC) than in those with other cancers. Likewise, it is more common in those receiving programmed cell death (PD)-1/PD-1 ligand inhibitors rather than cytotoxic T-lymphocyte antigen (CTLA)-4 inhibitors alone. The frequency of ICI-P is higher when anti-PD-1 and anti-CTLA-4 are administered concomitantly. Despite the low fatality rate (≈13%), ICI-P is the leading cause of ICI-related deaths. This narrative review focuses on the epidemiology, clinical and radiological presentation and prognosis of ICI-P occurring in patients, especially those with advanced NSCLC. Emphasis is placed on the differences in terms of frequency or clinical picture observed depending on whether the ICI is used as monotherapy or in combination with another ICI or chemotherapy. Other pulmonary complications observed in cancer patients, yet not necessarily immune-related, are reviewed, such as sarcoid-like granulomatosis, tuberculosis or other infections. A proposal for pragmatic management, including differential diagnosis and therapeutic strategies, is presented, based on the ICI-P series reported in the literature and published guidelines.
Collapse
|
35
|
Wespiser M, Goujon M, Nguyen Tan Hon T, Maurina T, Kleinclauss F, Créhange G, Thiery-Vuillemin A. [Radiotherapy of oligometastases: Sequences and interactions with systemic therapies, example of kidney cancer]. Cancer Radiother 2019; 23:896-903. [PMID: 31591034 DOI: 10.1016/j.canrad.2019.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 10/25/2022]
Abstract
This article is a review of the literature that aims to clarify the place of systemic and locoregional treatments, with a focus on radiotherapy and surgery in the management of patients with oligometastatic kidney cancer. We have selected articles of interest published in Medline indexed journals. We have also analysed the related guidelines: National Comprehensive Cancer Network (NCCN) 2019, European Association of Urology (EAU) 2019, European Society of Medical Oncology (ESMO) 2019, Association française d'urologie (Afu) 2018 as well as some abstracts of international congresses. The main treatments evaluated were surgery and radiotherapy. We defined the different scenarios conventionally encountered in clinical practice. The evolution of systemic therapies (increased overall survival and response rate) is likely to increase the number of patients potentially accessible to locoregional treatments. The complete analysis of the literature underlines the place of locoregional treatments whatever the scenarios mentioned. Data on stereotactic radiotherapy found a local control rate consistently above 70% in all studies with a maintained response and positive impact on overall survival and progression-free survival. The improvement of overall survival by sequential use of the various therapeutic classes confirms the need for optimization of locoregional treatments in the model of oligometastatic kidney cancer. The dogma of radioresistance must definitely be set aside with current irradiation techniques.
Collapse
Affiliation(s)
- M Wespiser
- Service d'oncologie médicale, centre hospitalier régional universitaire Jean-Minjoz, 3, boulevard Fleming, 25030 Besançon cedex, France.
| | - M Goujon
- Service d'oncologie médicale, centre hospitalier régional universitaire Jean-Minjoz, 3, boulevard Fleming, 25030 Besançon cedex, France
| | - T Nguyen Tan Hon
- Service d'oncologie médicale, centre hospitalier régional universitaire Jean-Minjoz, 3, boulevard Fleming, 25030 Besançon cedex, France
| | - T Maurina
- Service d'oncologie médicale, centre hospitalier régional universitaire Jean-Minjoz, 3, boulevard Fleming, 25030 Besançon cedex, France
| | - F Kleinclauss
- Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France; Service d'urologie-andrologie et transplantation rénale, centre hospitalier régional universitaire Jean-Minjoz, 25030 Besançon cedex, France
| | - G Créhange
- Département de radiothérapie oncologique, institut Curie, 26, rue d'Ulm, 75005 Paris, France
| | - A Thiery-Vuillemin
- Service d'oncologie médicale, centre hospitalier régional universitaire Jean-Minjoz, 3, boulevard Fleming, 25030 Besançon cedex, France; Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France
| |
Collapse
|
36
|
Noel G, Keller A, Antoni D. [Stereotactic radiotherapy of brain metastases in complex situations]. Cancer Radiother 2019; 23:708-715. [PMID: 31477442 DOI: 10.1016/j.canrad.2019.07.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Stereotactic radiation therapy of brain metastases is a treatment recognized as effective, well tolerated, applicable for therapeutic indications codified and validated by national and international guidelines. However, the effectiveness of this irradiation, the evolution of patient care and the technical improvements enabling its implementation make it possible to consider it in more complex situations: proximity of brain metastases to organs at risk; large, cystic, haemorrhagic or multiple brain metastases, combination with targeted therapies and immunotherapy, stereotactic radiotherapy in patients with a pacemaker. This article aims to put forward the arguments available to date in the literature and those resulting from clinical practice to provide decision support for the radiation oncologists.
Collapse
Affiliation(s)
- G Noel
- Department of radiotherapy, comprehensive cancer center Paul-Strauss, UNICANCER, 3, rue de la porte de l'Hôpital, 67065 Strasbourg cedex, France; Strasbourg University, CNRS, IPHC UMR 7178, Centre Paul-Strauss, UNICANCER, 67000 Strasbourg, France.
| | - A Keller
- Department of radiotherapy, comprehensive cancer center Paul-Strauss, UNICANCER, 3, rue de la porte de l'Hôpital, 67065 Strasbourg cedex, France
| | - D Antoni
- Department of radiotherapy, comprehensive cancer center Paul-Strauss, UNICANCER, 3, rue de la porte de l'Hôpital, 67065 Strasbourg cedex, France; Strasbourg University, CNRS, IPHC UMR 7178, Centre Paul-Strauss, UNICANCER, 67000 Strasbourg, France
| |
Collapse
|
37
|
Schvartsman G, Ma J, Bassett RL, Haydu LE, Amaria RN, Hwu P, Wong MK, Hwu WJ, Diab A, Patel SP, Davies MA, Hamerschlak N, Tawbi HAH, Glitza Oliva IC. Incidence, patterns of progression, and outcomes of preexisting and newly discovered brain metastases during treatment with anti-PD-1 in patients with metastatic melanoma. Cancer 2019; 125:4193-4202. [PMID: 31398264 DOI: 10.1002/cncr.32454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/06/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Melanoma brain metastases (MBM) occur in up to 50% of patients with metastatic melanoma (MM) and represent a frequent site of systemic treatment failure for targeted therapies. However, to the authors' knowledge, little is known regarding the incidence, patterns of disease progression, and outcomes of MBM in patients treated with anti-PD-1 immunotherapy. METHODS A total of 320 patients with MM who were treated with anti-PD-1 at The University of Texas MD Anderson Cancer Center in Houston were reviewed. Analyses were performed to identify factors associated with brain metastasis-free survival and overall survival (OS) using Cox regression models. RESULTS The median age of the patients was 63.3 years. OS from the initiation of anti-PD-1 therapy was not significantly different between patients without MBM prior to anti-PD-1 compared with patients with prior MBM (P = .359). Among patients without prior MBM, 21 patients (8.6%) developed MBM during anti-PD-1 therapy, 12 of whom (4.9%) presented with disease progression in the central nervous system (CNS) only. Developing MBM during or after therapy with anti-PD-1 (hazard ratio, 4.70; 95% CI, 3.18-6.93) was associated with shorter OS. Among patients with MBM prior to anti-PD-1 treatment, 15 (20.0%) progressed in the CNS only and 19 (25.3%) progressed both intracranially and extracranially; at the time of the last data cutoff, 27 patients (36.0%) had not developed disease progression. Radiation necrosis occurred in 11.3% of patients (7 of 62 patients) in the group with a prior MBM who received stereotactic radiosurgery. CONCLUSIONS Anti-PD-1 therapy may change the natural history of patients with preexisting MBM. However, CNS failure during treatment with anti-PD-1 is predictive of a worse prognosis compared with extracranial progression. The results of the current study support the activity of anti-PD-1 in patients with MBM, although routine CNS imaging during therapy is warranted.
Collapse
Affiliation(s)
- Gustavo Schvartsman
- Department of Hematology/Oncology, Albert Einstein Israeli Hospital, Sao Paulo, Brazil
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roland L Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rodabe Navroze Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael K Wong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wen-Jen Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sapna Pradyuman Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nelson Hamerschlak
- Department of Hematology/Oncology, Albert Einstein Israeli Hospital, Sao Paulo, Brazil
| | - Hussein Abdul-Hassan Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
38
|
Ou D, Cao L, Xu C, Kirova Y, Chen J. Upfront brain radiotherapy may improve survival for unfavorable prognostic breast cancer brain metastasis patients with Breast‐GPA 0‐2.0. Breast J 2019; 25:1134-1142. [PMID: 31286612 DOI: 10.1111/tbj.13426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dan Ou
- Department of Radiation oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Lu Cao
- Department of Radiation oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Cheng Xu
- Department of Radiation oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Youlia Kirova
- Department of Radiation Oncology Institut Curie Paris France
| | - Jia‐Yi Chen
- Department of Radiation oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| |
Collapse
|
39
|
Remon J, Esteller L, Taus Á. Nivolumab plus ipilimumab combination therapy for the first-line treatment NSCLC: evidence to date. Cancer Manag Res 2019; 11:4893-4904. [PMID: 31213908 PMCID: PMC6549681 DOI: 10.2147/cmar.s164935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) as monotherapy in selected patients as well as in combination with chemotherapy have become the standard of care in the first-line treatment strategy of advanced non-small cell lung cancer (NSCLC) patients. Combination treatment with ICI, such as nivolumab and ipilimumab or durvaluamb and ipilimumab, has also been proposed as potential strategies in this setting in selected advanced NSCLC patients. Characterizing predictive markers of long-term clinical benefit with ICI is a critical objective. Tumor mutational burden has been proposed as a potential predictive biomarker. In this review, we discuss the efficacy of nivolumab and ipilimumab in advanced NSCLC patients as well as the clinical utility of tumor mutational burden in the efficacy of this combination. Ongoing clinical trials with nivolumab and ipilimumab, and the efficacy of this combination in subgroups of NSCLC patients, such as elderly patients and patients with brain metastases, are also discussed.
Collapse
Affiliation(s)
- Jordi Remon
- Centro Integral Oncología Clara Campal Barcelona, HM-Delfos, Medical Oncology Department, Barcelona, Spain
| | - Laura Esteller
- Centro Integral Oncología Clara Campal Barcelona, HM-Delfos, Medical Oncology Department, Barcelona, Spain
| | - Álvaro Taus
- Hospital del Mar, Medical Oncology Department, Barcelona, Spain
- Oncology Department, Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
40
|
Peverelli G, Raimondi A, Ratta R, Verzoni E, Bregni M, Cortesi E, Cartenì G, Fornarini G, Facchini G, Buti S, Galli L, Tucci M, Prisciandaro M, Procopio G. Cabozantinib in Renal Cell Carcinoma With Brain Metastases: Safety and Efficacy in a Real-World Population. Clin Genitourin Cancer 2019; 17:291-298. [PMID: 31178240 DOI: 10.1016/j.clgc.2019.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/26/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cabozantinib showed efficacy and manageable toxicity in patients with metastatic renal cell carcinoma (mRCC). In this study we aimed to describe the safety and to collect evidence on the potential efficacy of cabozantinib in mRCC patients with brain metastases (BM) in a real-world experience. MATERIALS AND METHODS We retrospectively collected data of patients treated with cabozantinib within the Italian Managed Access Program. Patients were selected for the presence of BM before the start of treatment and for at least 1 previous tyrosine kinase inhibitor (TKI) treatment regimen for metastatic disease. Safety data were reported, and overall response rate (ORR), brain-specific response, progression-free survival (PFS), and median overall survival (OS) were analyzed. RESULTS Overall, 12 patients treated with cabozantinib were evaluated. Any grade adverse events (AEs) accounted for 92%, Grade 3/4 AEs rated at 36% with no major neurological side effects. The most common AEs included hypertension (33%), fatigue (24%), aminotransferase elevation (25%), hypothyroidism (16%), and gastrointestinal toxicity (16%). The ORR was 50% with a disease control rate of 75%. All 5 patients treated with a combined systemic and brain-directed approach obtained intracranial disease control, without increased toxicity. Median PFS and median OS were 5.8 and 8.8 months, respectively. Comparable safety and tolerability results for other TKI regimens were reported from the literature. CONCLUSION Cabozantinib showed safety, acceptable tolerability, and promising antitumor activity in a population of mRCC patients with BM from a real-world experience. A combined modality approach for renal cell carcinoma with BM, whenever feasible, could be recommended to improve oncological outcomes.
Collapse
Affiliation(s)
- Giorgia Peverelli
- Medical Oncology Department, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Raffaele Ratta
- Medical Oncology Department, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elena Verzoni
- Medical Oncology Department, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marco Bregni
- Ospedale di Circolo di Busto Arsizio, Busto Arsizio, Italy
| | - Enrico Cortesi
- Department of Medical Oncology B, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | | | - Giuseppe Fornarini
- IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Medical Oncology Department, Genova, Italy
| | - Gaetano Facchini
- Departmental Unit of Experimental Uro-Andrological Clinical Oncology, Department of Uro-Gynaecological Oncology, National Cancer Institute -IRCCS- G. Pascale Foundation, Naples, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Luca Galli
- Medical Oncology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Marcello Tucci
- Division of Medical Oncology, San Luigi Gonzaga Hospital, Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Michele Prisciandaro
- Medical Oncology Department, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giuseppe Procopio
- Medical Oncology Department, Genitourinary Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| |
Collapse
|
41
|
Modesto A, Chira C, Sol JC, Lubrano V, Boulinguez S, Pagès C, Sibaud V, Gomez-Roca C, Moyal É, Meyer N. Prise en charge des patients atteints de métastases cérébrales de mélanome. Cancer Radiother 2019; 23:147-150. [DOI: 10.1016/j.canrad.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
|
42
|
Weingarten N, Kruser TJ, Bloch O. Symptomatic radiation necrosis in brain metastasis patients treated with stereotactic radiosurgery and immunotherapy. Clin Neurol Neurosurg 2019; 179:14-18. [DOI: 10.1016/j.clineuro.2019.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/20/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
|
43
|
Thompson JA, Schneider BJ, Brahmer J, Andrews S, Armand P, Bhatia S, Budde LE, Costa L, Davies M, Dunnington D, Ernstoff MS, Frigault M, Hoffner B, Hoimes CJ, Lacouture M, Locke F, Lunning M, Mohindra NA, Naidoo J, Olszanski AJ, Oluwole O, Patel SP, Reddy S, Ryder M, Santomasso B, Shofer S, Sosman JA, Wahidi M, Wang Y, Johnson-Chilla A, Scavone JL. Management of Immunotherapy-Related Toxicities, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019; 17:255-289. [DOI: 10.6004/jnccn.2019.0013] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of the NCCN Guidelines for Management of Immunotherapy-Related Toxicities is to provide guidance on the management of immune-related adverse events resulting from cancer immunotherapy. The NCCN Management of Immunotherapy-Related Toxicities Panel is an interdisciplinary group of representatives from NCCN Member Institutions and ASCO, consisting of medical and hematologic oncologists with expertise in a wide array of disease sites, and experts from the fields of dermatology, gastroenterology, neuro-oncology, nephrology, emergency medicine, cardiology, oncology nursing, and patient advocacy. Several panel representatives are members of the Society for Immunotherapy of Cancer (SITC). The initial version of the NCCN Guidelines was designed in general alignment with recommendations published by ASCO and SITC. The content featured in this issue is an excerpt of the recommendations for managing toxicity related to immune checkpoint blockade and a review of existing evidence. For the full version of the NCCN Guidelines, including recommendations for managing toxicities related to chimeric antigen receptor T-cell therapy, visitNCCN.org.
Collapse
Affiliation(s)
- John A. Thompson
- 1Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Julie Brahmer
- 3The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | - Shailender Bhatia
- 1Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Luciano Costa
- 7University of Alabama at Birmingham Comprehensive Cancer Center
| | | | | | | | | | | | - Christopher J. Hoimes
- 13Case Comprehensive Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | - Nisha A. Mohindra
- 16Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Jarushka Naidoo
- 3The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | | | | | | - Jeffrey A. Sosman
- 16Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Yinghong Wang
- 23The University of Texas MD Anderson Cancer Center; and
| | | | | |
Collapse
|
44
|
Nassif EF, Arsène-Henry A, Kirova YM. Brain metastases and treatment: multiplying cognitive toxicities. Expert Rev Anticancer Ther 2019; 19:327-341. [PMID: 30755047 DOI: 10.1080/14737140.2019.1582336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Thirty per cent of cancer patients develop brain metastases, with multiple combination or sequential treatment modalities available, to treat systemic or central nervous system (CNS) disease. Most patients experience toxicities as a result of these treatments, of which cognitive impairment is one of the adverse events most commonly reported, causing major impairment of the patient's quality of life. Areas covered: This article reviews the role of cancer treatments in cognitive decline of patients with brain metastases: surgery, radiotherapy, chemotherapy, targeted therapies, immunotherapies and hormone therapy. Pathological and molecular mechanisms, as well as future directions for limiting cognitive toxicities are also presented. Other causes of cognitive impairment in this population are discussed in order to refine the benefit-risk balance of each treatment modality. Expert opinion: Cumulative cognitive toxicity should be taken into account, and tailored to the patient's cognitive risk in the light of the expected survival benefit. Standardization of cognitive assessment in this context is needed in order to better appreciate each treatment's responsibility in cognitive impairment, keeping in mind disease itself impacts cognition in this context.
Collapse
Affiliation(s)
- Elise F Nassif
- a Department of Radiotherapy , Institut Curie , Paris , France
| | | | - Youlia M Kirova
- a Department of Radiotherapy , Institut Curie , Paris , France
| |
Collapse
|
45
|
Kroeze SGC, Fritz C, Basler L, Gkika E, Brunner TB, Grosu AL, Guckenberger M. Combination of stereotactic radiotherapy and targeted therapy: patterns-of-care survey in German-speaking countries. Strahlenther Onkol 2019; 195:199-206. [PMID: 30737541 DOI: 10.1007/s00066-018-01422-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/22/2018] [Indexed: 12/19/2022]
|
46
|
Nieder C, Yobuta R, Mannsåker B. Second Re-irradiation of Brain Metastases: A Review of Studies Involving Stereotactic Radiosurgery. Cureus 2018; 10:e3712. [PMID: 30788201 PMCID: PMC6373883 DOI: 10.7759/cureus.3712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to advances in the systemic and local treatment, e.g., targeted therapy, immune checkpoint inhibitors, and stereotactic radiotherapy, an increasing proportion of patients with brain metastases now survive for several years. However, long-term survival is not synonymous to permanent local control in the brain. Both local and distant brain relapse sometimes necessitate additional radiotherapy to prevent death from neurologic causes. Prescribing more than two courses of radiotherapy to the same target volume or, in this case, brain metastasis, is a controversial approach. The present review summarizes the results of clinical studies, that included patients treated with whole-brain radiotherapy (WBRT) and two courses of stereotactic radiotherapy to the same, locally recurrent metastasis, and with two courses of WBRT and an additional stereotactic radiotherapy.
Collapse
|
47
|
Black PJ, Smith DR, Chaudhary K, Xanthopoulos EP, Chin C, Spina CS, Hwang ME, Mayeda M, Wang YF, Connolly EP, Wang TJC, Wuu CS, Hei TK, Cheng SK, Wu CC. Velocity-based Adaptive Registration and Fusion for Fractionated Stereotactic Radiosurgery Using the Small Animal Radiation Research Platform. Int J Radiat Oncol Biol Phys 2018; 102:841-847. [PMID: 29891199 DOI: 10.1016/j.ijrobp.2018.04.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE To implement Velocity-based image fusion and adaptive deformable registration to enable treatment planning for preclinical murine models of fractionated stereotactic radiosurgery (fSRS) using the small animal radiation research platform (SARRP). METHODS AND MATERIALS C57BL6 mice underwent 3 unique cone beam computed tomography (CBCT) scans: 2 in the prone position and a third supine. A single T1-weighted post-contrast magnetic resonance imaging (MRI) series of a murine metastatic brain tumor model was selected for MRI-to-CBCT registration and gross tumor volume (GTV) identification. Two arms were compared: Arm 1, where we performed 3 individual MRI-to-CBCT fusions using rigid registration, contouring GTVs on each, and Arm 2, where the authors performed MRI-to-CBCT fusion and contoured GTV on the first CBCT followed by Velocity-based adaptive registration. The first CBCT and associated GTV were exported from MuriPlan (Xstrahl Life Sciences) into Velocity (Varian Medical Systems, Inc, Palo Alto, CA). In Arm 1, the second and third CBCTs were exported similarly along with associated GTVs (Arm 1), while in Arm 2, the first (prone) CBCT was fused separately to the second (prone) and third (supine) CBCTs, performing deformable registrations on initial CBCTs and applying resulting matrices to the contoured GTV. Resulting GTVs were compared between Arms 1 and 2. RESULTS Comparing GTV overlays using repeated MRI fusion and GTV delineation (Arm 1) versus those of Velocity-based CBCT and GTV adaptive fusion (Arm 2), mean deviations ± standard deviation in the axial, sagittal, and coronal planes were 0.46 ± 0.16, 0.46 ± 0.22, and 0.37 ± 0.22 mm for prone-to-prone and 0.52 ± 0.27, 0.52 ± 0.36, and 0.68 ± 0.31 mm for prone-to-supine adaptive fusions, respectively. CONCLUSIONS Velocity-based adaptive fusion of CBCTs and contoured volumes allows for efficient fSRS planning using a single MRI-to-CBCT fusion. This technique is immediately implementable on current SARRP systems, facilitating advanced preclinical treatment paradigms using existing clinical treatment planning software.
Collapse
Affiliation(s)
- Paul J Black
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Deborah R Smith
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Kunal Chaudhary
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Eric P Xanthopoulos
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Christine Chin
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Catherine S Spina
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Mark E Hwang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Mark Mayeda
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Eileen P Connolly
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York; Department of Neurological Surgery, Columbia University Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York; Center for Radiological Research, Columbia University, New York, New York
| | - Simon K Cheng
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York.
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
48
|
Schimmel WC, Gehring K, Eekers DB, Hanssens PE, Sitskoorn MM. Cognitive effects of stereotactic radiosurgery in adult patients with brain metastases: A systematic review. Adv Radiat Oncol 2018; 3:568-581. [PMID: 30370357 PMCID: PMC6200877 DOI: 10.1016/j.adro.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/20/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Stereotactic radiation surgery (SRS) is increasingly applied in patients with brain metastases (BM) and is expected to have fewer adverse effects on cognitive functioning than whole brain radiation therapy (WBRT). Patients with BM are often confronted with a relatively short life expectancy, and the prevention or delay of cognitive decline to maintain quality of life is a clinically and highly relevant treatment goal. This review systematically and specifically evaluates the current literature on the cognitive effects of SRS in patients with BM. METHODS AND MATERIALS Published trials on SRS alone or in combination with WBRT, including objective assessment of cognitive functioning, were identified through a systematic search of the PubMed database up to March 2018. RESULTS Of the 241 records screened, 14 studies matched the selection criteria: 2 pilot studies, 7 single-group/observational trials (1 study update), and 5 randomized trials (1 secondary analysis). CONCLUSIONS In general, the results show little to no objective cognitive decline up to 4 months after SRS compared with WBRT. However, most trials suffered from methodologic limitations that hindered reliable conclusions. Most importantly, few studies investigated the specific cognitive effects of SRS alone or versus WBRT. Furthermore, disentangling the cognitive effects of SRS from the effects of the disease itself and from the effects of other treatments remains very difficult. By presenting this comprehensive review, we aim to encourage researchers to probe deeper into this area and to do so in a standardized and methodologically optimal manner. The ultimate objective of this line of research is to inform both doctors and patients more precisely about the cognitive effects they can expect from treatment. This study is expected to improve the quality of decision-making and maximize clinical outcomes for each individual patient.
Collapse
Affiliation(s)
- Wietske C.M. Schimmel
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| | - Karin Gehring
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Daniëlle B.P. Eekers
- Department of Radiation Oncology, GROW–School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - Patrick E.J. Hanssens
- Gamma Knife Center, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Margriet M. Sitskoorn
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
49
|
Kim SH, Redvers RP, Chi LH, Ling X, Lucke AJ, Reid RC, Fairlie DP, Martin ACBM, Anderson RL, Denoyer D, Pouliot N. Identification of brain metastasis genes and therapeutic evaluation of histone deacetylase inhibitors in a clinically relevant model of breast cancer brain metastasis. Dis Model Mech 2018; 11:dmm.034850. [PMID: 29784888 PMCID: PMC6078399 DOI: 10.1242/dmm.034850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Breast cancer brain metastases remain largely incurable. Although several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immunocompromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours. As seen by immunohistochemistry, 4T1Br4 tumours and brain metastases display a triple-negative phenotype, consistent with the high propensity of this breast cancer subtype to spread to brain. In vitro assays indicate that 4T1Br4 cells have an enhanced ability to adhere to or migrate across a brain-derived endothelial monolayer and greater invasive response to brain-derived soluble factors compared to 4T1 cells. These properties are likely to contribute to the brain selectivity of 4T1Br4 tumours. Expression profiling and gene set enrichment analyses demonstrate the clinical relevance of the 4T1Br4 model at the transcriptomic level. Pathway analyses implicate tumour-intrinsic immune regulation and vascular interactions in successful brain colonisation, revealing potential therapeutic targets. Evaluation of two histone deacetylase inhibitors, SB939 and 1179.4b, shows partial efficacy against 4T1Br4 metastasis to brain and other sites in vivo, and potent radio-sensitising properties in vitro. The 4T1Br4 model provides a clinically relevant tool for mechanistic studies and to evaluate novel therapies against brain metastasis. This article has an associated First Person interview with Soo-Hyun Kim, joint first author of the paper. Summary: The authors introduce a new syngeneic mouse model of spontaneous breast cancer brain metastasis, demonstrate its phenotypic, functional and transcriptomic relevance to human TNBC brain metastasis, and test novel therapies.
Collapse
Affiliation(s)
- Soo-Hyun Kim
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard P Redvers
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University Bundoora, VIC, 3086, Australia
| | - Lap Hing Chi
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University Bundoora, VIC, 3086, Australia
| | - Xiawei Ling
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | | | - Robin L Anderson
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University Bundoora, VIC, 3086, Australia.,Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Delphine Denoyer
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Normand Pouliot
- School of Cancer Medicine, La Trobe University Bundoora, VIC, 3086, Australia .,Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.,Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
50
|
Banna GL, Passiglia F, Colonese F, Canova S, Menis J, Addeo A, Russo A, Cortinovis DL. Immune-checkpoint inhibitors in non-small cell lung cancer: A tool to improve patients' selection. Crit Rev Oncol Hematol 2018; 129:27-39. [PMID: 30097235 DOI: 10.1016/j.critrevonc.2018.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
The identification of reliable predictive biomarkers of efficacy or resistance to immune-oncology (I-O) agents is a major issue for translational research and clinical practice. However, along with PDL1 and molecular features other clinical, radiological and laboratory factors can be considered for the selection of those patients who would not be the best candidate for immune-checkpoint inhibitors (ICPIs). We examined these factors, emerging from the results of currently available studies in non-small cell lung cancer (NSCLC), aiming to provide a useful and manageable tool which can help Oncologists in their everyday clinical practice. A thorough patient evaluation and close clinical monitoring, due to limited, early or inconclusive currently available data, should be deserved for patients with a pre-existing symptomatic chronic obstructive pulmonary disease, age >75 years, Eastern Cooperative Oncology Group (ECOG) performance status (PS) ≥ 1, a time to progression (TTP) < three months and progressive disease (PD) as the best response to the previous treatment, hepatitis or HIV-infections, high neutrophil to lymphocyte ratio (NLR), or on treatment with high-dose steroids, when the use of ICPIs is considered. Limited data are available to consider that ICPIs are safe in patients with interstitial lung disease, bronchiolitis obliterans organizing pneumonia and autommune diseases. Early evidence on steroids, vaccinations and antibiotics suggest their possible interaction with ICPIs and need to be more investigated in clinical trials. Oncogene-addicted NSCLC harboring EGFR-mutations and low tumor-infiltrating T-lymphocytes (TILs) seems not to gain benefit from I-O.
Collapse
Affiliation(s)
- Giuseppe Luigi Banna
- Division of Medical Oncology, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy.
| | - Francesco Passiglia
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Italy
| | | | | | - Jessica Menis
- Department of Oncology Medicine, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, 1205 Geneva, Switzerland
| | - Antonio Russo
- Department of Surgical, Oncological and Stomatological Disciplines, University of Palermo, Italy
| | | |
Collapse
|