1
|
Jiang Z, Xu B, Sun B, Yang B, Lu S, Li M, Zhang J, Qi L, Wu Q. Germline variants analysis of Chinese breast cancer patients reveals numerous alterations in homologous recombination genes. Future Sci OA 2025; 11:2458432. [PMID: 40167152 PMCID: PMC11970748 DOI: 10.1080/20565623.2025.2458432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025] Open
Abstract
PURPOSE We aimed to identify the pathogenic variants of homologous recombination (HR) genes and analyze the correlation between the pathogenic variants and clinical characteristics in Chinese breast cancer patients. METHODS A cohort of 178 breast cancer patients participated in this study. We assessed genomic alterations using a 23-gene panel, which includes most of the HR-related genes and DNA mismatch repair (MMR) gene, through next-generation sequencing. The pathogenicity of variants was determined based on the American College of Medical Genetics and Genomics standards and guidelines. The correlation between these pathogenic variants and the clinical characteristics of the patients was investigated. RESULTS 26 pathogenic variants, including one novel suspected pathogenic variant, were detected in 28 (15.7%) patients. These variants occurred in 7 HR-related genes: BRCA1, BRCA2, PALB2, RAD51D, RAD50, BRIP1, and ATM. The frequency of BRCA1 variants was higher in the younger group (8.9%) compared to the older group (2.6%), while the trend was reversed for BRCA2 (3.0% vs. 7.8%). All three patients with the pathogenic variant (p.Lys91fs) in RAD51D were diagnosed with triple-negative breast cancer. CONCLUSIONS HR-gene testing in breast cancer could help to find new suspected pathogenic variants and increase the clinical benefit of multi-gene testing for breast cancer.
Collapse
Affiliation(s)
| | - Bing Xu
- Beijing USCI Medical Laboratory, Beijing, China
| | - Bo Sun
- The 2nd Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Beibei Yang
- The 2nd Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Lu
- The 2nd Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mengjian Li
- Beijing USCI Medical Laboratory, Beijing, China
| | - Juan Zhang
- Beijing USCI Medical Laboratory, Beijing, China
| | - Liqiang Qi
- Department of Breast Surgical Oncology, Cancer Institute, and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qixi Wu
- Beijing USCI Medical Laboratory, Beijing, China
| |
Collapse
|
2
|
Liu YC, Shen J. Meta-analysis of the association between overexpression of RAD51 family genes and prognosis and clinical features in breast cancer. Sci Rep 2025; 15:4229. [PMID: 39905235 PMCID: PMC11794475 DOI: 10.1038/s41598-025-88763-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
The RAD51 family of genes play a crucial role in the repair of DNA damage, and increasing evidence suggests a close link between the aberrant expression of RAD51 family genes and the development of breast cancer. However, their prognostic and clinical relevance remains subjects of ongoing debate. This study aims to systematically investigate the relationship between the overexpression of RAD51 family genes and breast cancer prognosis, as well as their association with clinicopathological characteristics, through a comprehensive meta-analysis. PubMed, EMBASE, OVID, Web of Science, Scopus, and Cochrane Library were systematically searched for relevant studies published up to August 25, 2024. Two independent researchers screened the literature according to predefined inclusion and exclusion criteria and extracted relevant data. Statistical analyses were conducted using the Meta package in R 4.2.2. Thirteen studies comprising 20,222 breast cancer patients were included. High expression of RAD51 family genes was associated with poorer overall survival (OS) [HR = 1.305, 95%CI (1.145-1.488), P < 0.01], disease-free survival/distant metastasis-free survival (DFS/DMFS) [HR = 1.588, 95%CI (1.208-2.089), P < 0.01], and disease-specific survival (DSS) [HR = 1.403, 95%CI (1.066-1.846), P = 0.02]. In addition, subgroup analyses further showed that high RAD51 expression was associated with worsened OS [HR = 1.475, 95%CI (1.275-1.706), P < 0.01], DFS [HR = 1.584, 95%CI (1.133-2.215), P < 0.01] and progression-free survival (PFS) [HR = 2.439, 95%CI (1.172-5.075), P = 0.02]. In contrast, high expression of RAD51 paralogs was linked to improved PFS prognosis [HR = 0.870, 95%CI (0.797-0.949), P < 0.01]. Regarding clinical characteristics, high expression of RAD51 family genes was significantly associated with human epidermal growth factor receptor 2 (HER2) positivity [OR = 1.782, 95%CI (1.328-2.392), P < 0.01]. The overexpression of RAD51 family genes is correlated with unfavorable prognosis in breast cancer and exhibits a strong association with HER2-positive subtypes. These findings underscore the potential of RAD51 family genes as prognostic biomarker and therapeutic targets in breast cancer management.
Collapse
Affiliation(s)
- Yong-Cheng Liu
- Department of Surgical Oncology, Zhejiang University Medical School Affiliated Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, People's Republic of China
- Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Road of Qingchun, Shangcheng District, Hangzhou, 310016, Zhejiang Province, China
| | - Jun Shen
- Department of Surgical Oncology, Zhejiang University Medical School Affiliated Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, People's Republic of China.
- Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Road of Qingchun, Shangcheng District, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
3
|
Cheah W, Cutress RI, Eccles D, Copson E. Clinical Impact of Constitutional Genomic Testing on Current Breast Cancer Care. Clin Oncol (R Coll Radiol) 2025; 38:103631. [PMID: 39242249 DOI: 10.1016/j.clon.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
The most commonly diagnosed cancer in women worldwide is cancer of the breast. Up to 20% of familial cases are attributable to pathogenic mutations in high-penetrance (BReast CAncer gene 1 [BRCA1], BRCA2, tumor protein p53 [TP53], partner and localizer of breast cancer 2 [PALB2]) or moderate-penetrance (checkpoint kinase 2 [CHEK2], Ataxia-telangiectasia mutated [ATM], RAD51C, RAD51D) breast-cancer-predisposing genes. Most of the breast-cancer-predisposing genes are involved in DNA damage repair via homologous recombination pathways. Understanding these pathways can facilitate the development of risk-reducing and therapeutic strategies. The number of breast cancer patients undergoing testing for pathogenic mutations in these genes is rapidly increasing due to various factors. Advances in multigene panel testing have led to increased detection of pathogenic mutation carriers at high risk for developing breast cancer and contralateral breast cancer. However, the lack of long-term clinical outcome data and incomplete understanding of variants, particularly for moderate-risk genes limits clinical application. In this review, we have summarized the key functions, risks, and prognosis of breast-cancer-predisposing genes listed in the National Health Service (NHS) England National Genomic Test Directory for inherited breast cancer and provide an update on current management implications including surgery, radiotherapy, systemic treatments, and post-treatment surveillance.
Collapse
Affiliation(s)
- W Cheah
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - R I Cutress
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - D Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK
| | - E Copson
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
4
|
Witham M, Hengel S. The role of RAD51 regulators and variants in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome. NAR MOLECULAR MEDICINE 2024; 1:ugae010. [PMID: 39359934 PMCID: PMC11443433 DOI: 10.1093/narmme/ugae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The study of RAD51 regulators in female reproductive diseases has novel biomarker potential and implications for therapeutic advancement. Regulators of RAD51 play important roles in maintaining genome integrity and variations in these genes have been identified in female reproductive diseases including primary ovarian insufficiency (POI), endometriosis, and polycystic ovary syndrome (PCOS). RAD51 modulators change RAD51 activity in homologous recombination, replication stress, and template switching pathways. However, molecular implications of these proteins in primary ovarian insufficiency, endometriosis, and polycystic ovary syndrome have been understudied. For each reproductive disease, we provide its definition, current diagnostic and therapeutic treatment strategies, and associated genetic variations. Variants were discovered in RAD51, and regulators including DMC1, RAD51B, SWS1, SPIDR, XRCC2 and BRCA2 linked with POI. Endometriosis is associated with variants in XRCC3, BRCA1 and CSB genes. Variants in BRCA1 were associated with PCOS. Our analysis identified novel biomarkers for POI (DMC1 and RAD51B) and PCOS (BRCA1). Further biochemical and cellular analyses of RAD51 regulator functions in reproductive disorders will advance our understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Maggie Witham
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sarah R Hengel
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Ishihara E, Matsubayashi H, Nishimura S, Isaka M, Konno H, Goto S, Yamaguchi K, Urakami K. Four cancer cases with pathological germline variant RAD51D c.270_271dup. J Obstet Gynaecol Res 2024; 50:1742-1747. [PMID: 39117461 DOI: 10.1111/jog.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Pathological germline variants (PGVs) of RAD51D increase the risk of breast and ovarian cancer. In East Asia, c.270_271dup is the most frequently detected PGV of RAD51D; however, only a few cases have been reported in Japan. We report four cancer cases with a germline RAD51D c.270_271dup PGV. Three of them (lung cancer: 2, oral cancer: 1) were incidentally identified by whole genome sequencing in patients negative for the associated cancer histories, homologous recombination (HR) deficiency, or a second hit of RAD51D in the cancer DNA. For genetic counseling, we provided information on surveillance and cascade testing based on Western guidelines. The PGVs of moderate-risk HR-related genes are difficult to detect based on phenotype, especially in male-predominant pedigrees. The current spread of cancer genomic analysis will increase opportunities for incidental variant identification. The establishment of Japanese guidelines is expected to aid in the management of PGV carriers of moderate-risk genes.
Collapse
Affiliation(s)
- Eiko Ishihara
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Seiichiro Nishimura
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
- Division of Breast Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Mitsuhiro Isaka
- Division of Respiratory Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hayato Konno
- Division of Respiratory Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Seiya Goto
- Division of Head and Neck Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ken Yamaguchi
- Division of Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichi Urakami
- Division of Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
6
|
Kwong A, Ho CYS, Au CH, Tey SK, Ma ESK. Germline RAD51C and RAD51D Mutations in High-Risk Chinese Breast and/or Ovarian Cancer Patients and Families. J Pers Med 2024; 14:866. [PMID: 39202057 PMCID: PMC11355318 DOI: 10.3390/jpm14080866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND RAD51C and RAD51D are crucial in homologous recombination (HR) DNA repair. The prevalence of the RAD51C and RAD51D mutations in breast cancer varies across ethnic groups. Associations of RAD51C and RAD51D germline pathogenic variants (GPVs) with breast and ovarian cancer predisposition have been recently reported and are of interest. METHODS We performed multi-gene panel sequencing to study the prevalence of RAD51C and RAD51D germline mutations among 3728 patients with hereditary breast and/or ovarian cancer (HBOC). RESULTS We identified 18 pathogenic RAD51C and RAD51D mutation carriers, with a mutation frequency of 0.13% (5/3728) and 0.35% (13/3728), respectively. The most common recurrent mutation was RAD51D c.270_271dupTA; p.(Lys91Ilefs*13), with a mutation frequency of 0.30% (11/3728), which was also commonly identified in Asians. Only four out of six cases (66.7%) of this common mutation tested positive for homologous recombination deficiency (HRD). CONCLUSIONS Taking the family studies in our registry and tumor molecular pathology together, we concluded that this relatively common RAD51D variant showed incomplete penetrance in our local Chinese community. Personalized genetic counseling emphasizing family history for families with this variant, as suggested at the UK Cancer Genetics Group (UKCGG) Consensus meeting, would also be appropriate in Chinese families.
Collapse
Affiliation(s)
- Ava Kwong
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Cancer Genetics Centre, Breast Surgery Centre, Surgery Centre, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Cecilia Yuen Sze Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Chun Hang Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| | - Sze Keong Tey
- Division of Breast Surgery, Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Edmond Shiu Kwan Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong SAR, China
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong SAR, China
| |
Collapse
|
7
|
Piergentili R, Marinelli E, Cucinella G, Lopez A, Napoletano G, Gullo G, Zaami S. miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine. Noncoding RNA 2024; 10:16. [PMID: 38525735 PMCID: PMC10961778 DOI: 10.3390/ncrna10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Alessandra Lopez
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| |
Collapse
|
8
|
Barili V, Ambrosini E, Bortesi B, Minari R, De Sensi E, Cannizzaro IR, Taiani A, Michiara M, Sikokis A, Boggiani D, Tommasi C, Serra O, Bonatti F, Adorni A, Luberto A, Caggiati P, Martorana D, Uliana V, Percesepe A, Musolino A, Pellegrino B. Genetic Basis of Breast and Ovarian Cancer: Approaches and Lessons Learnt from Three Decades of Inherited Predisposition Testing. Genes (Basel) 2024; 15:219. [PMID: 38397209 PMCID: PMC10888198 DOI: 10.3390/genes15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Germline variants occurring in BRCA1 and BRCA2 give rise to hereditary breast and ovarian cancer (HBOC) syndrome, predisposing to breast, ovarian, fallopian tube, and peritoneal cancers marked by elevated incidences of genomic aberrations that correspond to poor prognoses. These genes are in fact involved in genetic integrity, particularly in the process of homologous recombination (HR) DNA repair, a high-fidelity repair system for mending DNA double-strand breaks. In addition to its implication in HBOC pathogenesis, the impairment of HR has become a prime target for therapeutic intervention utilizing poly (ADP-ribose) polymerase (PARP) inhibitors. In the present review, we introduce the molecular roles of HR orchestrated by BRCA1 and BRCA2 within the framework of sensitivity to PARP inhibitors. We examine the genetic architecture underneath breast and ovarian cancer ranging from high- and mid- to low-penetrant predisposing genes and taking into account both germline and somatic variations. Finally, we consider higher levels of complexity of the genomic landscape such as polygenic risk scores and other approaches aiming to optimize therapeutic and preventive strategies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Antonietta Taiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maria Michiara
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Angelica Sikokis
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Daniela Boggiani
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Chiara Tommasi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Olga Serra
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesco Bonatti
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Alessia Adorni
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Anita Luberto
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonino Musolino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
9
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
10
|
Liu Y, Zheng J, Xu Y, Lv J, Wu Z, Feng K, Liu J, Yan W, Wei L, Zhao J, Jiang L, Han M. Multigene testing panels reveal pathogenic variants in sporadic breast cancer patients in northern China. Front Genet 2023; 14:1271710. [PMID: 38028594 PMCID: PMC10666181 DOI: 10.3389/fgene.2023.1271710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Breast cancer, the most prevalent malignancy in women worldwide, presents diverse onset patterns and genetic backgrounds. This study aims to examine the genetic landscape and clinical implications of rare mutations in Chinese breast cancer patients. Methods: Clinical data from 253 patients, including sporadic and familial cases, were analyzed. Comprehensive genomic profiling was performed, categorizing identified rare variants according to the American College of Medical Genetics (ACMG) guidelines. In silico protein modeling was used to analyze potentially pathogenic variants' impact on protein structure and function. Results: We detected 421 rare variants across patients. The most frequently mutated genes were ALK (22.2%), BARD1 (15.6%), and BRCA2 (15.0%). ACMG classification identified 7% of patients harboring Pathogenic/Likely Pathogenic (P/LP) variants, with one case displaying a pathogenic BRCA1 mutation linked to triple-negative breast cancer (TNBC). Also identified were two pathogenic MUTYH variants, previously associated with colon cancer but increasingly implicated in breast cancer. Variants of uncertain significance (VUS) were identified in 112 patients, with PTEN c.C804A showing the highest frequency. The role of these variants in sporadic breast cancer oncogenesis was suggested. In-depth exploration of previously unreported variants led to the identification of three potential pathogenic variants: ATM c.C8573T, MSH3 c.A2723T, and CDKN1C c.C221T. Their predicted impact on protein structure and stability suggests a functional role in cancer development. Conclusion: This study reveals a comprehensive overview of the genetic variants landscape in Chinese breast cancer patients, highlighting the prevalence and potential implications of rare variants. We emphasize the value of comprehensive genomic profiling in breast cancer management and the necessity of continuous research into understanding the functional impacts of these variants.
Collapse
Affiliation(s)
- Yinfeng Liu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jie Zheng
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zizheng Wu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Kai Feng
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jiani Liu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Weitao Yan
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Liguang Wei
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Lisha Jiang
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
11
|
Bhattacharya D, Mukhopadhyay M, Shivam K, Tripathy S, Patra R, Pramanik A. Recent developments in photodynamic therapy and its application against multidrug resistant cancers. Biomed Mater 2023; 18:062005. [PMID: 37827172 DOI: 10.1088/1748-605x/ad02d4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Recently, photodynamic therapy (PDT) has received a lot of attention for its potential use in cancer treatment. It enables the therapy of a multifocal disease with the least amount of tissue damage. The most widely used prodrug is 5-aminolevulinic acid, which undergoes heme pathway conversion to protoporphyrin IX, which acts as a photosensitizer (PS). Additionally, hematoporphyrin, bacteriochlorin, and phthalocyanine are also studied for their therapeutic potential in cancer. Unfortunately, not every patient who receives PDT experiences a full recovery. Resistance to different anticancer treatments is commonly observed. A few of the resistance mechanisms by which cancer cells escape therapeutics are genetic factors, drug-drug interactions, impaired DNA repair pathways, mutations related to inhibition of apoptosis, epigenetic pathways, etc. Recently, much research has been conducted to develop a new generation of PS based on nanomaterials that could be used to overcome cancer cells' multidrug resistance (MDR). Various metal-based, polymeric, lipidic nanoparticles (NPs), dendrimers, etc, have been utilized in the PDT application against cancer. This article discusses the detailed mechanism by which cancer cells evolve towards MDR as well as recent advances in PDT-based NPs for use against multidrug-resistant cancers.
Collapse
Affiliation(s)
- Debalina Bhattacharya
- Department of Microbiology, Maulana Azad College, Kolkata, West Bengal 700013, India
| | - Mainak Mukhopadhyay
- Department of Biotechnology, JIS University, Kolkata, West Bengal 700109, India
| | - Kumar Shivam
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201301, India
| | - Satyajit Tripathy
- Department of Pharmacology, University of Free State, Bloemfontein, Free State, 9301, South Africa
- Amity Institute of Allied Health Science, Amity University, Noida 201301, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida 201301, India
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Arindam Pramanik
- School of Medicine, University of Leeds, Leeds, LS9 7TF, United Kingdom
- Amity Institute of Biotechnology, Amity University, Noida 201301, India
| |
Collapse
|
12
|
Turchiano A, Piglionica M, Martino S, Bagnulo R, Garganese A, De Luisi A, Chirulli S, Iacoviello M, Stasi M, Tabaku O, Meneleo E, Capurso M, Crocetta S, Lattarulo S, Krylovska Y, Lastella P, Forleo C, Stella A, Bukvic N, Simone C, Resta N. Impact of High-to-Moderate Penetrance Genes on Genetic Testing: Looking over Breast Cancer. Genes (Basel) 2023; 14:1530. [PMID: 37628581 PMCID: PMC10454640 DOI: 10.3390/genes14081530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) is the most common cancer and the leading cause of cancer death in women worldwide. Since the discovery of the highly penetrant susceptibility genes BRCA1 and BRCA2, many other predisposition genes that confer a moderate risk of BC have been identified. Advances in multigene panel testing have allowed the simultaneous sequencing of BRCA1/2 with these genes in a cost-effective way. Germline DNA from 521 cases with BC fulfilling diagnostic criteria for hereditary BC were screened with multigene NGS testing. Pathogenic (PVs) and likely pathogenic (LPVs) variants in moderate penetrance genes were identified in 15 out of 521 patients (2.9%), including 2 missense, 7 non-sense, 1 indel, and 3 splice variants, as well as two different exon deletions, as follows: ATM (n = 4), CHEK2 (n = 5), PALB2 (n = 2), RAD51C (n = 1), and RAD51D (n = 3). Moreover, the segregation analysis of PVs and LPVs into first-degree relatives allowed the detection of CHEK2 variant carriers diagnosed with in situ melanoma and clear cell renal cell carcinoma (ccRCC), respectively. Extended testing beyond BRCA1/2 identified PVs and LPVs in a further 2.9% of BC patients. In conclusion, panel testing yields more accurate genetic information for appropriate counselling, risk management, and preventive options than assessing BRCA1/2 alone.
Collapse
Affiliation(s)
- Antonella Turchiano
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Marilidia Piglionica
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Stefania Martino
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Rosanna Bagnulo
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Antonella Garganese
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Annunziata De Luisi
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Stefania Chirulli
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Matteo Iacoviello
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Michele Stasi
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Ornella Tabaku
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Eleonora Meneleo
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Martina Capurso
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Silvia Crocetta
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Simone Lattarulo
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Yevheniia Krylovska
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Patrizia Lastella
- Rare Disease Center, Internal Medicine Unit “C. Frugoni”, AOU Policlinico di Bari, 70124 Bari, Italy;
| | - Cinzia Forleo
- Cardiology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Alessandro Stella
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Nenad Bukvic
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| | - Cristiano Simone
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
- Medical Genetics, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nicoletta Resta
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.T.); (M.P.); (S.M.); (R.B.); (A.G.); (A.D.L.); (S.C.); (M.I.); (M.S.); (O.T.); (E.M.); (M.C.); (S.C.); (S.L.); (Y.K.); (A.S.); (N.B.); (C.S.)
| |
Collapse
|
13
|
Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. Histopathology 2023; 82:70-82. [PMID: 36468211 PMCID: PMC10953374 DOI: 10.1111/his.14808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Hereditary factors account for a significant proportion of breast cancer risk. Approximately 20% of hereditary breast cancers are attributable to pathogenic variants in the highly penetrant BRCA1 and BRCA2 genes. A proportion of the genetic risk is also explained by pathogenic variants in other breast cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C, RAD51D and BARD1, as well as genes associated with breast cancer predisposition syndromes - TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome), CDH1 (hereditary diffuse gastric cancer), STK11 (Peutz-Jeghers syndrome) and NF1 (neurofibromatosis type 1). Polygenic risk, the cumulative risk from carrying multiple low-penetrance breast cancer susceptibility alleles, is also a well-recognised contributor to risk. This review provides an overview of the established breast cancer susceptibility genes as well as breast cancer predisposition syndromes, highlights distinct genotype-phenotype correlations associated with germline mutation status and discusses molecular testing and therapeutic implications in the context of hereditary breast cancer.
Collapse
Affiliation(s)
- A Sokolova
- Sullivan and Nicolaides PathologyBrisbane
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - K J Johnstone
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - A E McCart Reed
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - P T Simpson
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - S R Lakhani
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| |
Collapse
|
14
|
Graffeo R, Rana H, Conforti F, Bonanni B, Cardoso M, Paluch-Shimon S, Pagani O, Goldhirsch A, Partridge A, Lambertini M, Garber J. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast 2022; 65:32-40. [PMID: 35772246 PMCID: PMC9253488 DOI: 10.1016/j.breast.2022.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Breast cancer risk associated with germline likely pathogenic/pathogenic variants (PV) varies by gene, often by penetrance (high >50% or moderate 20–50%), and specific locus. Germline PVs in BRCA1 and BRCA2 play important roles in the development of breast and ovarian cancer in particular, as well as in other cancers such as pancreatic and prostate cancers and melanoma. Recent studies suggest that other cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C and RAD51D confer differential risks of breast and other specific cancers. In the era of multigene panel testing, advances in next-generation sequencing technologies have notably reduced costs in the United States (US) and enabled sequencing of BRCA1/2 concomitantly with additional genes. The use of multigene-panel testing is beginning to expand in Europe as well. Further research into the clinical implications of variants in moderate penetrance genes, particularly in unaffected carriers, is needed for appropriate counselling and risk management with data-driven plans for surveillance and/or risk reduction. For individuals at high risk without any pathogenic or likely pathogenic variant in cancer susceptibility genes or some carriers of pathogenic variants in moderate-risk genes such as ATM and CHEK2, polygenic risk scores offer promise to help stratify breast cancer risk and guide appropriate risk management options. Cancer patients whose tumours are driven by the loss of function of both copies of a predisposition gene may benefit from therapies targeting the biological alterations induced by the dysfunctional gene e.g. poly ADP ribose polymerase (PARP) inhibitors and other novel pathway agents in cancers with DNA repair deficiencies. A better understanding of mechanisms by which germline variants drive various malignancies may lead to improvements in both therapeutic and preventive management options. The interpretation of genetic testing results requires careful attention. ATM, CHEK2, RAD51D and BARD1 correlated with breast and other cancers risk. European and American guidelines discrepancies. Support European healthcare providers in interpreting and managing female carriers.
Collapse
|
15
|
TGFBR1*6A as a modifier of breast cancer risk and progression: advances and future prospects. NPJ Breast Cancer 2022; 8:84. [PMID: 35853889 PMCID: PMC9296458 DOI: 10.1038/s41523-022-00446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
There is growing evidence that germline mutations in certain genes influence cancer susceptibility, tumor evolution, as well as clinical outcomes. Identification of a disease-causing genetic variant enables testing and diagnosis of at-risk individuals. For breast cancer, several genes such as BRCA1, BRCA2, PALB2, ATM, and CHEK2 act as high- to moderate-penetrance cancer susceptibility genes. Genotyping of these genes informs genetic risk assessment and counseling, as well as treatment and management decisions in the case of high-penetrance genes. TGFBR1*6A (rs11466445) is a common variant of the TGF-β receptor type I (TGFBR1) that has a global minor allelic frequency (MAF) of 0.051 according to the 1000 Genomes Project Consortium. It is emerging as a high frequency, low penetrance tumor susceptibility allele associated with increased cancer risk among several cancer types. The TGFBR1*6A allele has been associated with increased breast cancer risk in women, OR 1.15 (95% CI 1.01–1.31). Functionally, TGFBR1*6A promotes breast cancer cell proliferation, migration, and invasion through the regulation of the ERK pathway and Rho-GTP activation. This review discusses current findings on the genetic, functional, and mechanistic associations between TGFBR1*6A and breast cancer risk and proposes future directions as it relates to genetic association studies and mechanisms of action for tumor growth, metastasis, and immune suppression.
Collapse
|
16
|
Ding R, Xiao Y, Mo M, Zheng Y, Jiang YZ, Shao ZM. Breast cancer screening and early diagnosis in Chinese women. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0676. [PMID: 35380032 PMCID: PMC9088185 DOI: 10.20892/j.issn.2095-3941.2021.0676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most common malignant tumor in Chinese women, and its incidence is increasing. Regular screening is an effective method for early tumor detection and improving patient prognosis. In this review, we analyze the epidemiological changes and risk factors associated with breast cancer in China and describe the establishment of a screening strategy suitable for Chinese women. Chinese patients with breast cancer tend to be younger than Western patients and to have denser breasts. Therefore, the age of initial screening in Chinese women should be earlier, and the importance of screening with a combination of ultrasound and mammography is stressed. Moreover, Chinese patients with breast cancers have several ancestry-specific genetic features, and aiding in the determination of genetic screening strategies for identifying high-risk populations. On the basis of current studies, we summarize the development of risk-stratified breast cancer screening guidelines for Chinese women and describe the significant improvement in the prognosis of patients with breast cancer in China.
Collapse
Affiliation(s)
- Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miao Mo
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Zheng
- Department of Cancer Prevention, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
17
|
Futagawa M, Yamamoto H, Kochi M, Urakawa Y, Sogawa R, Kato F, Okazawa-Sakai M, Ennishi D, Shinozaki K, Inoue H, Yanai H, Hirasawa A. Retroperitoneal leiomyosarcoma in a female patient with a germline splicing variant RAD51D c.904-2A > T: a case report. Hered Cancer Clin Pract 2021; 19:48. [PMID: 34838098 PMCID: PMC8627011 DOI: 10.1186/s13053-021-00205-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background RAD51D (RAD51 paralog D) is an intermediate cancer susceptibility gene for primary ovarian cancer, including fallopian tube and peritoneal carcinomas and breast cancer. Although gynecological non-epithelial tumors such as uterine sarcomas are associated with genomic instability, including BRCA impairment, there is no clear evidence of the relationship between RAD51D variants and the risk of sarcoma development. Case presentation A Japanese woman in her 50s underwent multiple surgical resections and several regimens of chemotherapy for tumors that originated in the retroperitoneum and recurred in the peritoneum over a clinical course of approximately 4 years. The peritoneal tumor was histologically diagnosed as a leiomyosarcoma and was genetically identified to show a splice variant of RAD51D c.904-2A > T [NM_002878] through tumor profiling performed as a part of cancer precision medicine. The confirmatory genetic test performed after genetic counseling revealed that the RAD51D splicing variant detected in her tumor was of germline origin. In silico analyses supported the possible pathogenicity of the detected splice variant of RAD51D with a predicted attenuation in mRNA transcription and truncated protein production due to frameshifting, which was attributed to a single-nucleotide alteration in the splicing acceptor site at the 3′-end of intron 9 of RAD51D. Considering her unfavorable clinical outcome, which showed a highly aggressive phenotype of leiomyosarcoma with altered RAD51D, this case provided novel evidence for the relationship of a RAD51D splicing variant with malignant tumor development or progression. We report the findings of this rare case with possible involvement of the germline variant of RAD51D c.904-2A > T as a potential predisposing factor for malignant tumors, including leiomyosarcoma. Conclusions We present the findings of a case of leiomyosarcoma in the peritoneum of a female patient with a novel germline splicing variant of RAD51D as potential evidence for the pathogenicity of the variant and its involvement in the risk of sarcoma etiology and/or development. To the best of our knowledge, this is the first case report describing a leiomyosarcoma carrying a germline RAD51D splicing variant and elucidating its pathogenicity on the basis of computational prediction of the impairment of normal transcription and the presumed loss of functional protein production. Supplementary Information The online version contains supplementary material available at 10.1186/s13053-021-00205-x.
Collapse
Affiliation(s)
- Mashu Futagawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan. .,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan.
| | - Mariko Kochi
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yusaku Urakawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Reimi Sogawa
- Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Fumino Kato
- Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Mika Okazawa-Sakai
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsunori Shinozaki
- Division of Clinical Oncology, Hiroshima Prefecture Hospital, Hiroshima, Japan
| | - Hirofumi Inoue
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8551, Japan.,Department of Clinical Genomic Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
18
|
Yang C, Arnold AG, Catchings A, Rai V, Stadler ZK, Zhang L. The RAD51D c.82G>A (p.Val28Met) variant disrupts normal splicing and is associated with hereditary ovarian cancer. Breast Cancer Res Treat 2021; 185:869-877. [PMID: 33452952 DOI: 10.1007/s10549-020-06066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Mutations in RAD51D are associated with a predisposition to primary ovarian, fallopian tube, and peritoneal carcinoma. Our study aims to characterize a RAD51D missense variant in a hereditary ovarian cancer family. METHODS The effects of the RAD51D c.82G>A (p.Val28Met) variant on mRNA splicing were evaluated and characterized using RT-PCR, cloning and DNA sequencing. RESULTS This variant completely disrupts normal splicing and results in the loss of 3'end of 5'UTR and the entire exon 1 (c.-86_c.82), which presumably leads to loss of the RAD51D protein. The RAD51D c.82G>A (p.Val28Met) variant is clinically significant and classified as likely pathogenic. CONCLUSIONS Our results indicate that the RAD51D c.82G>A (p.Val28Met) variant contributes to cancer predisposition through disruption of normal mRNA splicing. The identification of this variant in an individual affected with high-grade serous fallopian tube cancer suggests that the RAD51D variant may contribute to predisposition to the ovarian cancer in this family.
Collapse
Affiliation(s)
- Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Angela G Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Amanda Catchings
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Vikas Rai
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Liying Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Ma D, Chen SY, Ren JX, Pei YC, Jiang CW, Zhao S, Xiao Y, Xu XE, Liu GY, Hu X, Liang XZ, Yu KD, Li DQ, Jiang YZ, Shao ZM. Molecular Features and Functional Implications of Germline Variants in Triple-Negative Breast Cancer. J Natl Cancer Inst 2020; 113:884-892. [PMID: 33151324 DOI: 10.1093/jnci/djaa175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The germline variant spectrum of triple-negative breast cancer (TNBC) is different from that of other subtypes and has demonstrated ethnic differences. However, the germline variants of TNBC among Chinese patients and its clinical significance remain unclear. METHODS Using our multi-omics TNBC cohort (n = 325), we determined the spectrum of germline variants in TNBC and aimed to illustrate their biological and clinical implications. RESULTS Overall, 16.0% (52 of 325) of TNBC patients harbored at least 1 pathogenic or likely pathogenic germline variant. These germline variants were associated with early onset of TNBC, the occurrence of contralateral breast cancer, the basal-like immune-suppressed mRNA subtype, and the homologous recombination deficiency (HRD) mutation subtype. Somatic allele-specific imbalance was observed in 54.1% of these germline variants, which was correlated with early onset of breast cancer and elevated HRD. The genes BRCA1 (7.4%), RAD51D (2.8%), and BRCA2 (2.2%) were those most frequently mutated. The RAD51D germline variants, especially K91fs, were enriched in Chinese patients with TNBC compared with Caucasian and African American patients. The Chinese-specific RAD51D germline variants were functionally associated with the instability of the RAD51D protein, HRD, and sensitivity to PARP inhibitors. CONCLUSIONS Chinese TNBC patients have a distinct spectrum of germline variants, with a remarkable impact on the clinical and molecular characteristics of the tumor. Integrative germline-somatic analysis may help identify TNBC patients who are most likely to be affected by their germline variants and in performing clinical interventions more precisely. The RAD51D variants enriched in our cohort may serve as therapeutic targets and guide precision treatment of TNBC.
Collapse
Affiliation(s)
- Ding Ma
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - Si-Yu Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Xiao Ren
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Chen Pei
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - Cong-Wei Jiang
- University of Chinese Academy of Sciences, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Shen Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - Yi Xiao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - Xiao-En Xu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Guang-Yu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Zhen Liang
- University of Chinese Academy of Sciences, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| |
Collapse
|
20
|
Ma D, Jiang YZ, Xiao Y, Xie MD, Zhao S, Jin X, Xu XE, Shao ZM. Integrated molecular profiling of young and elderly patients with triple-negative breast cancer indicates different biological bases and clinical management strategies. Cancer 2020; 126:3209-3218. [PMID: 32383785 DOI: 10.1002/cncr.32922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Age at the time of breast cancer diagnosis not only predicts clinical outcome but also indicates distinct molecular characteristics that provide the rationale for appropriate treatment strategies. However, to the authors' knowledge, little is known regarding the molecular profile and biological basis of triple-negative breast cancers (TNBCs) occurring in young and elderly patients. METHODS Using the study institution's largest, single-center, multiomics TNBC data set, the authors analyzed the clinical and genomic features of young (aged ≤39 years) and elderly (aged ≥65 years) patients with TNBC. RESULTS In the current study, a total of 50 patients, 354 patients, and 69 patients, respectively, were grouped as young, intermediate, and elderly patients with TNBC. Young patients with TNBC had worse short-term survival, upregulation of DNA repair, cell cycle and RNA metabolism gene sets, frequent pathogenic germline variants, and predominant homologous recombination deficiency-related mutational signatures. Several copy number alterations also were found to be enriched in young patients with TNBC. Nearly one-half of the TNBC cases in elderly patients were of the luminal androgen receptor subtype. TNBC in elderly patients was identified as being associated with severe fibrosis; a lower Ki-67 index; and somatic mutations in PIK3CA, KMT2D, ERBB2, ERBB3, and their corresponding pathways. Elderly patients with TNBC also were more likely to harbor targetable mutations. CONCLUSIONS The findings of the current study indicated that young patients with TNBC had an enhanced cell cycle, which may have helped to explain their inferior short-term survival, whereas the homologous recombination deficiency and enriched pathogenic germline variants observed among young patients with TNBC suggested the need for genetic counseling and testing, as well as the potential use of DNA damage agents and poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. Molecular characteristics of elderly patients with TNBC, although suggesting less response to chemotherapy, provided a rationale for the routine detection of actionable somatic mutations.
Collapse
Affiliation(s)
- Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng-Dan Xie
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-En Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Suszynska M, Ratajska M, Kozlowski P. BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res 2020; 13:50. [PMID: 32359370 PMCID: PMC7196220 DOI: 10.1186/s13048-020-00654-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background It is estimated that more than 20% of ovarian cancer cases are associated with a genetic predisposition that is only partially explained by germline mutations in the BRCA1 and BRCA2 genes. Recently, several pieces of evidence showed that mutations in three genes involved in the homologous recombination DNA repair pathway, i.e., BRIP1, RAD51C, and RAD51D, are associated with a high risk of ovarian cancer. To more precisely estimate the ovarian cancer risk attributed to BRIP1, RAD51C, and RAD51D mutations, we performed a meta-analysis based on a comparison of a total of ~ 29,400 ovarian cancer patients from 63 studies and a total of ~ 116,000 controls from the gnomAD database. Results The analysis allowed precise estimation of ovarian cancer risks attributed to mutations in BRIP1, RAD51C, and RAD51D, confirming that all three genes are ovarian cancer high-risk genes (odds ratio (OR) = 4.94, 95%CIs:4.07–6.00, p < 0.0001; OR = 5.59, 95%CIs:4.42–7.07, p < 0.0001; and OR = 6.94, 95%CIs:5.10–9.44, p < 0.0001, respectively). In the present report, we show, for the first time, a mutation-specific risk analysis associated with distinct, recurrent, mutations in the genes. Conclusions The meta-analysis provides evidence supporting the pathogenicity of BRIP1, RAD51C, and RAD51D mutations in relation to ovarian cancer. The level of ovarian cancer risk conferred by these mutations is relatively high, indicating that after BRCA1 and BRCA2, the BRIP1, RAD51C, and RAD51D genes are the most important ovarian cancer risk genes, cumulatively contributing to ~ 2% of ovarian cancer cases. The inclusion of the genes into routine diagnostic tests may influence both the prevention and the potential treatment of ovarian cancer.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Street, 61-704, Poznan, Poland
| | - Magdalena Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago, 60 Hanover Street, Dunedin, 9016, New Zealand.,Department of Biology and Medical Genetics, Medical University of Gdansk, Debinki 1 St., 80-210, Gdansk, Poland
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Street, 61-704, Poznan, Poland.
| |
Collapse
|
22
|
Srivastava A, Giangiobbe S, Kumar A, Paramasivam N, Dymerska D, Behnisch W, Witzens-Harig M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing. Front Bioeng Biotechnol 2020; 8:179. [PMID: 32211398 PMCID: PMC7067901 DOI: 10.3389/fbioe.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Hodgkin lymphoma (HL) is a lymphoproliferative malignancy of B-cell origin that accounts for 10% of all lymphomas. Despite evidence suggesting strong familial clustering of HL, there is no clear understanding of the contribution of genes predisposing to HL. In this study, whole genome sequencing (WGS) was performed on 7 affected and 9 unaffected family members from three HL-prone families and variants were prioritized using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). WGS identified a total of 98,564, 170,550, and 113,654 variants which were reduced by pedigree-based filtering to 18,158, 465, and 26,465 in families I, II, and III, respectively. In addition to variants affecting amino acid sequences, variants in promoters, enhancers, transcription factors binding sites, and microRNA seed sequences were identified from upstream, downstream, 5′ and 3′ untranslated regions. A panel of 565 cancer predisposing and other cancer-related genes and of 2,383 potential candidate HL genes were also screened in these families to aid further prioritization. Pathway analysis of segregating genes with Combined Annotation Dependent Depletion Tool (CADD) scores >20 was performed using Ingenuity Pathway Analysis software which implicated several candidate genes in pathways involved in B-cell activation and proliferation and in the network of “Cancer, Hematological disease and Immunological Disease.” We used the FCVPPv2 for further in silico analyses and prioritized 45 coding and 79 non-coding variants from the three families. Further literature-based analysis allowed us to constrict this list to one rare germline variant each in families I and II and two in family III. Functional studies were conducted on the candidate from family I in a previous study, resulting in the identification and functional validation of a novel heterozygous missense variant in the tumor suppressor gene DICER1 as potential HL predisposition factor. We aim to identify the individual genes responsible for predisposition in the remaining two families and will functionally validate these in further studies.
Collapse
Affiliation(s)
- Aayushi Srivastava
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Sara Giangiobbe
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Behnisch
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Kwong A, Shin VY, Chen J, Cheuk IWY, Ho CYS, Au CH, Chan KKL, Ngan HYS, Chan TL, Ford JM, Ma ESK. Germline Mutation in 1338 BRCA-Negative Chinese Hereditary Breast and/or Ovarian Cancer Patients: Clinical Testing with a Multigene Test Panel. J Mol Diagn 2020; 22:544-554. [PMID: 32068069 DOI: 10.1016/j.jmoldx.2020.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Differences in the mutation spectrum across ethnicities suggest the importance of identifying genes in addition to common high penetrant genes to estimate the associated breast cancer risk in China. A total of 1338 high-risk breast cancer patients who tested negative for germline BRCA1, BRCA2, TP53, and PTEN mutations between 2007 and 2017 were selected from the Hong Kong Hereditary Breast Cancer Family Registry. Patient samples were subjected to next-generation DNA sequencing using a multigene panel (Color Genomics). All detected pathogenic variants were validated by bidirectional DNA sequencing. The sequencing data were coanalyzed by a bioinformatics pipeline developed in-house. Sixty-one pathogenic variants (4.6%) were identified in this cohort in 11 cancer predisposition genes. Most carriers (77.1%) had early onset of breast cancer (age <45 years), 32.8% had family members with breast cancer, and 11.5% had triple-negative breast cancer. The most common mutated genes were PALB2 (1.4%), RAD51D (0.8%), and ATM (0.8%). A total of 612 variants of unknown significance were identified in 494 patients, and 87.4% of the variants of unknown significance were missense mutations. Pathogenic variants in cancer predisposition genes beyond BRCA1, BRCA2, TP53, and PTEN were detected in an additional 4.6% of patients using the multigene panel. PALB2 (1.4%) and RAD51D (0.8%) were the most commonly mutated genes in patients who tested mutation negative by a four-gene panel.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong Special Administrative Region; Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region; Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region.
| | - Vivian Y Shin
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong Special Administrative Region
| | - Jiawei Chen
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong Special Administrative Region
| | - Isabella W Y Cheuk
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong Special Administrative Region
| | - Cecilia Y S Ho
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region
| | - Chun H Au
- Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region
| | - Karen K L Chan
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Tsun L Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region; Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region
| | - James M Ford
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, California
| | - Edmond S K Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region; Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium and Hospital, Hong Kong Special Administrative Region
| |
Collapse
|
24
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
25
|
Harris JL, Rabellino A, Khanna KK. RAD51 paralogs promote genomic integrity and chemoresistance in cancer by facilitating homologous recombination. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S122. [PMID: 30740443 DOI: 10.21037/atm.2018.12.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Andrea Rabellino
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|