1
|
Cazzato G, Daruish M, Fortarezza F, Colagrande A, Marzullo A, Ingravallo G, Dei Tos AP, Yang RK, Cho WC. Gene Fusion-Driven Cutaneous Adnexal Neoplasms: An Updated Review Emphasizing Molecular Characteristics. Am J Dermatopathol 2025:00000372-990000000-00497. [PMID: 39912629 DOI: 10.1097/dad.0000000000002933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
ABSTRACT Gene rearrangements or fusions have emerged as critical oncogenic drivers in various cutaneous adnexal neoplasms. This review offers a comprehensive overview of both established and recently identified molecular alterations, with a specific focus on gene fusions. Key alterations discussed include YAP1 rearrangements, CRTC1::MAML2 fusions, BRD3 rearrangements, MYB::NFIB fusions, ETV6::NTRK3 fusions, and PLAG1 rearrangements, alongside rarer fusion transcripts, such as MEF2C::SS18, FOXK1::GRHL1/2, GPS2::GRHL, and RARA::NPEPPS. The article highlights the significance of these genetic changes in tumor biology and their potential therapeutic implications for locally advanced and metastatic skin adnexal tumors. It also addresses diagnostic challenges and molecular distinctions, providing updated insights into adnexal tumors driven by these gene fusions.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Maged Daruish
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Fortarezza
- Surgical Pathology and Cytopathology Unit, University Hospital of Padova, Padova, Italy; and
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", Bari, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, University Hospital of Padova, Padova, Italy; and
| | - Richard K Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Woo Cheal Cho
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
2
|
Mascarenhas L, DuBois SG, Albert CM, Bielack S, Orbach D, Federman N, Geoerger B, Nagasubramanian R, Zhang Y, Chisholm J, Gallego Melcon S, Goto H, Morgenstern DA, Owens C, Pappo AS, Perreault S, Schulte JH, Shukla N, Zwaan CM, Neu N, Bernard-Gauthier V, De La Cuesta E, van Tilburg CM, Laetsch TW. Elective Discontinuation of Larotrectinib in Pediatric Patients With TRK Fusion Sarcomas and Related Mesenchymal Tumors. J Clin Oncol 2025:JCO2400848. [PMID: 39869835 DOI: 10.1200/jco.24.00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Larotrectinib is a highly selective tropomyosin receptor kinase (TRK) inhibitor with efficacy in children with TRK fusion tumors. We evaluated patient outcomes after elective discontinuation of larotrectinib in the absence of disease progression in a protocol-defined wait-and-see subset analysis of eligible patients where treatment resumption with larotrectinib was allowed if disease progressed. We also assessed the safety and efficacy of larotrectinib in all pediatric patients with sarcoma. This cohort included 91 patients (younger than 18 years) from two clinical trials: infantile fibrosarcoma (49), other soft tissue sarcomas or related mesenchymal tumors (41), and bone sarcoma (1). Treatment-related adverse events were of maximum grade 1 or 2 in 25% and 25% of patients, respectively. The overall response rate was 87% (95% CI, 78 to 93). In the wait-and-see analysis, 47 patients discontinued larotrectinib. Median time from discontinuation to disease progression was not reached. Sixteen patients had tumor progression during the wait-and-see period. All 16 patients resumed larotrectinib, and 15 (94%) achieved disease control, with 11 objective responses. Larotrectinib continues to demonstrate durable responses with favorable safety in children with TRK fusion sarcomas. Treatment discontinuation is feasible in select patients with objective response and clinical benefit noted in those who have disease progression after elective treatment discontinuation.
Collapse
Affiliation(s)
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Catherine M Albert
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stefan Bielack
- Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), Zentrum für Kinder-, Jugend- und Frauenmedizin, Stuttgart Cancer Center, Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, PSL University, Paris, France
| | - Noah Federman
- David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | | | - Yizhou Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Julia Chisholm
- Children and Young Peoples Unit, Royal Marsden Hospital and Institute of Cancer Research, Sutton, United Kingdom
| | | | - Hiroaki Goto
- Kanagawa Children's Medical Center, Yokohama, Japan
| | | | - Cormac Owens
- Department of Haemato-Oncology, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | - Johannes H Schulte
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Neerav Shukla
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | - Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center für Tumor Disease (NCT), Heidelberg, Germany
| | - Theodore W Laetsch
- Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Zakić H, Kontić Vučinić O, Stamenković J, Jevtić J, Perišić Mitrović M, Životić M. Coexisting Congenital Mesoblastic Nephroma and Lissencephaly: Unique Case Report with Pathological Analysis and Its Clinical Significance. Biomedicines 2025; 13:196. [PMID: 39857780 PMCID: PMC11762540 DOI: 10.3390/biomedicines13010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Congenital mesoblastic nephroma represents 3-10% of all pediatric renal tumors. With the advancement of ultrasound diagnostics and magnetic resonance imaging, the diagnosis of this renal neoplasm is increasingly being established prenatally and at birth. It usually presents as a benign tumor, but it can severely affect pregnancy outcomes, contributing to perinatal morbidity and mortality. Lissencephaly belongs to a rare category of neurodevelopmental disorders marked by the absence of a substantial reduction in the typical folds and grooves in the cerebral cortex. The prognosis for patients with lissencephaly is extremely poor, carrying with it a high mortality rate. CASE PRESENTATION We present a case of congenital mesoblastic nephroma (CMN) diagnosed with polyhydramnios at 28 weeks of gestation, which led to preterm delivery at 29 weeks and a fatal outcome for the newborn. Histopathological examination confirmed the diagnosis of CMN along with fetal pachygyria/lissencephaly. The aim of this study is to point out the characteristics and unique correlation between CMN and lissencephaly, and to illustrate the histopathological features of CMN and lissencephaly through an educational example derived from our presented index case. To the best to our knowledge, the association of CMN with lissencephaly has not been described in the literature so far. CONCLUSIONS Outlining the prenatal progression of CMN and the outcome of pregnancies involving fetal CMN and lissencephaly, this case underscores the importance of comprehensive ultrasound examinations, including central nervous system evaluation, to identify potential coexisting anomalies and refine prenatal diagnostic practices.
Collapse
Affiliation(s)
- Hristina Zakić
- Clinics of Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (O.K.V.); (J.S.); (M.P.M.)
| | - Olivera Kontić Vučinić
- Clinics of Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (O.K.V.); (J.S.); (M.P.M.)
| | - Jelena Stamenković
- Clinics of Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (O.K.V.); (J.S.); (M.P.M.)
| | - Jovan Jevtić
- Institute of Pathology “Dr. Ðorđe Joannović”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milena Perišić Mitrović
- Clinics of Gynecology and Obstetrics, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (O.K.V.); (J.S.); (M.P.M.)
| | - Maja Životić
- Institute of Pathology “Dr. Ðorđe Joannović”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Batra U, Nathany S. Biomarker testing in lung cancer: from bench to bedside. Oncol Rev 2025; 18:1445826. [PMID: 39834530 PMCID: PMC11743711 DOI: 10.3389/or.2024.1445826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the poster child of personalized medicine. With increased knowledge about biomarkers and the consequent improvement in survival rates, NSCLC has changed from being a therapeutic nihilistic disease to that characterized by therapeutic enthusiasm. The routine biomarkers tested in NSCLC are EGFR, ALK, and ROS1. However, several additional biomarkers have been added to the diagnostic landscape. Current guidelines recommend testing at least seven biomarkers upfront at the time of NSCLC diagnosis-emphasizing the wide range of targets and corresponding therapies that can be leveraged for disease management. Sequential single-gene testing is not only time-consuming but also leads to tissue exhaustion. Multigene panel testing using next-generation sequencing (NGS) offers an attractive diagnostic substitute that aligns with the evolving dynamics of precision medicine. NGS enables the identification of point mutations, insertions, deletions, copy number alterations, fusion genes, and microsatellite instability information needed to guide the potential use of targeted therapy. This article reviews the existing guidelines, proposed recommendations for NGS in non-squamous NSCLC, real-world data on its use, and the advantages of adopting broader panel-based NGS testing over single-gene testing.
Collapse
Affiliation(s)
- Ullas Batra
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Shrinidhi Nathany
- Hematology and Bone Marrow Transplant, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| |
Collapse
|
5
|
Zając A, Sumorek-Wiadro J, Maciejczyk A, Chojnacki M, Wertel I, Rzeski W, Jakubowicz-Gil J. The engagement of Ras/Raf/MEK/ERK and PLCγ1/PKC pathways regulated by TrkB receptor in resistance of glioma cells to elimination upon apoptosis induction. Neuropharmacology 2025; 262:110204. [PMID: 39521041 DOI: 10.1016/j.neuropharm.2024.110204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The most aggressive tumors of human central nervous system are anaplastic astrocytoma (AA, III grade) and glioblastoma multiforme (GBM, IV grade) with an extremely bad prognosis. Their malignant character and resistance to standard therapy are correlated to the over-expression of survival pathways such as Ras/Raf/MEK/ERK and PLCγ1/PKC regulated by TrkB receptor. Therefore, the aim of this study was to investigate the engagement of those pathways in human glioma cells resistance for apoptosis induction by Temozolomide treatment. Two cancer MOGGCCM (AA) and T98G (GBM) and normal human astrocytes (NHA) cell lines were utilized. The tested inhibitors single and simultaneous action with Temozolomide affection on apoptosis induction was analyzed by MTT, microscopic observations and flow cytometry. Bcl-2:beclin-1 complexes occurrence was also assessed. siRNAs were used for direct proof of tested pathways engagement in gliomas resistance to apoptosis elimination. The most effective in eliminating gliomas with minimal astrocyte damage was 5 μM PLCγ1 inhibitor (U-73122) for MOGGCCM and 15 μM for T98G cells, and 1 μM LOXO-101 for all cancer cells. Sorafenib, Temozolomide, U-73122, and LOXO-101 effectively eliminate cancer cells. Single applications of sorafenib and Temozolomide were effective, but had lower efficiency than U-73122 and LOXO-101. These drugs induced apoptosis, affecting mitochondrial membrane potential and caspases 3, 8, and 9 activity. The study found that a Bcl-2:beclin-1 complex formation was observed when apoptosis was dominant. Inhibiting the pathways regulated by TrkB receptor combined with Temozolomide action, led to successful gliomas elimination. Those results might serve as basis for modern targeted treatment development.
Collapse
Affiliation(s)
- Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Joanna Sumorek-Wiadro
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Aleksandra Maciejczyk
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950, Lublin, Poland.
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Wojciech Rzeski
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland; Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-950, Lublin, Poland.
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
6
|
Thavaneswaran S, Sim HW, Grady J, Espinoza D, Huang ML, Lin F, McGrath M, Desai J, Charakidis M, Brown M, Kansara M, Simes J, Thomas D. A phase II trial of larotrectinib in tumors with NTRK fusions or extremes of NTRK mRNA overexpression identified by comprehensive genomic profiling. Oncologist 2024:oyae339. [PMID: 39720993 DOI: 10.1093/oncolo/oyae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND TRK-inhibitors have demonstrated efficacy across several cancers with NTRK fusions. Their activity in cancers with NTRK overexpression remains unclear. METHODS This trial enrolled patients with advanced cancers harboring NTRK fusions or extreme mRNA overexpression, defined as NTRK1/2/3 expression by RNA profiling >5 SDs for a given cancer type. The primary endpoint was objective response rate (ORR), with secondary endpoints including time-to-progression (TTP) ratio [TTP on study to TTP on previous systemic therapy (TTP1)], progression-free survival (PFS), and overall survival (OS). Initially planned for 2 non-comparator groups: primary central nervous system (CNS) and non-CNS tumours with NTRK fusions, the protocol was amended to permit NTRK overexpression. RESULTS Seventeen patients were treated with larotrectinib: one glioblastoma with a SPECC1L::NTRK2 fusion (group 1), and a peripheral nerve sheath tumor with a TPM3::NTRK1 fusion and 15 patients with overexpression (group 2). The ORR was 6%. An additional 3 of 12 (25%) TTP1-evaluable patients achieved a TTP ratio ≥1.3 and 2 of 5 without an evaluable TTP1 had a PFS >6 months. Median PFS and OS were 3.5 (95% CI, 1.4-6.0) and 15.9 months (95% CI, 6.4-NR), respectively. CONCLUSION Unlike its efficacy in NTRK-fusion positive cancers, larotrectinib did not demonstrate a signal of efficacy among tumors with NTRK overexpression.
Collapse
Affiliation(s)
- Subotheni Thavaneswaran
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW 2010, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Hao-Wen Sim
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW 2010, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Chris O'Brien Lifehouse, Sydney, NSW 2050, Australia
| | - John Grady
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David Espinoza
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Min Li Huang
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW 2010, Australia
- SydPath Department of Anatomical Pathology, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Frank Lin
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW 2010, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Jayesh Desai
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3002, Australia
| | - Michail Charakidis
- Royal Darwin Hospital, Darwin, NT 0810, Australia
- Charles Darwin University, Darwin, NT 0810, Australia
| | - Michael Brown
- RAH Cancer Clinical Trials Unit, Royal Adelaide Hospital, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Maya Kansara
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW 2010, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - David Thomas
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW 2010, Australia
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
7
|
Dawangpa A, Chitta P, Rodrigues GDS, Iadsee N, Noronha NY, Nonino CB, Bueno Júnior CR, Sae-Lee C. Impact of combined exercise on blood DNA methylation and physical health in older women with obesity. PLoS One 2024; 19:e0315250. [PMID: 39680552 DOI: 10.1371/journal.pone.0315250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study examined the effects of a 14-week combined exercise program on blood DNA methylation (DNAm) and its potential biological pathways in normal-weight, overweight, and obese older women. A total of 41 participants were assessed at baseline, 7 weeks, and 14 weeks into the training. Their whole-blood DNAm profiles were measured using the Infinitum MethylationEPIC BeadChip, alongside physical and biochemical health evaluations. The results showed notable health improvements, with decreases in blood pressure and cholesterol levels in the overweight and obese groups. Blood triglycerides were reduced only in the overweight group. Physical performance also improved across all groups. At 14 weeks, 1,043 differentially methylated positions (DMPs) were identified, affecting 744 genes. The genes were linked to biological processes, such as cellular metabolism, with significant pathway enrichment related to oxidative phosphorylation and chemical carcinogenesis. Additionally, the overweight group experienced significant reductions in methylation levels at eight lipogenesis-related genes. Protein EpiScore analysis revealed decreased levels of CCL11, VEGFA, and NTRK3 proteins at 14 weeks compared to baseline. Despite these significant molecular changes, there was no observable difference in DNAm age after the intervention. This study highlights how combined exercise can modify DNAm patterns in older women, particularly in lipogenesis-related genes, but suggests that further research is needed to understand the full implications for biological ageing.
Collapse
Affiliation(s)
- Atchara Dawangpa
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pitaksin Chitta
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nutta Iadsee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natália Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carla B Nonino
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlos R Bueno Júnior
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Zeng S, Jiang K, Ge J, Tang M, Wen Y, Ma X, Liu H, Xiong X. NTRK fusion promotes tumor migration and invasion through epithelial-mesenchymal transition and closely interacts with ECM1 and NOVA1. BMC Cancer 2024; 24:1502. [PMID: 39639242 PMCID: PMC11619257 DOI: 10.1186/s12885-024-13271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The NTRK fusion gene is a rare cancer driver and a typical representative "diamond mutation". Its unique role in tumor progression is highly important for the clinical diagnosis and treatment of patients with tumors. We searched for NTRK fusion-positive patients in our hospital. As of August 2022, a total of 8 patients were affected. We discovered that NTRK fusion was associated with enhanced tumor invasion and migration ability. Previous reports also support this finding, but its underlying mechanism has not been elucidated. METHODS We undertook a comprehensive exploration of the correlations between NTRK fusions and tumor invasion as well as migration by analysing clinical data, performing bioinformatics analysis via public databases, and conducting in vitro cell experiments. RESULTS We ascertained that within the thyroid cancer (THCA) dataset and the pancancer dataset, ECM1 and NOVA1 were coexpressed with NTRKs. Additionally, they demonstrated a significant association with the activity of the epithelial‒mesenchymal transition (EMT) pathway. Furthermore, these genes are overexpressed in various cancers and are associated with advanced clinical stage and increased aggressiveness. Our in vitro study revealed that larolutinib potentially inhibited the invasion and metastasis ability of NTRK-fused cells. Interestingly, contrary to previous findings, the repression of ECM1 increased the migration and invasion ability of NTRK-fused tumor cells. CONCLUSIONS NTRK fusion tumors present heightened migratory and invasive potential in clinical settings. Further experiments confirmed the significant inhibitory effects of TRK inhibitors on the migration and invasion abilities of these cells. There is a complex relationship between ECM1, NOVA1 and NTRK fusion; however, further research is needed to determine whether NTRK fusion promotes tumor metastasis through these two genes.
Collapse
MESH Headings
- Humans
- Epithelial-Mesenchymal Transition/genetics
- Cell Movement/genetics
- Neoplasm Invasiveness/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Female
- Cell Line, Tumor
- Male
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Middle Aged
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Gene Expression Regulation, Neoplastic
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Neuro-Oncological Ventral Antigen
Collapse
Affiliation(s)
- Siqing Zeng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Ke Jiang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Jie Ge
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuqi Wen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Xiaoting Ma
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Heli Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China.
| | - Xingui Xiong
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China.
| |
Collapse
|
9
|
Liu K, Li Q, Lu X, Fan X, Yang Y, Xie W, Kang J, Sun S, Zhao J. Seven oral traditional Chinese medicine combined with chemotherapy for the treatment of non-small cell lung cancer: a network meta-analysis. PHARMACEUTICAL BIOLOGY 2024; 62:404-422. [PMID: 38739082 PMCID: PMC11095295 DOI: 10.1080/13880209.2024.2351940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
CONTEXT Traditional Chinese medicines (TCMs) have emerged as potential adjuvant therapies to treat non-small cell lung cancer. More direct comparative studies must be conducted among various oral TCMs. OBJECTIVE This network meta-analysis evaluates the efficacy and safety of seven oral TCMs combined with chemotherapy in treating NSCLC. METHODS The analysis included Zilongjin, Banmao, Hongdoushan, Huachansu, Kanglaite, Xihuang, and Pingxiao TCMs. Randomized-controlled trials (RCTs) were identified from the following databases: China National Infrastructure, Wanfang, PubMed, Embase, and the Cochrane Library up to April 2023. Two researchers independently extracted data. RESULTS Sixty-eight RCTs (5,099 patients) were included. Compared to chemotherapy, Banmao capsules [odds ratio (OR) = 2.69, 95% confidence interval (CI) 1.96-3.69)] and Huachansu tablets [OR = 2.35, 95%CI (1.81, 3.05)] ranked in the top two in terms of increasing disease control rate. The two main TCMs to improve the objective response rate were Banmao capsules [OR = 3.49, 95%CI (2.17, 5.60)] and Zilongjin tablets [OR = 2.62, 95%CI (1.92, 3.57)]. Zilongjin tablets [OR = 3.47, 95%CI (2.14, 5.63)] and Huachansu tablets [OR = 3.30, 95%CI (1.65, 6.60)] were ranked as the top two in improving Karnofsky performance status. Hongdoushan capsules (SUCRA = 18.8%) and Banmao capsules (SUCRA = 19.8%) were the top two in reducing gastrointestinal toxicity. Zilongjin tablets (SUCRA = 18.9%) and Banmao capsules (SUCRA = 26.6%) were the top two to reduce liver and kidney toxicity. Hongdoushan capsules (SUCRA = 15.7%) and Huachansu tablets (SUCRA = 16.8%) ranked the top two in reducing thrombocytopenia. Banmao capsules (SUCRA = 14.3%) and Zilongjin tablets (SUCRA = 26.3%) were the top two decreasing leukopenia. CONCLUSIONS Combining oral TCMs with platinum-based chemotherapy has shown superior efficacy compared to platinum-based chemotherapy alone in treating NSCLC.
Collapse
Affiliation(s)
- Kefeng Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Drug Clinical Comprehensive Evaluation Center, Zhengzhou, China
| | - Qiong Li
- Department of Pharmacy, Zhengzhou Second People’s Hospital, Zhengzhou, China
| | - Xiaojing Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Drug Clinical Comprehensive Evaluation Center, Zhengzhou, China
| | - Xintong Fan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjie Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Drug Clinical Comprehensive Evaluation Center, Zhengzhou, China
| | - Wei Xie
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Drug Clinical Comprehensive Evaluation Center, Zhengzhou, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, Massachusetts, USA
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Engineering Laboratory of Internet Medical System and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Klaitman SS, Ling G, Kristal E, David O, Elamour S, Hershkovitz E, Ling E. Living without pain: A 10-year study of congenital insensitivity to pain with anhidrosis. Pediatr Res 2024:10.1038/s41390-024-03565-x. [PMID: 39455857 DOI: 10.1038/s41390-024-03565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Congenital Insensitivity to Pain with Anhidrosis (CIPA) is a rare hereditary neuropathy caused by NTRK1 gene mutations, predisposing patients to recurrent infections and chronic wounds. Long-term studies on microbial and clinical outcomes in CIPA are limited. This study presents analysis of infection patterns, antibiotic resistance, and clinical outcomes in CIPA patients. METHODS A comprehensive ten-year retrospective cohort study was conducted at Soroka University Medical Center, Beer Sheva, Israel, from January 2014 to January 2023. Electronic medical records were reviewed to identify 63 CIPA patients, all were of consanguineous Bedouin families. Data collection included demographic details, clinical presentations, genetic analysis, documentation of infections, wound sites, hospital duration, and surgical interventions. RESULTS Staphylococcus aureus, notably methicillin-resistant, dominated, with Gram-negative bacteria common in lower limbs. The study noted reduced extended-spectrum beta-lactamase bacteria and linked demographic factors to infection traits, antibiotic resistance, and surgical needs. CONCLUSION This study provides valuable insights into the clinical and microbial patterns of CIPA, highlighting dynamic shifts in microbial compositions and antibiotic resistance profiles over time. Staphylococcus aureus, and Gram-negative bacteria particularly in lower limb infections, pose significant challenges in patient management. The findings underscore the importance of tailored approaches to address evolving microbial profiles and optimize patient care in CIPA. IMPACT Key Message: This is the largest cohort study on CIPA to date, highlighting the dominance of Staphylococcus aureus, including methicillin-resistant strains, and significant Gram-negative bacterial infections in lower limbs. Contribution to Literature: It draws parallels between infection dynamics in CIPA and diabetic foot ulcers, emphasizing similar challenges due to neuropathy and ischemia, enhancing understanding of infection susceptibility and management in neuropathic conditions. IMPACT The findings inform clinical practices by detailing infection and resistance patterns, supporting the development of targeted treatment strategies to improve outcomes for CIPA and similar conditions.
Collapse
Affiliation(s)
- Shai Shlomi Klaitman
- Faculty of Health Sciences, Ben Gurion University Medical Center, Beer Sheva, Israel.
- Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel.
| | - Galina Ling
- Faculty of Health Sciences, Ben Gurion University Medical Center, Beer Sheva, Israel
- Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel
- Pediatric Ambulatory Unit, Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel
| | - Eyal Kristal
- Faculty of Health Sciences, Ben Gurion University Medical Center, Beer Sheva, Israel
- Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel
- Pediatric Ambulatory Unit, Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel
- Immunology Unit, Soroka University Medical Center, Beer Sheva, Israel
| | - Odeya David
- Faculty of Health Sciences, Ben Gurion University Medical Center, Beer Sheva, Israel
- Pediatric Endocrinology And Diabetes Unit, Assuta Ashdod Hospital, Ashdod, Israel
| | - Siham Elamour
- Faculty of Health Sciences, Ben Gurion University Medical Center, Beer Sheva, Israel
- Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel
- Pediatric Ambulatory Unit, Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel
- The Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eli Hershkovitz
- Faculty of Health Sciences, Ben Gurion University Medical Center, Beer Sheva, Israel
- Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel
- Department of Pediatrics D, Saban Center of Pediatrics, Soroka University Medical Center, Beer Sheva, Israel
- Pediatric Endocrinology Unit, Saban Center of Pediatrics, Soroka University Medical Center, Beer Sheva, Israel
| | - Eduard Ling
- Faculty of Health Sciences, Ben Gurion University Medical Center, Beer Sheva, Israel
- Rheumatology Clinic, Clalit Health Services, Southern District, Beer Sheva, Israel
| |
Collapse
|
11
|
Li H, Liu H, Xiao L, Gao H, Wei H, Han A, Lin G. A Novel Oncogenic and Drug-Sensitive KIF5B-NTRK1 Fusion in Lung Adenocarcinoma. Curr Oncol 2024; 31:6621-6631. [PMID: 39590120 PMCID: PMC11593137 DOI: 10.3390/curroncol31110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
We present a case of a lung adenocarcinoma patient harboring a novel kinesin family member 5B (KIF5B)-NTRK1 gene fusion that responds well to entrectinib. Moreover, KIF5B-NTRK1 gene chimera has been shown to be an oncogene, activating both the MAPK and PI3K/AKT signaling pathways. The biopsy sample was analyzed using various methods such as hematoxylin-eosin staining (HE), immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS) based on a 1267-gene panel. Additionally, human lung adenocarcinoma cell lines A549 and H1755 were used to obtain a stable expression of chimera gene products. The cell proliferation was confirmed using CCK8 and adhesion-dependent colony formation assay. Cell invasion was confirmed using the transwell invasion assay. The protein levels of the MAPK and PI3K/AKT signaling pathways were assessed using Western blotting. The patient, a 66-year-old Chinese male, was diagnosed with adenocarcinoma (stage IVB) located in the upper lobe of the left lung. NGS analysis identified a novel KIF5B-NTRK1 fusion gene, which was further confirmed by FISH and IHC analyses. As a first-line therapy, entrectinib was administered to the patient at a dose of 600 mg once daily, resulting in a partial response. The patient's progression-free survival (PFS) has now been more than 12 months, and no serious toxicities have been observed so far. Furthermore, stable KIF5B-NTRK1-expressing cells were generated and the experimental results demonstrate enhanced proliferation abilities, along with increased levels of proteins involved in the MAPK and PI3K/AKT signaling pathways. Our study reports a novel KIF5B-NTRK1 genetic rearrangement that supports favorable responses to entrectinib. Moreover, in vitro experiments showed that the fusion gene could exert oncogenic properties by activating the MAPK and PI3K/AKT signaling pathways. To summarize, our findings broaden the spectrum of NTRK gene fusions in the context of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Huicong Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou 510080, China; (H.L.)
| | - Lisha Xiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou 510080, China; (H.L.)
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Huiting Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (H.L.); (H.W.)
| | - Gengpeng Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou 510080, China; (H.L.)
| |
Collapse
|
12
|
Maher S, Wynne K, Zhernovkov V, Halasz M. A temporal (phospho-)proteomic dataset of neurotrophic receptor tyrosine kinase signalling in neuroblastoma. Sci Data 2024; 11:1111. [PMID: 39389992 PMCID: PMC11467210 DOI: 10.1038/s41597-024-03965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Neurotrophic receptor tyrosine kinases (TrkA, TrkB, TrkC), despite their homology, contribute to the clinical heterogeneity of the childhood cancer neuroblastoma. TrkA expression is associated with low-stage disease and is often seen with spontaneous tumour regression. Conversely, TrkB is present in unfavourable neuroblastomas that often harbour amplification of the MYCN oncogene. The role of TrkC is less clearly defined, although some studies suggest its association with a favourable outcome. Understanding the differences in activity of Trk receptors that drive divergent clinical phenotypes as well as the influence of MYCN amplification on downstream Trk receptor signalling remains poorly understood. Here, we present a comprehensive label-free mass spectrometry-based total proteomics and phosphoproteomics dataset (432 raw files with FragPipe search outputs; available on PRIDE with accession number PXD054441) where we identified and quantified 4,907 proteins, 16,744 phosphosites and 5,084 phosphoproteins, derived from NGF/BDNF/NT-3 treated TrkA/B/C-overexpressing neuroblastoma cells with differential MYCN status. Analysing our dataset offers valuable insights into TrkA/B/C receptor signalling in neuroblastoma and its modulation by MYCN status; and holds potential for advancing therapeutic strategies in this challenging childhood cancer.
Collapse
Affiliation(s)
- Stephanie Maher
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Li F, Yang K, Gao X, Zhang M, Gu D, Wu X, Lu C, Wu Q, Dixit D, Gimple RC, You Y, Mack SC, Shi Y, Kang T, Agnihotri SA, Taylor MD, Rich JN, Zhang N, Wang X. A peptide encoded by upstream open reading frame of MYC binds to tropomyosin receptor kinase B and promotes glioblastoma growth in mice. Sci Transl Med 2024; 16:eadk9524. [PMID: 39356747 DOI: 10.1126/scitranslmed.adk9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant MYC transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) MPEP. Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling. Targeting MPEP through genetic ablation reduced growth of patient-derived 4121 and 3691 glioblastoma stem cells. Administration of an MPEP-neutralizing antibody in combination with a small-molecule TRKB inhibitor reduced glioblastoma growth in patient-derived xenograft tumor-bearing mice. The overexpression of MPEP in surgical glioblastoma specimens predicted a poor prognosis, supporting its clinical relevance. In summary, our results demonstrate that tumor-specific translation of a MYC-associated uORF promotes glioblastoma growth, suggesting a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Fanying Li
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinya Gao
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xujia Wu
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Chenfei Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan C Gimple
- Physician Scientist Training Program, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yongping You
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Shi
- Institute of Pathology, Ministry of Education Key Laboratory of Tumor Immunopathology, Southwest Hospital, Chongqing 400038, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510080, China
| | - Sameer A Agnihotri
- Brain Tumor Biology and Therapy Lab, Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong 510080, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Institute for Brain Tumors, Jiangsu Provincial Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
14
|
Lu G, Liu H, Wang H, Tang X, Luo S, Du M, Christiani DC, Wei Q. Genetic variants of LRRC8C, OAS2, and CCL25 in the T cell exhaustion-related genes are associated with non-small cell lung cancer survival. Front Immunol 2024; 15:1455927. [PMID: 39416786 PMCID: PMC11479925 DOI: 10.3389/fimmu.2024.1455927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Background T cell exhaustion is a state in which T cells become dysfunctional and is associated with a decreased efficacy of immune checkpoint inhibitors. Lung cancer has the highest mortality among all cancers. However, the roles of genetic variants of the T cell exhaustion-related genes in the prognosis of non-small cell lung cancer (NSCLC) patients has not been reported. Methods We conducted a two-stage multivariable Cox proportional hazards regression analysis with two previous genome-wide association study (GWAS) datasets to explore associations between genetic variants in the T cell exhaustion-related genes and survival of NSCLC patients. We also performed expression quantitative trait loci analysis for functional validation of the identified variants. Results Of all the 52,103 single nucleotide polymorphisms (SNPs) in 672 T cell exhaustion-related genes, 1,721 SNPs were found to be associated with overall survival (OS) of 1185 NSCLC patients of the discovery GWAS dataset from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial, and 125 of these 1,721 SNPs remained significant after validation in an additional independent replication GWAS dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. In multivariable stepwise Cox model analysis, three independent SNPs (i.e., LRRC8C rs10493829 T>C, OAS2 rs2239193 A>G, and CCL25 rs3136651 T>A) remained significantly associated with OS with hazards ratios (HRs) of 0.86 (95% confidence interval (CI) = 0.77-0.96, P = 0.008), 1.48 (95% CI = 1.18-1.85, P < 0.0001) and 0.78 (95% CI = 0.66-0.91, P = 0.002), respectively. Further combined analysis for these three SNPs suggested that an unfavorable genotype score was associated with a poor OS and disease-specific survival. Expression quantitative trait loci analysis suggested that the LRRC8C rs10493829 C allele was associated with elevated LRRC8C mRNA expression levels in normal lymphoblastoid cells, lung tissue, and whole blood. Conclusion Our findings suggested that these functional SNPs in the T cell exhaustion-related genes may be prognostic predictors for survival of NSCLC patients, possibly via a mechanism of modulating corresponding gene expression.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaozhun Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Head and Neck Surgery, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
15
|
Aziz AUR, Zhang J, Zhang C, Yu X, Wang D. The mutual interplay between NTRK fusion genes and human papillomavirus infection in cervical cancer progression (Review). Mol Clin Oncol 2024; 21:67. [PMID: 39091417 PMCID: PMC11289753 DOI: 10.3892/mco.2024.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Cervical cancer is a significant global health concern, with a substantial portion of cases attributed to human papillomavirus (HPV) infection. Recent advancements in molecular profiling have identified distinct subtypes of cervical cancer based on their genomic alterations. One such subgroup is neurotrophic tropomyosin receptor kinase (NTRK) fusion-positive cervical cancers, characterized by gene fusions involving the NTRK genes. Although both NTRK fusion genes and HPV infections are independently recognized as significant risk factors in cervical cancer, their interplay and mutual effects on cancer progression are not yet fully understood. The present review is the first of its kind to explore the potential interplay between NTRK fusion genes and HPV infections. It surveys in detail how their combined effect can influence the signaling pathways during cervical cancer development and progression. Moreover, the present study discussed the clinical features, histopathological examinations, treatment procedures and follow-up outcomes of NTRK-fusion gene-positive cervical cancer. The present review may help in the understanding of the management and treatment of such rare, lethal and resistant cervical cancers.
Collapse
Affiliation(s)
- Aziz Ur Rehman Aziz
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Jianing Zhang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Chan Zhang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Xiaohui Yu
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| | - Daqing Wang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children's Medical Group, Dalian, Liaoning 116012, P.R. China
| |
Collapse
|
16
|
Kehmann L, Jördens M, Loosen SH, Luedde T, Roderburg C, Leyh C. Evolving therapeutic landscape of advanced biliary tract cancer: from chemotherapy to molecular targets. ESMO Open 2024; 9:103706. [PMID: 39366294 PMCID: PMC11489061 DOI: 10.1016/j.esmoop.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
Biliary tract cancer, the second most common type of liver cancer, remains a therapeutic challenge due to its late diagnosis and poor prognosis. In recent years, it has become evident that classical chemotherapy might not be the optimal treatment for patients with biliary tract cancer, especially after failure of first-line therapy. Finding new treatment options and strategies to improve the survival of these patients is therefore crucial. With the rise and increasing availability of genetic testing in patients with tumor, novel treatment approaches targeting specific genetic alterations have recently been proposed and have demonstrated their safety and efficacy in numerous clinical trials. In this review, we will first consider chemotherapy options and the new possibility of combining chemotherapy with immune checkpoint inhibitors in first-line treatment. We will then provide an overview of genomic alterations and their potential for targeted therapy especially in second-line therapy. In addition to the most common alterations such as isocitrate dehydrogenase 1 or 2 (IDH1/2) mutations, fibroblast growth factor receptor 2 (FGFR2) fusions, and alterations, we will also discuss less frequently encountered alterations such as BRAF V600E mutation and neurotrophic tyrosine kinase receptor gene (NTRK) fusion. We highlight the importance of molecular profiling in guiding therapeutic decisions and emphasize the need for continued research to optimize and expand targeted treatment strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- L Kehmann
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum, Charité University Medicine Berlin, Berlin, Germany; Servier Deutschland GmbH, München, Germany
| | - M Jördens
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - S H Loosen
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - T Luedde
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Roderburg
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - C Leyh
- Clinic of Gastroenterology, Hepatology & Infectious Diseases, Medical Faculty and University Hospital of Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
17
|
Bogaciu CA, Rizzoli SO. Membrane trafficking of synaptic adhesion molecules. J Physiol 2024. [PMID: 39322997 DOI: 10.1113/jp286401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Synapse formation and stabilization are aided by several families of adhesion molecules, which are generally seen as specialized surface receptors. The function of most surface receptors, including adhesion molecules, is modulated in non-neuronal cells by the processes of endocytosis and recycling, which control the number of active receptors found on the cell surface. These processes have not been investigated extensively at the synapse. This review focuses on the current status of this topic, summarizing general findings on the membrane trafficking of the most prominent synaptic adhesion molecules. Remarkably, evidence for endocytosis processes has been obtained for many synaptic adhesion proteins, including dystroglycans, latrophilins, calsyntenins, netrins, teneurins, neurexins, neuroligins and neuronal pentraxins. Less evidence has been obtained on their recycling, possibly because of the lack of specific assays. We conclude that the trafficking of the synaptic adhesion molecules is an important topic, which should receive more attention in the future.
Collapse
Affiliation(s)
- Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
19
|
Gupta R, Dittmeier M, Wohlleben G, Nickl V, Bischler T, Luzak V, Wegat V, Doll D, Sodmann A, Bady E, Langlhofer G, Wachter B, Havlicek S, Gupta J, Horn E, Lüningschrör P, Villmann C, Polat B, Wischhusen J, Monoranu CM, Kuper J, Blum R. Atypical cellular responses mediated by intracellular constitutive active TrkB (NTRK2) kinase domains and a solely intracellular NTRK2-fusion oncogene. Cancer Gene Ther 2024; 31:1357-1379. [PMID: 39039193 PMCID: PMC11405271 DOI: 10.1038/s41417-024-00809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains. In HEK293 cells, constitutive active TrkB kinase and an intracellular NTRK2-fusion oncogene (SQSTM1-NTRK2) reduced actin filopodia dynamics, phosphorylated FAK, and altered the cell morphology. Atypical cellular responses could be mimicked with the intracellular kinase domain, which did not activate the Trk-associated MAPK/ERK pathway. In glioblastoma-like U87MG cells, expression of TrkB or SQSTM1-NTRK2 reduced cell motility and caused drastic changes in the transcriptome. Clinically approved Trk inhibitors or mutating Y705 in the kinase domain, blocked the cellular effects and transcriptome changes. Atypical signaling was also seen for TrkA and TrkC. Moreover, hallmarks of atypical pTrk kinase were found in biopsies of Nestin-positive glioblastoma. Therefore, we suggest Western blot-like immunoassay screening of NTRK-related (brain) tumor biopsies to identify patients with atypical panTrk or phosphoTrk signals. Such patients could be candidates for treatment with NTRK inhibitors such as Larotrectinhib or Entrectinhib.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Melanie Dittmeier
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Gisela Wohlleben
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Vera Nickl
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Luzak
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Ludwig-Maximilians-Universität München, Biomedizinisches Zentrum, Planegg, Germany
| | - Vanessa Wegat
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Bio- Elektro- und Chemokatalyse BioCat, Straubing, Germany
| | - Dennis Doll
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Sodmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Bady
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Langlhofer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Britta Wachter
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Steven Havlicek
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Neurona Therapeutics, 170 Harbor Way, South San Francisco, CA, USA
| | - Jahnve Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Evi Horn
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
20
|
Zhang R, Zhao J, Zhao L. High NTRK2 protein expression levels may be associated with poorer prognosis of breast cancer patients. J Int Med Res 2024; 52:3000605241281322. [PMID: 39340251 PMCID: PMC11440626 DOI: 10.1177/03000605241281322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE Previous research has shown that the role of neurotrophic receptor tyrosine kinase 2 (NTRK2) in breast cancer (BRCA) remains ambiguous. To help elucidate this, we conducted a retrospective study to investigate the relationship between NTRK2 protein expression and BRCA. METHODS The prognostic significance of NTRK2 protein expression patterns was assessed by performing immunohistochemistry assays on 131 BRCA tissues and 56 adjacent normal tissues in a retrospective study. Furthermore, the sensitivity to chemotherapeutic drugs was quantified by "pRRophetic" and the sensitivity to immunotherapy was estimated using The Cancer Immunome Atlas website. RESULTS NTRK2 protein was expressed at significantly higher levels in BRCA samples compared with normal tissues. The data indicated that NTRK2 expression is an independent risk factor for BRCA patient prognosis. Additionally, the high NTRK2 group exhibited increased sensitivity to certain chemotherapy drugs and achieved higher scores for immune checkpoint blockade therapy compared with the low NTRK2 group. CONCLUSIONS Our study demonstrated that higher NTRK2 protein expression is related to a less favorable prognosis in BRCA patients, as well as to enhanced sensitivity to specific chemotherapy and immunotherapy drugs.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Jianguo Zhao
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Lu Zhao
- Department of Thyroid and Breast Surgery, Tongji Hospital affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Radaelli S, Merlini A, Khan M, Gronchi A. Progress in histology specific treatments in soft tissue sarcoma. Expert Rev Anticancer Ther 2024; 24:845-868. [PMID: 39099398 DOI: 10.1080/14737140.2024.2384584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Soft tissue sarcomas (STS) represent a heterogenous group of rare tumors, primarily treated with surgery. Preoperative radiotherapy is often recommended for extremity high-risk STS. Neoadjuvant chemotherapy, typically based on doxorubicin with ifosfamide, has shown efficacy in limbs and trunk wall STS. Second-line chemotherapy, commonly utilized in the metastatic setting, is mostly histology-driven. Molecular targeted agents are used across various histologies, and although the use of immunotherapy in STS is still in its early stages, there is increasing interest in exploring its potential. AREAS COVERED This article involved an extensive recent search on PubMed. It explored the current treatment landscape for localized and metastatic STS, focusing on the combined use of radiotherapy and chemotherapy for both extremity and retroperitoneal tumors, and with a particular emphasis on the most innovative histopathology driven therapeutic approaches. Additionally, ongoing clinical trials identified via clinicaltrials.gov are included. EXPERT OPINION Recently there have been advancements in the treatment of STS, largely driven by the outcomes of clinical trials. However further research is imperative to comprehend the effect of chemotherapy, targeted therapy and immunotherapy in various STS, as well as to identify biomarkers able to predict which patients are most likely to benefit from these treatments.
Collapse
Affiliation(s)
- Stefano Radaelli
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, Orbassano, Italy
- Department of Oncology, San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Misbah Khan
- Surgery, East Sussex NHS Healthcare, East Sussex, UK
| | - Alessandro Gronchi
- Sarcoma Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
22
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
23
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Mahajan AT, Shivani, Datusalia AK, Coluccini C, Coghi P, Chaudhary S. Pyrazolo[1,5- a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors-Synthetic Strategies and SAR Insights. Molecules 2024; 29:3560. [PMID: 39124968 PMCID: PMC11314189 DOI: 10.3390/molecules29153560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure-activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors.
Collapse
Affiliation(s)
- Amol T. Mahajan
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Shivani
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| | - Ashok Kumar Datusalia
- Laboratory of Molecular Neurotherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India;
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor–Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India; (A.T.M.); (S.)
| |
Collapse
|
25
|
von Bohlen Und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain-An Introduction. BIOLOGY 2024; 13:558. [PMID: 39194496 DOI: 10.3390/biology13080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| | - Monique Klausch
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| |
Collapse
|
26
|
Metellus P, Camilla C, Bialecki E, Beaufils N, Vellutini C, Pellegrino E, Tomasini P, Ahluwalia MS, Mansouri A, Nanni I, Ouafik L. The landscape of cancer-associated transcript fusions in adult brain tumors: a longitudinal assessment in 140 patients with cerebral gliomas and brain metastases. Front Oncol 2024; 14:1382394. [PMID: 39087020 PMCID: PMC11288828 DOI: 10.3389/fonc.2024.1382394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Background Oncogenic fusions of neurotrophic receptor tyrosine kinase NTRK1, NTRK2, or NTRK3 genes have been found in different types of solid tumors. The treatment of patients with TRK fusion cancer with a first-generation TRK inhibitor (such as larotrectinib or entrectinib) is associated with high response rates (>75%), regardless of tumor histology and presence of metastases. Due to the efficacy of TRK inhibitor therapy of larotrectinib and entrectinib, it is clinically important to identify patients accurately and efficiently with TRK fusion cancer. In this retrospective study, we provide unique data on the incidence of oncogenic NTRK gene fusions in patients with brain metastases (BM) and gliomas. Methods 140 samples fixed and paraffin-embedded tissue (FFPE) of adult patients (59 of gliomas [17 of WHO grade II, 20 of WHO grade III and 22 glioblastomas] and 81 of brain metastasis (BM) of different primary tumors) are analyzed. Identification of NTRK gene fusions is performed using next-generation sequencing (NGS) technology using Focus RNA assay kit (Thermo Fisher Scientific). Results We identified an ETV6 (5)::NTRK3 (15) fusion event using targeted next-generation sequencing (NGS) in one of 59 glioma patient with oligodendroglioma-grade II, IDH-mutated and 1p19q co-deleted at incidence of 1.69%. Five additional patients harboring TMPRSS (2)::ERG (4) were identified in pancreatic carcinoma brain metastasis (BM), prostatic carcinoma BM, endometrium BM and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted. A FGFR3 (17)::TACC3 (11) fusion was identified in one carcinoma breast BM. Aberrant splicing to produce EGFR exons 2-7 skipping mRNA, and MET exon 14 skipping mRNA were identified in glioblastoma and pancreas carcinoma BM, respectively. Conclusions This study provides data on the incidence of NTRK gene fusions in brain tumors, which could strongly support the relevance of innovative clinical trials with specific targeted therapies (larotrectinib, entrectinib) in this population of patients. FGFR3 (17)::TACC3 (11) rearrangement was detected in breast carcinoma BM with the possibility of using some specific targeted therapies and TMPRSS (2)::ERG (4) rearrangements occur in a subset of patients with, prostatic carcinoma BM, endometrium BM, and oligodendroglioma (grade II), IDH-mutated and 1p19q co-deleted, where there are yet no approved ERG-directed therapies.
Collapse
Affiliation(s)
- Philippe Metellus
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Clara Camilla
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Emilie Bialecki
- Ramsay Santé, Hôpital Privé Clairval, Département de Neurochirurgie, Marseille, France
| | - Nathalie Beaufils
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Christine Vellutini
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Oncologie multidisciplinaire et innovations thérapeutiques, Marseille, France
- Aix-Marseille Univ, Centre national de Recherche Scientifique (CNRS), Inserm, CRCM, Marseille, France
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Cancer Institute, Hershey, PA, United States
| | - Isabelle Nanni
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| | - L’Houcine Ouafik
- Aix Marseille Univ, Centre national de Recherche Scientifique (CNRS), INP, Inst Neurophysiopathol, Marseille, France
- Aix Marseille Univ, APHM, CHU Timone, Service d’OncoBiologie, Marseille, France
| |
Collapse
|
27
|
Thein KZ, Myat YM, Park BS, Panigrahi K, Kummar S. Target-Driven Tissue-Agnostic Drug Approvals-A New Path of Drug Development. Cancers (Basel) 2024; 16:2529. [PMID: 39061168 PMCID: PMC11274498 DOI: 10.3390/cancers16142529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The regulatory approvals of tumor-agnostic therapies have led to the re-evaluation of the drug development process. The conventional models of drug development are histology-based. On the other hand, the tumor-agnostic drug development of a new drug (or combination) focuses on targeting a common genomic biomarker in multiple cancers, regardless of histology. The basket-like clinical trials with multiple cohorts allow clinicians to evaluate pan-cancer efficacy and toxicity. There are currently eight tumor agnostic approvals granted by the Food and Drug Administration (FDA). This includes two immune checkpoint inhibitors, and five targeted therapy agents. Pembrolizumab is an anti-programmed cell death protein-1 (PD-1) antibody that was the first FDA-approved tumor-agnostic treatment for unresectable or metastatic microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) solid tumors in 2017. It was later approved for tumor mutational burden-high (TMB-H) solid tumors, although the TMB cut-off used is still debated. Subsequently, in 2021, another anti-PD-1 antibody, dostarlimab, was also approved for dMMR solid tumors in the refractory setting. Patients with fusion-positive cancers are typically difficult to treat due to their rare prevalence and distribution. Gene rearrangements or fusions are present in a variety of tumors. Neurotrophic tyrosine kinase (NTRK) fusions are present in a range of pediatric and adult solid tumors in varying frequency. Larotrectinib and entrectinib were approved for neurotrophic tyrosine kinase (NTRK) fusion-positive cancers. Similarly, selpercatinib was approved for rearranged during transfection (RET) fusion-positive solid tumors. The FDA approved the first combination therapy of dabrafenib, a B-Raf proto-oncogene serine/threonine kinase (BRAF) inhibitor, plus trametinib, a mitogen-activated protein kinase (MEK) inhibitor for patients 6 months or older with unresectable or metastatic tumors (except colorectal cancer) carrying a BRAFV600E mutation. The most recent FDA tumor-agnostic approval is of fam-trastuzumab deruxtecan-nxki (T-Dxd) for HER2-positive solid tumors. It is important to identify and expeditiously develop drugs that have the potential to provide clinical benefit across tumor types.
Collapse
Affiliation(s)
- Kyaw Z. Thein
- Division of Hematology and Medical Oncology, Comprehensive Cancer Centers of Nevada—Central Valley, 3730 S Eastern Ave, Las Vegas, NV 89169, USA
- Department of Medicine, Kirk Kerkorian School of Medicine, University of Nevada Las Vegas (UNLV), 4505 S, Maryland Pkwy, Las Vegas, NV 89154, USA
- College of Osteopathic Medicine, Touro University Nevada, Touro College and University System, 874 American Pacific Dr, Henderson, NV 89014, USA
| | - Yin M. Myat
- Belfield Campus, University College Dublin (UCD) School of Medicine, D04 V1W8 Dublin, Ireland;
- Department of Internal Medicine, One Brooklyn Health—Interfaith Medical Center Campus, 1545, Atlantic Avenue, Brooklyn, NY 11213, USA;
| | - Byung S. Park
- OHSU-PSU School of Public Health, Portland, OR 97201, USA;
- Biostatistics Shared Resource, OHSU Knight Cancer Institute, OHSU School of Medicine, Portland, OR 97239, USA
| | - Kalpana Panigrahi
- Department of Internal Medicine, One Brooklyn Health—Interfaith Medical Center Campus, 1545, Atlantic Avenue, Brooklyn, NY 11213, USA;
| | - Shivaani Kummar
- Division of Hematology & Medical Oncology, Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA;
| |
Collapse
|
28
|
Yang W, Meyer AN, Jiang Z, Jiang X, Donoghue DJ. Critical domains for NACC2-NTRK2 fusion protein activation. PLoS One 2024; 19:e0301730. [PMID: 38935636 PMCID: PMC11210774 DOI: 10.1371/journal.pone.0301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Neurotrophic receptor tyrosine kinases (NTRKs) belong to the receptor tyrosine kinase (RTK) family. NTRKs are responsible for the activation of multiple downstream signaling pathways that regulate cell growth, proliferation, differentiation, and apoptosis. NTRK-associated mutations often result in oncogenesis and lead to aberrant activation of downstream signaling pathways including MAPK, JAK/STAT, and PLCγ1. This study characterizes the NACC2-NTRK2 oncogenic fusion protein that leads to pilocytic astrocytoma and pediatric glioblastoma. This fusion joins the BTB domain (Broad-complex, Tramtrack, and Bric-a-brac) domain of NACC2 (Nucleus Accumbens-associated protein 2) with the transmembrane helix and tyrosine kinase domain of NTRK2. We focus on identifying critical domains for the biological activity of the fusion protein. Mutations were introduced in the charged pocket of the BTB domain or in the monomer core, based on a structural comparison of the NACC2 BTB domain with that of PLZF, another BTB-containing protein. Mutations were also introduced into the NTRK2-derived portion to allow comparison of two different breakpoints that have been clinically reported. We show that activation of the NTRK2 kinase domain relies on multimerization of the BTB domain in NACC2-NTRK2. Mutations which disrupt BTB-mediated multimerization significantly reduce kinase activity and downstream signaling. The ability of these mutations to abrogate biological activity suggests that BTB domain inhibition could be a potential treatment for NACC2-NTRK2-induced cancers. Removal of the transmembrane helix leads to enhanced stability of the fusion protein and increased activity of the NACC2-NTRK2 fusion, suggesting a mechanism for the oncogenicity of a distinct NACC2-NTRK2 isoform observed in pediatric glioblastoma.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Xuan Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
29
|
Bernardes CP, Lopes Pinheiro E, Ferreira IG, de Oliveira IS, dos Santos NAG, Sampaio SV, Arantes EC, dos Santos AC. Fraction of C. d. collilineatus venom containing crotapotin protects PC12 cells against MPP + toxicity by activating the NGF-signaling pathway. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230056. [PMID: 38915449 PMCID: PMC11194915 DOI: 10.1590/1678-9199-jvatitd-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.
Collapse
Affiliation(s)
- Carolina Petri Bernardes
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isabela Gobbo Ferreira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Neife Aparecida Guinaim dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical
Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP,
Brazil
| | - Antonio Cardozo dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School
of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP),
Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Nakata E, Osone T, Ogawa T, Taguchi T, Hattori K, Kohsaka S. Prevalence of neurotrophic tropomyosin receptor kinase (NTRK) fusion gene positivity in patients with solid tumors in Japan. Cancer Med 2024; 13:e7351. [PMID: 38925616 PMCID: PMC11199329 DOI: 10.1002/cam4.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors. METHODS This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test. RESULTS In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma. CONCLUSIONS NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.
Collapse
Affiliation(s)
- Eiji Nakata
- Department of Orthopedic SurgeryOkayama UniversityOkayamaJapan
- Center for Comprehensive Genomic MedicineOkayama University HospitalOkayamaJapan
| | - Tatsunori Osone
- Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Toru Ogawa
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | | - Kana Hattori
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | |
Collapse
|
31
|
Cai Z, Yang Z, Li H, Fang Y. Research progress of PROTACs for neurodegenerative diseases therapy. Bioorg Chem 2024; 147:107386. [PMID: 38643565 DOI: 10.1016/j.bioorg.2024.107386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (NDD) are characterized by the gradual deterioration of neuronal function and integrity, resulting in an overall decline in brain function. The existing therapeutic options for NDD, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, fall short of meeting the clinical demand. A prominent pathological hallmark observed in numerous neurodegenerative disorders is the aggregation and misfolding of proteins both within and outside neurons. These abnormal proteins play a pivotal role in the pathogenesis of neurodegenerative diseases. Targeted degradation of irregular proteins offers a promising avenue for NDD treatment. Proteolysis-targeting chimeras (PROTACs) function via the ubiquitin-proteasome system and have emerged as a novel and efficacious approach in drug discovery. PROTACs can catalytically degrade "undruggable" proteins even at exceptionally low concentrations, allowing for precise quantitative control of aberrant protein levels. In this review, we present a compilation of reported PROTAC structures and their corresponding biological activities aimed at addressing NDD. Spanning from 2016 to present, this review provides an up-to-date overview of PROTAC-based therapeutic interventions. Currently, most protein degraders intended for NDD treatment remain in the preclinical research phase. Overcoming several challenges is imperative, including enhancing oral bioavailability and permeability across the blood-brain barrier, before these compounds can progress to clinical research or eventually reach the market. However, armed with an enhanced comprehension of the underlying pathological mechanisms and the emergence of innovative scaffolds for protein degraders, along with further structural optimization, we are confident that PROTAC possesses the potential to make substantial breakthroughs in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhifang Cai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zunhua Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huilan Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| |
Collapse
|
32
|
Dong K, Yin L, Wang Y, Jia L, Diao X, Huang X, Zhou L, Lin D, Sun Y. Prevalence and detection methodology for preliminary exploration of NTRK fusion in gastric cancer from a single-center retrospective cohort. Hum Pathol 2024; 148:87-92. [PMID: 38653403 DOI: 10.1016/j.humpath.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The fusion of neurotrophic tyrosine receptor kinase (NTRK) is a novel target for cancer therapy and offers hope for patients with gastric cancer (GC). However, there are few studies on the prevalence and detection methods of NTRK fusions in GC. In this study, we used immunohistochemistry (IHC) as a screening method to select cases for molecular testing and evaluated the effectiveness of IHC, fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS). We retrospectively collected 1970 patients with GC. Pan-TRK IHC was conducted in all cases, and three cases were positive: one with strong and diffuse cytoplasmic staining, while two with weak cytoplasmic staining. All three cases were validated using NTRK1/2/3 FISH. FISH results revealed a single 3' signal of NTRK1 in 95% of the tumor cells in the first case, while the remaining two cases were negative. NGS confirmed LMNA-NTRK1 fusion in the first case, with no gene fusion detected in the other two cases. Out of 46 negative controls, one had a non-functional fusion of IGR-NTRK1, and four had point mutations. The case with LMNA-NTRK1 fusion were negative for pMMR, EBV, HER2, and AFP. The pan-TRK IHC showed a 33.33% (1/3) concordance rate with RNA-based NGS. If the criterion for positivity was 3+ cytoplasmic staining, the agreement between IHC and RNA-based NGS was 100% (1/1). In conclusion, the incidence of NTRK fusion in GC is extremely low (0.05%). If the criteria are strict, pan-TRK IHC is highly effective for screening NTRK fusions. FISH could complement NGS detection, particularly when NTRK fusion is detected by DNA sequencing. NTRK fusion in GC may not be limited to specific subtypes.
Collapse
Affiliation(s)
- Kun Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Lisha Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Yu Wang
- Department of Pathology, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, Shanxi Province, 046099, China
| | - Ling Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Xinting Diao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China.
| | - Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, No.52, Fu-Cheng Road, Beijing, 100142, China.
| |
Collapse
|
33
|
Li Y, Kang J, Zhang X. How to incorporate new agents into precise medicine for cholangiocarcinoma? Am J Cancer Res 2024; 14:2570-2583. [PMID: 38859865 PMCID: PMC11162663 DOI: 10.62347/nfdl2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Cholangiocarcinoma, a rare and aggressive form of cancer originating from the bile ducts in the liver, poses a significant challenge for treatment. However, the emergence of precision medicine has brought newfound hope for more effective therapies. Several precision medicine approaches have demonstrated promise in the treatment of cholangiocarcinoma. One such approach is targeted therapy, which involves utilizing drugs that specifically target the genetic mutations or alterations present in the tumor cells. In the case of cholangiocarcinoma, mutations in the IDH1 and IDH2 genes are frequently observed. Immunotherapy is another precision medicine approach being explored for the treatment of cholangiocarcinoma. Immune checkpoint inhibitors like pembrolizumab and nivolumab can be used to bolster the body's immune response against cancer cells. While the response to immunotherapy can vary among individuals, studies have shown promising results, particularly in patients with high levels of tumor-infiltrating lymphocytes or microsatellite instability. Moreover, molecular profiling of cholangiocarcinoma tumors can play a crucial role in identifying potential targets for precision medicine. Through advanced next-generation sequencing techniques, specific gene alterations or dysregulations in pathways can be identified, potentially guiding treatment decisions. This personalized approach enables tailored treatment plans based on the unique genetic characteristics of each patient's tumor. In conclusion, the advent of precision medicine has opened up new avenues for the treatment of cholangiocarcinoma. Targeted therapy and immunotherapy have exhibited promising results, and further molecular profiling is expected to uncover additional therapeutic options. Such advancements represent a significant step forward in the quest to enhance outcomes for individuals affected by cholangiocarcinoma.
Collapse
Affiliation(s)
- Yifan Li
- Department of Hepatobiliary, Pancreatic and Gastrointestinal Surgery, Shanxi Province Carcinoma Hospital, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Carcinoma Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| | - Juying Kang
- Department of Information, Shanxi Province Carcinoma Hospital, Shanxi Hospital Affiliated to Carcinoma Hospital, Chinese Academy of Medical Sciences, Carcinoma Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| | - Xiaojuan Zhang
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuan 030013, Shanxi, PR China
| |
Collapse
|
34
|
Vince CSC, Brassesco MS, Mançano BM, Gregianin LJ, Carbone EK, do Amaral e Castro A, Dwan VSY, Menezes da Silva RZ, Mariano CS, da Mata JF, Silva MO, Caran EMM, Macedo CD, Alves da Costa G, Esteves TC, Silva LN, Ferman SE, Martins FD, Cristófani LM, Odone-Filho V, Silva MM, Reis RM, Pianovski MAD, Campregher PV, Kunii MS, de Sá Rodrigues KE, Carvalho Filho NP, Valera ET. Beyond Clinical Trials: Understanding Neurotrophic Tropomyosin Receptor Kinase Inhibitor Challenges and Efficacy in Real-World Pediatric Oncology. JCO Precis Oncol 2024; 8:e2300713. [PMID: 38810175 PMCID: PMC11371084 DOI: 10.1200/po.23.00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Our study aimed to explore real-world treatment scenarios for children and adolescents with neurotrophic tropomyosin receptor kinase (NTRK)-fused tumors, emphasizing access, responses, side effects, and outcomes. PATIENTS AND METHODS Pooled clinical data from 17 pediatric cases (11 soft-tissue sarcomas, five brain tumors, and one neuroblastoma) treated with larotrectinib and radiologic images for 14 patients were centrally reviewed. Testing for gene fusions was prompted by poor response to treatment, tumor progression, or aggressiveness. RESULTS Six different NTRK fusion subtypes were detected, and various payment sources for testing and medication were reported. Radiologic review revealed objective tumor responses (OR) in 11 of 14 patients: Complete responses: two; partial responses: nine; and stable disease: three cases. Grades 1 or 2 Common Terminology Criteria for Adverse Events adverse effects were reported in five patients. Regarding the entire cohort's clinical information, 15 of 17 patients remain alive (median observation time: 25 months): four with no evidence of disease and 11 alive with disease (10 without progression). One patient developed resistance to the NTRK inhibitor and died from disease progression while another patient died due to an unrelated cause. CONCLUSION This real-world study confirms favorable agnostic tumor OR rates to larotrectinib in children with NTRK-fused tumors. Better coordination to facilitate access to medication remains a challenge, particularly in middle-income countries like Brazil.
Collapse
Affiliation(s)
- Carolina Sgarioni Camargo Vince
- Childhood Cancer Treatment Institute (ITACI), São Paulo Medical School, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Maria Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Lauro Jose Gregianin
- Department of Pediatrics, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Adham do Amaral e Castro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Diagnostic Imaging, UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | - Eliana Maria Monteiro Caran
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of Sao Paulo, São Paulo, Brazil
| | - Carla Donato Macedo
- Department of Pediatrics, Support Group for Children and Adolescents With Cancer (GRAACC), Federal University of Sao Paulo, São Paulo, Brazil
| | | | | | | | - Sima Esther Ferman
- Pediatric Oncology Department, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Lilian Maria Cristófani
- Childhood Cancer Treatment Institute (ITACI), São Paulo Medical School, University of São Paulo, São Paulo, Brazil
| | - Vicente Odone-Filho
- Childhood Cancer Treatment Institute (ITACI), São Paulo Medical School, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | | | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Santi I, Vellekoop H, M Versteegh M, A Huygens S, Dinjens WNM, Mölken MRV. Estimating the Prognostic Value of the NTRK Fusion Biomarker for Comparative Effectiveness Research in The Netherlands. Mol Diagn Ther 2024; 28:319-328. [PMID: 38616205 PMCID: PMC11068666 DOI: 10.1007/s40291-024-00704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES We evaluated the prognostic value of the neurotrophic tyrosine receptor kinase (NTRK) gene fusions by comparing the survival of patients with NTRK+ tumours with patients without NTRK+ tumours. METHODS We used genomic and clinical registry data from the Center for Personalized Cancer Treatment (CPCT-02) study containing a cohort of cancer patients who were treated in Dutch clinical practice between 2012 and 2020. We performed a propensity score matching analysis, where NTRK+ patients were matched to NTRK- patients in a 1:4 ratio. We subsequently analysed the survival of the matched sample of NTRK+ and NTRK- patients using the Kaplan-Meier method and Cox regression, and performed an analysis of credibility to evaluate the plausibility of our result. RESULTS Among 3556 patients from the CPCT-02 study with known tumour location, 24 NTRK+ patients were identified. NTRK+ patients were distributed across nine different tumour types: bone/soft tissue, breast, colorectal, head and neck, lung, pancreas, prostate, skin and urinary tract. NTRK fusions involving the NTRK3 gene (46%) and NTRK1 gene (33%) were most common. The survival analysis rendered a hazard ratio (HR) of 1.44 (95% CI 0.81-2.55) for NTRK+ patients. Using the point estimates of three prior studies on the prognostic value of NTRK fusions, our finding that the HR is > 1 was deemed plausible. CONCLUSIONS NTRK+ patients may have an increased risk of death compared with NTRK- patients. When using historic control data to assess the comparative effectiveness of TRK inhibitors, the prognostic value of the NTRK fusion biomarker should therefore be accounted for.
Collapse
Affiliation(s)
- Irene Santi
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands.
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| | - Matthijs M Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| | - Simone A Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
- School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Zhang X, Duan X, Liu X. The role of kinases in peripheral nerve regeneration: mechanisms and implications. Front Neurol 2024; 15:1340845. [PMID: 38689881 PMCID: PMC11058862 DOI: 10.3389/fneur.2024.1340845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Peripheral nerve injury disease is a prevalent traumatic condition in current medical practice. Despite the present treatment approaches, encompassing surgical sutures, autologous nerve or allograft nerve transplantation, tissue engineering techniques, and others, an effective clinical treatment method still needs to be discovered. Exploring novel treatment methods to improve peripheral nerve regeneration requires more effort in investigating the cellular and molecular mechanisms involved. Many factors are associated with the regeneration of injured peripheral nerves, including the cross-sectional area of the injured nerve, the length of the nerve gap defect, and various cellular and molecular factors such as Schwann cells, inflammation factors, kinases, and growth factors. As crucial mediators of cellular communication, kinases exert regulatory control over numerous signaling cascades, thereby participating in various vital biological processes, including peripheral nerve regeneration after nerve injury. In this review, we examined diverse kinase classifications, distinct nerve injury types, and the intricate mechanisms involved in peripheral nerve regeneration. Then we stressed the significance of kinases in regulating autophagy, inflammatory response, apoptosis, cell cycle, oxidative processes, and other aspects in establishing conductive microenvironments for nerve tissue regeneration. Finally, we briefly discussed the functional roles of kinases in different types of cells involved in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
- Clinical Medical Research Center, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
37
|
Metwally NH, Deeb EA, Hasani IW. Synthesis, anticancer evaluation, molecular docking and ADME study of novel pyrido[4',3':3,4]pyrazolo[1,5-a]pyrimidines as potential tropomyosin receptor kinase A (TrKA) inhibitors. BMC Chem 2024; 18:68. [PMID: 38582910 PMCID: PMC10999085 DOI: 10.1186/s13065-024-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
The starting compound 3-amino-1,7-dihydro-4H-pyrazolo[4,3-c]pyridine-4,6(5H)-dione (1) is reacted with each of diketone and β-ketoester, forming pyridopyrazolo[1,5-a]pyrimidines 4a,b and 14a,b, respectively. The compounds 4 and 14 reacted with each of aromatic aldehyde and arenediazonium salt to give the respective arylidenes and arylhydrazo derivatives, respectively. The structure of the new products was established using spectroscopic techniques. The cytotoxic activity of selected targets was tested in vitro against three cancer cell lines MCF7, HepG2 and HCT116. The data obtained from enzymatic assays of TrKA indicated that compounds 7b and 16c have the strongest inhibitory effects on TrKA with IC50 = 0.064 ± 0.0037 μg/ml and IC50 = 0.047 ± 0.0027 μg/ml, respectively, compared to the standard drug Larotrectinib with IC50 = 0.034 ± 0.0021 μg/ml for the HepG2 cancer cell line. In cell cycle analysis, compounds 7b, 15b, 16a and 16c caused the greatest arrest in cell cycle at the G2/M phase. In addition, compound 15b has a higher apoptosis-inducing effect (36.72%) than compounds 7b (34.70%), 16a (21.14) and 16c (26.54%). Compounds 7b, 16a and 16c were shown fit tightly into the active site of the TrKA kinase crystal structure (PDB: 5H3Q). Also, ADME study was performed on some selected potent anticancer compounds described in this study.
Collapse
Affiliation(s)
| | - Emad Abdullah Deeb
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | |
Collapse
|
38
|
Iliev P, Jaworski C, Wängler C, Wängler B, Page BDG, Schirrmacher R, Bailey JJ. Type II & III inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Expert Opin Ther Pat 2024; 34:231-244. [PMID: 38785069 DOI: 10.1080/13543776.2024.2358818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications. AREAS COVERED Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents. EXPERT OPINION While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.
Collapse
Affiliation(s)
- Petar Iliev
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Brent D G Page
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
39
|
Luo Q, Zhou G, Li Z, Dong J, Zhao H, Xu H, Lu X. ω-transaminase-catalyzed synthesis of (R)-2-(1-aminoethyl)-4-fluorophenol, a chiral intermediate of novel anti-tumor drugs. Enzyme Microb Technol 2024; 175:110406. [PMID: 38330706 DOI: 10.1016/j.enzmictec.2024.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol has attracted increasing attentions in recent years in the field of pharmaceuticals because of its important use as a building block in the synthesis of novel anti-tumor drugs targeting tropomyosin receptor kinases. In the present study, a ω-transaminase (ωTA) library consisting of 21 (R)-enantioselective enzymes was constructed and screened for the asymmetric biosynthesis of (R)-2-(1-aminoethyl)-4-fluorophenol from its prochiral ketone. Using (R)-α-methylbenzylamine, D-alanine, or isopropylamine as amino donor, 18 ωTAs were identified with target activity and the enzyme AbTA, which was originally identified from Arthrobacter sp. KNK168, was found to be a potent candidate. The E. coli whole cells expressing AbTA could be used as catalysts. The optimal temperature and pH for the activity were 35-40 °C and pH8.0, respectively. Simple alcohols (such as ethanol, isopropanol, and methanol) and dimethyl sulfoxide were shown to be good cosolvents. High activities were detected when using ethanol and dimethyl sulfoxide at the concentrations of 5-20%. In the scaled-up reaction of 1-liter containing 13 mM ketone substrate, about 50% conversion was achieved in 24 h. 6.4 mM (R)-2-(1-aminoethyl)-4-fluorophenol was generated. After a simple and efficient process of product isolation and purification (with 98.8% recovery), 0.986 g yellowish powder of the product (R)-2-(1-aminoethyl)-4-fluorophenol with high (R)-enantiopurity (up to 100% enantiomeric excess) was obtained. This study established an overall process for the biosynthesis of the high value pharmaceutical chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol by ωTA. Its applicable potential was exemplified by gram-scale production.
Collapse
Affiliation(s)
- Quan Luo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Guan Zhou
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Zhongxia Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; College of Life Science and Technology, Harbin Normal University, Shida Rd 1, Harbin 150025, China
| | - Jiangpeng Dong
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Hang Zhao
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Huifang Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 168, Qingdao 266237, China.
| |
Collapse
|
40
|
Chenoweth D, Syed H, Teferi N, Challa M, Persons JE, Eschbacher KL, Seblani M, Dlouhy BJ. Rare variant of large pediatric glioneuronal tumor with novel MYO5A::NTRK3 fusion: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 7:CASE23638. [PMID: 38437672 PMCID: PMC10916846 DOI: 10.3171/case23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Glioneuronal tumors (GNTs) comprise a rare class of central nervous system (CNS) neoplasms with varying degrees of neuronal and glial differentiation that predominately affect children and young adults. Within the current 2021 World Health Organization (WHO) classification of CNS tumors, GNTs encompass 14 distinct tumor types. Recently, the use of whole-genome DNA methylation profiling has allowed more precise classification of this tumor group. OBSERVATIONS A 3-year-old male presented with a 3-month history of increasing head circumference, regression of developmental milestones, and speech delay. Magnetic resonance imaging of the brain was notable for a large left hemispheric multiseptated mass with significant mass effect and midline shift that was treated with near-total resection. Histological and molecular assessment demonstrated a glioneuronal tumor harboring an MYO5A::NTRK3 fusion. By DNA methylation profiling, this tumor matched to a provisional methylation class known as "glioneuronal tumor kinase-fused" (GNT kinase-fused). The patient was later started on targeted therapy with larotrectinib. LESSONS This is the first report of an MYO5A::NTRK3 fusion in a pediatric GNT. GNT kinase-fused is a provisional methylation class not currently included in the WHO classification of CNS tumors. This case highlights the impact of thorough molecular characterization of CNS tumors, especially with the increasing availability of novel gene targeting therapies.
Collapse
Affiliation(s)
- David Chenoweth
- 1Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Hashim Syed
- 1Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Nahom Teferi
- 1Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Meron Challa
- 2Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jane E Persons
- 3Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Kathryn L Eschbacher
- 3Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Maggie Seblani
- 4Division of Hematology/Oncology, Department of Pediatrics, University of Iowa Hospital and Clinics, Iowa City, Iowa; and
| | - Brian J Dlouhy
- 1Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, Iowa
- 2Carver College of Medicine, University of Iowa, Iowa City, Iowa
- 5Iowa Neuroscience Institute, Iowa City, Iowa
| |
Collapse
|
41
|
Rosell R, Pedraz-Valdunciel C, Jain A, Shivamallu C, Aguilar A. Deterministic reprogramming and signaling activation following targeted therapy in non-small cell lung cancer driven by mutations or oncogenic fusions. Expert Opin Investig Drugs 2024; 33:171-182. [PMID: 38372666 DOI: 10.1080/13543784.2024.2320710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.
Collapse
Affiliation(s)
- Rafael Rosell
- Cancer Biology & Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| | | | - Anisha Jain
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Dandikere, Karnataka, India
| | - Andrés Aguilar
- Medical Oncology Service, IOR, Dexeus University Hospital Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Daruish M, Ambrogio F, Colagrande A, Marzullo A, Alaggio R, Trilli I, Ingravallo G, Cazzato G. Kinase Fusions in Spitz Melanocytic Tumors: The Past, the Present, and the Future. Dermatopathology (Basel) 2024; 11:112-123. [PMID: 38390852 PMCID: PMC10885070 DOI: 10.3390/dermatopathology11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, particular interest has developed in molecular biology applied to the field of dermatopathology, with a focus on nevi of the Spitz spectrum. From 2014 onwards, an increasing number of papers have been published to classify, stratify, and correctly frame molecular alterations, including kinase fusions. In this paper, we try to synthesize the knowledge gained in this area so far. In December 2023, we searched Medline and Scopus for case reports and case series, narrative and systematic reviews, meta-analyses, observational studies-either longitudinal or historical, case series, and case reports published in English in the last 15 years using the keywords spitzoid neoplasms, kinase fusions, ALK, ROS1, NTRK (1-2-3), MET, RET, MAP3K8, and RAF1. ALK-rearranged Spitz tumors and ROS-1-rearranged tumors are among the most studied and characterized entities in the literature, in an attempt (although not always successful) to correlate histopathological features with the probable molecular driver alteration. NTRK-, RET-, and MET-rearranged Spitz tumors present another studied and characterized entity, with several rearrangements described but as of yet incomplete information about their prognostic significance. Furthermore, although rarer, rearrangements of serine-threonine kinases such as BRAF, RAF1, and MAP3K8 have also been described, but more cases with more detailed information about possible histopathological alterations, mechanisms of etiopathogenesis, and also prognosis are needed. The knowledge of molecular drivers is of great interest in the field of melanocytic diagnostics, and it is important to consider that in addition to immunohistochemistry, molecular techniques such as FISH, PCR, and/or NGS are essential to confirm and classify the different patterns of mutation. Future studies with large case series and molecular sequencing techniques are needed to allow for a more complete and comprehensive understanding of the role of fusion kinases in the spitzoid tumor family.
Collapse
Affiliation(s)
- Maged Daruish
- Dorset County Hospital NHS Foundation Trust, Dorchester DT1 2JY, UK
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Andrea Marzullo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
43
|
Xie W, Xu J, Lu S, Zhang Y. Current therapeutic landscape and resistance mechanisms to larotrectinib. Cancer Biol Med 2024; 20:j.issn.2095-3941.2023.0471. [PMID: 38318928 PMCID: PMC10845932 DOI: 10.20892/j.issn.2095-3941.2023.0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/25/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Weiji Xie
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Xu
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Suying Lu
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yizhuo Zhang
- Department of Pediatric Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Young Talents Program of Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
44
|
Wang Z, Cao Z, Dai Z. ACAT2 may be a novel predictive biomarker and therapeutic target in lung adenocarcinoma. Cancer Rep (Hoboken) 2024; 7:e1956. [PMID: 38213102 PMCID: PMC10849923 DOI: 10.1002/cnr2.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Acyl-coenzyme A cholesterol acyltransferase (ACAT) is a membrane-binding enzyme localized in the endoplasmic reticulum. ACAT2 can promote the development of colon cancer, but its efficacy in lung adenocarcinoma (LUAD) remains uncertain. METHOD ACAT2 expression was performed by using the TIMER2.0 database. The GEPIA database was utilized to analyze the correlation between ACAT2 expression and pathological stage of the tumor. Clinical prognosis was assessed through the Kaplan-Meier analysis. The CancerSEA database was employed to scrutinize the correlations between the ACAT2 expression and the functional status of various tumors, which were subsequently visualized as a heatmap. Furthermore, molecular interaction network analysis was performed by the STRING tool. RESULTS High ACAT2 expression was associated with a poor DFS and OS in LUAD patients. Cox regression analysis indicated that the poor outcomes may be related to tumor stage, nodal stage, distant metastatic stage. ACAT2 was found to play a crucial role in various biological processes, including the cell cycle, DNA repair, DNA damage response, and proliferation. Enrichment pathway analysis revealed four ACAT2 related genes, ACOX1, EHHADH, OXCT1, and DLAT. CONCLUSION Our study showed that ACAT2 was upregulated in LUAD, and had a worse survival. ACAT2 could be a novel predictive biomarker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Zhongchao Wang
- The Second HospitalDalian Medical UniversityDalianChina
- Xinyi People's HospitalXinyiChina
| | - Zhugen Cao
- Suqian First People's HospitalSuqianChina
| | - Zhaoxia Dai
- The Second HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
45
|
Xiang S, Lu X. Selective type II TRK inhibitors overcome xDFG mutation mediated acquired resistance to the second-generation inhibitors selitrectinib and repotrectinib. Acta Pharm Sin B 2024; 14:517-532. [PMID: 38322338 PMCID: PMC10840435 DOI: 10.1016/j.apsb.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/15/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
Neurotrophic receptor kinase (NTRK) fusions are actionable oncogenic drivers of multiple pediatric and adult solid tumors, and tropomyosin receptor kinase (TRK) has been considered as an attractive therapeutic target for "pan-cancer" harboring these fusions. Currently, two generations TRK inhibitors have been developed. The representative second-generation inhibitors selitrectinib and repotrectinib were designed to overcome clinic acquired resistance of the first-generation inhibitors larotrectinib or entrectinib resulted from solvent-front and gatekeeper on-target mutations. However, xDFG (TRKAG667C/A/S, homologous TRKCG696C/A/S) and some double mutations still confer resistance to selitrectinib and repotrectinib, and overcoming these resistances represents a major unmet clinical need. In this review, we summarize the acquired resistance mechanism of the first- and second-generation TRK inhibitors, and firstly put forward the emerging selective type II TRK inhibitors to overcome xDFG mutations mediated resistance. Additionally, we concluded our perspectives on new challenges and future directions in this field.
Collapse
Affiliation(s)
- Shuang Xiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
46
|
Cui Z, Zhai Z, Xie D, Wang L, Cheng F, Lou S, Zou F, Pan R, Chang S, Yao H, She J, Zhang Y, Yang X. From genomic spectrum of NTRK genes to adverse effects of its inhibitors, a comprehensive genome-based and real-world pharmacovigilance analysis. Front Pharmacol 2024; 15:1329409. [PMID: 38357305 PMCID: PMC10864613 DOI: 10.3389/fphar.2024.1329409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction: The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions has facilitated the development of precision oncology. Two first-generation NTRK inhibitors (larotrectinib and entrectinib) are currently approved for the treatment of patients with solid tumors harboring NTRK gene fusions. Nevertheless, comprehensive NTRK profiling at the pan-cancer genomic level and real-world studies pertaining to the adverse events of NTRK inhibitors are lacking. Methods: We characterize the genome of NTRK at the pan-cancer level through multi-omics databases such as The Cancer Genome Atlas (TCGA). Through the FDA Adverse Event Reporting System (FAERS) database, we collect reports of entrectinib and larotrectinib-induced adverse events and perform a pharmacovigilance analysis using various disproportionality methods. Results: NTRK1/2/3 expression is lower in most tumor tissues, while they have higher methylation levels. NTRK gene expression has prognostic value in some cancer types, such as breast invasive carcinoma (BRCA). The cancer type with highest NTRK alteration frequency is skin cutaneous melanoma (SKCM) (31.98%). Thyroid carcinoma (THCA) has the largest number of NTRK fusion cases, and the most common fusion pair is ETV6-NTRK3. Adverse drug events (ADEs) obtained from the FAERS database for larotrectinib and entrectinib are 524 and 563, respectively. At the System Organ Class (SOC) level, both drugs have positive signal value for "nervous system disorder". Other positive signals for entrectinib include "cardiac disorders", "metabolism and nutrition disorders", while for larotrectinib, it is "hepatobiliary disorders". The unexpected signals are also listed in detail. ADEs of the two NTRK inhibitors mainly occur in the first month. The median onset time of ADEs for entrectinib and larotrectinib was 16 days (interquartile range [IQR] 6-86.5) and 44 days ([IQR] 7-136), respectively. Conclusion: Our analysis provides a broad molecular view of the NTRK family. The real-world adverse drug event analysis of entrectinib and larotrectinib contributes to more refined medication management.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - De Xie
- Department of Endocrinology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Siyu Lou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shixue Chang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haoyan Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing She
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yidan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
47
|
Malik MS, Alshareef HF, Alfaidi KA, Ather H, Abduljaleel Z, Hussein EM, Moussa Z, Ahmed SA. Exploring the untapped pharmacological potential of imidazopyridazines. RSC Adv 2024; 14:3972-3984. [PMID: 38288152 PMCID: PMC10823362 DOI: 10.1039/d3ra07280k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
Imidazopyridazines are fused heterocycles, like purines, with a pyridazine ring replacing the pyrimidine ring in purines. Imidazopyridazines have been primarily studied for their kinase inhibition activity in the development of new anticancer and antimalarial agents. In addition to this, they have also been investigated for their anticonvulsant, antiallergic, antihistamine, antiviral, and antitubercular properties. Herein, we review the background and development of different imidazopyridazines as potential pharmacological agents. Moreover, the scope of this relatively less charted heterocyclic scaffold is also highlighted.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Hossa F Alshareef
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Khalid A Alfaidi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Hissana Ather
- Science and Technology Unit, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University (KKU) Abha 62529 Saudi Arabia
| | - Essam M Hussein
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
48
|
Kim EJ, Reusch DB, Anthony H, Schmidt B, Corey K, Degar B, Huang JT. Disseminated juvenile xanthogranulomas with underlying neurotrophic tyrosine receptor kinase fusion and response to larotrectinib. Br J Dermatol 2024; 190:283-284. [PMID: 37930319 DOI: 10.1093/bjd/ljad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Recent molecular characterizations of histiocytoses, including juvenile xanthogranuloma (JXG), have identified diverse kinase gene mutations, suggesting that various targeted therapies may be promising treatments for these lesions. We herein present a case of an infant with disseminated JXG lesions with an underlying NTRK mutation who was successfully treated with larotrectinib.
Collapse
Affiliation(s)
| | | | - Hannah Anthony
- Department of Pediatric Oncology, Dana Farber Cancer Institute
| | - Birgitta Schmidt
- Harvard Medical School
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Kristen Corey
- Harvard Medical School
- Dermatology Section, Division of Immunology, Boston Children's Hospital
| | - Barbara Degar
- Harvard Medical School
- Department of Pediatric Oncology, Dana Farber Cancer Institute
| | - Jennifer T Huang
- Harvard Medical School
- Dermatology Section, Division of Immunology, Boston Children's Hospital
| |
Collapse
|
49
|
Dyrbekk APH, Warsame AA, Suhrke P, Ludahl MO, Zecic N, Moe JO, Lund-Iversen M, Brustugun OT. Evaluation of NTRK expression and fusions in a large cohort of early-stage lung cancer. Clin Exp Med 2024; 24:10. [PMID: 38240952 PMCID: PMC10798916 DOI: 10.1007/s10238-023-01273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Tropomyosin receptor kinases (TRK) are attractive targets for cancer therapy. As TRK-inhibitors are approved for all solid cancers with detectable fusions involving the Neurotrophic tyrosine receptor kinase (NTRK)-genes, there has been an increased interest in optimizing testing regimes. In this project, we wanted to find the prevalence of NTRK fusions in a cohort of various histopathological types of early-stage lung cancer in Norway and to investigate the association between TRK protein expression and specific histopathological types, including their molecular and epidemiological characteristics. We used immunohistochemistry (IHC) as a screening tool for TRK expression, and next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) as confirmatory tests for underlying NTRK-fusion. Among 940 cases, 43 (4.6%) had positive TRK IHC, but in none of these could a NTRK fusion be confirmed by NGS or FISH. IHC-positive cases showed various staining intensities and patterns including cytoplasmatic or nuclear staining. IHC-positivity was more common in squamous cell carcinoma (LUSC) (10.3%) and adenoid cystic carcinoma (40.0%), where the majority showed heterogeneous staining intensity. In comparison, only 1.1% of the adenocarcinomas were positive. IHC-positivity was also more common in men, but this association could be explained by the dominance of LUSC in TRK IHC-positive cases. Protein expression was not associated with differences in time to relapse or overall survival. Our study indicates that NTRK fusion is rare in early-stage lung cancer. Due to the high level of false positive cases with IHC, Pan-TRK IHC is less suited as a screening tool for NTRK-fusions in LUSC and adenoid cystic carcinoma.
Collapse
Affiliation(s)
- Anne Pernille Harlem Dyrbekk
- University of Oslo, NO-0316, Oslo, Norway.
- Department of Pathology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway.
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, NO-0310, Oslo, Norway.
| | - Abdirashid Ali Warsame
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
| | - Pål Suhrke
- Department of Pathology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Marianne Odnakk Ludahl
- Department of Microbiology/Division for Gene-Technology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Nermin Zecic
- Department of Microbiology/Division for Gene-Technology, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Joakim Oliu Moe
- Department of Internal Medicine, Vestfold Hospital Trust, NO-3103, Tønsberg, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
| | - Odd Terje Brustugun
- University of Oslo, NO-0316, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, NO-0310, Oslo, Norway
- Department of Oncology, Vestre Viken Hospital Trust, NO-3004, Drammen, Norway
| |
Collapse
|
50
|
Maniar R, Loehrer PJ. What Have We Learned from Molecularly Informed Clinical Trials on Thymomas and Thymic Carcinomas-Current Status and Future Directions? Cancers (Basel) 2024; 16:416. [PMID: 38254905 PMCID: PMC10813974 DOI: 10.3390/cancers16020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Thymic epithelial tumors (TETs), which include thymomas and thymic carcinomas, are a rare, heterogeneous group of malignancies that originate from the thymus gland. As an important organ of immune cell development, thymic tumors, particularly thymomas, are often associated with paraneoplastic autoimmune disorders. The advances in targeted therapies for both solid and hematologic malignancies have resulted in improved patient outcomes, including better and more durable efficacy and improved toxicity. Targeted therapies have also been investigated in the treatment of TETs, though the results have largely been modest. These have included somatostatin-receptor-targeting therapies, KIT- and EGFR-directed tyrosine kinase inhibitors, epigenetic modulators, anti-angiogenesis agents, and agents targeting the cell proliferation and survival pathways and cell cycle regulators. Numerous investigated treatments have failed or underperformed due to a lack of a strong biomarker of efficacy. Ongoing trials are attempting to expand on previous experiences, including the exploration of effective drugs in early-stage disease. Novel combination therapy strategies are also undergoing evaluation, with the goal of augmenting efficacy and understanding the toxicity while expanding the biomarkers of efficacy and safety. With advances in technology to improve target identification and drug delivery, old targets may become new opportunities, and the subsequently developed drugs may find their place in the treatment of thymic tumors.
Collapse
Affiliation(s)
| | - Patrick J. Loehrer
- Division of Hematology & Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|