1
|
Escoto-Vasquez LS, Portilla-Robertson J, Ramírez-Jarquín JO, Jacinto-Alemán LF, Alonso-Moctezuma A, Ramírez-Martínez CM, Chanes-Cuevas OA, Salgado-Chavarria F. NTRK Gene Expression Analysis in Oral Squamous Cell Carcinoma Mexican Population. Dent J (Basel) 2024; 12:327. [PMID: 39452455 PMCID: PMC11506341 DOI: 10.3390/dj12100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Oral cancer holds the sixth position in malignancies worldwide; 90% correspond to oral squamous cell carcinoma (OSCC). Diverse reports suggest that NTRK genes and their receptors are key oncogenesis regulators to tumor progression in human cancers. Objective: To analyze the NTRK and Trk expression and their association with clinicopathological features of OSCC in Mexican patients' samples. Material and Methods: We analyzed 95 OSCC cases of pan-trk immunoexpression through a software-assisted method. Gene expression was analyzed by RT-qPCR employing the ΔΔCT method. Kruskal-Wallis and Spearman's correlation tests were performed. Results: Our mean age was 62.4 (±16.9) years. A total of 37 cases were tumors in the lateral border of the tongue. Age was significantly associated with the anatomical site. 42% (40 of 95) cases were pan-trk positive. A total of 21 cases showed intense immunoexpression predominantly in poorly differentiated OSCC, with a significant correlation between immunoexpression and age and gender. Gene expression showed that poorly differentiated cases exhibited higher NTRK2 expression, while well-differentiated cases demonstrated NTRK3 significantly higher expression. Conclusions: Our results suggest that NTRK family expression is present in OSCC, with differential expression related to differentiation degree. Additional information about their activation or mutational status could reinforce their potential as a possible primary or adjuvant treatment target.
Collapse
Affiliation(s)
- Lilibeth Stephania Escoto-Vasquez
- Oral Medicine and Pathology Department, Postgraduate and Research Division, Dentistry School, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.S.E.-V.)
| | - Javier Portilla-Robertson
- Oral Medicine and Pathology Department, Postgraduate and Research Division, Dentistry School, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.S.E.-V.)
| | - Josué Orlando Ramírez-Jarquín
- Neurosciences Division, Cellular Physiology Institute, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Luis Fernando Jacinto-Alemán
- Oral Medicine and Pathology Department, Postgraduate and Research Division, Dentistry School, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.S.E.-V.)
| | - Alejandro Alonso-Moctezuma
- Oral and Maxillofacial Surgery Department, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Carla Monserrat Ramírez-Martínez
- Oral Medicine and Pathology Department, Postgraduate and Research Division, Dentistry School, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.S.E.-V.)
| | - Osmar Alejandro Chanes-Cuevas
- Dental Biomaterials Laboratory, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Fabiola Salgado-Chavarria
- Oral and Maxillofacial Surgery Department, Postgraduate Division, Dental School, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Meng K, Zhao Z, Gao Y, Wu K, Liu W, Wang X, Zheng Y, Zhao W, Wang B. The synergistic effects of anoikis-related genes and EMT-related genes in the prognostic prediction of Wilms tumor. Front Mol Biosci 2024; 11:1469775. [PMID: 39351154 PMCID: PMC11439783 DOI: 10.3389/fmolb.2024.1469775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Wilms tumor (WT) is the most common type of malignant abdominal tumor in children; it exhibits a high degree of malignancy, grow rapidly, and is prone to metastasis. This study aimed to construct a prognosis model based on anoikis-related genes (ARGs) and epithelial-mesenchymal transition (EMT)-related genes (ERGs) for WT patients; we assessed the characteristics of the tumor microenvironment and treatment efficacy, as well as identifying potential therapeutic targets. To this end, we downloaded transcriptome sequencing data and clinical data for WT and normal renal cortices and used R to construct and validate the prognostic model based on ARGs and ERGs. Additionally, we performed clinical feature analysis, nomogram construction, mutation analysis, drug sensitivity analysis, Connectivity Map (cMAP) analysis, functional enrichment analysis, and immune infiltration analysis. Finally, we screened the hub gene using the STRING database and validated it via experiments. In this way, we constructed a model with good accuracy and robustness, which was composed of seven anoikis- and EMT-related genes. Paclitaxel and mesna were selected as potential chemotherapeutic drugs and adjuvant chemotherapeutic drugs for the WT high-risk group by using the Genomics of Drug Sensitivity in Cancer (GDSC) and cMAP compound libraries, respectively. We proved the existence of a strong correlation between invasive immune cells and prognostic genes and risk scores. Next, we selected NTRK2 as the hub gene, and in vitro experiments confirmed that its inhibition can significantly inhibit the proliferation and migration of tumor cells and promote late apoptosis. In summary, we screened out the potential biomarkers and chemotherapeutic drugs that can improve the prognosis of patients with WT.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Zerui Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yaqing Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| | - Keliang Wu
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bei Wang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medical and Health Key Laboratory of Abdominal Medical Imaging, Jinan, China
| |
Collapse
|
3
|
Kalmykova AV, Baranovska-Andrigo V, Michal M. Update on cutaneous mesenchymal tumors in the 5th edition of WHO classification of skin tumors with an emphasis on new fusion-associated neoplasms. Virchows Arch 2024:10.1007/s00428-024-03925-2. [PMID: 39264472 DOI: 10.1007/s00428-024-03925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
The section on mesenchymal tumors in the 5th edition of WHO classification of skin tumors has undergone several changes, the most important of which is the inclusion of newly identified tumor entities, which will be the main focus of this review article. These specifically include three novel cutaneous mesenchymal tumors with melanocytic differentiation, and rearrangements of the CRTC1::TRIM11, ACTIN::MITF, and MITF::CREM genes as well as EWSR1::SMAD3-rearranged fibroblastic tumors, superficial CD34-positive fibroblastic tumors, and NTRK-rearranged spindle cell neoplasms. Some of the other most important changes will be briefly mentioned as well.
Collapse
Affiliation(s)
- Antonina V Kalmykova
- Medical Laboratory CSD, Ltd., Kiev, Ukraine
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 323 00, Plzen, Czech Republic
| | - Vira Baranovska-Andrigo
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 323 00, Plzen, Czech Republic
| | - Michael Michal
- Department of Pathology, Charles University, Faculty of Medicine in Plzen, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 323 00, Plzen, Czech Republic.
- Bioptical Laboratory, Ltd., Pilsen, Czech Republic.
| |
Collapse
|
4
|
Gupta R, Dittmeier M, Wohlleben G, Nickl V, Bischler T, Luzak V, Wegat V, Doll D, Sodmann A, Bady E, Langlhofer G, Wachter B, Havlicek S, Gupta J, Horn E, Lüningschrör P, Villmann C, Polat B, Wischhusen J, Monoranu CM, Kuper J, Blum R. Atypical cellular responses mediated by intracellular constitutive active TrkB (NTRK2) kinase domains and a solely intracellular NTRK2-fusion oncogene. Cancer Gene Ther 2024; 31:1357-1379. [PMID: 39039193 PMCID: PMC11405271 DOI: 10.1038/s41417-024-00809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Trk (NTRK) receptor and NTRK gene fusions are oncogenic drivers of a wide variety of tumors. Although Trk receptors are typically activated at the cell surface, signaling of constitutive active Trk and diverse intracellular NTRK fusion oncogenes is barely investigated. Here, we show that a high intracellular abundance is sufficient for neurotrophin-independent, constitutive activation of TrkB kinase domains. In HEK293 cells, constitutive active TrkB kinase and an intracellular NTRK2-fusion oncogene (SQSTM1-NTRK2) reduced actin filopodia dynamics, phosphorylated FAK, and altered the cell morphology. Atypical cellular responses could be mimicked with the intracellular kinase domain, which did not activate the Trk-associated MAPK/ERK pathway. In glioblastoma-like U87MG cells, expression of TrkB or SQSTM1-NTRK2 reduced cell motility and caused drastic changes in the transcriptome. Clinically approved Trk inhibitors or mutating Y705 in the kinase domain, blocked the cellular effects and transcriptome changes. Atypical signaling was also seen for TrkA and TrkC. Moreover, hallmarks of atypical pTrk kinase were found in biopsies of Nestin-positive glioblastoma. Therefore, we suggest Western blot-like immunoassay screening of NTRK-related (brain) tumor biopsies to identify patients with atypical panTrk or phosphoTrk signals. Such patients could be candidates for treatment with NTRK inhibitors such as Larotrectinhib or Entrectinhib.
Collapse
Affiliation(s)
- Rohini Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Melanie Dittmeier
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Gisela Wohlleben
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Vera Nickl
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Vanessa Luzak
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Ludwig-Maximilians-Universität München, Biomedizinisches Zentrum, Planegg, Germany
| | - Vanessa Wegat
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Bio- Elektro- und Chemokatalyse BioCat, Straubing, Germany
| | - Dennis Doll
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Annemarie Sodmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Bady
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Langlhofer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Britta Wachter
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Steven Havlicek
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- Neurona Therapeutics, 170 Harbor Way, South San Francisco, CA, USA
| | - Jahnve Gupta
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Evi Horn
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Elghawy O, Barsouk A, Heidlauf A, Chen S, Cohen RB, Sun L. Single-Institution Experience of Larotrectinib Therapy for Patients With NTRK Fusion-Positive Thyroid Carcinoma. J Endocr Soc 2024; 8:bvae158. [PMID: 39295960 PMCID: PMC11408928 DOI: 10.1210/jendso/bvae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 09/21/2024] Open
Abstract
Context The real world efficacy and tolerabiltiy of NTRK inhibitor larotrectinib has not yet been reported in the literature although trial data has shown promising results. Objective We report a retrospective analysis of patients with thyroid cancer harboring NTRK fusions who underwent treatment with larotrectinib. Methods A single-institution, retrospective case series of patients with NTRK fusion-positive thyroid cancers treated with neurotrophic tyrosine receptor kinase (NTRK) inhibitors from January 1, 2007, to January 1, 2023, was performed. This study was conducted at a single academic tertiary referral center. Patients with confirmed NTRK-fusion thyroid cancer who received larotrectinib were included. Larotrectinib was administered in accordance with clinical judgment from oncology providers. The primary end point was progression-free survival (PFS). Results Eight patients with NTRK fusion-positive thyroid cancer treated with larotrectinib were identified: 4 with papillary thyroid cancer (PTC) (50%), 3 with poorly differentiated thyroid cancer (PDTC) (38%), and 1 with anaplastic thyroid cancer (ATC) (12%). The median PFS (mPFS) for all patients was 24.7 months (95% CI, 11.3-38.1). mPFS in PTC was higher than PDTC (34.6 months [24.7-48.7 months] vs 17.5 [7.1-21.1 months]; P = .017). The median overall survival (OS) was 43.8 months (29.8-56.8 months) overall. The single patient with ATC had a PFS and OS of 23 months. Two patients remained on treatment/alive at data cutoff, with a duration of response of 33.5 months and a median follow-up of 52 months. Patients achieved 1 complete response (12%), 6 partial responses (75%), and 1 stable disease (12%). Conclusion In this single-institution cohort of patients with NTRK fusion-positive thyroid cancer, NTRK inhibition led to an mPFS of 25 months, with survival surpassing historic benchmarks for ATC and PDTC.
Collapse
Affiliation(s)
- Omar Elghawy
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Barsouk
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alec Heidlauf
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Chen
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roger B Cohen
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lova Sun
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Ahmed J, Torrado C, Chelariu A, Kim SH, Ahnert JR. Fusion Challenges in Solid Tumors: Shaping the Landscape of Cancer Care in Precision Medicine. JCO Precis Oncol 2024; 8:e2400038. [PMID: 38986029 PMCID: PMC11371109 DOI: 10.1200/po.24.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024] Open
Abstract
Targeting actionable fusions has emerged as a promising approach to cancer treatment. Next-generation sequencing (NGS)-based techniques have unveiled the landscape of actionable fusions in cancer. However, these approaches remain insufficient to provide optimal treatment options for patients with cancer. This article provides a comprehensive overview of the actionability and clinical development of targeted agents aimed at driver fusions. It also highlights the challenges associated with fusion testing, including the evaluation of patients with cancer who could potentially benefit from testing and devising an effective strategy. The implementation of DNA NGS for all tumor types, combined with RNA sequencing, has the potential to maximize detection while considering cost effectiveness. Herein, we also present a fusion testing strategy aimed at improving outcomes in patients with cancer.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anca Chelariu
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center, German Cancer Consortium (DKTK), Munich, Germany
| | - Sun-Hee Kim
- Precision Oncology Decision Support, Khalifa Institute for Personalized Cancer Therapy, University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Jordi Rodon Ahnert
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
7
|
Yu L, Liu J, Jia J, Yang J, Tong R, Zhang X, Zhang Y, Yin S, Li J, Sun D. Fusion Genes Landscape of Lung Cancer Patients From Inner Mongolia, China. Genes Chromosomes Cancer 2024; 63:e23258. [PMID: 39011998 DOI: 10.1002/gcc.23258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths globally. Gene fusion, a key driver of tumorigenesis, has led to the identification of numerous driver gene fusions for lung cancer diagnosis and treatment. However, previous studies focused on Western populations, leaving the possibility of unrecognized lung cancer-associated gene fusions specific to Inner Mongolia due to its unique genetic background and dietary habits. To address this, we conducted DNA sequencing analysis on tumor and adjacent nontumor tissues from 1200 individuals with lung cancer in Inner Mongolia. Our analysis established a comprehensive fusion gene landscape specific to lung cancer in Inner Mongolia, shedding light on potential region-specific molecular mechanisms underlying the disease. Compared to Western cohorts, we observed a higher occurrence of ALK and RET fusions in Inner Mongolian patients. Additionally, we discovered eight novel fusion genes in three patients: SLC34A2-EPHB1, CCT6P3-GSTP1, BARHL2-APC, HRAS-MELK, FAM134B-ERBB2, ABCB1-GIPC1, GPR98-ALK, and FAM134B-SALL1. These previously unreported fusion genes suggest potential regional specificity. Furthermore, we characterized the fusion genes' structures based on breakpoints and described their impact on major functional gene domains. Importantly, the identified novel fusion genes exhibited significant clinical and pathological relevance. Notably, patients with SLC34A2-EPHB1, CCT6P3-GSTP1, and BARHL2-APC fusions showed sensitivity to the combination of chemotherapy and immunotherapy. Patients with HRAS-MELK, FAM134B-ERBB2, and ABCB1-GIPC1 fusions showed sensitivity to chemotherapy. In summary, our study provides novel insights into the frequency, distribution, and characteristics of specific fusion genes, offering valuable guidance for the development of effective clinical treatments, particularly in Inner Mongolia.
Collapse
Affiliation(s)
- Lan Yu
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jinyang Liu
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jianchao Jia
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Jie Yang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Ruiying Tong
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Yun Zhang
- Department of Sciences, Geneis Beijing Co. Ltd., Beijing, China
- Department of Data Mining, Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Songtao Yin
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Junlin Li
- Department of Medical Imaging, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| | - Dejun Sun
- Inner Mongolia Academy of Medical Sciences, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
- Pulmonary and Critical Care Medicine, Inner Mongolian People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
8
|
Malapelle U, Leighl N, Addeo A, Hershkovitz D, Hochmair MJ, Khorshid O, Länger F, de Marinis F, Peled N, Sheffield BS, Smit EF, Viteri S, Wolf J, Venturini F, O'Hara RM, Rolfo C. Recommendations for reporting tissue and circulating tumour (ct)DNA next-generation sequencing results in non-small cell lung cancer. Br J Cancer 2024; 131:212-219. [PMID: 38750115 PMCID: PMC11263606 DOI: 10.1038/s41416-024-02709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 07/24/2024] Open
Abstract
Non-small cell lung cancer is a heterogeneous disease and molecular characterisation plays an important role in its clinical management. Next-generation sequencing-based panel testing enables many molecular alterations to be interrogated simultaneously, allowing for comprehensive identification of actionable oncogenic drivers (and co-mutations) and appropriate matching of patients with targeted therapies. Despite consensus in international guidelines on the importance of broad molecular profiling, adoption of next-generation sequencing varies globally. One of the barriers to its successful implementation is a lack of accepted standards and guidelines specifically for the reporting and clinical annotation of next-generation sequencing results. Based on roundtable discussions between pathologists and oncologists, we provide best practice recommendations for the reporting of next-generation sequencing results in non-small cell lung cancer to facilitate its use and enable easy interpretation for physicians. These are intended to complement existing guidelines related to the use of next-generation sequencing (solid and liquid). Here, we discuss next-generation sequencing workflows, the structure of next-generation sequencing reports, and our recommendations for best practice thereof. The aim of these recommendations and considerations is ultimately to ensure that reports are fully interpretable, and that the most appropriate treatment options are selected based on robust molecular profiles in well-defined reports.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Natasha Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alfredo Addeo
- Oncology Unit, Geneva University Hospital, Geneva, Switzerland
| | | | - Maximilian J Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Ola Khorshid
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Nir Peled
- Helmesely Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Brandon S Sheffield
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON, Canada
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Santiago Viteri
- UOMI Cancer Center, Clínica Mi Tres Torres, Barcelona, Spain
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Center for Integrated Oncology, University Hospital of Cologne, Cologne, Germany
| | | | | | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Yang W, Meyer AN, Jiang Z, Jiang X, Donoghue DJ. Critical domains for NACC2-NTRK2 fusion protein activation. PLoS One 2024; 19:e0301730. [PMID: 38935636 PMCID: PMC11210774 DOI: 10.1371/journal.pone.0301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Neurotrophic receptor tyrosine kinases (NTRKs) belong to the receptor tyrosine kinase (RTK) family. NTRKs are responsible for the activation of multiple downstream signaling pathways that regulate cell growth, proliferation, differentiation, and apoptosis. NTRK-associated mutations often result in oncogenesis and lead to aberrant activation of downstream signaling pathways including MAPK, JAK/STAT, and PLCγ1. This study characterizes the NACC2-NTRK2 oncogenic fusion protein that leads to pilocytic astrocytoma and pediatric glioblastoma. This fusion joins the BTB domain (Broad-complex, Tramtrack, and Bric-a-brac) domain of NACC2 (Nucleus Accumbens-associated protein 2) with the transmembrane helix and tyrosine kinase domain of NTRK2. We focus on identifying critical domains for the biological activity of the fusion protein. Mutations were introduced in the charged pocket of the BTB domain or in the monomer core, based on a structural comparison of the NACC2 BTB domain with that of PLZF, another BTB-containing protein. Mutations were also introduced into the NTRK2-derived portion to allow comparison of two different breakpoints that have been clinically reported. We show that activation of the NTRK2 kinase domain relies on multimerization of the BTB domain in NACC2-NTRK2. Mutations which disrupt BTB-mediated multimerization significantly reduce kinase activity and downstream signaling. The ability of these mutations to abrogate biological activity suggests that BTB domain inhibition could be a potential treatment for NACC2-NTRK2-induced cancers. Removal of the transmembrane helix leads to enhanced stability of the fusion protein and increased activity of the NACC2-NTRK2 fusion, suggesting a mechanism for the oncogenicity of a distinct NACC2-NTRK2 isoform observed in pediatric glioblastoma.
Collapse
Affiliation(s)
- Wei Yang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Zian Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Xuan Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Deng C, Li M, Wang T, Duan W, Guo A, Ma G, Yang F, Dai F, Li Q. Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken. Br Poult Sci 2024:1-13. [PMID: 38922310 DOI: 10.1080/00071668.2024.2367228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic (FST). The sequence diversity statistic (θπ). RNA-seq was performed on the ovarian tissues of NXC (n = 6) and Lohmann laying hens (n = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
Collapse
Affiliation(s)
- C Deng
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, China
| | - T Wang
- School of Pharmacy, Chengdu University, Chengdu, China
| | - W Duan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - A Guo
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - G Ma
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Yang
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Q Li
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co. Ltd., Kunming, China
| |
Collapse
|
11
|
Zhang R, Hu L, Cheng Y, Chang L, Dong L, Han L, Yu W, Zhang R, Liu P, Wei X, Yu J. Targeted sequencing of DNA/RNA combined with radiomics predicts lymph node metastasis of papillary thyroid carcinoma. Cancer Imaging 2024; 24:75. [PMID: 38886866 PMCID: PMC11181663 DOI: 10.1186/s40644-024-00719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE The aim of our study is to find a better way to identify a group of papillary thyroid carcinoma (PTC) with more aggressive behaviors and to provide a prediction model for lymph node metastasis to assist in clinic practice. METHODS Targeted sequencing of DNA/RNA was used to detect genetic alterations. Gene expression level was measured by quantitative real-time PCR, western blotting or immunohistochemistry. CCK8, transwell assay and flow cytometry were used to investigate the effects of concomitant gene alterations in PTC. LASSO-logistics regression algorithm was used to construct a nomogram model integrating radiomic features, mutated genes and clinical characteristics. RESULTS 172 high-risk variants and 7 fusion types were detected. The mutation frequencies in BRAF, TERT, RET, ATM and GGT1 were significantly higher in cancer tissues than benign nodules. Gene fusions were detected in 16 samples (2 at the DNA level and 14 at the RNA level). ATM mutation (ATMMUT) was frequently accompanied by BRAFMUT, TERTMUT or gene fusions. ATMMUT alone or ATM co-mutations were significantly positively correlated with lymph node metastasis. Accordingly, ATM knock-down PTC cells bearing BRAFV600E, KRASG12R or CCDC6-RET had higher proliferative ability and more aggressive potency than cells without ATM knock-down in vitro. Furthermore, combining gene alterations and clinical features significantly improved the predictive efficacy for lymph node metastasis of radiomic features, from 71.5 to 87.0%. CONCLUSIONS Targeted sequencing of comprehensive genetic alterations in PTC has high prognostic value. These alterations, in combination with clinical and radiomic features, may aid in predicting invasive PTC with higher accuracy.
Collapse
Affiliation(s)
- Runjiao Zhang
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Linfei Hu
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Luchen Chang
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Yu
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Wei
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Department of Diagnostic and Therapeutic Ultrasonography, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
12
|
Hoseini SH, Enayati P, Nazari M, Babakhanzadeh E, Rastgoo M, Sohrabi NB. Biomarker Profile of Colorectal Cancer: Current Findings and Future Perspective. J Gastrointest Cancer 2024; 55:497-510. [PMID: 38168859 DOI: 10.1007/s12029-023-00990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Breakthroughs in omics technology have led to a deeper understanding of the fundamental molecular changes that play a critical role in the development and progression of cancer. This review delves into the hidden molecular drivers of colorectal cancer (CRC), offering potential for clinical translation through novel biomarkers and personalized therapies. METHODS We summarizes recent studies utilizing various omics approaches, including genomics, transcriptomics, proteomics, epigenomics, metabolomics and data integration with computational algorithms, to investigate CRC. RESULTS Integrating multi-omics data in colorectal cancer research unlocks hidden biological insights, revealing new pathways and mechanisms. This powerful approach not only identifies potential biomarkers for personalized prognosis, diagnosis, and treatment, but also predicts patient response to specific therapies, while computational tools illuminate the landscape by deciphering complex datasets. CONCLUSIONS Future research should prioritize validating promising biomarkers and seamlessly translating them into clinical practice, ultimately propelling personalized CRC management to new heights.
Collapse
Affiliation(s)
| | - Parisa Enayati
- Biological Sciences Department, Northern Illinois University, DeKalb, IL, USA
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- , P.O. Box, Tehran, 64155-65117, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rastgoo
- Department of Microbiology, Shiraz Islamic Azad University, Shiraz, Iran
| | | |
Collapse
|
13
|
Nakata E, Osone T, Ogawa T, Taguchi T, Hattori K, Kohsaka S. Prevalence of neurotrophic tropomyosin receptor kinase (NTRK) fusion gene positivity in patients with solid tumors in Japan. Cancer Med 2024; 13:e7351. [PMID: 38925616 PMCID: PMC11199329 DOI: 10.1002/cam4.7351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Members of the neurotrophic tropomyosin receptor kinase (NTRK) gene family, NTRK1, NTRK2, and NTRK3 encode TRK receptor tyrosine kinases. Intra- or inter-chromosomal gene rearrangements produce NTRK gene fusions encoding fusion proteins which are oncogenic drivers in various solid tumors. METHODS This study investigated the prevalence of NTRK fusion genes and identified fusion partners in Japanese patients with solid tumors recorded in the Center for Cancer Genomics and Advanced Therapeutics database of comprehensive genomic profiling test. RESULTS In the analysis population (n = 46,621), NTRK fusion genes were detected in 91 patients (0.20%). The rate was higher in pediatric cases (<18 years; 1.69%) than in adults (0.16%). NTRK gene fusions were identified in 21 different solid tumor types involving 38 different partner genes including 22 (57.9%) previously unreported NTRK gene fusions. The highest frequency of NTRK gene fusions was head and neck cancer (1.31%) and thyroid cancer (1.31%), followed by soft tissue sarcoma (STS; 0.91%). A total of 97 NTRK fusion gene partners were analyzed involving mainly NTRK1 (49.5%) or NTRK3 (44.2%) gene fusions. The only fusion gene detected in head and neck cancer was ETV6::NTRK3 (n = 22); in STS, ETV6::NTRK3 (n = 7) and LMNA::NTRK1 (n = 5) were common. Statistically significant mutual exclusivity of NTRK fusions with alterations was confirmed in TP53, KRAS, and APC. NTRK gene fusion was detected from 11 STS cases: seven unclassified sarcoma, three sarcoma NOS, and one Ewing sarcoma. CONCLUSIONS NTRK gene fusion identification in solid tumors enables accurate diagnosis and potential TRK inhibitor therapy.
Collapse
Affiliation(s)
- Eiji Nakata
- Department of Orthopedic SurgeryOkayama UniversityOkayamaJapan
- Center for Comprehensive Genomic MedicineOkayama University HospitalOkayamaJapan
| | - Tatsunori Osone
- Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Toru Ogawa
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | | - Kana Hattori
- Medical Affairs & PharmacovigilanceBayer Yakuhin, LtdOsakaJapan
| | | |
Collapse
|
14
|
Hakami MA, Alotaibi BS, Hazazi A, Shafie A, Alsaiari AA, Ashour AA, Anjum F. Identification of potential inhibitors of tropomyosin receptor kinase B targeting CNS-related disorders and cancers. J Biomol Struct Dyn 2024; 42:2965-2975. [PMID: 37184150 DOI: 10.1080/07391102.2023.2212786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
15
|
Vargas AC, Joy C, Maclean FM, Bonar F, Wong DD, Gill AJ, Cheah AL. Kinase expression in angiomatoid fibrous histiocytoma: panTRK is commonly expressed in the absence of NTRK rearrangement. J Clin Pathol 2024; 77:251-254. [PMID: 38053271 DOI: 10.1136/jcp-2023-209225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Angiomatoid fibrous histiocytoma (AFH) is a soft tissue tumour of intermediate (rarely metastasising) malignant potential, which harbours EWSR1/FUS gene fusions. These tumours can express anaplastic lymphoma kinase (ALK) in the absence of gene rearrangement or copy number alteration and can also coexpresses Pan-TRK immunohistochemistry (IHC). All EWSR1/FUS-rearranged AFH were retrieved from the files of three institutions and Pan-TRK (EPR17341), ALK and BRAF V600E IHC were performed. Fourteen AFH cases were identified, which included three cases of intracranial mesenchymal tumours with FET-CREB fusions. PanTRK and ALK positive immunostaining was identified in 9 (64.2%) and 12 (85.7%) cases, respectively. No NTRK or ALK translocations or increased copy number/amplification were identified in all eight cases which had fluorescence in situ hybridisation and/or next generation sequencing for NTRK1-3 and ALK available for assessment. None of the cases expressed BRAF-V600E.Although our study is limited, our report is the first to document PanTRK expression in AFH in the absence of identifiable NTRK1-3 gene alterations.
Collapse
Affiliation(s)
- Ana Cristina Vargas
- The University of Sydney, Sydney, New South Wales, Australia
- Douglass Hanly Moir Pathology, North Ryde, New South Wales, Australia
| | - Christopher Joy
- Sullivan Nicolaides Pathology Central Laboratory Bowen Hills, Fortitude Valley, Queensland, Australia
| | - Fiona M Maclean
- Douglass Hanly Moir Pathology, North Ryde, New South Wales, Australia
| | - Fiona Bonar
- Douglass Hanly Moir Pathology, North Ryde, New South Wales, Australia
| | - Daniel D Wong
- PathWest Laboratory Medical WA, Nedlands, Western Australia, Australia
| | - Anthony J Gill
- The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Alison L Cheah
- Douglass Hanly Moir Pathology, North Ryde, New South Wales, Australia
| |
Collapse
|
16
|
Emerick C, Mariano FV, Squarize CH, Castilho RM. Spotlight on rare cancers. Oral Dis 2024; 30:799-800. [PMID: 35719113 DOI: 10.1111/odi.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
- Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Fernanda Viviane Mariano
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Cristiane H Squarize
- Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Hernandez S, Conde E, Molero A, Suarez-Gauthier A, Martinez R, Alonso M, Plaza C, Camacho C, Chantada D, Juaneda-Magdalena L, Garcia-Toro E, Saiz-Lopez P, Rojo F, Abad M, Boni V, Del Carmen S, Regojo RM, Sanchez-Frias ME, Teixido C, Paz-Ares L, Lopez-Rios F. Efficient Identification of Patients With NTRK Fusions Using a Supervised Tumor-Agnostic Approach. Arch Pathol Lab Med 2024; 148:318-326. [PMID: 37270803 DOI: 10.5858/arpa.2022-0443-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— The neurotrophic tropomyosin receptor kinase (NTRK) family gene rearrangements have been recently incorporated as predictive biomarkers in a "tumor-agnostic" manner. However, the identification of these patients is extremely challenging because the overall frequency of NTRK fusions is below 1%. Academic groups and professional organizations have released recommendations on the algorithms to detect NTRK fusions. The European Society for Medical Oncology proposal encourages the use of next-generation sequencing (NGS) if available, or alternatively immunohistochemistry (IHC) could be used for screening with NGS confirmation of all positive IHC results. Other academic groups have included histologic and genomic information in the testing algorithm. OBJECTIVE.— To apply some of these triaging strategies for a more efficient identification of NTRK fusions within a single institution, so pathologists can gain practical insight on how to start looking for NTRK fusions. DESIGN.— A multiparametric strategy combining histologic (secretory carcinomas of the breast and salivary gland; papillary thyroid carcinomas; infantile fibrosarcoma) and genomic (driver-negative non-small cell lung carcinomas, microsatellite instability-high colorectal adenocarcinomas, and wild-type gastrointestinal stromal tumors) triaging was put forward. RESULTS.— Samples from 323 tumors were stained with the VENTANA pan-TRK EPR17341 Assay as a screening method. All positive IHC cases were simultaneously studied by 2 NGS tests, Oncomine Comprehensive Assay v3 and FoundationOne CDx. With this approach, the detection rate of NTRK fusions was 20 times higher (5.57%) by only screening 323 patients than the largest cohort in the literature (0.30%) comprising several hundred thousand patients. CONCLUSIONS.— Based on our findings, we propose a multiparametric strategy (ie, "supervised tumor-agnostic approach") when pathologists start searching for NTRK fusions.
Collapse
Affiliation(s)
- Susana Hernandez
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Esther Conde
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| | - Aida Molero
- the Department of Pathology, Segovia General Hospital, Segovia, Spain (Molero)
| | - Ana Suarez-Gauthier
- the Department of Pathology, Jimenez Diaz Foundation University Hospital, Madrid, Spain (Suarez-Gauthier)
| | - Rebeca Martinez
- the Department of Pathology, Health Diagnostic-Grupo Quiron Salud, Madrid, Spain (Martinez)
| | - Marta Alonso
- From the Department of Pathology, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain (Hernandez, Alonso)
| | - Carlos Plaza
- the Department of Pathology, Clinico San Carlos University Hospital, Madrid, Spain (Plaza)
| | - Carmen Camacho
- the Department of Pathology, Insular Materno-Infantil University Hospital, Las Palmas de Gran Canaria, Spain (Camacho)
| | - Debora Chantada
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Laura Juaneda-Magdalena
- the Department of Pathology, Alvaro Cunqueiro Hospital, Vigo, Spain (Chantada, Juaneda-Magdalena)
| | - Enrique Garcia-Toro
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Patricia Saiz-Lopez
- the Department of Pathology, Burgos University Hospital, Burgos, Spain (Garcia-Toro, Saiz-Lopez)
| | - Federico Rojo
- the Institute of Health Research-Jimenez Diaz Foundation, CIBERONC, Madrid, Spain (Rojo)
| | - Mar Abad
- the Department of Pathology, Salamanca University Hospital, Salamanca, Spain (Abad)
| | - Valentina Boni
- NEXT Oncology Madrid, Quiron Salud Madrid University Hospital, Madrid, Spain (Boni)
| | - Sofia Del Carmen
- the Department of Pathology, Marques de Valdecilla University Hospital, Santander, Spain (del Carmen)
| | - Rita Maria Regojo
- the Department of Pathology, La Paz University Hospital, Madrid, Spain (Regojo)
| | | | - Cristina Teixido
- the Department of Pathology, Thoracic Oncology Unit, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain (Teixido)
| | - Luis Paz-Ares
- the Department of Oncology, 12 de Octubre University Hospital, Department of Medicine, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Paz-Ares)
| | - Fernando Lopez-Rios
- the Department of Pathology, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain (Conde, Lopez-Rios)
| |
Collapse
|
18
|
Hagopian G, Nagasaka M. Oncogenic fusions: Targeting NTRK. Crit Rev Oncol Hematol 2024; 194:104234. [PMID: 38122917 DOI: 10.1016/j.critrevonc.2023.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is responsible for the highest number of cancer-related deaths in the United States. Thankfully, advancements in the detection and targeting of gene mutations have greatly improved outcomes for many patients. One significant mutation driving oncogenesis in various cancers, including NSCLC, is the neurotrophic tyrosine receptor kinase (NTRK) fusion. Presently, larotrectinib and entrectinib are the only FDA-approved therapies for NTRK-mutated cancers. Despite the efficacy and tolerability exhibited by these therapies, several clinical hurdles persist for physicians, including resistance mutations and limited penetration of the central nervous system (CNS), which diminishes their effectiveness. The treatment landscape for NTRK cancers is still being explored, with numerous new tyrosine kinase inhibitors currently in development or undergoing phase 1 and 2 clinical trials. In this review, we delve into both established and novel therapies targeting NTRK-mutated NSCLC.
Collapse
Affiliation(s)
- Garo Hagopian
- Department of Medicine, University of California Irvine Medical Center, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine Medical Center, Orange, CA, USA; Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
19
|
Zhao YY, Ge HJ, Yang WT, Shao ZM, Hao S. Secretory breast carcinoma: clinicopathological features and prognosis of 52 patients. Breast Cancer Res Treat 2024; 203:543-551. [PMID: 37897648 DOI: 10.1007/s10549-023-07153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE Secretory breast carcinoma is a rare histological subtype of invasive breast cancer and considered with an indolent clinical behavior. This study was conducted to analyze the clinicopathological features of patients with secretory breast carcinoma (SBC), explore the outcome, and compare the prognostic difference with invasive ductal breast carcinoma (IDC). METHODS AND MATERIALS: Patients with SBC diagnosed between 2006 and 2017 from Fudan University Shanghai Cancer Center were included in the study, excluding patients with previous malignant tumor history and incomplete clinical data or follow-up records. Peculiar clinicopathological and immunohistochemical features of the cases were fully described. Clinical data of 4979 cases of IDC were also evaluated during this period. After propensity score matching, prognostic analysis of SBCs and IDCs was calculated by Kaplan-Meier method and landmark analysis method. RESULTS The data of 52 patients diagnosed with SBC were identified from the pathological files. Among them, 47 patients were women, and 5 were men. The median age of the 52 SBCs was 46 years (mean, 48.1 years; range, 10-80 years). The tumor sizes ranged from 0.3 to 6.8 cm, with a mean of 3.5 cm. Eight patients (15.4%) had positive axillary lymph node involvement. The molecular classification was mostly triple-negative breast cancer (65.4%). Fluorescence in situ hybridization confirmed the presence of ETV6::NTRK3 rearrangement in 16 of 18 cases (88.9%). Furthermore, Kaplan-Meier survival analysis and landmark analysis demonstrated that there were no statistically significant differences in DFS and OS between SBC and IDC patients. CONCLUSION Although SBCs are generally associated with a favorable prognosis, our work exhibited that the clinicopathological features of SBC were partly different from former understandings, indicating that therapeutic procedure should be prudent. Further studies are necessary to fully identify the clinical behavior and predictive markers to improve diagnosis and management in this unique subtype of breast cancer.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, People's Republic of China
| | - Hui-Juan Ge
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Wen-Tao Yang
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
- Institutes of Biomedical Science, Fudan University, Shanghai, People's Republic of China.
| | - Shuang Hao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
20
|
de Castro JVA, Dos Santos PJS, Mantoan H, Baiocchi G, Bovolim G, Torrezan G, Corassa M, do Nascimento AG, De Brot M, Costa FD, De Brot L. Uterine Sarcoma With EML4::NTRK3 Fusion: A Spectrum of Mesenchymal Neoplasms Harboring Actionable Gene Fusions. Int J Gynecol Pathol 2024; 43:56-60. [PMID: 37668341 DOI: 10.1097/pgp.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
NTRK gene fusions are part of a paradigm shift in oncology, arising as one of the main genomic alterations with actionability in the so-called "agnostic setting." In gynecologic pathology, the recent description of uterine sarcoma resembling fibrosarcoma and with NTRK rearrangements ( NTRK -rearranged uterine sarcoma) highlights the importance of recognizing clinicopathological cues that can lead to genomic profiling. Herein, we report the case of a 43-year-old woman presenting with vaginal bleeding and pelvic mass. Histopathology of the tumor showed moderately atypical spindle cells arranged in long fascicles reminiscent of fibrosarcoma, along with immunohistochemical positivity for S100, CD34, and pan-tropomyosin receptor kinase. This prompted RNA-sequencing and the finding of a rare EML4::NTRK3 fusion. Clinical, histologic, and molecular findings are described, in addition to discussions regarding differential diagnoses and possible implications of the findings in clinical practice.
Collapse
Affiliation(s)
- João Víctor Alves de Castro
- Anatomic Pathology Department, A.C.Camargo Cancer Center (J.V.A.D.C., P.J.S.D.S., G.B., M.D.B., F.D.A.C., L.D.B., A.G.d.N.); Gynecology Oncology Unit, A.C.Camargo Cancer Center (H.M., G.B.); CIPE - Centro Internacional de Ensino e Pesquisa, A.C.Camargo Cancer Center (G.T.); and Medical Oncology Unit, A.C.Camargo Cancer Center (M.C.) São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cortas C, Charalambous H. Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer. Life (Basel) 2023; 14:22. [PMID: 38255638 PMCID: PMC10817256 DOI: 10.3390/life14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with differentiated thyroid cancer usually present with early-stage disease and undergo surgery followed by adjuvant radioactive iodine ablation, resulting in excellent clinical outcomes and prognosis. However, a minority of patients relapse with metastatic disease, and eventually develop radioactive iodine refractory disease (RAIR). In the past there were limited and ineffective options for systemic therapy for RAIR, but over the last ten to fifteen years the emergence of tyrosine kinase inhibitors (TKIs) has provided important new avenues of treatment for these patients, that are the focus of this review. Currently, Lenvatinib and Sorafenib, multitargeted TKIs, represent the standard first-line systemic treatment options for RAIR thyroid carcinoma, while Cabozantinib is the standard second-line treatment option. Furthermore, targeted therapies for patients with specific targetable molecular abnormalities include Latrectinib or Entrectinib for patients with NTRK gene fusions and Selpercatinib or Pralsetinib for patients with RET gene fusions. Dabrafenib plus Trametinib currently only have tumor agnostic approval in the USA for patients with BRAF V600E mutations, including thyroid cancer. Redifferentiation therapy is an area of active research, with promising initial results, while immunotherapy studies with checkpoint inhibitors in combination with tyrosine kinase inhibitors are underway.
Collapse
Affiliation(s)
| | - Haris Charalambous
- Medical Oncology Department, Bank of Cyprus Oncology Centre, Nicosia 2006, Cyprus;
| |
Collapse
|
22
|
Cipri S, Fabozzi F, Del Baldo G, Milano GM, Boccuto L, Carai A, Mastronuzzi A. Targeted therapy for pediatric central nervous system tumors harboring mutagenic tropomyosin receptor kinases. Front Oncol 2023; 13:1235794. [PMID: 38144536 PMCID: PMC10748602 DOI: 10.3389/fonc.2023.1235794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
The family of the neurotrophic tyrosine kinase receptor (NTRK) gene encodes for members of the tropomyosin receptor kinase (TRK) family. Rearrangements involving NTRK1/2/3 are rare oncogenic factors reported with variable frequencies in an extensive range of cancers in pediatrics and adult populations, although they are more common in the former than in the latter. The alterations in these genes are causative of the constitutive activation of TRKs that drive carcinogenesis. In 2017, first-generation TRK inhibitor (TRKi) larotrectinib was granted accelerated approval from the FDA, having demonstrated histologic-agnostic activity against NTRKs fusions tumors. Since this new era has begun, resistance to first-generation TRKi has been described and has opened the development of second-generation molecules, such as selitrectinib and repotrectinib. In this review, we provide a brief overview of the studies on NTRK alterations found in pediatric central nervous system tumors and first and second-generation TRKi useful in clinical practice.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
23
|
Conde E, Hernandez S, Alonso M, Lopez-Rios F. Pan-TRK Immunohistochemistry to Optimize the Detection of NTRK Fusions: Removing the Hay When Looking for the Needle. Mod Pathol 2023; 36:100346. [PMID: 37757968 DOI: 10.1016/j.modpat.2023.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Esther Conde
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain
| | - Susana Hernandez
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Alonso
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Madrid, Spain.
| |
Collapse
|
24
|
Cuello M, García-Rivello H, Huamán-Garaicoa F, Irigoyen-Piñeiros P, Lara-Torres CO, Rizzo MM, Ticona-Castro M, Trejo R, Zoroquiain P. Detection of NTRK gene fusions in solid tumors: recommendations from a Latin American group of oncologists and pathologists. Future Oncol 2023; 19:2669-2682. [PMID: 38088163 DOI: 10.2217/fon-2023-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
NTRK gene fusions have been detected in more than 25 types of tumors and their prevalence is approximately 0.3% in solid tumors. This low prevalence makes identifying patients who could benefit from TRK inhibitors a considerable challenge. Furthermore, while numerous papers on the evaluation of NTRK fusion genes are available, not all countries have guidelines that are suitable for their setting, as is the case with Latin America. Therefore, a group of oncologists and pathologists from several countries in Latin America (Argentina, Chile, Ecuador, Mexico, Peru and Uruguay) met to discuss and reach consensus on how to identify patients with NTRK gene fusions in solid tumors. To do so, they developed a practical algorithm, considering their specific situation and limitations.
Collapse
Affiliation(s)
- Mauricio Cuello
- Academic Unit of Oncology, Hospital de Clínicas Dr. Manuel Quintela, Montevideo, Uruguay
| | - Hernán García-Rivello
- Departmento of Clinical Pathology, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano, Buenos Aires, Argentina
| | - Fuad Huamán-Garaicoa
- Instituto de Salud Integral (ISAIN), Universidad Católica, Santiago de Guayaquil (Ecuador), Department of Pathology, Sociedad de Lucha Contra el Cáncer del Ecuador (SOLCA), Guayaquil, Ecuador
| | | | - César O Lara-Torres
- Laboratory of Molecular Pathology, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Manglio M Rizzo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Austral, Derqui-Pilar, Argentina
- Department of Medical Oncology, Hospital Universitario Austral, Derqui-Pilar, Argentina
| | - Miguel Ticona-Castro
- Service of Medical Oncology, Hospital Nacional Edgardo Rebagliati Martins, EsSalud - Jesús María, Lima (Perú), Clínica Montefiori, La Molina, Lima, Perú
| | - Rogelio Trejo
- Department of Medical Oncology, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Pablo Zoroquiain
- Pathology Department, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Qi C, Zhou T, Bai Y, Chen H, Yuan J, Zhao F, Liu C, Ma M, Bei T, Chen S, Zhao X, Chen C, Shen L. China special issue on gastrointestinal tumors-NTRK fusion in a large real-world population and clinical utility of circulating tumor DNA genotyping to guide TRK inhibitor treatment. Int J Cancer 2023; 153:1916-1927. [PMID: 36946696 DOI: 10.1002/ijc.34522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are rare oncogenic drivers and targets of TRK inhibitors in solid tumors. Little is known about NTRK fusion in Chinese patients with pan-cancer. Our study investigated the prevalence and genomic features of NTRK1/2/3 gene fusions in 67 883 Chinese patients with pan-cancer using next-generation sequencing (NGS) data and circulating tumor DNA (ctDNA) NGS to guide TRK inhibitor treatment and resistance monitoring. The prevalence of NTRK fusion (tissue NGS) in the pan-cancer population was 0.18%, with 46 unique NTRK-fusion partner pairs, of which 33 were not previously reported. NTRK2 breakpoint occurred more frequently in intron 15 than intron 12. In colorectal cancers (CRCs), compared to NTRK-negative tumors, NTRK-positive tumors displayed higher tumor mutational burden (TMB) levels (54.6 vs 17.7 mut/Mb, P < .0001). In microsatellite instability-high (MSI-H) CRC, patients with NTRK fusion had a significantly lower TMB than NTRK-negative cases (69.3 vs 79.9 mut/Mb, P = .012). The frequency of NTRK fusion in a ctDNA NGS cohort of 20 954 patients with cancer was similar to that of the tissue NGS cohort. In eight NTRK fusion ctDNA-positive patients, larotrectinib induced objective response in 75% of patients and median progression-free survival was 16.3 months. Blood samples collected from a patient with disease progression after larotrectinib treatment revealed NTRK3 G623R as the potential resistance mechanism. Our study revealed previously unreported NTRK fusion partners, associations of NTRK fusion with MSI and TMB, and the potential utility of ctDNA to screen candidates for TRK inhibitors and monitor drug resistance.
Collapse
Affiliation(s)
- Changsong Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuezong Bai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Hui Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Feilong Zhao
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Chang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Early Drug Development Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mingyang Ma
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Bei
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Shiqing Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | | | - Chunzhu Chen
- Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
26
|
Meng Y, Ye F, Nie P, Zhao Q, An L, Wang W, Qu S, Shen Z, Cao Z, Zhang X, Jiao S, Wu D, Zhou Z, Wei L. Immunosuppressive CD10 +ALPL + neutrophils promote resistance to anti-PD-1 therapy in HCC by mediating irreversible exhaustion of T cells. J Hepatol 2023; 79:1435-1449. [PMID: 37689322 DOI: 10.1016/j.jhep.2023.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND & AIMS Remodeling the tumor microenvironment is a critical strategy for treating advanced hepatocellular carcinoma (HCC). Yet, how distinct cell populations in the microenvironment mediate tumor resistance to immunotherapies, such as anti-PD-1, remains poorly understood. METHODS We analyzed the transcriptomic profile, at a single-cell resolution, of tumor tissues from patients with HCC scheduled to receive anti-PD-1-based immunotherapy. Our comparative analysis and experimental validation using flow cytometry and histopathological analysis uncovered a discrete subpopulation of cells associated with resistance to anti-PD-1 treatment in patients and a rat model. A TurboID-based proximity labeling approach was deployed to gain mechanistic insights into the reprogramming of the HCC microenvironment. RESULTS We identified CD10+ALPL+ neutrophils as being associated with resistance to anti-PD-1 treatment. These neutrophils exhibited a strong immunosuppressive activity by inducing an apparent "irreversible" exhaustion of T cells in terms of cell number, frequency, and gene profile. Mechanistically, CD10+ALPL+ neutrophils were induced by tumor cells, i.e., tumor-secreted NAMPT reprogrammed CD10+ALPL+ neutrophils through NTRK1, maintaining them in an immature state and inhibiting their maturation and activation. CONCLUSIONS Collectively, our results reveal a fundamental mechanism by which CD10+ALPL+ neutrophils contribute to tumor immune escape from durable anti-PD-1 treatment. These data also provide further insights into novel immunotherapy targets and possible synergistic treatment regimens. IMPACT AND IMPLICATIONS Herein, we discovered that tumor cells reprogrammed CD10+ALPL+ neutrophils to induce the "irreversible" exhaustion of T cells and hence allow tumors to escape from the intended effects of anti-PD-1 treatment. Our data provided a new theoretical basis for the elucidation of special cell populations and revealed a molecular mechanism underpinning resistance to immunotherapy. Targeting these cells alongside existing immunotherapy could be looked at as a potentially more effective therapeutic approach.
Collapse
Affiliation(s)
- Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China; Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Pingping Nie
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Zhemin Shen
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaobing Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Dong Wu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
27
|
Shang X, Zhang W, Han W, Xia H, Liu N, Wang X, Liu Y. Efficacy of immune checkpoint inhibitors in non-small cell lung cancer with NTRK family mutations. BMC Pulm Med 2023; 23:482. [PMID: 38031067 PMCID: PMC10688060 DOI: 10.1186/s12890-023-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) patients harboring neurotrophin receptor kinase (NTRK) family mutations remains obscure. METHODS The Zehir cohort from cBioPortal was used to analyze the mutations (MT) frequency of NTRK family in patients with NSCLC, and their correlation with clinical characteristics and patient survival. The influence of NTRK MT on ICIs efficacy was evaluated in ICIs-treated patients from Samstein cohort and further validated by use of data from OAK/POPLAR cohort. RESULTS In the Zehir cohort, a significant difference was observed in median overall survival (mOS) between patients with NTRK MT and wild-type (WT) (mOS: 18.97 vs. 21.27 months, HR = 1.34, 95%CI 1.00-1.78; log-rank P = 0.047). In Samstein cohort, the mOS of NTRK mutant patients receiving ICIs has improved compared to WT patients (mOS: 21.00 vs. 11.00 months, log-rank P = 0.103). Notably, in subgroup analysis, ICIs significantly prolonged mOS in patients with NTRK3 MT than in WT patients (mOS: not available vs. 11.00 months, HR = 0.36, 95%CI 0.16-0.81; log-rank P = 0.009). Identical mOS between NTRK MT and WT patients receiving ICIs treatment (mOS: 13.24 vs. 13.50 months, log-rank P = 0.775) was observed in OAK/POPLAR cohort. Moreover, a similar programmed death ligand 1 (PD-L1) expression, but higher tumor mutational burden (TMB), blood TMB (bTMB) and enriched anti-tumor immunity were observed in NTRK MT compared to WT (P < 0.05). CONCLUSION Taking high TMB or bTMB into consideration, patients with NTRK mutant NSCLC could benefit from ICIs treatment.
Collapse
Affiliation(s)
- Xiaoling Shang
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Wengang Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Wenfei Han
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Handai Xia
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Ni Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
28
|
Skórzewska M, Gęca K, Polkowski WP. A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers (Basel) 2023; 15:5490. [PMID: 38001751 PMCID: PMC10670421 DOI: 10.3390/cancers15225490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development of therapies for advanced gastric cancer (GC) has made significant progress over the past few years. The identification of new molecules and molecular targets is expanding our understanding of the disease's intricate nature. The end of the classical oncology era, which relied on well-studied chemotherapeutic agents, is giving rise to novel and unexplored challenges, which will cause a significant transformation of the current oncological knowledge in the next few years. The integration of established clinically effective regimens in additional studies will be crucial in managing these innovative aspects of GC. This study aims to present an in-depth and comprehensive review of the clinical advancements in targeted therapy and immunotherapy for advanced GC.
Collapse
|
29
|
Berl A, Shir-az O, Genish I, Biran H, Mann D, Singh A, Wise J, Kravtsov V, Kidron D, Golberg A, Vitkin E, Yakhini Z, Shalom A. Exploring multisite heterogeneity of human basal cell carcinoma proteome and transcriptome. PLoS One 2023; 18:e0293744. [PMID: 37948379 PMCID: PMC10637653 DOI: 10.1371/journal.pone.0293744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common type of skin cancer. Due to multiple, potential underlying molecular tumor aberrations, clinical treatment protocols are not well-defined. This study presents multisite molecular heterogeneity profiles of human BCC based on RNA and proteome profiling. Three areas from lesions excised from 9 patients were analyzed. The focus was gene expression profiles based on proteome and RNA measurements of intra-tumor heterogeneity from the same patient and inter-tumor heterogeneity in nodular, infiltrative, and superficial BCC tumor subtypes from different patients. We observed significant overlap in intra- and inter-tumor variability of proteome and RNA expression profiles, showing significant multisite heterogeneity of protein expression in the BCC tumors. Inter-subtype analysis has also identified unique proteins for each BCC subtype. This profiling leads to a deeper understanding of BCC molecular heterogeneity and potentially contributes to developing new sampling tools for personalized diagnostics therapeutic approaches to BCC.
Collapse
Affiliation(s)
- Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Shir-az
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilai Genish
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
| | - Hadas Biran
- Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel
| | - Din Mann
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amrita Singh
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Julia Wise
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladimir Kravtsov
- Department of Pathology, Meir Medical Center, Kfar Sava, Israel, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Debora Kidron
- Department of Pathology, Meir Medical Center, Kfar Sava, Israel, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Edward Vitkin
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
| | - Zohar Yakhini
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
- Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Grabenstetter A, D'Alfonso TM. The Role of Novel Immunohistochemical Markers for Special Types of Breast Carcinoma. Adv Anat Pathol 2023; 30:374-379. [PMID: 37746900 DOI: 10.1097/pap.0000000000000415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Some histologic special types of breast carcinoma harbor specific recurrent genetic alterations that are not seen in other types of breast carcinoma (no special type), namely adenoid cystic carcinoma, secretory carcinoma, and tall cell carcinoma with reversed polarity. These tumors have unique morphologic features, are triple-negative, that is, do not express hormone receptors or HER2, and are generally associated with a favorable prognosis. Adenoid cystic carcinoma, like its counterpart in other organs, shows a MYB-NFIB fusion gene that is the result of a recurrent t(6;9)(q22-23;p23-24) translocation. Other MYB alterations have been described that result in overexpression of MYB . Secretory carcinoma is characterized by an ETV6-NTRK3 gene fusion that is the result of recurrent (12;15);(p13;q25) translocation, which is also seen in mammary analog secretory carcinoma of the salivary gland. Tall cell carcinoma with reversed polarity shows IDH2 p.Arg172 hotspot mutations. Immunohistochemical antibodies have emerged that identify the underlying genetic alterations in these tumors and serve as useful diagnostic tools. This review will provide an update on the molecular features and diagnostic immunohistochemical markers that have become increasingly popular to aid in diagnosing these uncommon triple-negative breast tumors.
Collapse
Affiliation(s)
- Anne Grabenstetter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
31
|
Takamiya A, Ishibashi Y, Makise N, Hirata M, Ushiku T, Tanaka S, Kobayashi H. Imaging characteristics of NTRK-rearranged spindle cell neoplasm of the soft tissue: A case report. J Orthop Sci 2023; 28:1580-1583. [PMID: 35033373 DOI: 10.1016/j.jos.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/17/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Akihiro Takamiya
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Ishibashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiro Makise
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Hirata
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Tang X, Hu X, Wen Y, Min L. Progressive insights into fibrosarcoma diagnosis and treatment: leveraging fusion genes for advancements. Front Cell Dev Biol 2023; 11:1284428. [PMID: 37920823 PMCID: PMC10618559 DOI: 10.3389/fcell.2023.1284428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Fibrosarcoma, originating from fibroblast cells, represents a malignant neoplasm that can manifest across all genders and age groups. Fusion genes are notably prevalent within the landscape of human cancers, particularly within the subtypes of fibrosarcoma, where they exert substantial driving forces in tumorigenesis. Many fusion genes underlie the pathogenic mechanisms triggering the onset of this disease. Moreover, a close association emerges between the spectrum of fusion gene types and the phenotypic expression of fibrosarcoma, endowing fusion genes not only as promising diagnostic indicators for fibrosarcoma but also as pivotal foundations for its subcategorization. Concurrently, an increasing number of chimeric proteins encoded by fusion genes have been substantiated as specific targets for treating fibrosarcoma, consequently significantly enhancing patient prognoses. This review comprehensively delineates the mechanisms behind fusion gene formation in fibrosarcoma, the lineage of fusion genes, methodologies employed in detecting fusion genes within fibrosarcoma, and the prospects of targeted therapeutic interventions driven by fusion genes within the fibrosarcoma domain.
Collapse
Affiliation(s)
- Xiaodi Tang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| | - Yang Wen
- Department of Orthopedics, Zigong Fourth People’s Hospital, Zigong, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Model Worker and Craftsman Talent Innovation Workshop of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Zhang Q, Wang Y, Zhou J, Zhou R, Liu A, Meng L, Ji X, Hu P, Xu Z. 11q13.3q13.4 deletion plus 9q21.13q21.33 duplication in an affected girl arising from a familial four-way balanced chromosomal translocation. Mol Genet Genomic Med 2023; 11:e2248. [PMID: 37475652 PMCID: PMC10568374 DOI: 10.1002/mgg3.2248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND We describe a 13-year-old girl with a 11q13.3q13.4 deletion encompassing the SHANK2 gene and a 9q21.13q21.33 duplication. She presented with pre- and postnatal growth retardation, global developmental delay, severe language delay, cardiac abnormalities, and dysmorphisms. Her maternal family members all had histories of reproductive problems. METHODS Maternal family members with histories of reproductive problems were studied using G-banded karyotyping and optical genome mapping (OGM). Long-range PCR (LR-PCR) and Sanger sequencing were used to confirm the precise break point sequences obtained by OGM. RESULTS G-banded karyotyping characterized the cytogenetic results as 46,XX,der(9)?del(9)(q21q22)t(9;14)(q22;q24),der(11)ins(11;?9)(q13;?q21q22),der(14)t(9;14). Using OGM, we determined that asymptomatic female family members with reproductive problems were carriers of a four-way balanced chromosome translocation. Their karyotype results were further refined as 46,XX,der(9)del(9)(q21.13q21.33)t(9;14)(q21.33;q22.31),der(11)del(11)(q13.3q13.4)ins(11;9)(q13.3;q21.33q21.13),der(14)t(9:14)ins(14;11)(q23.1;q13.4q13.3). Thus, we confirmed that the affected girl inherited the maternally derived chromosome 11. Furthermore, using LR-PCR, we showed that three disease-related genes (TMC1, NTRK2, and KIAA0586) were disrupted by the breakpoints. CONCLUSIONS Our case highlights the importance of timely parental origin testing for patients with rare copy number variations, as well as the accurate characterization of balanced chromosomal rearrangements in families with reproductive problems. In addition, our case demonstrates that OGM is a useful clinical application for analyzing complex structural variations within the human genome.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Yan Wang
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Jing Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ran Zhou
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - An Liu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Lulu Meng
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Xiuqing Ji
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Ping Hu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Zhengfeng Xu
- Department of Prenatal DiagnosisWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| |
Collapse
|
34
|
Romanko AA, Mulkidjan RS, Tiurin VI, Saitova ES, Preobrazhenskaya EV, Krivosheyeva EA, Mitiushkina NV, Shestakova AD, Belogubova EV, Ivantsov AO, Iyevleva AG, Imyanitov EN. Cost-Efficient Detection of NTRK1/2/3 Gene Fusions: Single-Center Analysis of 8075 Tumor Samples. Int J Mol Sci 2023; 24:14203. [PMID: 37762506 PMCID: PMC10531831 DOI: 10.3390/ijms241814203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The majority of NTRK1, NTRK2, and NTRK3 rearrangements result in increased expression of the kinase portion of the involved gene due to its fusion to an actively transcribed gene partner. Consequently, the analysis of 5'/3'-end expression imbalances is potentially capable of detecting the entire spectrum of NTRK gene fusions. Archival tumor specimens obtained from 8075 patients were subjected to manual dissection of tumor cells, DNA/RNA isolation, and cDNA synthesis. The 5'/3'-end expression imbalances in NTRK genes were analyzed by real-time PCR. Further identification of gene rearrangements was performed by variant-specific PCR for 44 common NTRK fusions, and, whenever necessary, by RNA-based next-generation sequencing (NGS). cDNA of sufficient quality was obtained in 7424/8075 (91.9%) tumors. NTRK rearrangements were detected in 7/6436 (0.1%) lung carcinomas, 11/137 (8.0%) pediatric tumors, and 13/851 (1.5%) adult non-lung malignancies. The highest incidence of NTRK translocations was observed in pediatric sarcomas (7/39, 17.9%). Increased frequency of NTRK fusions was seen in microsatellite-unstable colorectal tumors (6/48, 12.5%), salivary gland carcinomas (5/93, 5.4%), and sarcomas (7/143, 4.9%). None of the 1293 lung carcinomas with driver alterations in EGFR/ALK/ROS1/RET/MET oncogenes had NTRK 5'/3'-end expression imbalances. Variant-specific PCR was performed for 744 tumors with a normal 5'/3'-end expression ratio: there were no rearrangements in 172 EGFR/ALK/ROS1/RET/MET-negative lung cancers and 125 pediatric tumors, while NTRK3 fusions were detected in 2/447 (0.5%) non-lung adult malignancies. In conclusion, this study describes a diagnostic pipeline that can be used as a cost-efficient alternative to conventional methods of NTRK1-3 analysis.
Collapse
Affiliation(s)
- Aleksandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Rimma S. Mulkidjan
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Vladislav I. Tiurin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Evgeniya S. Saitova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Elena V. Preobrazhenskaya
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Elena A. Krivosheyeva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Anna D. Shestakova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Evgeniya V. Belogubova
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Alexandr O. Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
| | - Aglaya G. Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia (V.I.T.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| |
Collapse
|
35
|
Durzyńska M, Dominiak K, Sosnowska I, Michalek IM. Secretory carcinoma of major and minor salivary glands with ETV6-NTRK3 gene fusion: overcoming misdiagnosis in the era of tumour-agnostic therapy with TRK inhibitors. Contemp Oncol (Pozn) 2023; 27:101-108. [PMID: 37794988 PMCID: PMC10546963 DOI: 10.5114/wo.2023.131204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Secretory carcinoma (SC) of the salivary gland is an extraordinarily rare tumour. Accurate diagnosis of SC is crucial for understanding the clinical course, prognosis, and selection of optimal therapy. The aim of this research was to analyse retrospectively the clinical and pathological characteristics of patients diagnosed with SC of the salivary gland from 2017 onwards, which aligns with its addition to the World Health Organization classification. Material and methods We conducted a retrospective, single-centre, clinicopathological analysis of patients diagnosed with SC of the salivary gland between 2017 and 2022. The analysis included the evaluation of NTRK3 gene rearrangements and immunohistochemical (IHC) profiling. Results The study included 6 patients, comprising 4 women and 2 men. The average age of the patients was 50 years (standard deviation 26). Three cases presented with tumours in the parotid gland, while one case each involved the submandibular gland, sinonasal tract, and buccal mucosa. Interestingly, despite the characteristic IHC profile, each case was initially diagnosed as a different type of salivary gland cancer. Next-generation sequencing analysis was performed in 3 cases, revealing the presence of the ETV6-NTRK3 fusion gene. This cohort notably features an intriguing case: the youngest patient documented in literature, distinguished by extended follow-up and delayed recurrence. Conclusions In summary, emphasizing the risk of misdiagnosis is pivotal in the context of SC of the salivary gland, which can manifest across diverse glandular sites. Accurate diagnosis, underscored by the assessment of NTRK3 gene rearrangements, assumes a critical role in guiding effective management and treatment decisions.
Collapse
Affiliation(s)
- Monika Durzyńska
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Karol Dominiak
- Department of Head and Neck Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Iwona Sosnowska
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Irmina Maria Michalek
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
36
|
Huang S, Ye J, Gao X, Huang X, Huang J, Lu L, Lu C, Li Y, Luo M, Xie M, Lin Y, Liang R. Progress of research on molecular targeted therapies for colorectal cancer. Front Pharmacol 2023; 14:1160949. [PMID: 37614311 PMCID: PMC10443711 DOI: 10.3389/fphar.2023.1160949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, accounting for approximately 10% of global cancer incidence and mortality. Approximately 20% of patients with CRC present metastatic disease (mCRC) at the time of diagnosis. Moreover, up to 50% of patients with localized disease eventually metastasize. mCRC encompasses a complex cascade of reactions involving multiple factors and processes, leading to a diverse array of molecular mechanisms. Improved comprehension of the pathways underlying cancer cell development and proliferation, coupled with the accessibility of relevant targeted agents, has propelled advancements in CRC treatment, ultimately leading to enhanced survival rates. Mutations in various pathways and location of the primary tumor in CRC influences the efficacy of targeted agents. This review summarizes available targeted agents for different CRC pathways, with a focus on recent advances in anti-angiogenic and anti-epidermal growth factor receptor agents, BRAF mutations, and human epidermal growth factor receptor 2-associated targeted agents.
Collapse
Affiliation(s)
- Shilin Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiazhou Ye
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xing Gao
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi Huang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Julu Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Luo
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingzhi Xie
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong Liang
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
37
|
Côrtes L, Basso TR, Villacis RAR, Souza JDS, Jørgensen MMA, Achatz MI, Rogatto SR. Co-Occurrence of Germline Genomic Variants and Copy Number Variations in Hereditary Breast and Colorectal Cancer Patients. Genes (Basel) 2023; 14:1580. [PMID: 37628631 PMCID: PMC10454294 DOI: 10.3390/genes14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is an autosomal dominant disease associated with a high risk of developing breast, ovarian, and other malignancies. Lynch syndrome is caused by mutations in mismatch repair genes predisposing to colorectal and endometrial cancers, among others. A rare phenotype overlapping hereditary colorectal and breast cancer syndromes is poorly characterized. Three breast and colorectal cancer unrelated patients fulfilling clinical criteria for HBOC were tested by whole exome sequencing. A family history of colorectal cancer was reported in two patients (cases 2 and 3). Several variants and copy number variations were identified, which potentially contribute to the cancer risk or prognosis. All patients presented copy number imbalances encompassing PMS2 (two deletions and one duplication), a known gene involved in the DNA mismatch repair pathway. Two patients showed gains covering the POLE2 (cases 1 and 3), which is associated with DNA replication. Germline potentially damaging variants were found in PTCH1 (patient 3), MAT1A, and WRN (patient 2). Overall, concurrent genomic alterations were described that may increase the risk of cancer appearance in HBOC patients with breast and colorectal cancers.
Collapse
Affiliation(s)
- Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Tocogynecoly Graduation Program, Botucatu Medical School, University of São Paulo State—UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Rolando André Rios Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, DF, Brazil;
| | | | - Mads Malik Aagaard Jørgensen
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| |
Collapse
|
38
|
Adam J, Stang NL, Uguen A, Badoual C, Chenard MP, Lantuéjoul S, Maran-Gonzalez A, Robin YM, Rochaix P, Sabourin JC, Soubeyran I, Sturm N, Svrcek M, Vincent-Salomon A, Radosevic-Robin N, Penault-Llorca F. Multicenter Harmonization Study of Pan-Trk Immunohistochemistry for the Detection of NTRK3 Fusions. Mod Pathol 2023; 36:100192. [PMID: 37084942 DOI: 10.1016/j.modpat.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Pan-Trk immunohistochemistry has been described as a screening test for the detection of NTRK fusions in a broad spectrum of tumor types. However, pan-Trk testing in the clinical setting may be limited by many factors, including analytical parameters such as clones, platforms, and protocols used. This study aimed to harmonize pan-Trk testing using various clones and immunohistochemical (IHC) platforms and to evaluate the level of analytical variability across pathology laboratories. We developed several IHC pan-Trk assays using clones EPR17341 (Abcam) and A7H6R (Cell Signaling Technology) on Ventana/Roche, Agilent, and Leica platforms. To compare them, we sent unstained sections of a tissue microarray containing 9 cases with NTRK3 fusions to participating laboratories, to perform staining on Ventana/Roche (10 centers), Agilent (4 centers), and Leica (3 centers) platforms. A ready-to-use pan-Trk IVD assay (Ventana/Roche) was also performed in 3 centers. All slides were centrally and blindly reviewed for the percentage of stained tumor cells. Laboratory-developed tests with clone EPR17341 were able to detect pan-Trk protein expression in all cases, whereas lower rates of positivity were observed with clone A7H6R. Moderate to strong variability of the positive cases rate was observed with both antibodies in each IHC platforms type and each of the positivity cut points evaluated (≥1%, ≥10%, and ≥50% of stained tumor cells). The rate of false-negative cases was lower when pan-Trk staining was assessed with the lowest positivity threshold (≥1%). In conclusion, most evaluated pan-Trk IHC laboratory-developed tests were able to detect NTRK3-fusion proteins; however, a significant analytical variability was observed between antibodies, platforms, and centers.
Collapse
Affiliation(s)
- Julien Adam
- Pathology Department, Groupe Hospitalier Paris Saint-Joseph, Paris, and Inserm U1186, Gustave Roussy, Villejuif, France.
| | - Nolwenn Le Stang
- National Reference Center Mesopath, Centre Leon Berard, Lyon, France; Now with General Cancer Registry of Poitou-Charentes, Biology, Pharmacy and Public Health Unit, University Hospital, Poitiers, France
| | - Arnaud Uguen
- LBAI-UMR1227 - Inserm & Department of Pathology, CHU de Brest, Université de Brest, Brest, France
| | | | | | - Sylvie Lantuéjoul
- Université de Grenoble Alpes, Grenoble and Pathology Department, Centre Leon Berard, Lyon, France
| | | | | | | | | | | | | | - Magali Svrcek
- Pathology Department, Hôpital Saint-Antoine, AP-HP, Paris, France
| | | | - Nina Radosevic-Robin
- Pathology Department, Centre Jean Perrin, Clermont-Ferrand, France; University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Pathology Department, Centre Jean Perrin, Clermont-Ferrand, France; University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| |
Collapse
|
39
|
Sahni S, Rastogi S, Yadav R, Barwad A. Limb salvage of an infant with infantile fibrosarcoma using TRK inhibitor larotrectinib. Ecancermedicalscience 2023; 17:1575. [PMID: 37533946 PMCID: PMC10393313 DOI: 10.3332/ecancer.2023.1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 08/04/2023] Open
Abstract
Infantile fibrosarcoma (IFS) is an extremely rare locally aggressive soft tissue tumour of childhood. Primary therapy involves complete surgical resection with or without chemotherapy. However complete surgical resection might not be feasible in all cases and so requires other modalities for further management. We report the case of a male infant from Bangladesh with a locally advanced IFS of the leg which was partially resected. The patient received adjuvant chemotherapy which was complicated by the development of chemotherapy-related veno-occlusive disease and had to be discontinued. Thereafter he was referred to our dedicated sarcoma oncology clinic in India for further management. The parents of the child refused amputation of the limb. The tumour tested positive for NTRK3-ETV6 gene fusion and after discussion in multidisciplinary clinic, targeted therapy using oral NTRK inhibitor larotrectinib was started. The patient had complete response at the end of 8 months of treatment with larotrectinib. This is the first report from the Indian subcontinent and we encourage that these children should be referred to specialist clinics for appropriate multidisciplinary management for best outcomes.
Collapse
Affiliation(s)
- Shubham Sahni
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sameer Rastogi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Richa Yadav
- Department of Radio-diagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Adarsh Barwad
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
40
|
Wang H, Qi L, Zhong C, Fang X, Yuan Y. The Genomic and Proteomic Profiles of NTRK Genes and Trk Receptors in Liver Hepatocellular Carcinoma. Clin Med Insights Oncol 2023; 17:11795549231180840. [PMID: 37456611 PMCID: PMC10338720 DOI: 10.1177/11795549231180840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Background The neurotrophic tyrosine kinase (NTRK) gene family includes NTRK1, NTRK2, and NTRK3, which encode tropomyosin receptor kinases TrkA, TrkB, and TrkC, respectively. This study aimed to initially assess the genomic and proteomic profiles of NTRK genes and Trk receptors in liver hepatocellular carcinoma (LIHC). Methods The ONCOMINE, UALCAN, GEPIA, cBioPortal, FusionGDB, SurvivalMeth, and the Human Protein Atlas databases were searched for NTRK gene expression and protein data in LIHC. Immunohistochemistry was used to detect pan-Trk expression across a commercial microarray containing 96 hepatocellular carcinoma (HCC) and 94 para-cancerous tissue spots. A modified histological score (H-score) with a maximum score of 300 was used to quantify immunohistochemical staining for pan-Trk. Student's t- and chi-square tests were the main statistical analyses used. Results The transcriptional levels of NTRK genes in LIHC were not significantly different from healthy controls. Using UALCAN and GEPIA, only high expression of NTRK2 was significantly associated with longer disease-free survival (P = 0.004). The alteration frequencies were low (7% in NTRK1, 1.7% in NTRK2, and 2% in NTRK3). The methylation levels of NTRK genes were all significantly different as analyzed by UALCAN; the high-risk group displayed an unfavorable prognosis compared with the low-risk group for NTRK1 (P = 0.033) and NTRK3 (P = 0.005). The median H-score of pan-Trk in HCC and para-cancerous tissues was not statistically different (186.31 ± 23.86 and 192.38 ± 21.06, P = 0.065). No differences were observed in clinicopathological features of HCC with the median H-score for pan-Trk expression (p > 0.05). The survival rate of patients with pan-Trk expression was also not significantly different. Conclusion The alteration frequency was low in NTRK genes, including gene fusion and methylation levels. Therefore, pan-Trk expression in HCC tissue has limited value in clinicopathological features and prognosis.
Collapse
Affiliation(s)
- Hejing Wang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Lina Qi
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Chenhan Zhong
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Xuefeng Fang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, China
- Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Vellekoop H, Huygens S, Versteegh M, Szilberhorn L, Zelei T, Nagy B, Koleva-Kolarova R, Wordsworth S, Rutten-van Mölken M. Cost-effectiveness of alternative NTRK testing strategies in cancer patients followed by histology-independent therapy with entrectinib: an analysis of three European countries. Per Med 2023; 20:321-338. [PMID: 37746727 DOI: 10.2217/pme-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Aim: To explore variations in the cost-effectiveness of entrectinib across different testing strategies and settings. Methods: Four testing strategies where adult cancer patients received entrectinib if they tested positive for NTRK gene fusions compared with 'no testing' and standard of care (SoC) for all patients were evaluated. Results: Immunohistochemistry for all patients followed by RNA-based next-generation sequencing after a positive result was the optimal strategy in all included countries. However, the incremental net monetary benefit compared with SoC was negative in all countries, ranging between international euros (int€) -206 and -404. In a subgroup analysis with only NTRK-positive patients, the incremental net monetary benefit was int€ 8405 in England, int€ -53,088 in Hungary and int€ 54,372 in The Netherlands. Conclusion: Using the cost-effectiveness thresholds recommended by national guidelines, none of the testing strategies were cost-effective compared with no testing. The implementation of entrectinib is unlikely to become cost-effective in Hungary, due to the large cost difference between the entrectinib and SoC arms, while there might be more potential in England and The Netherlands.
Collapse
Affiliation(s)
- Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | - Tamás Zelei
- Syreon Research Institute, Mexikoi str. 65/A, 1142 Budapest, Hungary
| | - Balázs Nagy
- Syreon Research Institute, Mexikoi str. 65/A, 1142 Budapest, Hungary
| | | | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford OX3 7LF, UK
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| |
Collapse
|
42
|
Chi HT, Tram VN, Quan NT, Ly BTK. Andrographis paniculata methanol extract suppresses the phosphorylation of ETV6‑NTRK3. Biomed Rep 2023; 19:47. [PMID: 37383677 PMCID: PMC10293878 DOI: 10.3892/br.2023.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 06/30/2023] Open
Abstract
ETS variant transcription factor 6 (ETV6)-neurotrophic receptor tyrosine kinase 3 (NTRK3) (EN) fusions are typically found in rare diseases, such as primary renal fibrosarcoma (only six cases have been reported), secretory carcinoma of the breast and salivary gland (1 case), and AML (4 cases). Few cases have been reported, and expression of the EN gene fusion requires additional clinical data and fundamental research to be supported. The aim of the present study was to determine the inhibitory effect of Andrographis paniculata methanol extract (MeAP) on EN-related cell lines, IMS-M2 and BaF3/EN, as well as evaluate the mechanism of action. Vero cells were used as control cells. Trypan blue staining and MTT were used to evaluate the inhibitory effect of MeAP on tested cells. Western blotting and immunoprecipitation were used to detect the activation of EN after MeAP treatment. The IC50 values of MeAP were found to be 12.38±0.57 µg/ml (IMS-M2) and 13.06±0.49 µg/ml (BaF3/EN). MeAP was observed to inhibit cell proliferation in a time, dose, and cell density-dependent manner. The IC50 value for MeAP in Vero cells was markedly higher, at 109.97±4.24 (µg/ml), indicating a much less sensitive effect. Furthermore, MeAP treatment inhibited EN phosphorylation and induced apoptosis in these cells. Collectively, the present study demonstrated that MeAP has an oncogenic effect on EN fusion-positive cell lines, in particular.
Collapse
Affiliation(s)
- Hoang Thanh Chi
- Department of Medicine and Pharmacy, Thu Dau Mot University, Thu Dau Mot, Binh Duong 820000, Vietnam
| | - Vo Ngoc Tram
- Department of Biology and Biotechnology, VNU University of Science, Vietnam National University, Ho Chi Minh City 72711, Vietnam
| | - Nguyen Trung Quan
- Department of Biology and Biotechnology, VNU University of Science, Vietnam National University, Ho Chi Minh City 72711, Vietnam
| | - Bui Thi Kim Ly
- Department of Medicine and Pharmacy, Thu Dau Mot University, Thu Dau Mot, Binh Duong 820000, Vietnam
| |
Collapse
|
43
|
López Pardo P, Soria Tristán M, Cavanagh Podesta MM, Enrech Francés S. NTRK fusion-positive cancer in nonagenarian patient. The importance of comprehensive geriatric assessment in older people for the inclusion in clinical trials. Semin Oncol 2023; 50:86-89. [PMID: 37659967 DOI: 10.1053/j.seminoncol.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 09/04/2023]
Affiliation(s)
- Patricia López Pardo
- Admission and Clinical Documentation Service, Hospital Universitario de Getafe, Getafe, Madrid, Spain.
| | | | | | | |
Collapse
|
44
|
Schraa SJ, Stelloo E, Laclé MM, Swennenhuis JF, Brosens LAA, Fijneman RJA, Feitsma H, Koopman M, de Leng WW, Vink GR, Bol GM. Comparison of NTRK fusion detection methods in microsatellite-instability-high metastatic colorectal cancer. Virchows Arch 2023; 482:983-992. [PMID: 37067589 PMCID: PMC10247849 DOI: 10.1007/s00428-023-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
Tropomyosin receptor kinase (TRK) inhibitors have been approved for metastatic solid tumors harboring NTRK fusions, but the detection of NTRK fusions is challenging. International guidelines recommend pan-TRK immunohistochemistry (IHC) screening followed by next generation sequencing (NGS) in tumor types with low prevalence of NTRK fusions, including metastatic colorectal cancer (mCRC). RNA-based NGS is preferred, but is expensive, time-consuming, and extracting good-quality RNA from FFPE tissue is challenging. Alternatives in daily clinical practice are warranted. We assessed the diagnostic performance of RNA-NGS, FFPE-targeted locus capture (FFPE-TLC), fluorescence in situ hybridization (FISH), and the 5'/3' imbalance quantitative RT-PCR (qRT-PCR) after IHC screening in 268 patients with microsatellite-instability-high mCRC, the subgroup in which NTRK fusions are most prevalent (1-5%). A consensus result was determined after review of all assay results. In 16 IHC positive tumors, 10 NTRK fusions were detected. In 33 IHC negative samples, no additional transcribed NTRK fusions were found, underscoring the high sensitivity of IHC. Sensitivity of RNA-NGS, FFPE-TLC, FISH, and qRT-PCR was 90%, 90%, 78%, and 100%, respectively. Specificity was 100% for all assays. Robustness, defined as the percentage of samples that provided an interpretable result in the first run, was 100% for FFPE-TLC, yet more limited for RNA-NGS (85%), FISH (70%), and qRT-PCR (70%). Overall, we do not recommend FISH for the detection of NTRK fusions in mCRC due to its low sensitivity and limited robustness. We conclude that RNA-NGS, FFPE-TLC, and qRT-PCR are appropriate assays for NTRK fusion detection, after enrichment with pan-TRK IHC, in routine clinical practice.
Collapse
Affiliation(s)
- Suzanna J Schraa
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Miangela M Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Remond J A Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wendy W de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Geraldine R Vink
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, Netherlands
| | - Guus M Bol
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
45
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
46
|
Wu S, Liu Y, Li K, Liang Z, Zeng X. Molecular and cytogenetic features of NTRK fusions enriched in BRAF and RET double-negative papillary thyroid cancer. J Mol Diagn 2023:S1525-1578(23)00106-X. [PMID: 37236546 DOI: 10.1016/j.jmoldx.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/17/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Rare NTRK-driven malignant neoplasms can be effectively inhibited by anti-TRK agents. The discovery of NTRK1/2/3-rich tumours in papillary thyroid cancer (PTC) patients is a precondition for the rapid identification of NTRK fusion tumours. Knowledge of NTRK gene activation is critical to accurately detect NTRK status. A total of 229 BRAF V600E-negative samples from PTC patients were analysed in this study. Break-apart fluorescence in situ hybridisation (FISH) was performed to detect RET fusion. NTRK status was analysed using FISH, DNA- and RNA-based next-generation sequencing (NGS), and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In 128 BRAF and RET double-negative cases, 56 (43.8%, 56/128) NTRK rearrangement tumours were found, including 1 NTRK2, 16 NTRK1, and 39 NTRK3 fusions. Two novel NTRK fusions, EZR::NTRK1 and EML4::NTRK2, was found in the NTRK rearrangement tumors.Dominant break-apart and extra 3' signal patterns accounted for 89.3% (50/56) and 5.4% (3/56) of all NTRK-positive cases, respectively, as determined by FISH. In our cohort, there were 2.3% (3/128) FISH false-negative and 3.1% (4/128) FISH false-positive cases identified. NTRK fusions are highly recurrent in BRAF and RET double-negative PTCs. FISH or RNA-based NGS is a reliable detection approach. NTRK rearrangement can be precisely, rapidly, and economically detected based on the developed optimal algorithm.
Collapse
Affiliation(s)
- Shafei Wu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuanyuan Liu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kaimi Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Xuan Zeng
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
47
|
Naito Y, Mishima S, Akagi K, Hayashi N, Hirasawa A, Hishiki T, Igarashi A, Ikeda M, Kadowaki S, Kajiyama H, Kato M, Kenmotsu H, Kodera Y, Komine K, Koyama T, Maeda O, Miyachi M, Nishihara H, Nishiyama H, Ohga S, Okamoto W, Oki E, Ono S, Sanada M, Sekine I, Takano T, Tao K, Terashima K, Tsuchihara K, Yatabe Y, Yoshino T, Baba E. Japanese Society of Medical Oncology/Japan Society of Clinical Oncology/Japanese Society of Pediatric Hematology/Oncology-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors. Int J Clin Oncol 2023:10.1007/s10147-023-02345-7. [PMID: 37212982 DOI: 10.1007/s10147-023-02345-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Clinical trials have reported the efficacy of tropomyosin receptor kinase (TRK) inhibitors against neurotrophic receptor tyrosine kinase (NTRK) fusion gene-positive advanced solid tumors. The accumulated evidence of tumor-agnostic agent has made since TRK inhibitors were approved and used in clinical practice. Therefore, we have revised the 'Japan Society of Clinical Oncology (JSCO)/Japanese Society of Medical Oncology (JSMO)-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors, cooperated by the Japanese Society of Pediatric Hematology/Oncology (JSPHO)'. METHODS Clinical questions regarding medical care were formulated for patients with NTRK fusion-positive advanced solid tumors. Relevant publications were searched by PubMed and Cochrane Database. Critical publications and conference reports were added manually. Systematic reviews were performed for each clinical question for the purpose of developing clinical recommendations. The committee members identified by JSCO, JSMO, and JSPHO voted to determine the level of each recommendation considering the strength of evidence, expected risks and benefits to patients, and other related factors. Thereafter, a peer review by experts nominated from JSCO, JSMO, and JSPHO, and the public comments among all societies' members was done. RESULTS The current guideline describes 3 clinical questions and 14 recommendations for whom, when, and how NTRK fusion should be tested, and what is recommended for patients with NTRK fusion-positive advanced solid tumors. CONCLUSION The committee proposed 14 recommendations for performing NTRK testing properly to select patients who are likely to benefit from TRK inhibitors.
Collapse
Affiliation(s)
- Yoichi Naito
- National Cancer Center Hospital East, Kashiwa, Japan
| | - Saori Mishima
- National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Naomi Hayashi
- The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | - Ataru Igarashi
- Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eiji Oki
- Kyushu University, Fukuoka, Japan
| | | | - Masashi Sanada
- National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | | | | | - Kayoko Tao
- National Cancer Center Hospital, Tokyo, Japan
| | - Keita Terashima
- National Center for Child Health and Development, Tokyo, Japan
| | | | | | | | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
48
|
Zhou H, Ke J, Liu C, Zhu M, Xiao B, Wang Q, Hou R, Zheng Y, Wu Y, Zhou X, Chen X, Pan H. Potential prognostic and immunotherapeutic value of calponin 1: A pan-cancer analysis. Front Pharmacol 2023; 14:1184250. [PMID: 37153789 PMCID: PMC10160448 DOI: 10.3389/fphar.2023.1184250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Emerging evidence has suggested a pro-oncogenic role of calponin 1 (CNN1) in the initiation of a variety of cancers. Despite this, CNN1 remains unknown in terms of its effects and mechanisms on angiogenesis, prognosis, and immunology in cancer. Materials and Methods: The expression of CNN1 was extracted and analyzed using the TIMER, UALCAN, and GEPIA databases. Meanwhile, we analyzed the diagnostic value of CNN1 by using PrognoScan and Kaplan-Meier plots. To elucidate the value of CNN1 in immunotherapy, we used the TIMER 2.0 database, TISIDB database, and Sangerbox database. Gene set enrichment analysis (GSEA) was used to analyze the expression pattern and bio-progression of CNN1 and the vascular endothelium growth factor (VEGF) in cancer. The expressions of CNN1 and VEGF in gastric cancer were confirmed using immunohistochemistry. We used Cox regression analysis to investigate the association between pathological characteristics, clinical prognosis, and CNN1 and VEGF expressions in patients with gastric cancer. Results: CNN1 expression was higher in normal tissues than it was in tumor tissues of most types of cancers. However, the expression level rebounds during the development of tumors. High levels of CNN1 indicate a poor prognosis for 11 tumors, which include stomach adenocarcinoma (STAD). There is a relationship between CNN1 and tumor-infiltrating lymphocytes (TILs), and the marker genes NRP1 and TNFRSF14 of TILs are significantly related to CNN1 expression in gastric cancers. The GSEA results confirmed the lower expression of CNN1 in tumors when compared to normal tissues. However, CNN1 again showed an increasing trend during tumor development. In addition, the results also suggest that CNN1 is involved in angiogenesis. The immunohistochemistry results validated the GSEA result (take gastric cancer as an example). Cox analysis suggested that high CNN1 expression and high VEGF expression are closely associated with poor clinical prognosis. Conclusion: Our study has shown that CNN1 expression is aberrantly elevated in various cancers and positively correlates with angiogenesis and the immune checkpoint, contributing to cancer progression and poor prognosis. These results suggest that CNN1 could serve as a promising candidate for pan-cancer immunotherapy.
Collapse
Affiliation(s)
- Hengli Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyu Ke
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- Gaozhou Hospital of Traditional Chinese Medicine, Gaozhou, China
| | - Changhua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Menglu Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bijuan Xiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Hou
- Namyue Natural Medicine Co., Ltd., Macau, Macau SAR, China
| | | | - Yongqiang Wu
- Gaozhou Hospital of Traditional Chinese Medicine, Gaozhou, China
| | | | - Xinlin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
49
|
Stockley TL, Lo B, Box A, Gomez Corredor A, DeCoteau J, Desmeules P, Feilotter H, Grafodatskaya D, Hawkins C, Huang WY, Izevbaye I, Lepine G, Papadakis AI, Park PC, Sheffield BS, Tran-Thanh D, Yip S, Sound Tsao M. Consensus Recommendations to Optimize the Detection and Reporting of NTRK Gene Fusions by RNA-Based Next-Generation Sequencing. Curr Oncol 2023; 30:3989-3997. [PMID: 37185415 PMCID: PMC10136625 DOI: 10.3390/curroncol30040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The detection of gene fusions by RNA-based next-generation sequencing (NGS) is an emerging method in clinical genetic laboratories for oncology biomarker testing to direct targeted therapy selections. A recent Canadian study (CANTRK study) comparing the detection of NTRK gene fusions on different NGS assays to determine subjects’ eligibility for tyrosine kinase TRK inhibitor therapy identified the need for recommendations for best practices for laboratory testing to optimize RNA-based NGS gene fusion detection. To develop consensus recommendations, representatives from 17 Canadian genetic laboratories participated in working group discussions and the completion of survey questions about RNA-based NGS. Consensus recommendations are presented for pre-analytic, analytic and reporting aspects of gene fusion detection by RNA-based NGS.
Collapse
|
50
|
O'Haire S, Franchini F, Kang YJ, Steinberg J, Canfell K, Desai J, Fox S, IJzerman M. Systematic review of NTRK 1/2/3 fusion prevalence pan-cancer and across solid tumours. Sci Rep 2023; 13:4116. [PMID: 36914665 PMCID: PMC10011574 DOI: 10.1038/s41598-023-31055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
NTRK gene fusions are rare somatic mutations found across cancer types with promising targeted therapies emerging. Healthcare systems face significant challenges in integrating these treatments, with uncertainty in prevalence and optimal testing methods to identify eligible patients. We performed a systematic review of NTRK fusion prevalence to inform efficient diagnostic screening and scale of therapeutic uptake. We searched Medline, Embase and Cochrane databases on 31/03/2021. Inclusion criteria were studies reporting fusion rates in solid tumours, English language, post-2010 publication and minimum sample size. Critical appraisal was performed using a custom 11-item checklist. Rates were collated by cancer type and pooled if additional synthesis criteria were met. 160 studies were included, with estimates for 15 pan-cancer and 429 specific cancer types (63 paediatric). Adult pan-cancer estimates ranged 0.03-0.70%, with higher rates found in RNA-based assays. In common cancers, rates were consistently below 0.5%. Rare morphological subtypes, colorectal microsatellite instability, and driver mutation exclusion cancers had higher rates. Only 35.6% of extracted estimates used appropriate methods and sample size to identify NTRK fusions. NTRK fusion-positive cancers are rare and widely distributed across solid tumours. Small-scale, heterogeneous data confound prevalence prediction. Further large-scale, standardised genomic data are needed to characterise NTRK fusion epidemiology.
Collapse
Affiliation(s)
- Sophie O'Haire
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
| | - Fanny Franchini
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Yoon-Jung Kang
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council New South Wales, Sydney, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council New South Wales, Sydney, Australia
| | - Karen Canfell
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council New South Wales, Sydney, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Fox
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Maarten IJzerman
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Erasmus School of Health Policy and Management, Rotterdam, The Netherlands
| |
Collapse
|