1
|
Ziemann C, Schulz F, Koch C, Solvang M, Bitsch A. Methodological steps forward in toxicological in vitro screening of mineral wools in primary rat alveolar macrophages and normal rat mesothelial NRM2 cells. Arch Toxicol 2024; 98:3949-3971. [PMID: 39261308 PMCID: PMC11496320 DOI: 10.1007/s00204-024-03855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Man-made vitreous fibers (MMVF) comprise diverse materials for thermal and acoustic insulation, including stone wool. Depending on dimension, durability, and dose, MMVF might induce adverse health effects. Therefore, early predictive in vitro (geno)toxicity screening of new MMVF is highly desired to ensure safety for exposed workers and consumers. Here, we investigated, as a starting point, critical in vitro screening determinants and pitfalls using primary rat alveolar macrophages (AM) and normal rat mesothelial cells (NRM2). A stone wool fiber (RIF56008) served as an exemplary MMVF (fibrous vs. ground to estimate impact of fiber shape) and long amosite (asbestos) as insoluble fiber reference. Materials were comprehensively characterized, and in vivo-relevant in vitro concentrations defined, based on different approaches (low to supposed overload: 0.5, 5 and 50 µg/cm2). After 4-48 h of incubation, certain readouts were analyzed and material uptake was investigated by light and fluorescence-coupled darkfield microscopy. DNA-strand break induction was not morphology-dependent and nearly absent in both cell types. However, NRM2 demonstrated material-, morphology- and concentration-dependent membrane damage, CINC-1 release, reduction in cell count, and induction of binucleated cells (asbestos > RIF56008 > RIF56008 ground). In contrast to NRM2, asbestos was nearly inactive in AM, with CINC-1 release solely induced by RIF56008. In conclusion, to define an MMVF-adapted, predictive in vitro (geno)toxicity screening tool, references, endpoints, and concentrations should be carefully chosen, based on in vivo relevance, and sensitivity and specificity of the chosen cell model. Next, further endpoints should be evaluated, ideally with validation by in vivo data regarding their predictivity.
Collapse
Affiliation(s)
- Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany.
| | - Florian Schulz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany
| | - Christoph Koch
- Technical and Environmental Chemistry, Ernst-Abbe-University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | - Mette Solvang
- ROCKWOOL A/S, Group Research and Development, Hovedgaden 584, 2640, Hedehusene, Denmark
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Valentino SA, Seidel C, Lorcin M, Sébillaud S, Wolff H, Grossmann S, Viton S, Nunge H, Saarimäki LA, Greco D, Cosnier F, Gaté L. Identification of a Gene Signature Predicting (Nano)Particle-Induced Adverse Lung Outcome in Rats. Int J Mol Sci 2023; 24:10890. [PMID: 37446067 DOI: 10.3390/ijms241310890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs. Female Sprague Dawley rats were either exposed to crystalline silica DQ-12 with instillation, or to titanium dioxide P25, carbon black Printex-90, or multi-walled carbon nanotube Mitsui-7 with nose-only inhalation. Tissues were collected at three post-exposure time points to assess short- and long-term effects. All particles induced lung inflammation. Histopathological and biochemical analyses revealed phospholipid accumulation, lipoproteinosis, and interstitial thickening with collagen deposition after exposure to DQ-12. Exposure to the highest dose of Printex-90 and Mitsui-7, but not P25, induced some phospholipid accumulation. Comparable histopathological changes were observed following exposure to P25, Printex-90, and Mitsui-7. Comparison of overall gene expression profiles identified 15 potential early markers of adverse lung outcomes induced by spherical particles. With Mitsui-7, a distinct gene expression signature was observed, suggesting that carbon nanotubes trigger different toxicity mechanisms to spherical particles.
Collapse
Affiliation(s)
- Sarah Amandine Valentino
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Carole Seidel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Mylène Lorcin
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Sylvie Sébillaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Henrik Wolff
- Finnish Institute of Occupational Health, FI-00251 Helsinki, Finland
| | - Stéphane Grossmann
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Stéphane Viton
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Hervé Nunge
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00100 Helsinki, Finland
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
Zhang J, Yang X, Yang Y, Xiong M, Li N, Ma L, Tian J, Yin H, Zhang L, Jin Y. NF-κB mediates silica-induced pulmonary inflammation by promoting the release of IL-1β in macrophages. ENVIRONMENTAL TOXICOLOGY 2022; 37:2235-2243. [PMID: 35635254 DOI: 10.1002/tox.23590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/08/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Long-term exposure to respirable silica particles causes pulmonary inflammation and fibrosis primarily promoted by cytokines released from alveolar macrophages, yet the underlying mechanism is still unclear. From the perspective of nuclear factor kappa B (NF-κB), we studied the mechanism of IL-1β biosynthesis and release. Utilizing BAY 11-7082, an NF-κB specific inhibitor, we showed the alteration of macrophage viability and examined the expression of both IL-1β and NF-κB in vitro. We found that silica nanoparticles (SiNPs) were internalized by macrophages and caused damage to cell integrity. The immunofluorescence assay showed that SiNPs exposure enhanced the expression of IL-1β and NF-κB, which could be effectively suppressed by BAY 11-7082. Besides, we built silica exposure mouse model by intratracheally instilling 5 mg of SiNPs and checked the effect of silica exposure on pulmonary pathological changes. Consistently, we found an upregulation of IL-1β and NF-κB after SiNPs exposure, along with the aggravated inflammatory cell infiltration, thickened alveolar wall, and enhanced expression of collagens. In conclusion, SiNPs exposure causes pulmonary inflammation and fibrosis that is regulated by NK-κB through upregulating IL-1β in alveolar macrophages.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xiaojing Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yushan Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Lan Ma
- School of Public Health, Weifang Medical University, Weifang, China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, Weifang, China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, China
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
4
|
Wiemann M, Vennemann A, Schuster TB, Nolde J, Krueger N. Surface Treatment With Hydrophobic Coating Reagents (Organosilanes) Strongly Reduces the Bioactivity of Synthetic Amorphous Silica in vitro. Front Public Health 2022; 10:902799. [PMID: 35801234 PMCID: PMC9253389 DOI: 10.3389/fpubh.2022.902799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic amorphous silica (SAS) is industrially relevant material whose bioactivity in vitro is strongly diminished, for example, by protein binding to the particle surface. Here, we investigated the in vitro bioactivity of fourteen SAS (pyrogenic, precipitated, or colloidal), nine of which were surface-treated with organosilanes, using alveolar macrophages as a highly sensitive test system. Dispersion of the hydrophobic SAS required pre-wetting with ethanol and extensive ultrasonic treatment in the presence of 0.05% BSA (Protocol 1). Hydrophilic SAS was suspended by moderate ultrasonic treatment (Protocol 2) and also by Protocol 1. The suspensions were administered to NR8383 alveolar macrophages under serum-free conditions for 16 h, and the release of LDH, GLU, H2O2, and TNFα was measured in cell culture supernatants. While seven surface-treated hydrophobic SAS exhibited virtually no bioactivity, two materials (AEROSIL® R 504 and AEROSIL® R 816) had minimal effects on NR8383 cells. In contrast, non-treated SAS elicited considerable increases in LDH, GLU, and TNFα, while the release of H2O2 was low except for CAB-O-SIL® S17D Fumed Silica. Dispersing hydrophilic SAS with Protocol 1 gradually reduced the bioactivity but did not abolish it. The results show that hydrophobic coating reagents, which bind covalently to the SAS surface, abrogate the bioactivity of SAS even under serum-free in vitro conditions. The results may have implications for the hazard assessment of hydrophobic surface-treated SAS in the lung.
Collapse
Affiliation(s)
- Martin Wiemann
- IBE R&D Institute for Lung Health gGmbH, Münster, Germany
- *Correspondence: Martin Wiemann
| | | | | | | | | |
Collapse
|
5
|
Creutzenberg O, Oliveira H, Farcal L, Schaudien D, Mendes A, Menezes AC, Tischler T, Burla S, Ziemann C. PLATOX: Integrated In Vitro/In Vivo Approach for Screening of Adverse Lung Effects of Graphene-Related 2D Nanomaterials. NANOMATERIALS 2022; 12:nano12081254. [PMID: 35457962 PMCID: PMC9028947 DOI: 10.3390/nano12081254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
Graphene-related two-dimensional nanomaterials possess very technically promising characteristics, but gaps exist regarding their potential adverse health effects. Based on their nano-thickness and lateral micron dimensions, nanoplates exhibit particular aerodynamic properties, including respirability. To develop a lung-focused, in vitro/in vivo screening approach for toxicological hazard assessment, various graphene-related nanoplates, i.e., single-layer graphene (SLG), graphene nanoplatelets (GNP), carboxyl graphene, graphene oxide, graphite oxide and Printex 90® (particle reference) were used. Material characterization preceded in vitro (geno)toxicity screening (membrane integrity, metabolic activity, proliferation, DNA damage) with primary rat alveolar macrophages (AM), MRC-5 lung fibroblasts, NR8383 and RAW 264.7 cells. Submerse cell exposure and material-adapted methods indicated material-, cell type-, concentration-, and time-specific effects. SLG and GNP were finally chosen as in vitro biologically active or more inert graphene showed eosinophils in lavage fluid for SLG but not GNP. The subsequent 28-day inhalation study (OECD 412) confirmed a toxic, genotoxic and pro-inflammatory potential for SLG at 3.2 mg/m3 with an in vivo-ranking of lung toxicity: SLG > GNP > Printex 90®. The in vivo ranking finally pointed to AM (lactate dehydrogenase release, DNA damage) as the most predictive in vitro model for the (geno)toxicity screening of graphene nanoplates.
Collapse
Affiliation(s)
- Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
- Correspondence: (O.C.); (C.Z.); Tel.: +49-511-5350-461 (O.C.); +49-511-5350-203 (C.Z.)
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (H.O.); (A.M.); (A.C.M.)
| | - Lucian Farcal
- BIOTOX SRL, 407280 Cluj-Napoca, Romania; (L.F.); (S.B.)
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
| | - Ana Mendes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (H.O.); (A.M.); (A.C.M.)
| | - Ana Catarina Menezes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (H.O.); (A.M.); (A.C.M.)
| | - Tatjana Tischler
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
| | - Sabina Burla
- BIOTOX SRL, 407280 Cluj-Napoca, Romania; (L.F.); (S.B.)
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 30625 Hannover, Germany; (D.S.); (T.T.)
- Correspondence: (O.C.); (C.Z.); Tel.: +49-511-5350-461 (O.C.); +49-511-5350-203 (C.Z.)
| |
Collapse
|
6
|
Leinardi R, Pavan C, Yedavally H, Tomatis M, Salvati A, Turci F. Cytotoxicity of fractured quartz on THP-1 human macrophages: role of the membranolytic activity of quartz and phagolysosome destabilization. Arch Toxicol 2020; 94:2981-2995. [PMID: 32592078 PMCID: PMC7415752 DOI: 10.1007/s00204-020-02819-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
The pathogenicity of quartz involves lysosomal alteration in alveolar macrophages. This event triggers the inflammatory cascade that may lead to quartz-induced silicosis and eventually lung cancer. Experiments with synthetic quartz crystals recently showed that quartz dust is cytotoxic only when the atomic order of the crystal surfaces is upset by fracturing. Cytotoxicity was not observed when quartz had as-grown, unfractured surfaces. These findings raised questions on the potential impact of quartz surfaces on the phagolysosomal membrane upon internalization of the particles by macrophages. To gain insights on the surface-induced cytotoxicity of quartz, as-grown and fractured quartz particles in respirable size differing only in surface properties related to fracturing were prepared and physico-chemically characterized. Synthetic quartz particles were compared to a well-known toxic commercial quartz dust. Membranolysis was assessed on red blood cells, and quartz uptake, cell viability and effects on lysosomes were assessed on human PMA-differentiated THP-1 macrophages, upon exposing cells to increasing concentrations of quartz particles (10–250 µg/ml). All quartz samples were internalized, but only fractured quartz elicited cytotoxicity and phagolysosomal alterations. These effects were blunted when uptake was suppressed by incubating macrophages with particles at 4 °C. Membranolysis, but not cytotoxicity, was quenched when fractured quartz was incubated with cells in protein-supplemented medium. We propose that, upon internalization, the phagolysosome environment rapidly removes serum proteins from the quartz surface, restoring quartz membranolytic activity in the phagolysosomes. Our findings indicate that the cytotoxic activity of fractured quartz is elicited by promoting phagolysosomal membrane alteration.
Collapse
Affiliation(s)
- Riccardo Leinardi
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
| | - Harita Yedavally
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Maura Tomatis
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Francesco Turci
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| |
Collapse
|
7
|
Pavan C, Delle Piane M, Gullo M, Filippi F, Fubini B, Hoet P, Horwell CJ, Huaux F, Lison D, Lo Giudice C, Martra G, Montfort E, Schins R, Sulpizi M, Wegner K, Wyart-Remy M, Ziemann C, Turci F. The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity? Part Fibre Toxicol 2019; 16:32. [PMID: 31419990 PMCID: PMC6697921 DOI: 10.1186/s12989-019-0315-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Silica continues to represent an intriguing topic of fundamental and applied research across various scientific fields, from geology to physics, chemistry, cell biology, and particle toxicology. The pathogenic activity of silica is variable, depending on the physico-chemical features of the particles. In the last 50 years, crystallinity and capacity to generate free radicals have been recognized as relevant features for silica toxicity. The 'surface' also plays an important role in silica toxicity, but this term has often been used in a very general way, without defining which properties of the surface are actually driving toxicity. How the chemical features (e.g., silanols and siloxanes) and configuration of the silica surface can trigger toxic responses remains incompletely understood. MAIN BODY Recent developments in surface chemistry, cell biology and toxicology provide new avenues to improve our understanding of the molecular mechanisms of the adverse responses to silica particles. New physico-chemical methods can finely characterize and quantify silanols at the surface of silica particles. Advanced computational modelling and atomic force microscopy offer unique opportunities to explore the intimate interactions between silica surface and membrane models or cells. In recent years, interdisciplinary research, using these tools, has built increasing evidence that surface silanols are critical determinants of the interaction between silica particles and biomolecules, membranes, cell systems, or animal models. It also has become clear that silanol configuration, and eventually biological responses, can be affected by impurities within the crystal structure, or coatings covering the particle surface. The discovery of new molecular targets of crystalline as well as amorphous silica particles in the immune system and in epithelial lung cells represents new possible toxicity pathways. Cellular recognition systems that detect specific features of the surface of silica particles have been identified. CONCLUSIONS Interdisciplinary research bridging surface chemistry to toxicology is progressively solving the puzzling issue of the variable toxicity of silica. Further interdisciplinary research is ongoing to elucidate the intimate mechanisms of silica pathogenicity, to possibly mitigate or reduce surface reactivity.
Collapse
Affiliation(s)
- Cristina Pavan
- UCLouvain, Louvain centre for Toxicology and Applied Pharmacology (LTAP), Brussels, Belgium
| | - Massimo Delle Piane
- Bremen Center for Computational Material Science (BCCMS), Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Bremen, Germany
| | | | | | - Bice Fubini
- G. Scansetti Center, University of Torino, Turin, Italy
| | - Peter Hoet
- Department of Public Health and Primary Care, KU Leuven, Laboratory of Toxicology, Unit of Environment and Health, Leuven, Belgium
| | - Claire J. Horwell
- Institute of Hazard, Risk and Resilience, Department of Earth Sciences, Durham University, Durham, UK
| | - François Huaux
- UCLouvain, Louvain centre for Toxicology and Applied Pharmacology (LTAP), Brussels, Belgium
| | - Dominique Lison
- UCLouvain, Louvain centre for Toxicology and Applied Pharmacology (LTAP), Brussels, Belgium
| | - Cristina Lo Giudice
- UCLouvain, Institute of Biomolecular Science and Technology, NanoBioPhysics, Louvain-la-Neuve, Belgium
| | - Gianmario Martra
- Department of Chemistry and Nanostructured Interfaces and Surfaces –NIS Centre, University of Torino, Turin, Italy
| | - Eliseo Montfort
- Instituto de Tecnología Cerámica, Universitat Jaume I, Castellón, Spain
| | - Roel Schins
- IUF Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | | | - Michelle Wyart-Remy
- EUROSIL, European Association of industrial silica producers, Brussels, Belgium
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, Hannover, Germany
| | - Francesco Turci
- Department of Chemistry, G. Scansetti Center, University of Torino, Turin, Italy
| |
Collapse
|
8
|
Ribalta C, López-Lilao A, Estupiñá S, Fonseca AS, Tobías A, García-Cobos A, Minguillón MC, Monfort E, Viana M. Health risk assessment from exposure to particles during packing in working environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:474-487. [PMID: 30933802 DOI: 10.1016/j.scitotenv.2019.03.347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Packing of raw materials in work environments is a known source of potential health impacts (respiratory, cardiovascular) due to exposure to airborne particles. This activity was selected to test different exposure and risk assessment tools, aiming to understand the effectiveness of source enclosure as a strategy to mitigate particle release. Worker exposure to particle mass and number concentrations was monitored during packing of 7 ceramic materials in 3 packing lines in different settings, with low (L), medium (M) and high (H) degrees of source enclosure. Results showed that packing lines L and M significantly increased exposure concentrations (119-609 μg m-3 respirable, 1150-4705 μg m-3 inhalable, 24,755-51,645 cm-3 particle number), while non-significant increases were detected in line H. These results evidence the effectiveness of source enclosure as a mitigation strategy, in the case of packing of ceramic materials. Total deposited particle surface area during packing ranged between 5.4 and 11.8 × 105 μm2 min-1, with particles depositing mainly in the alveoli (51-64%) followed by head airways (27-41%) and trachea bronchi (7-10%). The comparison between the results from different risk assessment tools (Stoffenmanager, ART, NanoSafer) and the actual measured exposure concentrations evidenced that all of the tools overestimated exposure concentrations, by factors of 1.5-8. Further research is necessary to bridge the current gap between measured and modelled health risk assessments.
Collapse
Affiliation(s)
- C Ribalta
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain; Barcelona University, Chemistry Faculty, C/ de Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - A López-Lilao
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - S Estupiñá
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - A S Fonseca
- National Research Centre for the Working Environment (NRCWE), Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - A Tobías
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - A García-Cobos
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - M C Minguillón
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - E Monfort
- Institute of Ceramic Technology (ITC)- AICE - Universitat Jaume I, Campus Universitario Riu Sec, Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain
| | - M Viana
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), C/ Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
9
|
What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? - A review of in vivo pulmonary and oral toxicity studies - Revised 11-6-2018. Toxicol Lett 2018; 302:42-59. [PMID: 30468858 DOI: 10.1016/j.toxlet.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 11/24/2022]
Abstract
There is an ongoing discussion on the influence of surface-modifications on the toxicity of commercial particulate materials and how alterations in physical-chemical properties of surfaces impact toxicity. Titanium dioxide (TiO2) is a poorly soluble particulate material of significant socioeconomic importance that largely exists as surface-modified particle-types in commerce. The observed toxicological effects of TiO2 are primarily due to particle effects rather than substance chemistry, as such TiO2 is commonly considered to be a poorly soluble low toxicity (PSLT) particle. This review provides an overview of the effect of surface modifications on the pulmonary and oral toxicity of commercial TiO2 particles with emphasis on in vivo studies with appropriate controls, and where both surface modified and untreated materials are present in the same study. Published literature findings involving pulmonary and oral exposures to surface modified TiO2 particles were reviewed and evaluated for quality and commercial relevance. Suitable publications involving animal studies were identified and summarized. Several studies were identified that have evaluated commercially-relevant surface-modified forms of titanium dioxide with appropriate data quality and with direct comparison to untreated counterparts. Hydrophilic inorganic surface modifications including silica, alumina/alumina hydroxide depositions have been tested along with common hydrophilic and hydrophobic-organic surface treatments. The results for both pigmentary and nanoscale materials demonstrate similar behaviour and indicate limited impact of particle size, surface chemistry, surface charge and surface wettability on observed pulmonary or oral toxicity effects. The low intrinsic toxicity of the TiO2 base particle and evaluated surface modifications may account for the observed outcomes. A few published studies have drawn different conclusions; however, these were either not conducted using commercial TiO2 samples (with surface coatings), had several confounding variables to investigate, or were carried out using mouse strains. The differences in experimental designs are described. The identified pulmonary and oral toxicity studies largely indicate that surface modifications and particle size alone have little or no impact on the lung toxicity of TiO2 particles, following pulmonary exposures when all constituent materials are comprised of chemicals of low specific toxicity particles. In addition, based upon the results of 2 oral toxicity studies, one with surface treated TiO2 particles (OECD 408) and one without surface treated (OECD 407) TiO2 particles, there appears to have been no adverse impact on toxicity with the surface-coated material, as both studies produced no adverse effects at the very high doses tested.
Collapse
|
10
|
An updated review of the genotoxicity of respirable crystalline silica. Part Fibre Toxicol 2018; 15:23. [PMID: 29783987 PMCID: PMC5963024 DOI: 10.1186/s12989-018-0259-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Human exposure to (certain forms of) crystalline silica (CS) potentially results in adverse effects on human health. Since 1997 IARC has classified CS as a Group 1 carcinogen [1], which was confirmed in a later review in 2012 [2]. The genotoxic potential and mode of genotoxic action of CS was not conclusive in either of the IARC reviews, although a proposal for mode of actions was made in an extensive review of the genotoxicity of CS by Borm, Tran and Donaldson in 2011 [3]. The present study identified 141 new papers from search strings related to genotoxicity of respirable CS (RCS) since 2011 and, of these, 17 relevant publications with genotoxicity data were included in this detailed review. Studies on in vitro genotoxic endpoints primarily included micronucleus (MN) frequency and % fragmented DNA as measured in the comet assay, and were mostly negative, apart from two studies using primary or cultured macrophages. In vivo studies confirmed the role of persistent inflammation due to quartz surface toxicity leading to anti-oxidant responses in mice and rats, but DNA damage was only seen in rats. The role of surface characteristics was strengthened by in vitro and in vivo studies using aluminium or hydrophobic treatment to quench the silanol groups on the CS surface. In conclusion, the different modes of action of RCS-induced genotoxicity have been evaluated in a series of independent, adequate studies since 2011. Earlier conclusions on the role of inflammation driven by quartz surface in genotoxic and carcinogenic effects after inhalation are confirmed and findings support a practical threshold. Whereas classic in vitro genotoxicity studies confirm an earlier no-observed effect level (NOEL) in cell cultures of 60-70 μg/cm2, transformation frequency in SHE cells suggests a lower threshold around 5 μg/cm2. Both levels are only achieved in vivo at doses (2–4 mg) beyond in vivo doses (> 200 μg) that cause persistent inflammation and tissue remodelling in the rat lung.
Collapse
|