1
|
Shestakova TA, Sin E, Gordo J, Voltas J. Tree-ring isotopic imprints on time series of reproductive effort indicate warming-induced co-limitation by sink and source processes in stone pine. TREE PHYSIOLOGY 2024; 44:tpad147. [PMID: 38079520 DOI: 10.1093/treephys/tpad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Increasing evidence indicates that tree growth processes, including reproduction, can be either sink- or source-limited, or simultaneously co-limited by sink and source, depending on the interplay between internal and environmental factors. We tested the hypothesis that the relative strengths of photosynthate supply and demand by stem growth and reproduction create variable competition for substrate that is imprinted in the tree-ring isotopes (C and O) of stone pine (Pinus pinea L.), a masting gymnosperm with large costs of reproduction, under warming-induced drought. Across five representative stands of the Spanish Northern Plateau, we also identified reproductive phases where weather drivers of cone yield (CY) have varied over a 60-year period (1960-2016). We found that these drivers gradually shifted from winter-spring conditions 3 years before seed rain (cone setting) to a combination of 3- and 1-year lagged effects (kernel filling). Additionally, we observed positive regional associations between carbon isotope discrimination (Δ13C) of the year of kernel filling and CY arising at the turn of this century, which progressively offset similarly positive relationships between Δ13C of the year of cone setting and CY found during the first half of the study period. Altogether, these results pinpoint the increasing dependence of reproduction on fresh assimilates and suggest sink and source co-limitation superseding the sink-limited functioning of reproduction dominant before 2000. Under climate warming, it could be expected that drier conditions reinforce the role of source limitation on reproduction and, hence, on regeneration, forest structure and economic profit of the nutlike seeds of the species.
Collapse
Affiliation(s)
- Tatiana A Shestakova
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
| | - Ester Sin
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
| | - Javier Gordo
- Servicio Territorial de Medio Ambiente, Junta de Castilla y León, Duque de la Victoria 5, Valladolid, Castile and León E-47071, Spain
| | - Jordi Voltas
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Av. Alcalde Rovira Roure 191, Lleida, Catalonia E-25198, Spain
| |
Collapse
|
2
|
Pradhan P, Sukumaran A, Khanduri VP, Singh B, Rawat D, Riyal MK, Kumar M, Pinto MMSC. Effect of Crown Layers on Reproductive Effort and Success in Andromonoecious Aesculus indica (Wall. ex Camb.) Hook (Sapindaceae) in a Temperate Forest of Garhwal Himalaya. PLANTS (BASEL, SWITZERLAND) 2024; 13:183. [PMID: 38256737 PMCID: PMC10818387 DOI: 10.3390/plants13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/24/2024]
Abstract
The andromonoecy is an unusual sex expression in trees in which an individual plant bears both functionally staminate and hermaphrodite flowers on the inflorescences. This study aims to investigate the effect of crown layers on the floral biology and reproductive effort of Aesculus indica (Wall. ex Camb.) Hook. The results revealed that the peak period of anthesis was between 06:00 and 08:00 h of the day. Male flower production was predominantly higher as compared to the perfect flowers on the inflorescences. There was no significant variation between total pollen production in staminate and perfect flowers. Features like protogyny and inter-level asynchrony promote xenogamy; however, intra-level asynchrony results in geitonogamy. Controlled pollination treatments revealed the existence of self-incompatibility in flowers. Pollination syndromes in flowers support ambophily. A trend of consistent improvement in reproductive success from lower canopy layers to upper crown layers in the analyzed trees was recorded. The crown layers have a significant impact on flower production, fruit, and seed set. An increase in male flower production due to the increment in the crown is a mechanism of reproductive assurance as a pollen donor and pollinator recipient and also due to the differential cost of expenditure of reproduction in crown layers. Andromonoecy in A. indica promotes self-incompatibility, and there was a tapering trend of reproductive success in the crown layers.
Collapse
Affiliation(s)
- Priya Pradhan
- College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry, Tehri Garhwal, Pauri 249199, India; (P.P.); (V.P.K.); (D.R.); (M.K.R.)
| | - Arun Sukumaran
- ICFRE—Bamboo and Rattan Centre, Bethlehem Vengthlang, Aizawl 796007, India;
| | - Vinod Prasad Khanduri
- College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry, Tehri Garhwal, Pauri 249199, India; (P.P.); (V.P.K.); (D.R.); (M.K.R.)
| | - Bhupendra Singh
- College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry, Tehri Garhwal, Pauri 249199, India; (P.P.); (V.P.K.); (D.R.); (M.K.R.)
| | - Deepa Rawat
- College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry, Tehri Garhwal, Pauri 249199, India; (P.P.); (V.P.K.); (D.R.); (M.K.R.)
| | - Manoj Kumar Riyal
- College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry, Tehri Garhwal, Pauri 249199, India; (P.P.); (V.P.K.); (D.R.); (M.K.R.)
| | - Munesh Kumar
- Department of Forestry and Natural Resources, HNB Garhwal University, Srinagar Garhwal 246174, India;
| | - Marina M. S. Cabral Pinto
- GeoBioTec Research Centre, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
3
|
Westergren M, Archambeau J, Bajc M, Damjanić R, Theraroz A, Kraigher H, Oddou-Muratorio S, González-Martínez SC. Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech. Mol Ecol 2023. [PMID: 37962106 DOI: 10.1111/mec.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.
Collapse
Affiliation(s)
| | | | - Marko Bajc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Rok Damjanić
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | | | | | - Sylvie Oddou-Muratorio
- INRAE, URFM, Avignon, France
- INRAE, Univ. de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | | |
Collapse
|
4
|
Love SJ, Schweitzer JA, Bailey JK. Climate-driven convergent evolution in riparian ecosystems on sky islands. Sci Rep 2023; 13:2817. [PMID: 36797341 PMCID: PMC9935884 DOI: 10.1038/s41598-023-29564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Climate-induced evolution will determine population persistence in a changing world. However, finding natural systems in which to study these responses has been a barrier to estimating the impact of global change on a broad scale. We propose that isolated sky islands (SI) and adjacent mountain chains (MC) are natural laboratories for studying long-term and contemporary climatic pressures on natural populations. We used greenhouse common garden trees to test whether populations on SI exposed to hot and dry climates since the end of the Pleistocene have phenotypically diverged from populations on MC, and if SI populations have converged in these traits. We show: (1) populations of Populus angustifolia from SI have diverged from MC, and converged across SI, in reproductive and productivity traits, (2) these traits (cloning and aboveground biomass, respectively) are significantly correlated, suggesting a genetic linkage between them, and (3) the trait variation is driven by both natural selection and genetic drift. These shifts represent potentially beneficial phenotypes for population persistence in a changing world. These results suggest that the SI-MC comparison is a natural laboratory, as well as a predictive framework, for studying long-term responses to climate change across the globe.
Collapse
Affiliation(s)
- S J Love
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA.
| | - J A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| | - J K Bailey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| |
Collapse
|
5
|
Hacket‐Pain A, Foest JJ, Pearse IS, LaMontagne JM, Koenig WD, Vacchiano G, Bogdziewicz M, Caignard T, Celebias P, van Dormolen J, Fernández‐Martínez M, Moris JV, Palaghianu C, Pesendorfer M, Satake A, Schermer E, Tanentzap AJ, Thomas PA, Vecchio D, Wion AP, Wohlgemuth T, Xue T, Abernethy K, Aravena Acuña M, Daniel Barrera M, Barton JH, Boutin S, Bush ER, Donoso Calderón S, Carevic FS, de Castilho CV, Manuel Cellini J, Chapman CA, Chapman H, Chianucci F, da Costa P, Croisé L, Cutini A, Dantzer B, Justin DeRose R, Dikangadissi J, Dimoto E, da Fonseca FL, Gallo L, Gratzer G, Greene DF, Hadad MA, Herrera AH, Jeffery KJ, Johnstone JF, Kalbitzer U, Kantorowicz W, Klimas CA, Lageard JGA, Lane J, Lapin K, Ledwoń M, Leeper AC, Vanessa Lencinas M, Lira‐Guedes AC, Lordon MC, Marchelli P, Marino S, Schmidt Van Marle H, McAdam AG, Momont LRW, Nicolas M, de Oliveira Wadt LH, Panahi P, Martínez Pastur G, Patterson T, Luis Peri P, Piechnik Ł, Pourhashemi M, Espinoza Quezada C, Roig FA, Peña Rojas K, Micaela Rosas Y, Schueler S, Seget B, Soler R, Steele MA, Toro‐Manríquez M, Tutin CEG, Ukizintambara T, White L, Yadok B, Willis JL, Zolles A, Żywiec M, Ascoli D. MASTREE+: Time-series of plant reproductive effort from six continents. GLOBAL CHANGE BIOLOGY 2022; 28:3066-3082. [PMID: 35170154 PMCID: PMC9314730 DOI: 10.1111/gcb.16130] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 05/31/2023]
Abstract
Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.
Collapse
Affiliation(s)
- Andrew Hacket‐Pain
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Jessie J. Foest
- Department of Geography and PlanningSchool of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science CenterFort CollinsColoradoUSA
| | | | - Walter D. Koenig
- Hastings ReservationUniversity of California BerkeleyCarmel ValleyCaliforniaUSA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental SciencesUniversity of MilanMilanItaly
| | - Michał Bogdziewicz
- Faculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
- INRAELESSEMUniversity Grenoble AlpesGrenobleFrance
| | | | - Paulina Celebias
- Faculty of BiologyInstitute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
| | | | | | - Jose V. Moris
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| | | | - Mario Pesendorfer
- Department of Forest and Soil SciencesInstitute of Forest EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Eliane Schermer
- Aix Marseille UnivAvignon UniversitéCNRSIRDIMBEMarseilleFrance
| | - Andrew J. Tanentzap
- Ecosystems and Global Change GroupDepartment of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - Davide Vecchio
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| | - Andreas P. Wion
- Graduate Degree Program in Ecology and The Department of Forest and Rangeland StewardshipColorado State UniversityFort CollinsColoradoUSA
| | - Thomas Wohlgemuth
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Tingting Xue
- College of Civil and Architecture and EngineeringChuzhou UniversityChina
| | - Katharine Abernethy
- Faculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Ecologie TropicaleCENARESTLibrevilleGabon
| | - Marie‐Claire Aravena Acuña
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | | | - Jessica H. Barton
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Stan Boutin
- Department of Biological SciencesUniversity of AlbertaEdmontonABCanada
| | | | - Sergio Donoso Calderón
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | - Felipe S. Carevic
- Facultad de Recursos Naturales RenovablesUniversidad Arturo PratIquiqueChile
| | | | - Juan Manuel Cellini
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza (FCFCN)Universidad de ChileSantiagoChile
| | - Colin A. Chapman
- Wilson CenterWashingtonDistrict of ColumbiaUSA
- Department of AnthropologyGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
- Shaanxi Key Laboratory for Animal ConservationNorthwest UniversityXi'anChina
| | - Hazel Chapman
- School of Biological SciencesUniversity of CanterburyCanterburyNew Zealand
- Nigerian Montane Forest Project (NMFP)Yelway VillageNigeria
| | | | - Patricia da Costa
- Brazilian Agricultural Research CorporationEmbrapa Meio AmbienteJaguariúnaBrazil
| | - Luc Croisé
- Département Recherche‐Développement‐InnovationOffice National des ForêtsFontainebleauFrance
| | - Andrea Cutini
- CREA—Research Centre for Forestry and WoodArezzoItaly
| | - Ben Dantzer
- Department of PsychologyDepartment of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - R. Justin DeRose
- Department of Wildland Resources and Ecology CenterUtah State UniversityLoganUtahUSA
| | | | - Edmond Dimoto
- Agence Nationale des Parcs Nationaux (ANPN)LibrevilleGabon
| | | | - Leonardo Gallo
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (INTA—CONICETInstituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y TécnicasBarilocheArgentina
| | - Georg Gratzer
- Department of Forest and Soil SciencesInstitute of Forest EcologyUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - David F. Greene
- Department of Forestry and Wildland ResourcesHumboldt State UniversityArcataCaliforniaUSA
| | - Martín A. Hadad
- Laboratorio de Dendrocronología de Zonas ÁridasCIGEOBIO (CONICET‐UNSJ)RivadaviaArgentina
| | - Alejandro Huertas Herrera
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
- Ulterarius Consultores Ambientales y Científicos LtdaPunta ArenasChile
| | | | - Jill F. Johnstone
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
| | - Urs Kalbitzer
- Department for the Ecology of Animal SocietiesMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Władysław Kantorowicz
- Department of Silviculture and Genetics of Forest TreesForest Research InstituteRaszynPoland
| | - Christie A. Klimas
- Environmental Science and Studies DepartmentDePaul UniversityChicagoIllinoisUSA
| | | | - Jeffrey Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Mateusz Ledwoń
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakówPoland
| | - Abigail C. Leeper
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Maria Vanessa Lencinas
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | | | - Michael C. Lordon
- Department of Biological SciencesDePaul UniversityChicagoIllinoisUSA
| | - Paula Marchelli
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (INTA—CONICETInstituto Nacional de Tecnología Agropecuaria—Consejo Nacional de Investigaciones Científicas y TécnicasBarilocheArgentina
| | - Shealyn Marino
- Department of Biology and Institute of the EnvironmentWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | | | - Andrew G. McAdam
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderColoradoUSA
| | | | - Manuel Nicolas
- Département Recherche‐Développement‐InnovationOffice National des ForêtsFontainebleauFrance
| | | | - Parisa Panahi
- Botany Research DivisionResearch Institute of Forests and RangelandsAgricultural Research, Education and Extension OrganizationTehranIran
| | - Guillermo Martínez Pastur
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | - Thomas Patterson
- School of Biological, Environmental, and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | - Pablo Luis Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA)Universidad Nacional de la Patagonia Austral (UNPA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Río GallegosArgentina
| | - Łukasz Piechnik
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Mehdi Pourhashemi
- Forest Research DivisionResearch Institute of Forests and RangelandsAgricultural Research, Education and Extension OrganizationTehranIran
| | | | - Fidel A. Roig
- Laboratorio de Dendrocronología e Historia AmbientalIANIGLA—CONICET‐Universidad Nacional de CuyoMendozaArgentina
- Facultad de CienciasHémera Centro de Observación de la TierraEscuela de Ingeniería ForestalUniversidad MayorSantiagoChile
| | | | - Yamina Micaela Rosas
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | | | - Barbara Seget
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Rosina Soler
- Centro Austral de Investigaciones Científicas (CADIC)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)UshuaiaArgentina
| | - Michael A. Steele
- Department of Biology and Institute of the EnvironmentWilkes UniversityWilkes‐BarrePennsylvaniaUSA
| | - Mónica Toro‐Manríquez
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP)CoyhaiqueChile
- Ulterarius Consultores Ambientales y Científicos LtdaPunta ArenasChile
| | | | | | - Lee White
- Faculty of Natural SciencesUniversity of StirlingStirlingUK
- Institut de Recherche en Ecologie TropicaleCENARESTLibrevilleGabon
- Ministère des Eaux, des Forêts, de la Mer, de l'Environnement chargé du Plan Climat, des Objectifs de Development Durable et du Plan d'Affectation des TerresBoulevard TriomphaleLibrevilleGabon
| | - Biplang Yadok
- Nigerian Montane Forest Project (NMFP)Yelway VillageNigeria
- Biosecurity NZMinistry for Primary IndustriesWellingtonNew Zealand
| | | | - Anita Zolles
- Austrian Research Centre for Forests BFWViennaAustria
| | - Magdalena Żywiec
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | - Davide Ascoli
- Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoTorinoItaly
| |
Collapse
|