1
|
Westergren M, Archambeau J, Bajc M, Damjanić R, Theraroz A, Kraigher H, Oddou-Muratorio S, González-Martínez SC. Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech. Mol Ecol 2023. [PMID: 37962106 DOI: 10.1111/mec.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.
Collapse
Affiliation(s)
| | | | - Marko Bajc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Rok Damjanić
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | | | | | - Sylvie Oddou-Muratorio
- INRAE, URFM, Avignon, France
- INRAE, Univ. de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Saint-Pée-sur-Nivelle, France
| | | |
Collapse
|
2
|
Wu H, Zhang J, Rodríguez-Calcerrada J, Salomón RL, Yin D, Zhang P, Shen H. Large investment of stored nitrogen and phosphorus in female cones is consistent with infrequent reproduction events of Pinus koraiensis, a high value woody oil crop in Northeast Asia. FRONTIERS IN PLANT SCIENCE 2023; 13:1084043. [PMID: 36714788 PMCID: PMC9878279 DOI: 10.3389/fpls.2022.1084043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Pinus koraiensis is famous for its high-quality timber production all the way and is much more famous for its high value health-care nut oil production potential since 1990's, but the less understanding of its reproduction biology seriously hindered its nut productivity increase. Exploring the effects of reproduction on nutrient uptake, allocation and storage help to understand and modify reproduction patterns in masting species and high nut yield cultivar selection and breeding. Here, we compared seasonality in growth and in nitrogen ([N]) and phosphorus ([P]) concentrations in needles, branches and cones of reproductive (cone-bearing) and vegetative branches (having no cones) of P. koraiensis during a masting year. The growth of one- and two-year-old reproductive branches was significantly higher than that of vegetative branches. Needle, phloem and xylem [N] and [P] were lower in reproductive branches than in vegetative branches, although the extent and significance of the differences between branch types varied across dates. [N] and [P] in most tissues were high in spring, decreased during summer, and then recovered by the end of the growing season. Overall, [N] and [P] were highest in needles, lowest in the xylem and intermediate in the phloem. More than half of the N (73.5%) and P (51.6%) content in reproductive branches were allocated to cones. There was a positive correlation between cone number and N and P content in needles (R2 = 0.64, R2 = 0.73) and twigs (R2 = 0.65, R2 = 0.62) of two-year-old reproductive branches. High nutrient sink strength of cones and vegetative tissues of reproductive branches suggested that customized fertilization practices can help improve crop yield in Pinus koraiensis.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, China
| | - Jianying Zhang
- Forestry Research Institute of Heilongjiang Province, Harbin, China
| | - Jesús Rodríguez-Calcerrada
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
| | - Roberto L. Salomón
- Department of Natural Systems and Resources, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, Madrid, Spain
| | - Dongsheng Yin
- Forestry Research Institute of Heilongjiang Province, Harbin, China
| | - Peng Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
- State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, China
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
3
|
Kabeya D, Han Q. Seasonal patterns of sugar components and their functions in branches of
Fagus crenata
in association with three reproduction events. Ecol Res 2022. [DOI: 10.1111/1440-1703.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Daisuke Kabeya
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI) Tsukuba Japan
| | - Qingmin Han
- Department of Plant Ecology Forestry and Forest Products Research Institute (FFPRI) Tsukuba Japan
| |
Collapse
|
4
|
Kabeya D, Iio A, Kakubari Y, Han Q. Dynamics of non-structural carbohydrates following a full masting event reveal a role for stored starch in relation to reproduction in Fagus crenata. FORESTRY RESEARCH 2021; 1:18. [PMID: 39524515 PMCID: PMC11524249 DOI: 10.48130/fr-2021-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2024]
Abstract
Although mature trees have substantial non-structural carbohydrate (NSC) storage that is well documented with respect to its capacity to buffer the asynchrony of supply and demand at the whole-plant level, its role in reproduction remains poorly understood, especially in mast seeding species. In order to elucidate whether masting depletes the whole-tree NSC storage pool, seasonal and inter-annual variations in starch and soluble sugar (SS) concentrations in branchlets, stems and coarse roots of Fagus crenata were measured in two stands over 5 years after a full masting event. Full masting reduced individual storage pools to 72% and 49% of the maxima in the two stands; this was observed 2-3 years after full masting. In addition, temporary reduction in starch concentration in summer due to moderate fruiting was found in roots and deep sapwood cores of stems, representing tree rings formed 20 years ago, but not in branchlets. Together with a higher starch storage pool in roots than in branchlets, these results indicate that starch stored in roots and stems is available and supports life-history traits, such as masting events, that occur irregularly. Moreover, limited rainfall in the late growing season caused a reduction in both organ NSC concentration and individual storage irrespective of masting, which further complicated the masting-NSC relationship. These findings have important implications for interpreting the role of carbon resources in masting events.
Collapse
Affiliation(s)
- Daisuke Kabeya
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Atsuhiro Iio
- Faculty of Agriculture, University of Shizuoka, Ohya 836, Shizuoka 422-8529, Japan
| | - Yoshitaka Kakubari
- Faculty of Agriculture, University of Shizuoka, Ohya 836, Shizuoka 422-8529, Japan
- Present address: Professor Emeritus, University of Shizuoka
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| |
Collapse
|
5
|
Le Roncé I, Toïgo M, Dardevet E, Venner S, Limousin JM, Chuine I. Resource manipulation through experimental defoliation has legacy effects on allocation to reproductive and vegetative organs in Quercus ilex. ANNALS OF BOTANY 2020; 126:1165-1179. [PMID: 32686832 PMCID: PMC7684701 DOI: 10.1093/aob/mcaa137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS In plants, high costs of reproduction during some years can induce trade-offs in resource allocation with other functions such as growth, survival and resistance against herbivores or extreme abiotic conditions, but also with subsequent reproduction. Such trade-offs might also occur following resource shortage at particular moments of the reproductive cycle. Because plants are modular organisms, strategies for resource allocation to reproduction can also vary among hierarchical levels. Using a defoliation experiment, our aim was to test how allocation to reproduction was impacted by resource limitation. METHODS We applied three levels of defoliation (control, moderate and intense) to branches of eight Quercus ilex trees shortly after fruit initiation and measured the effects of resource limitation induced by leaf removal on fruit development (survival, growth and germination potential) and on the production of vegetative and reproductive organs the year following defoliation. KEY RESULTS We found that defoliation had little impact on fruit development. Fruit survival was not affected by the intense defoliation treatment, but was reduced by moderate defoliation, and this result could not be explained by an upregulation of photosynthesis. Mature fruit mass was not affected by defoliation, nor was seed germination success. However, in the following spring defoliated branches produced fewer shoots and compensated for leaf loss by overproducing leaves at the expense of flowers. Therefore, resource shortage decreased resource allocation to reproduction the following season but did not affect sex ratio. CONCLUSIONS Our results support the idea of a regulation of resource allocation to reproduction beyond the shoot scale. Defoliation had larger legacy effects than immediate effects.
Collapse
Affiliation(s)
- Iris Le Roncé
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Maude Toïgo
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Elia Dardevet
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Samuel Venner
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Jean-Marc Limousin
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Isabelle Chuine
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
6
|
Simões R, Rodrigues A, Ferreira-Dias S, Miranda I, Pereira H. Chemical Composition of Cuticular Waxes and Pigments and Morphology of Leaves of Quercus suber Trees of Different Provenance. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091165. [PMID: 32916803 PMCID: PMC7570358 DOI: 10.3390/plants9091165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
The chemical composition of cuticular waxes and pigments and the morphological features of cork oak (Quercus suber) leaves were determined for six samples with seeds of different geographical origins covering the natural distribution of the species. The leaves of all samples exhibited a hard texture and oval shape with a dark green colour on the hairless adaxial surface, while the abaxial surface was lighter, with numerous stomata and densely covered with trichomes in the form of stellate multicellular hairs. The results suggest an adaptive role of leaf features among samples of different provenance and the potential role of such variability in dealing with varying temperatures and rainfall regimes through local adaptation and phenotypic plasticity, as was seen in the trial site, since no significant differences in leaf traits among the various specimens were found, for example, specific leaf area 55.6-67.8 cm2/g, leaf size 4.6-6.8 cm2 and photosynthetic pigment (total chlorophyll, 31.8-40.4 µg/cm2). The leaves showed a substantial cuticular wax layer (154.3-235.1 µg/cm2) composed predominantly of triterpenes and aliphatic compounds (61-72% and 17-23% of the identified compounds, respectively) that contributed to forming a nearly impermeable membrane that helps the plant cope with drought conditions. These characteristics are related to the species and did not differ among trees of different seed origin. The major identified compound was lupeol, indicating that cork oak leaves may be considered as a potential source of this bioactive compound.
Collapse
Affiliation(s)
- Rita Simões
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| | - Ana Rodrigues
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| | - Suzana Ferreira-Dias
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Isabel Miranda
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| | - Helena Pereira
- Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (R.S.); (A.R.); (H.P.)
| |
Collapse
|
7
|
Mund M, Herbst M, Knohl A, Matthäus B, Schumacher J, Schall P, Siebicke L, Tamrakar R, Ammer C. It is not just a 'trade-off': indications for sink- and source-limitation to vegetative and regenerative growth in an old-growth beech forest. THE NEW PHYTOLOGIST 2020; 226:111-125. [PMID: 31901219 DOI: 10.1111/nph.16408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Controls on tree growth are key issues in plant physiology. The hypothesis of our study was that the interannual variability of wood and fruit production are primarily controlled directly by weather conditions (sink limitation), while carbon assimilation (source limitation) plays a secondary role. We analyzed the interannual variability of weather conditions, gross primary productivity (GPP) and net primary productivity (NPP) of wood and fruits of an old-growth, unmanaged Fagus sylvatica forest over 14 yr, including six mast years. In a multiple linear regression model, c. 71% of the annual variation in wood-NPP could be explained by mean air temperature in May, precipitation from April to May (positive influence) and fruit-NPP (negative influence). GPP of June to July solely explained c. 42% of the variation in wood-NPP. Fruit-NPP was positively related to summer precipitation 2 yr before (R2 = 0.85), and negatively to precipitation in May (R2 = 0.83) in the fruit years. GPP had no influence on fruit-NPP. Our results suggest a complex system of sink and source limitations to tree growth driven by weather conditions and going beyond a simple carbon-mediated 'trade-off' between regenerative and vegetative growth.
Collapse
Affiliation(s)
- Martina Mund
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Mathias Herbst
- German Meteorological Service, Centre for Agrometeorological Research, Bundesallee 33, D-38116, Braunschweig, Germany
| | - Alexander Knohl
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| | - Bertrand Matthäus
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Schützenberg 12, D-32756, Detmold, Germany
| | - Jens Schumacher
- Institute of Mathematics, University of Jena, Ernst-Abbe-Platz 2, D-07743, Jena, Germany
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| | - Lukas Siebicke
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
| | - Rijan Tamrakar
- Bioclimatology, University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 1, D-37073, Göttingen, Germany
| |
Collapse
|
8
|
Du C, Wang X, Zhang M, Jing J, Gao Y. Effects of elevated CO 2 on plant C-N-P stoichiometry in terrestrial ecosystems: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:697-708. [PMID: 30212700 DOI: 10.1016/j.scitotenv.2018.09.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 05/25/2023]
Abstract
A substantial number of experiments have so far been carried out to study the response of the C-N-P stoichiometry of terrestrial plants to the rising CO2 level of the earth. However, there is a need of systematic evaluation for assessing the impact of the elevated CO2 on plant C-N-P stoichiometry. In the present investigation, a comprehensive meta-analysis involving 386 published reports and including 4481 observations has been carried out. The goal of the research was to determine the response of plants to their C-N-P stoichiometry due to elevated levels of global atmospheric CO2. The results showed that rising CO2 altered the concentration of C (+2.19%, P < 0.05), N (-9.73%, P < 0.001) and P (-3.23%, P < 0.001) and C:N (+13.29%, P < 0.001) and N:P ratios (-7.32%, P < 0.0001). Overall, a slightly increasing trend in the C:P ratio (P > 0.05) in the plant was observed. However, plant leaf, shoot and herbaceous type of plants showed more sensitivity to rising CO2. CO2 magnitude exhibited a positive effect (P < 0.05) on C:N ratio. Additionally, "CO2 acclimation" hypothesis as proposed by the authors of the current paper was also tested in the study. Results obtained, especially, show changes of C and N concentrations and C:P ratio to an obvious down-regulation for long-term CO2 fumigation. At spatial scales, a reduction of plant N concentration was found to be higher in the southern hemisphere. The CO2 enrichment methods affected the plant C-N-P stoichiometry. Compared to FACE (free-air CO2 enrichment), OTC (open top chamber) showed larger changes of C, N, P, and N:P. The results of the present study should, therefore, become helpful to offer a better understanding towards the response of the terrestrial plant C-N-P stoichiometry to an elevated global atmospheric CO2 in the future.
Collapse
Affiliation(s)
- Chenjun Du
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Mengyao Zhang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Jing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongheng Gao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Han Q, Kabeya D, Inagaki Y. Influence of reproduction on nitrogen uptake and allocation to new organs in Fagus crenata. TREE PHYSIOLOGY 2017; 37:1436-1443. [PMID: 28985424 DOI: 10.1093/treephys/tpx095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The contributions of the internal nitrogen (N) cycle and N uptake from soil to growth in mature trees remain poorly understood, especially during reproduction. In order to elucidate how reproduction affects N uptake, allocation and remobilization, we applied pulse 15N labelling to three fruiting (F) and three non-fruiting (NF) Fagus crenata Blume trees after the leaves were fully unfurled. Three-year-old branches were sampled from upper crowns at about 2 week intervals until leaf fall. 15N content per organ dry mass (15Nexcess) and N concentration in all new shoot organs were determined. Fruiting led to greater 15Nexcess uptake from the soil during the first month following application. Cupules absorbed the highest fraction of 15Nexcess initially and nuts contained about half the 15Nexcess at the end of the growing season. Biomass of reproductive organs represented up to 70% of new shoot growth in F trees. This fruit burden led to 34% and 38% reduction in biomass and 15Nexcess, respectively, in mature leaves compared with NF trees. Moreover, the increment of 15Nexcess in new shoots of F relative to NF trees was lower than the increment of biomass between the two. These results indicate that N is a limiting resource during masting in F. crenata. 15Nexcess incorporated into nuts started to increase dramatically once 15Nexcess in leaves, branches and cupules hit seasonal maxima. Similar seasonal biomass growth patterns were also found in these organs, indicating that sink strength drives uptake and allocation of 15Nexcess between new shoot compartments. These results, together with translocation of 15Nexcess from cupules and senescing leaves to nuts (contributing to fruit ripening), suggest that a finely tuned growth phenology alleviated N limitation. Thus, fruiting did not influence the N concentration in leaves or branches. These reproduction-related variations in N uptake and allocation among new shoot compartments have implications for N dynamics in the plant-soil system.
Collapse
Affiliation(s)
- Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Daisuke Kabeya
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Yoshiyuki Inagaki
- Department of Forest Soils, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
- Shikoku Research Center, FFPRI, 2-915 Asakuranishi, Kochi 780-8077, Japan
| |
Collapse
|
10
|
Han Q, Kabeya D. Recent developments in understanding mast seeding in relation to dynamics of carbon and nitrogen resources in temperate trees. Ecol Res 2017. [DOI: 10.1007/s11284-017-1494-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Han Q, Kagawa A, Kabeya D, Inagaki Y. Reproduction-related variation in carbon allocation to woody tissues in Fagus crenata using a natural 13C approach. TREE PHYSIOLOGY 2016; 36:1343-1352. [PMID: 27587486 DOI: 10.1093/treephys/tpw074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/27/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
The contribution of new photo-assimilates and stored carbon (C) to plant growth remains poorly understood, especially during reproduction. In order to elucidate how mast seeding affects C allocation to both reproductive and vegetative tissues, we measured biomass increase in each tissue, branch starch concentration and stable C isotope composition (δ13C) in bulk leaves, current-year shoots, 3-year branches and tree rings in fruiting and non-fruiting trees for 2 years, as well as in fruits. We isolated the effect of reproduction on C allocation to vegetative growth by comparing 13C enrichment in woody tissues in fruiting and non-fruiting specimens. Compared with 2‰ 13C enrichment in shoots relative to leaves from non-fruiting trees, fruiting reduced the enrichment to 1‰ and this reduction disappeared in the following year with no fruiting, indicating that new photo-assimilates are preferentially used for woody tissues even with fruiting burden. In contrast, fruits had up to 2.5‰ 13C enrichment at mid-summer, which dropped thereafter, indicating that fruit production relies on C storage early in the growing season then shifts to current photo-assimilates. At this tipping point, growth of shoots and cupules had almost finished and nuts had a second rapid growth period thereafter. Together with shorter shoots but higher biomass increment per length in fruiting trees than non-fruiting trees, these results indicate that the C limitation due to fruit burden is minimized by fine-tuning of allocation of old C stores and new photo-assimilates, along with the growth pattern in various tissues. Furthermore, fruiting had no significant effect on starch concentration in 3-year-old branches, which became fully depleted during leaf and flower flushing but were quickly replenished. These results indicate that reproduction affects C allocation to branches but not its source or storage. These reproduction-related variations in the fate of C have implications for evaluating forest ecosystem C cycles during climate change.
Collapse
Affiliation(s)
- Qingmin Han
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), 7 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8516, Japan
- Department of Plant Ecology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Akira Kagawa
- Department of Wood Properties, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Daisuke Kabeya
- Department of Plant Ecology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Yoshiyuki Inagaki
- Department of Forest Site Environment, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
- Present address: Shikoku Research Center, FFPRI, 2-915 Asakuranishi, Kochi, 780-8077, Japan
| |
Collapse
|
12
|
|
13
|
|
14
|
Crone EE, Rapp JM. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann N Y Acad Sci 2014; 1322:21-34. [DOI: 10.1111/nyas.12465] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Joshua M. Rapp
- Department of Biology; Tufts University; Medford Massachusetts
| |
Collapse
|
15
|
Oddou-Muratorio S, Davi H. Simulating local adaptation to climate of forest trees with a Physio-Demo-Genetics model. Evol Appl 2014; 7:453-67. [PMID: 24822080 PMCID: PMC4001444 DOI: 10.1111/eva.12143] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/08/2013] [Indexed: 01/31/2023] Open
Abstract
One challenge of evolutionary ecology is to predict the rate and mechanisms of population adaptation to environmental variations. The variations in most life history traits are shaped both by individual genotypic and by environmental variation. Forest trees exhibit high levels of genetic diversity, large population sizes, and gene flow, and they also show a high level of plasticity for life history traits. We developed a new Physio-Demo-Genetics model (denoted PDG) coupling (i) a physiological module simulating individual tree responses to the environment; (ii) a demographic module simulating tree survival, reproduction, and pollen and seed dispersal; and (iii) a quantitative genetics module controlling the heritability of key life history traits. We used this model to investigate the plastic and genetic components of the variations in the timing of budburst (TBB) along an elevational gradient of Fagus sylvatica (the European beech). We used a repeated 5 years climatic sequence to show that five generations of natural selection were sufficient to develop nonmonotonic genetic differentiation in the TBB along the local climatic gradient but also that plastic variation among different elevations and years was higher than genetic variation. PDG complements theoretical models and provides testable predictions to understand the adaptive potential of tree populations.
Collapse
Affiliation(s)
| | - Hendrik Davi
- INRA, UR629 Ecologie des Forêts Méditerranéennes (URFM) Avignon, France
| |
Collapse
|
16
|
Han Q, Kabeya D, Iio A, Inagaki Y, Kakubari Y. Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia 2013; 174:679-87. [DOI: 10.1007/s00442-013-2824-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
|
17
|
Climate Responses of Aboveground Productivity and Allocation in Fagus sylvatica: A Transect Study in Mature Forests. Ecosystems 2013. [DOI: 10.1007/s10021-013-9698-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 2013; 171:653-62. [DOI: 10.1007/s00442-012-2579-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 12/18/2012] [Indexed: 11/30/2022]
|
19
|
|