1
|
Lv H, Yan C. Effects of wheat intercropping on growth and occurrence of Fusarium wilt in watermelon. PeerJ 2024; 12:e17587. [PMID: 38952963 PMCID: PMC11216207 DOI: 10.7717/peerj.17587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Watermelon is commonly affected by Fusarium wilt in a monoculture cropping system. Wheat intercropping alleviates the affection of Fusarium wilt of watermelon. The objective of this study was to determine the effects of wheat and watermelon intercropping on watermelon growth and Fusarium wilt. Our results showed that wheat and watermelon intercropping promoted growth, increased chlorophyll content, and photosynthesis of watermelon. Meanwhile, wheat and watermelon intercropping inhibited watermelon Fusarium wilt occurrence, decreased spore numbers, increased root vigor, increased antioxidant enzyme activities, and decreased malondialdehyde (MDA) content in watermelon roots. Additionally, wheat and watermelon intercropping enhanced the bacterial colonies and total microbes growth in soil, decreased fungi and Fusarium oxysporum f. sp. niveum (FON) colonies, and increased soil enzyme activities in watermelon rhizosphere soil. Our results indicated that wheat and watermelon intercropping enhanced watermelon growth and decreased the incidence of Fusarium wilt in watermelon. These effects could be due to intercropping inducing physiological changes, regulating soil enzyme activities, and/or modulating soil microbial communities.
Collapse
Affiliation(s)
- HuiFang Lv
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Heifei, Anhui, China
- Blueberry Engineering Technology Research Center of Anhui, School of Biology and Food Engineering, HeFei Normal University, Hefei, Anhui, China
| | - CongSheng Yan
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Heifei, Anhui, China
| |
Collapse
|
2
|
Dixon CW, Gschwend AR. Trichomes and unique gene expression confer insect herbivory resistance in Vitis labrusca grapevines. BMC PLANT BIOLOGY 2024; 24:609. [PMID: 38926877 PMCID: PMC11209964 DOI: 10.1186/s12870-024-05260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Grapevine (Vitis) is one of the world's most valuable fruit crops, but insect herbivory can decrease yields. Understanding insect herbivory resistance is critical to mitigating these losses. Vitis labrusca, a wild North American grapevine species, has been leveraged in breeding programs to generate hybrid grapevines with enhanced abiotic and biotic stress resistance, rendering it a valuable genetic resource for sustainable viticulture. This study assessed the resistance of V. labrusca acc. 'GREM4' and Vitis vinifera cv. 'PN40024' grapevines to Popillia japonica (Japanese beetle) herbivory and identified morphological and genetic adaptations underlying this putative resistance. RESULTS 'GREM4' displayed greater resistance to beetle herbivory compared to 'PN40024' in both choice and no-choice herbivory assays spanning periods of 30 min to 19 h. 'GREM4' had significantly higher average leaf trichome densities than 'PN40024' and beetles preferred to feed on the side of leaves with fewer trichomes. When leaves from each species that specifically did not differ in trichome densities were fed on by beetles, significantly less leaf area was damaged in 'GREM4' (3.29mm2) compared to 'PN40024' (9.80mm2), suggesting additional factors beyond trichomes contributed to insect herbivory resistance in 'GREM4'. Comparative transcriptomic analyses revealed 'GREM4' exhibited greater constitutive (0 h) expression of defense response and secondary metabolite biosynthesis genes compared to 'PN40024', indicative of heightened constitutive defenses. Upon herbivory, 'GREM4' displayed a greater number of differentially expressed genes (690) compared to 'PN40024' (502), suggesting a broader response. Genes up-regulated in 'GREM4' were enriched in terpene biosynthesis, flavonoid biosynthesis, phytohormone signaling, and disease defense-related functions, likely contributing to heighted insect herbivory defense, while genes differentially expressed in 'PN40024' under herbivory were enriched in xyloglucan, cell wall formation, and calcium ion binding. The majority of genes implicated in insect herbivory defense were orthologs with specific expression patterns in 'GREM4' and 'PN40024', but some paralogous and genome-specific genes also likely contributed to conferring resistance. CONCLUSIONS Our findings suggest that 'GREM4' insect herbivory resistance was attributed to a combination of factors, including trichomes and unique constitutive and inducible expression of genes implicated in terpene, flavonoid, and phenylpropanoid biosynthesis, as well as pathogen defense.
Collapse
Affiliation(s)
- Cullen W Dixon
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrea R Gschwend
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Xu W, Sun X, Mi L, Wang K, Gu Z, Wang M, Shu C, Bai X, Zhang J, Geng L. Plants recruit insecticidal bacteria to defend against herbivore attacks. Microbiol Res 2024; 281:127597. [PMID: 38266597 DOI: 10.1016/j.micres.2023.127597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
Pest feeding affects the rhizobacteria community. The rhizomicrobiota activates salicylic acid and jasmonic acid signaling pathways to help plants deal with pest infestation. However, whether plants can recruit special pesticidal microorganisms to deal with attack from herbivores is unclear. A system composed of peanuts and first-instar larvae of Holotrichia parallela were used to analyze whether peanuts truly enrich the insecticidal bacteria after feeding by larvae, and whether inoculation of the enriched bacteria promotes the resistance of plants to herbivore. In this study, high-throughput sequencing of 16 S rRNA gene amplicons was used to demonstrate that infestation of the subterranean pest H. parallela quickly changed the rhizosphere bacterial community structure within 24 h, and the abundance of Enterobacteriaceae, especially Enterobacter, was manifestly enriched. Root feeding induced rhizobacteria to form a more complex co-occurrence network than the control. Rhizosphere bacteria were isolated, and 4 isolates with high toxicity against H. parallela larvae were obtained by random forest analysis. In a back-inoculation experiment using a split-root system, green fluorescent protein (GFP)-labeled Enterobacter sp. IPPBiotE33 was observed to be enriched in uneaten peanut roots. Additionally, supplementation with IPPBiotE33 alleviated the adverse effects of H. parallela on peanuts. Our findings indicated that herbivore infestation could induce plants to assemble bacteria with specific larvicidal activity to address threats.
Collapse
Affiliation(s)
- Wenyu Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxiao Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Mi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Kui Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ziqiong Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiling Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Bai
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Petrushin IS, Filinova NV, Gutnik DI. Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation. Int J Mol Sci 2024; 25:750. [PMID: 38255824 PMCID: PMC10815375 DOI: 10.3390/ijms25020750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Every land plant exists in a close relationship with microbial communities of several niches: rhizosphere, endosphere, phyllosphere, etc. The growth and yield of potato-a critical food crop worldwide-highly depend on the diversity and structure of the bacterial and fungal communities with which the potato plant coexists. The potato plant has a specific part, tubers, and the soil near the tubers as a sub-compartment is usually called the "geocaulosphere", which is associated with the storage process and tare soil microbiome. Specific microbes can help the plant to adapt to particular environmental conditions and resist pathogens. There are a number of approaches to modulate the microbiome that provide organisms with desired features during inoculation. The mechanisms of plant-bacterial communication remain understudied, and for further engineering of microbiomes with particular features, the knowledge on the potato microbiome should be summarized. The most recent approaches to microbiome engineering include the construction of a synthetic microbial community or management of the plant microbiome using genome engineering. In this review, the various factors that determine the microbiome of potato and approaches that allow us to mitigate the negative impact of drought and pathogens are surveyed.
Collapse
Affiliation(s)
- Ivan S. Petrushin
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia; (N.V.F.); (D.I.G.)
| | | | | |
Collapse
|
5
|
Huang J, Zhu L, Lu X, Cui F, Wang J, Zhou C. A simplified synthetic rhizosphere bacterial community steers plant oxylipin pathways for preventing foliar phytopathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107941. [PMID: 37549573 DOI: 10.1016/j.plaphy.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/09/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Rhizosphere-enriched microbes induced by foliar phytopathogen infection can be assembled into a functional community to enhance plant defense mechanisms. However, the functions of stably-colonizing rhizosphere microbiota are rarely investigated. In this study, Botrytis cinerea infection changed rhizosphere bacterial communities in tomato plants. The phytopathogen-infected plants recruited specific rhizosphere bacterial taxa, while several bacterial taxa stably colonized the rhizosphere, regardless of phytopathogen infection. Through the analysis of the rhizosphere bacterial community, we established a synthetic community harboring 8 phytopathogen-inducible and 30 stably-colonizing bacteria species. Furthermore, the 38-species community was simplified into a three-species community, consisting of one phytopathogen-inducible (Asticcacaulis sp.) and two stably-colonizing species (Arachidicoccus sp. And Phenylobacterium sp.). The simplified community provided a durable protection for the host plants by synergistic effects, with the phytopathogen-inducible species triggering plant defense responses and the stably-colonizing species promoting biofilm formation. The simplified community exhibited similar protective effects as the 38-species community. Moreover, the activation of oxylipin pathways in the phytopathogen-infected leaves was significantly intensified by the simplified community. However, the inhibited biosynthesis of antimicrobial divinyl ethers, including colneleic and colnelenic acid, fully abolished the community-induced plant disease resistance. In contrast, transgenic plants overexpressing SlLOX5 and SlDES1, with higher levels of divinyl ethers, displayed stronger resistance against B. cinerea compared to wild-type plants. Collectively, these findings provided insights into the utilization of the simplified community for preventing gray mold disease.
Collapse
Affiliation(s)
- Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Chuzhou 233100, China
| | - Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Chuzhou 233100, China; School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaomin Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Chuzhou 233100, China
| | - Feng Cui
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Chuzhou 233100, China.
| | - Jianfei Wang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Chuzhou 233100, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Chuzhou 233100, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Pereira LB, Thomazella DPT, Teixeira PJPL. Plant-microbiome crosstalk and disease development. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102351. [PMID: 36848753 DOI: 10.1016/j.pbi.2023.102351] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Plants harbor a complex immune system to fight off invaders and prevent diseases. For decades, the interactions between plants and pathogens have been investigated primarily through the lens of binary interactions, largely neglecting the diversity of microbes that naturally inhabit plant tissues. Recent research, however, demonstrates that resident microbes are more than mere spectators. Instead, the plant microbiome extends host immune function and influences the outcome of a pathogen infection. Both plants and the interacting microbes produce a large diversity of metabolites that form an intricate chemical network of nutrients, signals, and antimicrobial molecules. In this review, we discuss the involvement of the plant microbiome in disease development, focusing on the biochemical conversation that occurs between plants and their associated microbiota before, during and after infection. We also highlight outstanding questions and possible directions for future research.
Collapse
Affiliation(s)
- Letícia B Pereira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Daniela P T Thomazella
- Department of Genetics, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil.
| |
Collapse
|
7
|
Sharma I, Kashyap S, Agarwala N. Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1132824. [PMID: 36968415 PMCID: PMC10036841 DOI: 10.3389/fpls.2023.1132824] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Every organism on the earth maintains some kind of interaction with its neighbours. As plants are sessile, they sense the varied above-ground and below-ground environmental stimuli and decipher these dialogues to the below-ground microbes and neighbouring plants via root exudates as chemical signals resulting in the modulation of the rhizospheric microbial community. The composition of root exudates depends upon the host genotype, environmental cues, and interaction of plants with other biotic factors. Crosstalk of plants with biotic agents such as herbivores, microbes, and neighbouring plants can change host plant root exudate composition, which may permit either positive or negative interactions to generate a battlefield in the rhizosphere. Compatible microbes utilize the plant carbon sources as their organic nutrients and show robust co-evolutionary changes in changing circumstances. In this review, we have mainly focused on the different biotic factors responsible for the synthesis of alternative root exudate composition leading to the modulation of rhizosphere microbiota. Understanding the stress-induced root exudate composition and resulting change in microbial community can help us to devise strategies in engineering plant microbiomes to enhance plant adaptive capabilities in a stressful environment.
Collapse
|
8
|
Luo L, Zhang J, Ye C, Li S, Duan S, Wang Z, Huang H, Liu Y, Deng W, Mei X, He X, Yang M, Zhu S. Foliar Pathogen Infection Manipulates Soil Health through Root Exudate-Modified Rhizosphere Microbiome. Microbiol Spectr 2022; 10:e0241822. [PMID: 36445116 PMCID: PMC9769671 DOI: 10.1128/spectrum.02418-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Negative plant-soil feedback (NPSF) due to the buildup of soilborne pathogens in soil is a major obstacle in sustainable agricultural systems. Beneficial rhizosphere microfloras are recruited by plants, and mediating this has become a strategic priority to manipulate plant health. Here, we found that foliar infection of Panax notoginseng by Alternaria panax changed plant-soil feedback from negative to positive. Foliar infection modified the rhizosphere soil microbial community and reversed the direction of the buildup of the soilborne pathogen Ilyonectria destructans and beneficial microbes, including Trichoderma, Bacillus, and Streptomyces, in rhizosphere soil. These beneficial microbes not only showed antagonistic ability against the pathogen I. destructans but also enhanced the resistance of plants to A. panax. Foliar infection enhanced the exudation of short- and long-chain organic acids, sugars, and amino acids from roots. In vitro and in vivo experiments validated that short- and long-chain organic acids and sugars play dual roles in simultaneously suppressing pathogens but enriching beneficial microbes. In summary, foliar infection could change root secretion to drive shifts in the rhizosphere microbial community to enhance soil health, providing a new strategy to alleviate belowground disease in plants through aboveground inducement. IMPORTANCE Belowground soilborne disease is the main factor limiting sustainable agricultural production and is difficult to manage due to the complexity of the soil environment. Here, we found that aboveground parts of plants infected by foliar pathogens could enhance the secretion of organic acids, sugars, and amino acids in root exudates to suppress soilborne pathogens and enrich beneficial microbes, eventually changing the plant and soil feedback from negative to positive and alleviating belowground soilborne disease. This is an exciting strategy by which to achieve belowground soilborne disease management by manipulating the aboveground state through aboveground stimulation.
Collapse
Affiliation(s)
- Lifen Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Junxing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Su Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shengshuang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Zhengping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Weiping Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China
- National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
10
|
Abstract
The findings on the strategies employed by endophytic microbes have provided salient information to the researchers on the need to maximally explore them as bio-input in agricultural biotechnology. Biotic and abiotic factors are known to influence microbial recruitments from external plant environments into plant tissues. Endophytic microbes exhibit mutualism or antagonism association with host plants. The beneficial types contribute to plant growth and soil health, directly or indirectly. Strategies to enhance the use of endophytic microbes are desirable in modern agriculture, such that these microbes can be applied individually or combined as bioinoculants with bioprospecting in crop breeding systems. Scant information is available on the strategies for shaping the endophytic microbiome; hence, the need to unravel microbial strategies for yield enhancement and pathogen suppressiveness have become imperative. Therefore, this review focuses on the endophytic microbiome, mechanisms, factors influencing endophyte recruitment, and strategies for possible exploration as bioinoculants.
Collapse
|
11
|
Li YH, Yang YY, Wang ZG, Chen Z. Emerging Function of Ecotype-Specific Splicing in the Recruitment of Commensal Microbiome. Int J Mol Sci 2022; 23:4860. [PMID: 35563250 PMCID: PMC9100151 DOI: 10.3390/ijms23094860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
In recent years, host-microbiome interactions in both animals and plants has emerged as a novel research area for studying the relationship between host organisms and their commensal microbial communities. The fitness advantages of this mutualistic interaction can be found in both plant hosts and their associated microbiome, however, the driving forces mediating this beneficial interaction are poorly understood. Alternative splicing (AS), a pivotal post-transcriptional mechanism, has been demonstrated to play a crucial role in plant development and stress responses among diverse plant ecotypes. This natural variation of plants also has an impact on their commensal microbiome. In this article, we review the current progress of plant natural variation on their microbiome community, and discuss knowledge gaps between AS regulation of plants in response to their intimately related microbiota. Through the impact of this article, an avenue could be established to study the biological mechanism of naturally varied splicing isoforms on plant-associated microbiome assembly.
Collapse
Affiliation(s)
- Yue-Han Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Yuan-You Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| | - Zhi-Gang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhuo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China; (Y.-H.L.); (Y.-Y.Y.)
| |
Collapse
|
12
|
Hansen TE, Enders LS. Host Plant Species Influences the Composition of Milkweed and Monarch Microbiomes. Front Microbiol 2022; 13:840078. [PMID: 35283842 PMCID: PMC8908431 DOI: 10.3389/fmicb.2022.840078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Plants produce defensive chemicals for protection against insect herbivores that may also alter plant and insect associated microbial communities. However, it is unclear how expression of plant defenses impacts the assembly of insect and plant microbiomes, for example by enhancing communities for microbes that can metabolize defensive chemicals. Monarch butterflies (Danaus plexippus) feed on milkweed species (Asclepias spp.) that vary in production of toxic cardiac glycosides, which could alter associated microbiomes. We therefore sought to understand how different milkweed species, with varying defensive chemical profiles, influence the diversity and composition of monarch and milkweed (root and leaf) bacterial communities. Using a metabarcoding approach, we compared rhizosphere, phyllosphere and monarch microbiomes across two milkweed species (Asclepias curassavica, Asclepias syriaca) and investigated top-down effects of monarch feeding on milkweed microbiomes. Overall, monarch feeding had little effect on host plant microbial communities, but each milkweed species harbored distinct rhizosphere and phyllosphere microbiomes, as did the monarchs feeding on them. There was no difference in diversity between plants species for any of the microbial communities. Taxonomic composition significantly varied between plant species for rhizospheres, phyllospheres, and monarch microbiomes and no dispersion were detected between samples. Interestingly, phyllosphere and monarch microbiomes shared a high proportion of bacterial taxa with the rhizosphere (88.78 and 95.63%, respectively), while phyllosphere and monarch microbiomes had fewer taxa in common. Overall, our results suggest milkweed species select for unique sets of microbial taxa, but to what extent differences in expression of defensive chemicals directly influences microbiome assembly remains to be tested. Host plant species also appears to drive differences in monarch caterpillar microbiomes. Further work is needed to understand how monarchs acquire microbes, for example through horizontal transfer during feeding on leaves or encountering soil when moving on or between host plants.
Collapse
Affiliation(s)
- Thorsten E. Hansen
- Entomology Department, Purdue University, West Lafayette, IN, United States
| | | |
Collapse
|
13
|
Yang S, Cai W, Shen L, Wu R, Cao J, Tang W, Lu Q, Huang Y, Guan D, He S. Solanaceous plants switch to cytokinin-mediated immunity against Ralstonia solanacearum under high temperature and high humidity. PLANT, CELL & ENVIRONMENT 2022; 45:459-478. [PMID: 34778967 DOI: 10.1111/pce.14222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Plant diseases generally tend to be more serious under conditions of high temperature and high humidity (HTHH) than under ambient temperature, but plant immunity against pathogen attacks under HTHH remains elusive. Herein, we used pepper as an example to study how Solanaceae cope with Ralstonia solanacearum infection (RSI) under HTHH by performing RNA-seq combined with the reverse genetic method. The result showed that immunities mediated by salicylic acid (SA) and jasmonic acid (JA) in pepper roots were activated by RSI under ambient temperature. However, upon RSI under HTHH, JA signalling was blocked and SA signalling was activated early but its duration was greatly shortened in pepper roots, instead, expression of CaIPT5 and Glutathione S-transferase encoding genes, as well as endogenous content of trans-Zeatin, were enhanced. In addition, by silencing in pepper plants and overexpression in Nicotiana benthamiana, CaIPT5 was found to act positively in the immune response to RSI under HTHH in a way related to CaPRP1 and CaMgst3. Furthermore, the susceptibility of pepper, tomato and tobacco to RSI under HTHH was significantly reduced by exogenously applied tZ, but not by either SA or MeJA. All these data collectively suggest that pepper employs cytokinin-mediated immunity to cope with RSI under HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiwei Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Ruijie Wu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Jianshen Cao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Weiqi Tang
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qiaoling Lu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yu Huang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| |
Collapse
|
14
|
Wang Q, Yang R, Peng W, Yang Y, Ma X, Zhang W, Ji A, Liu L, Liu P, Yan L, Hu X. Tea Plants With Gray Blight Have Altered Root Exudates That Recruit a Beneficial Rhizosphere Microbiome to Prime Immunity Against Aboveground Pathogen Infection. Front Microbiol 2021; 12:774438. [PMID: 34925281 PMCID: PMC8672095 DOI: 10.3389/fmicb.2021.774438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/13/2021] [Indexed: 01/04/2023] Open
Abstract
Tea gray blight disease and its existing control measures have had a negative impact on the sustainable development of tea gardens. However, our knowledge of safe and effective biological control measures is limited. It is critical to explore beneficial microbial communities in the tea rhizosphere for the control of tea gray blight. In this study, we prepared conditioned soil by inoculating Pseudopestalotiopsis camelliae-sinensis on tea seedling leaves. Thereafter, we examined the growth performance and disease resistance of fresh tea seedlings grown in conditioned and control soils. Next, the rhizosphere microbial community and root exudates of tea seedlings infected by the pathogen were analyzed. In addition, we also evaluated the effects of the rhizosphere microbial community and root exudates induced by pathogens on the performance of tea seedlings. The results showed that tea seedlings grown in conditioned soil had lower disease index values and higher growth vigor. Soil microbiome analysis revealed that the fungal and bacterial communities of the rhizosphere were altered upon infection with Ps. camelliae-sinensis. Genus-level analysis showed that the abundance of the fungi Trichoderma, Penicillium, and Gliocladiopsis and the bacteria Pseudomonas, Streptomyces, Bacillus, and Burkholderia were significantly (p < 0.05) increased in the conditioned soil. Through isolation, culture, and inoculation tests, we found that most isolates from the induced microbial genera could inhibit the infection of tea gray blight pathogen and promote tea seedling growth. The results of root exudate analysis showed that infected tea seedlings exhibited significantly higher exudate levels of phenolic acids and flavonoids and lower exudate levels of amino acids and organic acids. Exogenously applied phenolic acids and flavonoids suppressed gray blight disease by regulating the rhizosphere microbial community. In summary, our findings suggest that tea plants with gray blight can recruit beneficial rhizosphere microorganisms by altering their root exudates, thereby improving the disease resistance of tea plants growing in the same soil.
Collapse
Affiliation(s)
- Qiaomei Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China.,Puer Institute of Pu-Erh Tea, Pu'er City, China.,College of Pu'er Tea, West Yunnan University of Applied Sciences, Pu'er City, China
| | - Ruijuan Yang
- Puer Institute of Pu-Erh Tea, Pu'er City, China.,College of Pu'er Tea, West Yunnan University of Applied Sciences, Pu'er City, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenshu Peng
- Puer Institute of Pu-Erh Tea, Pu'er City, China.,College of Pu'er Tea, West Yunnan University of Applied Sciences, Pu'er City, China
| | - Yanmei Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoling Ma
- School of Biological and Chemical Science, Pu'er University, Pu'er City, China
| | - Wenjie Zhang
- Puer Institute of Pu-Erh Tea, Pu'er City, China.,College of Pu'er Tea, West Yunnan University of Applied Sciences, Pu'er City, China
| | - Aibing Ji
- Puer Institute of Pu-Erh Tea, Pu'er City, China.,College of Pu'er Tea, West Yunnan University of Applied Sciences, Pu'er City, China
| | - Li Liu
- Puer Institute of Pu-Erh Tea, Pu'er City, China.,College of Pu'er Tea, West Yunnan University of Applied Sciences, Pu'er City, China
| | - Pei Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Liang Yan
- Puer Institute of Pu-Erh Tea, Pu'er City, China.,College of Pu'er Tea, West Yunnan University of Applied Sciences, Pu'er City, China
| | - Xianqi Hu
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Malacrinò A, Wang M, Caul S, Karley AJ, Bennett AE. Herbivory shapes the rhizosphere bacterial microbiota in potato plants. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:805-811. [PMID: 34427053 DOI: 10.1111/1758-2229.12998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Plant-associated microbiomes assist their host in a variety of activities, spanning from nutrition to defence against herbivores and diseases. Previous research showed that plant-associated microbiomes shift their composition when plants are exposed to stressors, including herbivory. However, existing studies explored only single herbivore-plant combinations, whereas plants are often attacked by several different herbivores, but the effects of multiple herbivore types on the plant microbiome remain to be determined. Here, we first tested whether feeding by different herbivores (aphids, nematodes and slugs) produces a shift in the rhizosphere bacterial microbiota associated with potato plants. Then, we expanded this question asking whether the identity of the herbivore produces different effects on the rhizosphere microbial community. While we found shifts in microbial diversity and structure due to herbivory, we observed that the herbivore identity does not influence the diversity or community structure of bacteria thriving in the rhizosphere. However, a deeper analysis revealed that the herbivores differentially affected the structure of the network of microbial co-occurrences. Our results have the potential to increase our ability to predict how plant microbiomes assemble and aid our understanding of the role of plant microbiome in plant responses to biotic stress.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mingyuan Wang
- Research Center of Horticultural Science and Engineering, Huaqiao University, Xiamen, China
| | - Sandra Caul
- Department of Ecological Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Alison J Karley
- Department of Ecological Sciences, The James Hutton Institute, Dundee, Scotland, UK
| | - Alison E Bennett
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
16
|
Friman J, Karssemeijer PN, Haller J, de Kreek K, van Loon JJ, Dicke M. Shoot and root insect herbivory change the plant rhizosphere microbiome and affects cabbage-insect interactions through plant-soil feedback. THE NEW PHYTOLOGIST 2021; 232:2475-2490. [PMID: 34537968 PMCID: PMC9291931 DOI: 10.1111/nph.17746] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 05/06/2023]
Abstract
Plant-soil feedback (PSF) may influence plant-insect interactions. Although plant defense differs between shoot and root tissues, few studies have examined root-feeding insect herbivores in a PSF context. We examined here how plant growth and resistance against root-feeding Delia radicum larvae was influenced by PSF. We conditioned soil with cabbage plants that were infested with herbivores that affect D. radicum through plant-mediated effects: leaf-feeding Plutella xylostella caterpillars and Brevicoryne brassicae aphids, root-feeding D. radicum larvae, and/or added rhizobacterium Pseudomonas simiae WCS417r. We analyzed the rhizosphere microbial community, and in a second set of conspecific plants exposed to conditioned soil, we assessed growth, expression of defense-related genes, and D. radicum performance. The rhizosphere microbiome differed mainly between shoot and root herbivory treatments. Addition of Pseudomonas simiae did not influence rhizosphere microbiome composition. Plant shoot biomass, gene expression, and plant resistance against D. radicum larvae was affected by PSF in a treatment-specific manner. Soil conditioning overall reduced plant shoot biomass, Pseudomonas simiae-amended soil causing the largest growth reduction. In conclusion, shoot and root insect herbivores alter the rhizosphere microbiome differently, with consequences for growth and resistance of plants subsequently exposed to conditioned soil.
Collapse
Affiliation(s)
- Julia Friman
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Julian Haller
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Kris de Kreek
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Joop J.A. van Loon
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
17
|
Hou S, Wolinska KW, Hacquard S. Microbiota-root-shoot-environment axis and stress tolerance in plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102028. [PMID: 33713892 DOI: 10.1016/j.pbi.2021.102028] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 05/19/2023]
Abstract
Reminiscent to the microbiota-gut-brain axis described in animals, recent advances indicate that plants can take advantage of belowground microbial commensals to orchestrate aboveground stress responses. Integration of plant responses to microbial cues belowground and environmental cues aboveground emerges as a mechanism that promotes stress tolerance in plants. Using recent examples obtained from reductionist and community-level approaches, we discuss the extent to which perception of aboveground biotic and abiotic stresses can cascade along the shoot-root axis to sculpt root microbiota assembly and modulate the growth of root commensals that bolster aboveground stress tolerance. We propose that host modulation of microbiota-root-shoot circuits contributes to phenotypic plasticity and decision-making in plants, thereby promoting adaptation to rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Shiji Hou
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | - Stéphane Hacquard
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
18
|
He B, Chen X, Yang H, Cernava T. Microbiome Structure of the Aphid Myzus persicae (Sulzer) Is Shaped by Different Solanaceae Plant Diets. Front Microbiol 2021; 12:667257. [PMID: 34290679 PMCID: PMC8287905 DOI: 10.3389/fmicb.2021.667257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Myzus persicae (Sulzer) is an important insect pest in agriculture that has a very broad host range. Previous research has shown that the microbiota of insects has implications for their growth, development, and environmental adaptation. So far, there is little detailed knowledge about the factors that influence and shape the microbiota of aphids. In the present study, we aimed to investigate diet-induced changes in the microbiome of M. persicae using high-throughput sequencing of bacterial 16S ribosomal RNA gene fragments in combination with molecular and microbiological experiments. The transfer of aphids to different plants from the Solanaceae family resulted in a substantial decrease in the abundance of the primary symbiont Buchnera. In parallel, a substantial increase in the abundance of Pseudomonas was observed; it accounted for up to 69.4% of the bacterial community in M. persicae guts and the attached bacteriocytes. In addition, we observed negative effects on aphid population dynamics when they were transferred to pepper plants (Capsicum annuum L.). The microbiome of this treatment group showed a significantly lower increase in the abundance of Pseudomonas when compared with the other Solanaceae plant diets, which might be related to the adaptability of the host to this diet. Molecular quantifications of bacterial genera that were substantially affected by the different diets were implemented as an additional verification of the microbiome-based observations. Complementary experiments with bacteria isolated from aphids that were fed with different plants indicated that nicotine-tolerant strains occur in Solanaceae-fed specimens, but they were not restricted to them. Overall, our mechanistic approach conducted under controlled conditions provided strong indications that the aphid microbiome shows responses to different plant diets. This knowledge could be used in the future to develop environmentally friendly methods for the control of insect pests in agriculture.
Collapse
Affiliation(s)
- Baoyu He
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China
| | - Xiaoyulong Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| | - Hong Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, China.,College of Tobacco Science, Guizhou University, Guiyang, China
| | - Tomislav Cernava
- College of Tobacco Science, Guizhou University, Guiyang, China.,Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
19
|
French E, Kaplan I, Enders L. Foliar Aphid Herbivory Alters the Tomato Rhizosphere Microbiome, but Initial Soil Community Determines the Legacy Effects. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.629684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aboveground herbivory can impact the root-associated microbiome, while simultaneously different soil microbial communities influence herbivore performance. It is currently unclear how these reciprocal top-down and bottom-up interactions between plants, insects and microbes vary across different soils and over successive plant generations. In this study, we examined top-down impacts of above-ground herbivory on the rhizosphere microbiome across different soils, assessed bottom-up impacts of soil microbial community variation on herbivore performance, and evaluated their respective contributions to soil legacy effects on herbivore performance. We used Macrosiphum euphorbiae (potato aphid) and Solanum pimpinellifolium (wild tomato) to capture pre-domestication microbiome interactions with a specialist pest. First, using 16S rRNA sequencing we compared bacterial communities associated with rhizospheres of aphid-infested and uninfested control plants grown in three different soils over three time points. High aphid infestation impacted rhizosphere bacterial diversity in a soil-dependent manner, ranging from a 22% decrease to a 21% increase relative to uninfested plants and explained 6–7% of community composition differences in two of three soils. We next investigated bottom-up and soil legacy effects of aphid herbivory by growing wild tomatoes in each of the three soils and a sterilized “no microbiome” soil, infesting with aphids (phase one), then planting a second generation (phase two) of plants in the soil conditioned with aphid-infested or uninfested control plants. In the first phase, aphid performance varied across plants grown in different soil sources, ranging from a 20 to 50% increase in aphid performance compared to the “no microbiome” control soil, demonstrating a bottom-up role for soil microbial community. In the second phase, initial soil community, but not previous aphid infestation, impacted aphid performance on plants. Thus, while herbivory altered the rhizosphere microbiome in a soil community-dependent manner, the bottom-up interaction between the microbial community and the plant, not top-down effects of prior herbivore infestation, affected herbivore performance in the following plant generation. These findings suggest that the bottom-up effects of the soil microbial community play an overriding role in herbivore performance in both current and future plant generations and thus are an important target for sustainable control of herbivory in agroecosystems.
Collapse
|
20
|
Sharifi R, Ryu C. Social networking in crop plants: Wired and wireless cross-plant communications. PLANT, CELL & ENVIRONMENT 2021; 44:1095-1110. [PMID: 33274469 PMCID: PMC8049059 DOI: 10.1111/pce.13966] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 05/03/2023]
Abstract
The plant-associated microbial community (microbiome) has an important role in plant-plant communications. Plants decipher their complex habitat situations by sensing the environmental stimuli and molecular patterns and associated with microbes, herbivores and dangers. Perception of these cues generates inter/intracellular signals that induce modifications of plant metabolism and physiology. Signals can also be transferred between plants via different mechanisms, which we classify as wired- and wireless communications. Wired communications involve direct signal transfers between plants mediated by mycorrhizal hyphae and parasitic plant stems. Wireless communications involve plant volatile emissions and root exudates elicited by microbes/insects, which enable inter-plant signalling without physical contact. These producer-plant signals induce microbiome adaptation in receiver plants via facilitative or competitive mechanisms. Receiver plants eavesdrop to anticipate responses to improve fitness against stresses. An emerging body of information in plant-plant communication can be leveraged to improve integrated crop management under field conditions.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant ProtectionCollege of Agriculture and Natural Resources, Razi UniversityKermanshahIran
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystem and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
21
|
Abstract
A diverse community of microorganisms inhabits various parts of a plant. Recent findings indicate that perturbations to the normal microbiota can be associated with positive and negative effects on plant health. In this review, we discuss these findings in the context of understanding how microbiota homeostasis is regulated in plants for promoting health and/or for preventing dysbiosis.
Collapse
Affiliation(s)
- Bradley C. Paasch
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Howard Hughes Medical Institute, Durham, North Carolina, United States of America
| |
Collapse
|
22
|
Park YS, Ryu CM. Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. Int J Mol Sci 2021; 22:ijms22073319. [PMID: 33805032 PMCID: PMC8037233 DOI: 10.3390/ijms22073319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 01/24/2023] Open
Abstract
Plant association with microorganisms elicits dramatic effects on the local phytobiome and often causes systemic and transgenerational modulation on plant immunity against insect pests and microbial pathogens. Previously, we introduced the concept of the plant social networking system (pSNS) to highlight the active involvement of plants in the recruitment of potentially beneficial microbiota upon exposure to insects and pathogens. Microbial association stimulates the physiological responses of plants and induces the development of their immune mechanisms while interacting with multiple enemies. Thus, beneficial microbes serve as important mediators of interactions among multiple members of the multitrophic, microscopic and macroscopic communities. In this review, we classify the steps of pSNS such as elicitation, signaling, secreting root exudates, and plant protection; summarize, with evidence, how plants and beneficial microbes communicate with each other; and also discuss how the molecular mechanisms underlying this communication are induced in plants exposed to natural enemies. Collectively, the pSNS modulates robustness of plant physiology and immunity and promotes survival potential by helping plants to overcome the environmental and biological challenges.
Collapse
Affiliation(s)
- Yong-Soon Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infection Disease Research Center, KRIBB, Daejeon 34141, Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST) KRIBB School, Daejeon 34141, Korea
- Correspondence:
| |
Collapse
|
23
|
Do microbial protein elicitors PeaT1 obtained from Alternaria tenuissima and PeBL1 from Brevibacillus laterosporus enhance defense response against tomato aphid ( Myzus persicae)? Saudi J Biol Sci 2021; 28:3242-3248. [PMID: 34121861 PMCID: PMC8176006 DOI: 10.1016/j.sjbs.2021.02.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022] Open
Abstract
Tomato aphid (Myzus persicae) is a destructive insect pest of tomato responsible for huge losses in the production as well in the vegetable industry. In the present in vitro study two protein elicitors, PeaT1 and PeBL1 were considered to study their efficacies to exhibit defense response against tomato aphid. Three different concentrations of both protein elicitors were applied on the tomato seedlings. After the application of PeaT1 and PeBL1, population growth rates of tomato aphid were decreased as compared to the control treatment. In host preference assay, the tomato aphid showed a preference to build a colony on the control as compared to the treated tomato plant, because tomato leaves provided hazardous surface for aphid after the formation of wax and trichome. The concentrations of protein showed significant (p < 0.05) results in life-history traits of the aphid. Jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) showed significant accumulation in tomato seedlings treated with PeaT1 and PeBL1. Elicitors treated plants produced resistance against M. persicae. Our finding suggests that PeaT1 and PeBL1 have shown high potentials against the damage of M. persicae, and both elicitors could be used as novel biological tools against tomato aphid.
Collapse
|
24
|
Choi K, Khan R, Lee SW. Dissection of plant microbiota and plant-microbiome interactions. J Microbiol 2021; 59:281-291. [PMID: 33624265 DOI: 10.1007/s12275-021-0619-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Plants rooted in soil have intimate associations with a diverse array of soil microorganisms. While the microbial diversity of soil is enormous, the predominant bacterial phyla associated with plants include Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia. Plants supply nutrient niches for microbes, and microbes support plant functions such as plant growth, development, and stress tolerance. The interdependent interaction between the host plant and its microbes sculpts the plant microbiota. Plant and microbiome interactions are a good model system for understanding the traits in eukaryotic organisms from a holobiont perspective. The holobiont concept of plants, as a consequence of co-evolution of plant host and microbiota, treats plants as a discrete ecological unit assembled with their microbiota. Dissection of plant-microbiome interactions is highly complicated; however, some reductionist approaches are useful, such as the synthetic community method in a gnotobiotic system. Deciphering the interactions between plant and microbiome by this reductionist approach could lead to better elucidation of the functions of microbiota in plants. In addition, analysis of microbial communities' interactions would further enhance our understanding of coordinated plant microbiota functions. Ultimately, better understanding of plantmicrobiome interactions could be translated to improvements in plant productivity.
Collapse
Affiliation(s)
- Kihyuck Choi
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
25
|
Asalf B, Ficke A, Klingen I. Interaction between the Bird Cherry-Oat Aphid ( Rhopalosiphum padi) and Stagonospora Nodorum Blotch ( Parastagonospora nodorum) on Wheat. INSECTS 2021; 12:insects12010035. [PMID: 33418854 PMCID: PMC7825145 DOI: 10.3390/insects12010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The bird cherry-oat aphid and the fungal plant pathogen causing stagonospora nodorum blotch (SNB) are common pests of wheat. Plants are under constant attack by multiple pests and diseases but there are limited studies on the interaction between several pests on wheat. We therefore conducted controlled greenhouse and laboratory experiments to determine how these pests affected each other on a wheat plant. We found that aphid feeding predisposed wheat to fungal disease, but that aphids preferred and reproduced better on leaves that had not been infected by the fungal pathogen. These results are important to understand the interactions between multiple pests on wheat and how to develop new control strategies in future integrated pest management (IPM). Abstract Wheat plants are under constant attack by multiple pests and diseases. Until now, there are no studies on the interaction between the aphid Rhopalosiphum padi and the plant pathogenic fungus Parastagonospora nodorum causal agent of septoria nodorum blotch (SNB) on wheat. Controlled experiments were conducted to determine: (i) The preference and reproduction of aphids on P. nodorum inoculated and non-inoculated wheat plants and (ii) the effect of prior aphid infestation of wheat plants on SNB development. The preference and reproduction of aphids was determined by releasing female aphids on P. nodorum inoculated (SNB+) and non-inoculated (SNB−) wheat leaves. The effect of prior aphid infestation of wheat plants on SNB development was determined by inoculating P. nodorum on aphid-infested (Aphid+) and aphid free (Aphid−) wheat plants. Higher numbers of aphids moved to and settled on the healthy (SNB−) leaves than inoculated (SNB+) leaves, and reproduction was significantly higher on SNB− leaves than on SNB+ leaves. Aphid infestation of wheat plants predisposed the plants to P. nodorum infection and colonization. These results are important to understand the interactions between multiple pests in wheat and hence how to develop new strategies in future integrated pest management (IPM).
Collapse
|
26
|
Lee SM, Kong HG, Song GC, Ryu CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. THE ISME JOURNAL 2021; 15:330-347. [PMID: 33028974 PMCID: PMC7852523 DOI: 10.1038/s41396-020-00785-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/27/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Enrichment of protective microbiota in the rhizosphere facilitates disease suppression. However, how the disruption of protective rhizobacteria affects disease suppression is largely unknown. Here, we analyzed the rhizosphere microbial community of a healthy and diseased tomato plant grown <30-cm apart in a greenhouse at three different locations in South Korea. The abundance of Gram-positive Actinobacteria and Firmicutes phyla was lower in diseased rhizosphere soil (DRS) than in healthy rhizosphere soil (HRS) without changes in the causative Ralstonia solanacearum population. Artificial disruption of Gram-positive bacteria in HRS using 500-μg/mL vancomycin increased bacterial wilt occurrence in tomato. To identify HRS-specific and plant-protective Gram-positive bacteria species, Brevibacterium frigoritolerans HRS1, Bacillus niacini HRS2, Solibacillus silvestris HRS3, and Bacillus luciferensis HRS4 were selected from among 326 heat-stable culturable bacteria isolates. These four strains did not directly antagonize R. solanacearum but activated plant immunity. A synthetic community comprising these four strains displayed greater immune activation against R. solanacearum and extended plant protection by 4 more days in comparison with each individual strain. Overall, our results demonstrate for the first time that dysbiosis of the protective Gram-positive bacterial community in DRS promotes the incidence of disease.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea
| | - Hyun Gi Kong
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 54875, South Korea
| | - Geun Cheol Song
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, 34141, South Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
27
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
28
|
Berlanga-Clavero MV, Molina-Santiago C, de Vicente A, Romero D. More than words: the chemistry behind the interactions in the plant holobiont. Environ Microbiol 2020; 22:4532-4544. [PMID: 32794337 DOI: 10.1111/1462-2920.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/04/2023]
Abstract
Plants and microbes have evolved sophisticated ways to communicate and coexist. The simplest interactions that occur in plant-associated habitats, i.e., those involved in disease detection, depend on the production of microbial pathogenic and virulence factors and the host's evolved immunological response. In contrast, microbes can also be beneficial for their host plants in a number of ways, including fighting pathogens and promoting plant growth. In order to clarify the mechanisms directly involved in these various plant-microbe interactions, we must still deepen our understanding of how these interkingdom communication systems, which are constantly modulated by resident microbial activity, are established and, most importantly, how their effects can span physically separated plant compartments. Efforts in this direction have revealed a complex and interconnected network of molecules and associated metabolic pathways that modulate plant-microbe and microbe-microbe communication pathways to regulate diverse ecological responses. Once sufficiently understood, these pathways will be biotechnologically exploitable, for example, in the use of beneficial microbes in sustainable agriculture. The aim of this review is to present the latest findings on the dazzlingly diverse arsenal of molecules that efficiently mediate specific microbe-microbe and microbe-plant communication pathways during plant development and on different plant organs.
Collapse
Affiliation(s)
- María Victoria Berlanga-Clavero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| |
Collapse
|
29
|
Liu H, Brettell LE, Qiu Z, Singh BK. Microbiome-Mediated Stress Resistance in Plants. TRENDS IN PLANT SCIENCE 2020; 25:733-743. [PMID: 32345569 DOI: 10.1016/j.tplants.2020.03.014] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Plants are subjected to diverse biotic and abiotic stresses in life. These can induce changes in transcriptomics and metabolomics, resulting in changes to root and leaf exudates and, in turn, altering the plant-associated microbial community. Emerging evidence demonstrates that changes, especially the increased abundance of commensal microbes following stresses, can be beneficial for plant survival and act as a legacy, enhancing offspring fitness. However, outstanding questions remain regarding the microbial role in plant defense, many of which may now be answered utilizing a novel synthetic community approach. In this article, building on our current understanding on stress-induced changes in plant microbiomes, we propose a 'DefenseBiome' concept that informs the design and construction of beneficial microbial synthetic communities for improving fundamental understanding of plant-microbial interactions and the development of plant probiotics.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia.
| |
Collapse
|
30
|
He Y, Borrego EJ, Gorman Z, Huang PC, Kolomiets MV. Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize). PHYTOCHEMISTRY 2020; 174:112334. [PMID: 32172019 DOI: 10.1016/j.phytochem.2020.112334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 05/24/2023]
Abstract
Green leaf volatiles (GLVs) and jasmonates (JAs) are the best-characterized groups of fatty acid-derived oxylipin signals that regulate wound-associated defenses. Beyond these two major groups of defense signals, plants produce an array of oxylipins in response to wounding, which possess potent signaling and/or insecticidal activities. In this study, we assessed the relative contribution of JAs and GLVs to wound-induced systemic signaling and the associated regulation of oxylipins in local and systemic tissues of maize (Zea mays). For this, we utilized GLV- and JA-deficient mutants, lox10 single and opr7opr8 double mutants, respectively, and profiled oxylipins in untreated leaves and roots, and in locally wounded and systemic leaves. In contrast to the studies in dicots, no systemic induction of JAs was observed in maize. Instead, a JA precursor, 12-OPDA, as well as ketols and C12/13 oxo-acids derived from 13-lipoxygenases (LOXs), were preferentially induced in both locally wounded and systemic unwounded leaves. Several 9-LOX-derived oxylipins (9-oxylipins) including hydroxides and ketones were also significantly induced locally. JA and JA-isoleucine (JA-Ile) were rapidly induced within 0.5 h, and were followed by a second increase in local tissue 4 h after wounding. GLV-deficient lox10 mutants displayed reduced levels of most 13-oxylipins, and elevated levels of several 9-oxylipins and the a-dioxygenase (DOX) product, 2-HOD. lox10 mutants were completely devoid of C6 volatiles and their C12 counterparts, and greatly decreased in C5 volatiles and their C13 oxo-acid counterparts. Thus, in addition to being the sole LOX isoform providing substrate for GLV synthesis, LOX10 is a major 13-LOX that provides substrate to several LOX branches that produce an array of 13-oxylipin products, including C5 volatiles. Interestingly, the rapid JA and JA-Ile increase at 0.5-2 h post-wounding was only moderately affected by the LOX10 mutation, while significantly reduced levels were observed at 4 h post-wounding. Combined with the previous findings that GLVs activate JA biosynthesis, these results suggest that both LOX10-derived substrates and/or GLVs are involved in the large second phase of JA synthesis proximal to the wound. Analyses of opr7opr8 mutants revealed that wound-induced oxylipin responses were positively regulated by JA signaling. The local and systemic accumulation of SA was not altered in the two mutants. Collectively, our results identified a subset of oxylipins strongly induced in wounded and systemic leaves, but their impact on insect defenses remain elusive. The lack of systemic induction of JAs points to substantial difference between systemic wound responses in studied dicots and maize. Our results show that GLV-deficiency and reduced JA in lox10 mutants had a greater impact on wound-induced local and systemic tissue oxylipin responses compared to the solely JA-deficient opr7opr8 double mutants. This suggests that GLVs or other LOX10-derived products heavily contribute to overall basal and wound-induced oxylipin responses. The specific roles of the GLV- and/or JA-dependent oxylipins in wound responses and defense remain to be further investigated by a combination of multiple orders of oxylipin-deficient mutants.
Collapse
Affiliation(s)
- Yongming He
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA; Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
Zhang KL, Liu QS, Kang HX, Liu XM, Chen XP, Peng YF, Li YH. Herbivore-induced rice resistance against rice blast mediated by salicylic acid. INSECT SCIENCE 2020; 27:49-57. [PMID: 29999564 DOI: 10.1111/1744-7917.12630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
In agro-ecosystems, plants are important mediators of interactions between their associated herbivorous insects and microbes, and any change in plants induced by one species may lead to cascading effects on interactions with other species. Often, such effects are regulated by phytohormones such as jasmonic acid (JA) and salicylic acid (SA). Here, we investigated the tripartite interactions among rice plants, three insect herbivores (Chilo suppressalis, Cnaphalocrocis medinalis or Nilaparvata lugens), and the causal agent of rice blast disease, the fungus Magnaporthe oryzae. We found that pre-infestation of rice by C. suppressalis or N. lugens but not by C. medinalis conferred resistance to M. oryzae. For C. suppressalis and N. lugens, insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves. In contrast, infestation by C. medinalis increased JA levels but reduced SA levels. The exogenous application of SA but not of JA conferred resistance against M. oryzae. These results suggest that pre-infestation by C. suppressalis or N. lugens conferred resistance against M. oryzae by increasing SA accumulation. These findings enhance our understanding of the interactions among rice plant, insects and pathogens, and provide valuable information for developing an ecologically sound strategy for controlling rice blast.
Collapse
Affiliation(s)
- Kai-Li Zhang
- College of Environment and Plant Protection, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing-Song Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Hou-Xiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Mei Liu
- College of Environment and Plant Protection, Hainan University, Haikou, China
| | - Xiu-Ping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu-Fa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun-He Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Javed K, Qiu D. Protein Elicitor PeBL1 of Brevibacillus laterosporus Enhances Resistance Against Myzus persicae in Tomato. Pathogens 2020; 9:pathogens9010057. [PMID: 31947681 PMCID: PMC7168619 DOI: 10.3390/pathogens9010057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Myzus persicae, a destructive aphid of tomato usually managed by chemical pesticides, is responsible for huge annual losses in agriculture. In the current work, a protein elicitor, PeBL1, was investigated for its capacity to induce a defense response against M. persicae in tomato. Population growth rates of M. persicae (second and third generation) decreased with PeBL1 treatments as compared with controls. In a host selection assay, M. persicae showed preference for colonizing control plants as compared to tomato seedlings treated with PeBL1. Tomato leaves treated with PeBL1 gave rise to a hazardous surface environment for M. persicae due to formation of trichomes and wax. Jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) showed significant accumulation in tomato seedlings treated by PeBL1. The following results showed that PeBL1 significantly modified the tomato leaf surface structure to reduce reproduction and deter colonization by M. persicae. Defense processes also included activation of JA, SA, and ET pathways. The study provides evidence for use of PeBL1 in the protection of tomato from M. persicae.
Collapse
|
33
|
Li L, Wang S, Yang X, Francis F, Qiu D. Protein elicitor PeaT1 enhanced resistance against aphid (Sitobion avenae) in wheat. PEST MANAGEMENT SCIENCE 2020; 76:236-243. [PMID: 31149755 DOI: 10.1002/ps.5502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sitobion avenae, a dominant aphid in wheat that causes huge annual losses in agriculture, is mainly controlled using chemical pesticides. In this study, we investigated a protein elicitor, PeaT, for its induction of the defense response in wheat against Sitobion avenae. RESULTS Intrinsic rates of increase in second and third generations of S. avenae decreased in the PeaT1 (second generation 0.31 ± 0.01, third generation 0.28 ± 0.01) treatment compared with controls (second generation 0.28 ± 0.01, third generation 0.26 ± 0.01). S. avenae preferred to colonize control rather than PeaT1-treated wheat seedlings in a host selection test. PeaT1-treated wheat leaves possessed more trichomes and wax that formed a disadvantageous surface environment for S. avenae. Both salicylic acid (SA) and jasmonic acid (JA) accumulated significantly in PeaT1-treated wheat seedlings. CONCLUSION These results showed that PeaT1 modified physical surface structures in wheat to reduce reproduction and deter colonization by S. avenae. SA and JA were involved in the induced physical defense process. This study provided evidence for use of PeaT1 as a 'vaccine' to protect wheat from Sitobion avenae. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiufen Yang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Frederic Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Dewen Qiu
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
34
|
Abstract
Microorganisms colonizing plant surfaces and internal tissues provide a number of life-support functions for their host. Despite increasing recognition of the vast functional capabilities of the plant microbiome, our understanding of the ecology and evolution of the taxonomically hyperdiverse microbial communities is limited. Here, we review current knowledge of plant genotypic and phenotypic traits as well as allogenic and autogenic factors that shape microbiome composition and functions. We give specific emphasis to the impact of plant domestication on microbiome assembly and how insights into microbiomes of wild plant relatives and native habitats can contribute to reinstate or enrich for microorganisms with beneficial effects on plant growth, development, and health. Finally, we introduce new concepts and perspectives in plant microbiome research, in particular how community ecology theory can provide a mechanistic framework to unravel the interplay of distinct ecological processes-i.e., selection, dispersal, drift, diversification-that structure the plant microbiome.
Collapse
Affiliation(s)
- Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Francisco Dini-Andreote
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands;
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; .,Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; .,Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
35
|
Pascale A, Proietti S, Pantelides IS, Stringlis IA. Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. FRONTIERS IN PLANT SCIENCE 2019; 10:1741. [PMID: 32038698 PMCID: PMC6992662 DOI: 10.3389/fpls.2019.01741] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Plants host a mesmerizing diversity of microbes inside and around their roots, known as the microbiome. The microbiome is composed mostly of fungi, bacteria, oomycetes, and archaea that can be either pathogenic or beneficial for plant health and fitness. To grow healthy, plants need to surveil soil niches around the roots for the detection of pathogenic microbes, and in parallel maximize the services of beneficial microbes in nutrients uptake and growth promotion. Plants employ a palette of mechanisms to modulate their microbiome including structural modifications, the exudation of secondary metabolites and the coordinated action of different defence responses. Here, we review the current understanding on the composition and activity of the root microbiome and how different plant molecules can shape the structure of the root-associated microbial communities. Examples are given on interactions that occur in the rhizosphere between plants and soilborne fungi. We also present some well-established examples of microbiome harnessing to highlight how plants can maximize their fitness by selecting their microbiome. Understanding how plants manipulate their microbiome can aid in the design of next-generation microbial inoculants for targeted disease suppression and enhanced plant growth.
Collapse
Affiliation(s)
- Alberto Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Iakovos S. Pantelides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| | - Ioannis A. Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Iakovos S. Pantelides, ; Ioannis A. Stringlis,
| |
Collapse
|
36
|
Lombardi N, Vitale S, Turrà D, Reverberi M, Fanelli C, Vinale F, Marra R, Ruocco M, Pascale A, d'Errico G, Woo SL, Lorito M. Root Exudates of Stressed Plants Stimulate and Attract Trichoderma Soil Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:982-994. [PMID: 29547355 DOI: 10.1094/mpmi-12-17-0310-r] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant roots release complex mixtures of bioactive molecules, including compounds that affect the activity and modify the composition of the rhizosphere microbiome. In this work, we investigated the initial phase of the interaction between tomato and an effective biocontrol strain of Trichoderma harzianum (T22). We found that root exudates (RE), obtained from plants grown in a split-root system and exposed to various biotic and abiotic stress factors (wounding, salt, pathogen attack), were able to stimulate the growth and act as chemoattractants of the biocontrol fungus. On the other hand, some of the treatments did not result in an enhanced chemotropism on Fusarium oxysporum f. sp. lycopersici, indicating a mechanism that may be selective for nonpathogenic microbes. The involvement of peroxidases and oxylipins, both known to be released by roots in response to stress, was demonstrated by using RE fractions containing these molecules or their commercial purified analogs, testing the effect of an inhibitor, and characterizing the complex pattern of these metabolites released by tomato roots both locally and systemically.
Collapse
Affiliation(s)
- Nadia Lombardi
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| | - Stefania Vitale
- 3 Departamento de Genetica, Facultad de Ciencias, Campus Rabanales 14071 Córdoba, Spain
| | - David Turrà
- 3 Departamento de Genetica, Facultad de Ciencias, Campus Rabanales 14071 Córdoba, Spain
| | - Massimo Reverberi
- 4 Dipartimento di Biologia Ambientale, Università la Sapienza, 00185 Roma, Italy; and
| | - Corrado Fanelli
- 4 Dipartimento di Biologia Ambientale, Università la Sapienza, 00185 Roma, Italy; and
| | - Francesco Vinale
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
| | - Roberta Marra
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| | - Michelina Ruocco
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
| | - Alberto Pascale
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| | - Giada d'Errico
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
| | - Sheridan L Woo
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
- 5 Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Matteo Lorito
- 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche
- 2 Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici (NA), Italy
| |
Collapse
|
37
|
O’Brien FJM, Dumont MG, Webb JS, Poppy GM. Rhizosphere Bacterial Communities Differ According to Fertilizer Regimes and Cabbage ( Brassica oleracea var. capitata L.) Harvest Time, but Not Aphid Herbivory. Front Microbiol 2018; 9:1620. [PMID: 30083141 PMCID: PMC6064718 DOI: 10.3389/fmicb.2018.01620] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere microbial communities are known to be highly diverse and strongly dependent on various attributes of the host plant, such as species, nutritional status, and growth stage. High-throughput 16S rRNA gene amplicon sequencing has been used to characterize the rhizosphere bacterial community of many important crop species, but this is the first study to date to characterize the bacterial and archaeal community of Brassica oleracea var. capitata. The study also tested the response of the bacterial community to fertilizer type (organic or synthetic) and N dosage (high or low), in addition to plant age (9 or 12 weeks) and aphid (Myzus persicae) herbivory (present/absent). The impact of aboveground herbivory on belowground microbial communities has received little attention in the literature, and since the type (organic or mineral) and amount of fertilizer applications are known to affect M. percicae populations, these treatments were applied at agricultural rates to test for synergistic effects on the soil bacterial community. Fertilizer type and plant growth were found to result in significantly different rhizosphere bacterial communities, while there was no effect of aphid herbivory. Several operational taxonomic units were identified as varying significantly in abundance between the treatment groups and age cohorts. These included members of the S-oxidizing genus Thiobacillus, which was significantly more abundant in organically fertilized 12-week-old cabbages, and the N-fixing cyanobacteria Phormidium, which appeared to decline in synthetically fertilized soils relative to controls. These responses may be an effect of accumulating root-derived glucosinolates in the B. oleracea rhizosphere and increased N-availability, respectively.
Collapse
Affiliation(s)
- Flora J. M. O’Brien
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- NIAB EMR, East Malling, United Kingdom
| | - Marc G. Dumont
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeremy S. Webb
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Guy M. Poppy
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
38
|
Lee HR, Lee S, Park S, van Kleeff PJM, Schuurink RC, Ryu CM. Transient Expression of Whitefly Effectors in Nicotiana benthamiana Leaves Activates Systemic Immunity Against the Leaf Pathogen Pseudomonas syringae and Soil-Borne Pathogen Ralstonia solanacearum. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
39
|
McKinnon AC, Glare TR, Ridgway HJ, Mendoza-Mendoza A, Holyoake A, Godsoe WK, Bufford JL. Detection of the Entomopathogenic Fungus Beauveria bassiana in the Rhizosphere of Wound-Stressed Zea mays Plants. Front Microbiol 2018; 9:1161. [PMID: 29942287 PMCID: PMC6004820 DOI: 10.3389/fmicb.2018.01161] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
Entomopathogenic fungi from the genus Beauveria (Vuillemin) play an important role in controlling insect populations and have been increasingly utilized for the biological control of insect pests. Various studies have reported that Beauveria bassiana (Bals.), Vuill. also has the ability to colonize a broad range of plant hosts as endophytes without causing disease but while still maintaining the capacity to infect insects. Beauveria is often applied as an inundative spore application, but little research has considered how plant colonization may alter the ability to persist in the environment. The aim of this study was to investigate potential interactions between B. bassiana and Zea mays L. (maize) in the rhizosphere following inoculation, in order to understand the factors that may affect environmental persistence of the fungi. The hypothesis was that different isolates of B. bassiana have the ability to colonize maize roots and/or rhizosphere soil, resulting in effects to the plant microbiome. To test this hypothesis, a two-step nested PCR protocol was developed to find and amplify Beauveria in planta or in soil; based on the translation elongation factor 1-alpha (ef1α) gene. The nested protocol was also designed to enable Beauveria species differentiation by sequence analysis. The impact of three selected B. bassiana isolates applied topically to roots on the rhizosphere soil community structure and function were consequently assessed using denaturing gradient gel electrophoresis (DGGE) and MicroRespTM techniques. The microbial community structure and function were not significantly affected by the presence of the isolates, however, retention of the inocula in the rhizosphere at 30 days after inoculation was enhanced when plants were subjected to intensive wounding of foliage to crudely simulate herbivory. The plant defense response likely changed under wound stress resulting in the apparent recruitment of Beauveria in the rhizosphere, which may be an indirect defensive strategy against herbivory and/or the result of induced systemic susceptibility in maize enabling plant colonization.
Collapse
Affiliation(s)
- Aimee C McKinnon
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| | - Hayley J Ridgway
- The New Zealand Institute for Plant & Food Research Limited, Christchurch, New Zealand
| | | | - Andrew Holyoake
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| | - William K Godsoe
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| | - Jennifer L Bufford
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
40
|
Geng LL, Shao GX, Raymond B, Wang ML, Sun XX, Shu CL, Zhang J. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiol Res 2018; 211:13-20. [PMID: 29705202 DOI: 10.1016/j.micres.2018.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/04/2018] [Accepted: 02/25/2018] [Indexed: 11/28/2022]
Abstract
Rhizosphere microorganisms contribute to the health and development of crops and these beneficial microbes are recruited to the root-zone when plants experience biotic/abiotic stress. The subterranean pests Holotrichia parallela cause severe crop loss in peanut (Arachis hypogaea L.) fields. Hypothesizing that infestation by H. parallela larva may influence the composition of rhizosphere microbial communities, deep sequencing of V3 and V4 hypervariable regions of 16S rRNA gene was used to characterize the rhizosphere bacteria of infested and uninfested peanuts. A total of 2,673,656 reads were generated and an average of 2558 OTUs were obtained for each sample. Comparisons of rhizosphere bacterial community structure of peanuts with those infested by H. parallela larva revealed that the relative abundance of Proteobacteria and Bacteroidetes increased, while that of Actinobacteria decreased in the rhizosphere with infestation. A significant shift in bacterial communities was observed within 24 h after infestation by principal coordinate analysis. For the 332 genera identified in 24 h treatment, infestation of white grubs led to the significant changes of abundance of 67 genera. An increase in the Pseudomonas genus of infested-samples for 24 h was verified by real-time qPCR. Our results indicate H. parallela larvae infestation can quickly leads to the change of peanut rhizosphere microbiome and enrichment of specific bacterial species. But the effects were not persistent. This study provides the insight into the function of rhizosphere microbiome in the interaction between subterranean pests and crops.
Collapse
Affiliation(s)
- Li-Li Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gao-Xiang Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ben Raymond
- College of Life and Environmental Science, Penryn campus, University of Exeter, Penryn, TR10 9FE, UK
| | - Mei-Ling Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Xiao Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chang-Long Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
41
|
Li C, Yu J, Gan L, Sun J, Wang C, Wang Q, Chen S, Yang Y. Effects of Tobacco Pathogens and Their Antagonistic Bacteria on Tobacco Root Exudates. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ojapps.2018.811042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Li P, Shu YN, Fu S, Liu YQ, Zhou XP, Liu SS, Wang XW. Vector and nonvector insect feeding reduces subsequent plant susceptibility to virus transmission. THE NEW PHYTOLOGIST 2017; 215:699-710. [PMID: 28382644 DOI: 10.1111/nph.14550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/26/2017] [Indexed: 06/07/2023]
Abstract
The interactions of vector-virus-plant have important ecological and evolutionary implications. While the tripartite interactions have received some attention, little is known about whether vector infestation affects subsequent viral transmission and infection. Working with the whitefly Bemisia tabaci, begomovirus and tobacco/tomato, we demonstrate that pre-infestation of plants by the whitefly vector reduced subsequent plant susceptibility to viral transmission. Pre-infestation by the cotton bollworm, a nonvector of the virus, likewise repressed subsequent viral transmission. The two types of insects, with piercing and chewing mouthparts, respectively, activated different plant signaling pathways in the interactions. Whitefly pre-infestation activated the salicylic acid (SA) signaling pathway, leading to deposition of callose that inhibited begomovirus replication/movement. Although cotton bollworm infestation elicited the jasmonic acid (JA) defense pathway and was beneficial to virus replication, the pre-infested plants repelled whiteflies from feeding and so decreased virus transmission. Experiments using a pharmaceutical approach with plant hormones or a genetic approach using hormone transgenic or mutant plants further showed that SA played a negative but JA played a positive role in begomovirus infection. These novel findings indicate that both vector and nonvector insect feeding of a plant may have substantial negative consequences for ensuing viral transmission and infection.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Ni Shu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuai Fu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
43
|
Lee G, Lee SH, Kim KM, Ryu CM. Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Sci Rep 2017; 7:39432. [PMID: 28071648 PMCID: PMC5223187 DOI: 10.1038/srep39432] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Yeast associates with many plant parts including the phyllosphere, where it is subject to harsh environmental conditions. Few studies have reported on biological control of foliar pathogens by yeast. Here, we newly isolated leaf-colonizing yeasts from leaves of field-grown pepper plants in a major pepper production area of South Korea. The yeast was isolated using semi-selective medium supplemented with rifampicin to inhibit bacterial growth and its disease control capacity against Xanthomonas axonopodis infection of pepper plants in the greenhouse was evaluated. Of 838 isolated yeasts, foliar spray of Pseudozyma churashimaensis strain RGJ1 at 108 cfu/mL conferred significant protection against X. axonopodis and unexpectedly against Cucumber mosaic virus, Pepper mottle virus, Pepper mild mottle virus, and Broad bean wilt virus under field conditions. Direct antagonism between strain RGJ1 and X. axonopodis was not detected from co-culture assays, suggesting that disease is suppressed via induced resistance. Additional molecular analysis of the induced resistance marker genes Capsicum annuum Pathogenesis-Related (CaPR) 4 and CaPR5 indicated that strain RGJ1 elicited plant defense priming. To our knowledge, this study is the first report of plant protection against bacterial and viral pathogens mediated by a leaf-colonizing yeast and has potential for effective disease management in the field.
Collapse
Affiliation(s)
- Gahyung Lee
- Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 305-806, South Korea
| | - Sang-Heon Lee
- Microbial Resource Center, KRIBB, Jeongeup 56212, South Korea
- Department of Bioinformatics, University of Science and Technology (UST), Daejeon 34141, South Korea
| | - Kyung Mo Kim
- Microbial Resource Center, KRIBB, Jeongeup 56212, South Korea
- Department of Bioinformatics, University of Science and Technology (UST), Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 305-806, South Korea
- Biosystems and Bioengineering Program, School of Science, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
44
|
Müller DB, Vogel C, Bai Y, Vorholt JA. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu Rev Genet 2016; 50:211-234. [DOI: 10.1146/annurev-genet-120215-034952] [Citation(s) in RCA: 408] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel B. Müller
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Christine Vogel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| |
Collapse
|
45
|
Lee GH, Ryu CM. Spraying of Leaf-Colonizing Bacillus amyloliquefaciens Protects Pepper from Cucumber mosaic virus. PLANT DISEASE 2016; 100:2099-2105. [PMID: 30682996 DOI: 10.1094/pdis-03-16-0314-re] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Beneficial plant-associated bacteria protect host plants against pathogens, including viruses. However, leaf-associated (phyllosphere) bacteria have rarely been investigated as potential triggers of plant systemic defense against plant viruses. We found that leaf-colonizing Bacillus amyloliquefaciens strain 5B6 (isolated from a cherry tree leaf) protected Nicotiana benthamiana and pepper plants against Cucumber mosaic virus (CMV). In a field trial, treatment with strain 5B6 significantly reduced the relative contents of CMV coat protein RNA compared with the water control over a 3-year period, as revealed by quantitative reverse-transcription polymerase chain reaction. The expression of Capsicum annuum pathogenesis-related (PR) genes CaPR4, CaPR5, and CaPR10 was upregulated in field-grown pepper plants treated with strain 5B6. In addition, the accumulation of two naturally occurring viruses, Broad bean wilt virus and Pepper mottle virus, was reduced by foliar treatment with strain 5B6, which is similar to the results for benzothiadiazole treatment as a positive control. Taken together, the results suggest that strain 5B6 has strong potential for protecting plants against viruses by increasing defense priming of salicylic acid and jasmonic acid signaling in pepper under field conditions. This is the first report of the protection of a plant against viral diseases by foliar application of leaf-associated bacilli.
Collapse
Affiliation(s)
- Ga Hyung Lee
- Molecular Phytobacteriology Laboratory, Super-Bacteria Research Center, KRIBB, Daejeon 305-806, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Super-Bacteria Research Center, KRIBB, Daejeon 305-806, South Korea, and Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-350, South Korea
| |
Collapse
|
46
|
Kong HG, Kim BK, Song GC, Lee S, Ryu CM. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota. Front Microbiol 2016; 7:1314. [PMID: 27656163 PMCID: PMC5013075 DOI: 10.3389/fmicb.2016.01314] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. Infestation from phloem-sucking insects such as whitefly and aphid on plant leaves was previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1-V3 region) by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation, and the fluorescent Pseudomonas spp. recruited to the rhizosphere were confirmed to exhibit insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly infested plant rhizosphere. Our results indicate that whitefly infestation leads to the recruitment of specific groups of rhizosphere bacteria by the plant, which confer beneficial traits to the host plant. This study provides a new framework for investigating how aboveground insect feeding modulates the belowground microbiome.
Collapse
Affiliation(s)
- Hyun G. Kong
- Molecular Phytobacteriology Laboratory, Super-Bacteria Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | | | - Geun C. Song
- Molecular Phytobacteriology Laboratory, Super-Bacteria Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Super-Bacteria Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Super-Bacteria Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
| |
Collapse
|
47
|
Biere A, Goverse A. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:499-527. [PMID: 27359367 DOI: 10.1146/annurev-phyto-080615-100245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment-induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.
Collapse
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708 PB Wageningen, The Netherlands;
| | - Aska Goverse
- Lab of Nematology, Department of Plant Sciences, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
48
|
Yi HS, Ahn YR, Song GC, Ghim SY, Lee S, Lee G, Ryu CM. Impact of a Bacterial Volatile 2,3-Butanediol on Bacillus subtilis Rhizosphere Robustness. Front Microbiol 2016; 7:993. [PMID: 27446033 PMCID: PMC4923110 DOI: 10.3389/fmicb.2016.00993] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/09/2016] [Indexed: 12/16/2022] Open
Abstract
Volatile compounds, such as short chain alcohols, acetoin, and 2,3-butanediol, produced by certain strains of root-associated bacteria (rhizobacteria) elicit induced systemic resistance in plants. The effects of bacterial volatile compounds (BVCs) on plant and fungal growth have been extensively studied; however, the impact of bacterial BVCs on bacterial growth remains poorly understood. In this study the effects of a well-characterized bacterial volatile, 2,3-butanediol, produced by the rhizobacterium Bacillus subtilis, were examined in the rhizosphere. The nature of 2,3-butanediol on bacterial cells was assessed, and the effect of the molecule on root colonization was also determined. Pepper roots were inoculated with three B. subtilis strains: the wild type, a 2,3-butanediol overexpressor, and a 2,3-butanediol null mutant. The B. subtilis null strain was the first to be eliminated in the rhizosphere, followed by the wild-type strain. The overexpressor mutant was maintained at roots for the duration of the experiment. Rhizosphere colonization by a saprophytic fungus declined from 14 days post-inoculation in roots treated with the B. subtilis overexpressor strain. Next, exudates from roots exposed to 2,3-butanediol were assessed for their impact on fungal and bacterial growth in vitro. Exudates from plant roots pre-treated with the 2,3-butanediol overexpressor were used to challenge various microorganisms. Growth was inhibited in a saprophytic fungus (Trichoderma sp.), the 2,3-butanediol null B. subtilis strain, and a soil-borne pathogen, Ralstonia solanacearum. Direct application of 2,3-butanediol to pepper roots, followed by exposure to R. solanacearum, induced expression of Pathogenesis-Related (PR) genes such as CaPR2, CaSAR8.2, and CaPAL. These results indicate that 2,3-butanediol triggers the secretion of root exudates that modulate soil fungi and rhizosphere bacteria. These data broaden our knowledge regarding bacterial volatiles in the rhizosphere and their roles in bacterial fitness and as important inducers of plant defenses.
Collapse
Affiliation(s)
- Hwe-Su Yi
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, DaejeonSouth Korea; School of Life Science, Kyungpook National University, DaeguSouth Korea
| | - Yeo-Rim Ahn
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, DaejeonSouth Korea; Department of Biological Science, Korea Advanced Institute of Science and Technology, DaejeonSouth Korea
| | - Geun C Song
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon South Korea
| | - Sa-Youl Ghim
- School of Life Science, Kyungpook National University, Daegu South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon South Korea
| | - Gahyung Lee
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Daejeon South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, DaejeonSouth Korea; Biosystems and Bioengineering Program, School of Science, University of Science and Technology, DaejeonSouth Korea
| |
Collapse
|
49
|
Nam HS, Yang HJ, Oh BJ, Anderson AJ, Kim YC. Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae. THE PLANT PATHOLOGY JOURNAL 2016; 32:273-80. [PMID: 27298603 PMCID: PMC4892824 DOI: 10.5423/ppj.nt.12.2015.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 05/23/2023]
Abstract
Most biocontrol agents for plant diseases have been isolated from sources such as soils and plants. As an alternative source, we examined the feces of tertiary larvae of the herbivorous rhino beetle, Allomyrina dichotoma for presence of biocontrol-active microbes. The initial screen was performed to detect antifungal activity against two common fungal plant pathogens. The strain with strongest antifungal activity was identified as Bacillus amyloliquefaciens KB3. The inhibitory activity of this strain correlated with lipopeptide productions, including iturin A and surfactin. Production of these surfactants in the KB3 isolate varied with the culture phase and growth medium used. In planta biocontrol activities of cell-free culture filtrates of KB3 were similar to those of the commercial biocontrol agent, B. subtilis QST-713. These results support the presence of microbes with the potential to inhibit fungal growth, such as plant pathogens, in diverse ecological niches.
Collapse
Affiliation(s)
- Hyo-Song Nam
- Jeonnam Bioindustry Foundation, BioControl Research Center, Gokseong 57510,
Korea
| | - Hyun-Ju Yang
- Jeonnam Bioindustry Foundation, BioControl Research Center, Gokseong 57510,
Korea
| | - Byung Jun Oh
- Jeonnam Bioindustry Foundation, BioControl Research Center, Gokseong 57510,
Korea
| | - Anne J. Anderson
- Department of Biology, Utah State University, Logan, UT 843220-5305,
USA
| | - Young Cheol Kim
- Institute of Environmentally-Friendly Agriculture, Jeonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
50
|
Lareen A, Burton F, Schäfer P. Plant root-microbe communication in shaping root microbiomes. PLANT MOLECULAR BIOLOGY 2016; 90:575-87. [PMID: 26729479 PMCID: PMC4819777 DOI: 10.1007/s11103-015-0417-8] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/01/2015] [Indexed: 05/02/2023]
Abstract
A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production.
Collapse
Affiliation(s)
- Andrew Lareen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Frances Burton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|