1
|
Büntgen U, Jandova V, Dolezal J. Highest Occurring Vascular Plants from Ladakh Provide Wood Anatomical Evidence for a Thermal Limitation of Cell Wall Lignification. PLANT, CELL & ENVIRONMENT 2025; 48:1445-1451. [PMID: 39449249 PMCID: PMC11695796 DOI: 10.1111/pce.15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
As an evolutionary achievement of almost all terrestrial plants, lignin biosynthesis is essential for various mechanical and physiological processes. Possible effects of plant cell wall lignification on large-scale vegetation distribution are, however, not yet fully understood. Here, we present double-stained, wood anatomical stem measurements of 207 perennial herbs (Potentilla pamirica Wolf), which were collected between 5550 and 5850 m asl on the north-western Tibetan Plateau in Ladakh, India. We also measured changes in situ root zone and surface air temperatures along the sampling gradient and applied piecewise structural equation models to assess direct and indirect relationships between the age and size of plants, the degree of cell wall lignification in their stems, and the elevation at which they were growing. Based on the world's highest-occurring vascular plants, the Pamir Cinquefoils, we demonstrate that the amount of lignin in the secondary cell walls decreases significantly with increasing elevation (r = -0.73; p < 0.01). Since elevation is a proxy for temperature, our findings suggest a thermal constrain on lignin biosynthesis at the cold range limit of woody plant growth.
Collapse
Affiliation(s)
- Ulf Büntgen
- Department of GeographyUniversity of CambridgeCambridgeUK
- Global Change Research Institute (CzechGlobe), Czech Academy of SciencesBrnoCzech Republic
- Department of Geography, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Veronika Jandova
- Institute of Botany, Czech Academy of SciencesPruhoniceCzech Republic
- Department of Botany, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Jiri Dolezal
- Institute of Botany, Czech Academy of SciencesPruhoniceCzech Republic
- Department of Botany, Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| |
Collapse
|
2
|
Wang L, Sun G, Wang J, Zhu H, Wu Y. Systematic characterization of cinnamyl alcohol dehydrogenase members revealed classification and function divergence in Haplomitrium mnioides. JOURNAL OF PLANT RESEARCH 2025; 138:173-187. [PMID: 39609336 DOI: 10.1007/s10265-024-01601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) is considered to be a key enzyme in lignin biosynthesis, which can catalyze cinnamyl aldehyde to produce cinnamyl alcohol. In this study, three putative CADs were characterized from the liverwort Haplomitrium mnioides. The sequence alignment and phylogenetic analysis revealed that HmCADs belonged to a multigene family, with three HmCADs belonging to class II, class III, and class IV, respectively. In vitro enzymatic studies demonstrated that HmCAD2 exhibited high affinity and catalytic activity towards five cinnamyl aldehydes, followed by HmCAD3 with poor catalytic activity, and HmCAD1 catalyzed only the reaction of p-coumaryl aldehyde and coniferyl aldehyde with extremely low catalytic capacity. Protein-substrate binding simulations were performed to investigate the differences in catalytic activity exhibited when proteins catalyzed different substrates. Furthermore, distinct expression patterns of three HmCADs were identified in different plant tissues. Subcellular localization tests confirmed that HmCAD1/2/3 was located in the cytoplasm. The simulated responses of HmCADs to different stresses showed that HmCAD1 played a positive role in coping with each stress, while HmCAD2/3 was weak. These findings demonstrate the diversity of CADs in liverwort, highlight the divergent role of HmCAD1/2/3 in substrate catalysis, and also suggest their possible involvement in stress response, thereby providing new insights into CAD evolution while emphasizing their potential distinctive and collaborative contributions to the normal growth of primitive liverworts.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Guohui Sun
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Jia Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Hongyang Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yifeng Wu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Chen XM, Mou ZL, Zhao YT, Su XG, Han YC, Chen HJ, Wei W, Shan W, Kuang JF, Lu WJ, Chen JY. Modified atmosphere packaging maintains stem quality of Chinese flowering cabbage by restraining postharvest lignification and ROS accumulation. Food Chem X 2024; 24:102006. [PMID: 39655218 PMCID: PMC11626741 DOI: 10.1016/j.fochx.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
In this study, the impact of modified atmosphere packaging (MAP) on quality, lignin biosynthesis, reactive oxygen species (ROS) metabolism, and microstructures of stem in Chinese flowering cabbages was investigated. Compared with control, MAP treatment retained higher content of protein, total soluble solid, and vitamin C, while lower weight loss rate, carbon dioxide (CO2) production rate, electrolyte leakage, firmness and hollowing of stems. Lignin content in MAP-treated stems was 1.23-fold higher than that of control stems on the twelfth day. Moreover, MAP treatment inhibited the increasing in cell wall thickness by inhibiting activities of lignin biosynthesis-related enzymes. In addition, MAP suppressed ROS contents, while enhanced levels of ascorbic acid and reduced glutathione through promoting activities of antioxidant enzymes. The above results suggest that maintaining stems quality of Chinese flowering cabbages through MAP treatment is related to prevent lignin accumulation around the vascular tissue and enhance antioxidant capacity.
Collapse
Affiliation(s)
- Xue-mei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-liang Mou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ya-ting Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin-guo Su
- Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Yan-chao Han
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hang-jun Chen
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Guangdong Vegetables Engineering Research Center/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Kirakosyan RN, Kalasnikova EA, Bolotina EA, Saleh A, Balakina AA, Zaytseva SM. Localization of Secondary Metabolites in Relict Gymnosperms of the Genus Sequoia In Vivo and in Cell Cultures In Vitro, and the Biological Activity of Their Extracts. Life (Basel) 2024; 14:1694. [PMID: 39768400 PMCID: PMC11680049 DOI: 10.3390/life14121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In order to scientifically search for new sources of secondary metabolites with valuable qualities for phytopharmacognosy, tasks requiring a step-by-step solution were set. The primary task is the development of technologies for obtaining in vitro highly productive biomass of cells of relict gymnosperms of the genus Sequoia, capable of accumulating various classes of secondary metabolites. The study of the accumulation and localization of secondary metabolites allowed us to evaluate the biological activity and cytotoxicity of in vitro Sequoia cultures. In our study, histochemical methods were used to determine the localization of secondary compounds (phenolic and terpenoid in nature) in plant tissues. Secondary metabolites-polyphenols, catechins, and terpenoids-are mainly localized in the epidermal, parenchymal, and conductive tissues of Sequoia leaves and stems. In callus and suspension cultures of Sequoia, secondary metabolites were localized in cell walls and vacuoles. The mineral composition of the nutrient medium (MS and WPM), the light source (photoperiod), and the endogenous content of polyphenols in the primary explant influenced the initiation and growth characteristics of the in vitro culture of Sequoia plants. Inhibition of growth in suspension cultures on the WPM nutrient medium was noted. The cultivation of Sequoia cell lines at a 16 h photoperiod stimulated the formation of polyphenols but had a negative effect on the growth of callus cultures. Extractive substances obtained from intact and callus tissues of evergreen Sequoia demonstrate high biological (fungicidal) activity and cytotoxicity. The inhibitory effect on Fusarium oxisporum was noted when 200 mg/L of Sequoia extract was added to the nutrient medium. Extracts of redwood callus cultures were low in toxicity to normal FetMSC cells but inhibited the growth of lines of "immortal" cervical HeLa cancer cells and human glioblastoma A172. Intact tissues of Sequoia plants and cell cultures initiated from them in vitro are producers of secondary metabolites with high biological activity.
Collapse
Affiliation(s)
- Rima N. Kirakosyan
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elena A. Kalasnikova
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Elizaveta A. Bolotina
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Abdulrahman Saleh
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| | - Anastasiya A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science, Ac. Semenov Avenue 1, Moscow Region, Chernogolovka, Moscow 142432, Russia;
| | - Svetlana M. Zaytseva
- Department of Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127434, Russia; (E.A.K.); (E.A.B.); (A.S.)
| |
Collapse
|
5
|
Maeda N, Aoki D, Fujiyasu S, Matsushita Y, Yoshida M, Hiraide H, Mitsuda H, Tobimatsu Y, Fukushima K. The distribution of monolignol glucosides coincides with lignification during the formation of compression wood in Pinus thunbergii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39673723 DOI: 10.1111/tpj.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
The distributions of monolignol glucosides (MLGs) in compression and opposite woods of Pinus thunbergii were assessed using cryo-time-of-flight secondary ion mass spectrometry to investigate their involvement in lignification. p-Glucocoumaryl alcohol (PG) was identified in the region of the differentiating xylem adjacent to the cambial zone only in compression wood, whereas coniferin (CF) was similarly localized in both compression and opposite woods. Their distribution from the phloem to the xylem was evaluated by high-performance liquid chromatography (HPLC) using serial tangential sections. Variations in storage amounts of CF and PG in the stem of P. thunbergii agreed with lignification stages of the tracheid, supporting the idea that MLGs act as a storage and transportation form of lignin precursors. The imaging of monolignol (ML)-dependent active lignification sites using fluorescence-tagged MLs supported distinct distribution patterns of MLGs for lignification in compression and opposite woods. Methylation-thioacidolysis was applied to compression and opposite wood samples to examine the structural difference between the guaiacyl (G) and p-hydroxyphenyl (H) units in lignin. Most of the H units in compression wood were detected as lignin end groups via thioacidolysis. PG was detected in opposite wood by HPLC; however, the H unit was not detected by thioacidolysis. The differences in ML and MLG distributions, enzyme activity, and resultant lignin structures between the G and H units suggest the possibility of individual mechanisms regulating the heterogeneous structures of G and H unit in lignin.
Collapse
Affiliation(s)
- Naoki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Syunya Fujiyasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yasuyuki Matsushita
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hideto Hiraide
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hayato Mitsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
6
|
Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. PLANT COMMUNICATIONS 2024; 5:101077. [PMID: 39233441 PMCID: PMC11671766 DOI: 10.1016/j.xplc.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.
Collapse
Affiliation(s)
- Yichen Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Guang Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yiming Zang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou City, Gansu Province 730070, China
| | - Wei Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Miaomiao Zhao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yikeng Cheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Shunda Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wenhao Yan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Hailiang Mao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Handong Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Ravi P Singh
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China; International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| | - Qiang Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| | - Caixia Lan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| |
Collapse
|
7
|
Sonkar K, Singh A. Metabolic and physiological functions of Patatin-like phospholipase-A in plants. Int J Biol Macromol 2024; 287:138474. [PMID: 39645102 DOI: 10.1016/j.ijbiomac.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Patatin-like phospholipase-A (pPLA) is a class of lipid acyl hydrolase enzymes found in both, the animal and plant kingdoms. Plant pPLAs are related to the potato tuber storage protein patatin in solanaceous plants. Despite extensive investigation of pPLA functions in the animal system, the mechanistic functional details and regulatory roles of pPLA are poorly understood in plants. In recent years, research pertaining to pPLAs has gain some momentum as some of the key members of pPLA family have been characterized functionally. These findings have provided key insights into the structural features, biochemical activities, and functional roles of plant pPLAs. In this review, we are presenting a holistic overview of pPLAs in plants and providing the latest updates on pPLA research. We have highlighted the genomic diversity and structural features of pPLAs in plants. Importantly, we have discussed the role of pPLAs in lipid metabolism, including sphingolipid metabolism, lignin and cellulose accumulation, lipid breakdown and seed oil content enhancement. Moreover, regulatory roles of pPLAs in physiological processes, such as plant stress response, plant-pathogen interactions and plant development have been discussed. This information will be critical in the biotechnological programs for crop improvement.
Collapse
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant genome Research, New Delhi 110067, India.
| |
Collapse
|
8
|
Yamamoto S, Afifi OA, Lam LPY, Takeda-Kimura Y, Osakabe Y, Osakabe K, Bartley LE, Umezawa T, Tobimatsu Y. Disruption of aldehyde dehydrogenase decreases cell wall-bound p-hydroxycinnamates and improves cell wall digestibility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2828-2845. [PMID: 39569987 DOI: 10.1111/tpj.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
In grass cell walls, ferulic acid (FA) serves as an important cross-linker between cell wall polymers, such as arabinoxylan (AX) and lignin, affecting the physicochemical properties of the cell walls as well as the utilization properties of grass lignocellulose for biorefinering. Here, we demonstrate that hydroxycinnamaldehyde dehydrogenase (HCALDH) plays a crucial role in the biosynthesis of the FA used for cell wall feruloylation in rice (Oryza sativa). Bioinformatic and gene expression analyses of aldehyde dehydrogenases (ALDHs) identified two rice ALDH subfamily 2C members, OsHCALDH2 (OsALDH2C2) and OsHCALDH3 (OsALDH2C3), potentially involved in cell wall feruloylation in major vegetative tissues of rice. CRISPR-Cas9 genome editing of OsHCALDH2 and OsHCALDH3 revealed that the contents of AX-bound ferulate were reduced by up to ~45% in the cell walls of the HCALDH-edited mutants, demonstrating their roles in cell wall feruloylation. The abundance of hemicellulosic sugars including arabinosyl units on AX was notably reduced in the cell walls of the HCALDH-edited mutants, whereas cellulose and lignin contents remained unaffected. In addition to reducing cell wall-bound ferulate, the loss of OsHCALDH2 and/or OsHCALDH3 also partially reduced cell wall-bound p-coumarate and sinapate in the vegetative tissues of rice, whereas it did not cause detectable changes in the amount of γ-oryzanol (feruloyl sterols) in rice seeds. Furthermore, the HCALDH-edited mutants exhibited improved cell wall saccharification efficiency, both with and without alkaline pretreatment, plausibly due to the reduction in cell wall cross-linking FA. Overall, HCALDH appears to present a potent bioengineering target for enhancing utilization properties of grass lignocellulose.
Collapse
Affiliation(s)
- Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Osama Ahmed Afifi
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lydia Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Yuri Takeda-Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-8555, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, 226-8502, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8503, Japan
| | - Laura E Bartley
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Institute of Biological Chemistry, Washington State University, Pullman, 99164, WA, USA
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
9
|
Kong J, Xiong R, Qiu K, Lin X, Li D, Lu L, Zhou J, Zhu S, Liu M, Sun Q. Genome-Wide Identification and Characterization of the Laccase Gene Family in Fragaria vesca and Its Potential Roles in Response to Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:3366. [PMID: 39683159 DOI: 10.3390/plants13233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Laccase (LAC, EC 1.10.3.2) is integral to the formation of lignin synthesis, flavonoid production, and responses to both biotic and abiotic stresses. While recent studies have characterized numerous LAC gene families and their functions across various plants, information regarding LAC genes in woodland strawberry (Fragaria vesca) remains limited. In this study, we identified a total of 57 FvLAC genes in the Fragaria vesca genome, which were phylogenetically categorized into five distinct groups. Analysis of the gene structures revealed a uniformity in the exon-intron structure among the subgroups, while conserved motifs identified unique motifs specific to certain subgroups, suggesting functional variations. Chromosomal localization studies indicated that FvLACs are distributed across seven chromosomes, and collinearity analysis demonstrated that FvLACs exhibit collinearity within the species. Additionally, cis-acting element analysis suggested that FvLAC genes are involved in stress responses, hormone responses, light responses, and the growth and development of plants. qRT-PCR demonstrated that FvLACs responded to salt, drought, and hormone stresses, with the expression levels of FvLAC24, FvLAC32, and FvLAC51 continuously increasing under these stress conditions. Furthermore, transgenic yeast experiments revealed that FvLAC51 enhanced yeast tolerance to both salt and drought stresses, while FvLAC24 and FvLAC32 negatively regulated yeast tolerance under these same conditions. These findings provide a theoretical foundation for further investigation into the functions of FvLAC genes in woodland strawberry.
Collapse
Affiliation(s)
- Jingjing Kong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Rui Xiong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Keli Qiu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xinle Lin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei 230036, China
| | - Debao Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Lijuan Lu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Junyong Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Shufang Zhu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Mao Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Qibao Sun
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| |
Collapse
|
10
|
Wang B, Yu J, Luo M, Yu J, Zhao H, Yin G, Lu X, Xia H, Sun H, Hu Y, Lei B. Aspartic proteases gene family: Identification and expression profiles during stem vascular development in tobacco. Int J Biol Macromol 2024; 279:135016. [PMID: 39181353 DOI: 10.1016/j.ijbiomac.2024.135016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Aspartic proteases (APs) constitute a large family in plants and are widely involved in diverse biological processes, like chloroplast metabolism, biotic and abiotic stress responses, and reproductive development. In this study, we focused on overall analysis of the APs genes in tobacco. Our analysis included the phylogeny and cis-elements in the cell wall-associated promoters of these genes. To characterize the expression patterns of APs genes in stem vascular development. The tissue expression analysis showed that NtAED3-like was preferentially expressed in the differentiating xylem and phloem cells of the vascular system. Based on histochemical staining analysis showed that the NtAED3-like gene was specifically expressed in stem vascular tissue, root vascular tissue, and petiole vascular tissue. The TdT-mediated dUTP nick-end labeling (TUNEL) assay illustrated a delayed progression of programmed cell death (PCD) within the xylem of the ko-ntaed3a-like mutant, relative to the wild type. The mutant ko-ntaed3a-like exhibited a phenotype of thinning stem circumference and changed in xylem structure and lignin content. In addition, the two-dimension heteronuclear single quantum coherent nuclear magnetic resonance (2D-HSQC) analysis of three milled wood lignins (MWLs) showed that the content of β-O-4 connection in ko-ntaed3a-like decreased slightly compared with wild type. In conclusion, this study provides our understanding of the regulation of vascular tissue development by the NtAED3-like gene in tobacco and provides a better basis for determining the molecular mechanism of the aspartic protease in secondary cell wall (SCW) development.
Collapse
Affiliation(s)
- Bing Wang
- Molecular Genetics Key Laboratory of China Tobacco, GuizhouAcademy of Tobacco Science, No. 29 Longtanba Road, Guanshanhu District, Guiyang 550081, China.
| | - Jiabin Yu
- Guizhou Tobacco Company Guiyang Company, No.45 Zhonghua South Road, Nanming District, Guiyang 550081, China.
| | - Mei Luo
- Guizhou Medical University, School of Biology and Engineering, School of Health Medicine Modern Industry, No.6 Ankang Avenue, Gui 'an District, Guiyang 550025, China.
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, GuizhouAcademy of Tobacco Science, No. 29 Longtanba Road, Guanshanhu District, Guiyang 550081, China
| | - Huina Zhao
- Molecular Genetics Key Laboratory of China Tobacco, GuizhouAcademy of Tobacco Science, No. 29 Longtanba Road, Guanshanhu District, Guiyang 550081, China
| | - Guoying Yin
- Molecular Genetics Key Laboratory of China Tobacco, GuizhouAcademy of Tobacco Science, No. 29 Longtanba Road, Guanshanhu District, Guiyang 550081, China
| | - Xianren Lu
- Molecular Genetics Key Laboratory of China Tobacco, GuizhouAcademy of Tobacco Science, No. 29 Longtanba Road, Guanshanhu District, Guiyang 550081, China
| | - Haiqian Xia
- Molecular Genetics Key Laboratory of China Tobacco, GuizhouAcademy of Tobacco Science, No. 29 Longtanba Road, Guanshanhu District, Guiyang 550081, China
| | - Hongquan Sun
- Guizhou Tobacco Company Tongren Company, No.41 Jinjiang North Road, Bijiang District, Tongren 554300, China
| | - Yong Hu
- Guizhou Tobacco Company Guiyang Company, No.45 Zhonghua South Road, Nanming District, Guiyang 550081, China.
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, GuizhouAcademy of Tobacco Science, No. 29 Longtanba Road, Guanshanhu District, Guiyang 550081, China.
| |
Collapse
|
11
|
Wang J, Zhang X, Yang H, Li S, Hu Y, Wei D, Tang Q, Yang Y, Tian S, Wang Z. Eggplant NAC domain transcription factor SmNST1 as an activator promotes secondary cell wall thickening. PLANT, CELL & ENVIRONMENT 2024; 47:4293-4304. [PMID: 38963294 DOI: 10.1111/pce.15014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
NAC-domain transcription factors (TFs) are plant-specific transcriptional regulators playing crucial roles in plant secondary cell wall (SCW) biosynthesis. SCW is important for plant growth and development, maintaining plant morphology, providing rigid support, ensuring material transportation and participating in plant stress responses as a protective barrier. However, the molecular mechanisms underlying SCW in eggplant have not been thoroughly explored. In this study, the NAC domain TFs SmNST1 and SmNST2 were cloned from the eggplant line 'Sanyue qie'. SmNST1 and SmNST2 expression levels were the highest in the roots and stems. Subcellular localization analysis showed that they were localized in the cell membrane and nucleus. Their overexpression in transgenic tobacco showed that SmNST1 promotes SCW thickening. The expression of a set of SCW biosynthetic genes for cellulose, xylan and lignin, which regulate SCW formation, was increased in transgenic tobacco. Bimolecular fluorescence and luciferase complementation assays showed that SmNST1 interacted with SmNST2 in vivo. Yeast one-hybrid, electrophoretic mobility shift assay (EMSA) and Dual-luciferase reporter assays showed that SmMYB26 directly bound to the SmNST1 promoter and acted as an activator. SmNST1 and SmNST2 interact with the SmMYB108 promoter and repress SmMYB108 expression. Altogether, we showed that SmNST1 positively regulates SCW formation, improving our understanding of SCW biosynthesis transcriptional regulation.
Collapse
Affiliation(s)
- Jiali Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Xinxin Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Huiqin Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Sirui Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yao Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| |
Collapse
|
12
|
Ma L, Wang J, Qiao K, Quan Y, Fan S, Wu L. Genome-Wide Analysis of Caffeoyl-CoA-O-methyltransferase (CCoAOMT) Family Genes and the Roles of GhCCoAOMT7 in Lignin Synthesis in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:2969. [PMID: 39519888 PMCID: PMC11547849 DOI: 10.3390/plants13212969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Caffeoyl coenzyme A-O-methyltransferase (CCoAOMT) has a critical function in the lignin biosynthesis pathway. However, its functions in cotton are not clear. In this research, we observed 50 CCoAOMT genes from four cotton species, including two diploids (Gossypium arboretum, 9, and Gossypium raimondii, 8) and two tetraploids (Gossypium hirsutum, 16, and Gossypium barbadense, 17), performed bioinformatic analysis, and focused on the involvement and functions of GhCCoAOMT7 in lignin synthesis of Gossypium hirsutum. CCoAOMT proteins were divided into four subgroups based on the phylogenetic tree analysis. Motif analysis revealed that all CCoAOMT proteins possess conserved Methyltransf_3 domains, and conserved structural features were identified based on the genes' exon-intron organization. A synteny analysis suggested that segmental duplications were the primary cause in the expansion of the CCoAOMT genes family. Transcriptomic data analysis of GhCCoAOMTs revealed that GhCCoAOMT2, GhCCoAOMT7, and GhCCoAOMT14 were highly expressed in stems. Subcellular localization experiments of GhCCoAOMT2, GhCCoAOMT7, and GhCCoAOMT14 showed that GhCCoAOMT2, GhCCoAOMT7, and GhCCoAOMT14 were localized in the nucleus and plasma membrane. However, there are no cis-regulatory elements related to lignin synthesis in the GhCCoAOMT7 gene promoter. GhCCoAOMT7 expression was inhibited by virus-induced gene silencing technology to obtain gene silencing lines, the suppression of GhCCoAOMT7 expression resulted in a 56% reduction in the lignin content in cotton stems, and the phloroglucinol staining area corresponding to the xylem was significantly decreased, indicating that GhCCoAOMT7 positively regulates lignin synthesis. Our results provided fundamental information regarding CCoAOMTs and highlighted their potential functions in cotton lignin biosynthesis and lignification.
Collapse
Affiliation(s)
- Lina Ma
- Hebei Base of State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Hebei Agricultural University, Baoding 071000, China; (L.M.); (J.W.)
| | - Jin Wang
- Hebei Base of State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Hebei Agricultural University, Baoding 071000, China; (L.M.); (J.W.)
| | - Kaikai Qiao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Yuewei Quan
- Handan Academy of Agricultural Sciences, Handan 056000, China;
| | - Shuli Fan
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Liqiang Wu
- Hebei Base of State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Hebei Agricultural University, Baoding 071000, China; (L.M.); (J.W.)
| |
Collapse
|
13
|
Ranade SS, García-Gil MR. Lignin biosynthesis pathway repressors in gymnosperms: differential repressor domains as compared to angiosperms. FORESTRY RESEARCH 2024; 4:e031. [PMID: 39524426 PMCID: PMC11524278 DOI: 10.48130/forres-0024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
Lignin is a polyphenolic polymer present in the cell walls of specialized plant cell types in vascular plants that provides structural support and plays a major role in plant protection. The lignin biosynthesis pathway is regulated by transcription factors from the MYB (myeloblastosis) family. While several MYB members positively regulate lignin synthesis, only a few negatively regulate lignin synthesis. These lignin suppressors are well characterized in model plant species; however, their role has not been fully explored in gymnosperms. Lignin forms one of the major hurdles for the forest-based industry e.g. paper, pulp, and biofuel production. Therefore, the detailed mechanisms involved in the regulation of lignin synthesis are valuable, especially in conifers that form the major source of softwood for timber and paper production. In this review, the potential and differential domains present in the MYB suppressors in gymnosperms are discussed, along with their phylogenetic analysis. Sequence analysis revealed that the N-terminal regions of the MYB suppressor members were found to be conserved among the gymnosperms and angiosperms containing the R2, R3, and bHLH domains, while the C-terminal regions were found to be highly variable. The typical repressor motifs like the LxLxL-type EAR motif and the TLLLFR motif were absent from the C-terminal regions of MYB suppressors from most gymnosperms. However, although the gymnosperms lacked the characteristic repressor domains, a R2R3-type MYB member from Ginkgo was reported to repress the lignin biosynthetic pathway. It is proposed that gymnosperms possess unique kinds of repressors that need further functional validation.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - María Rosario García-Gil
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| |
Collapse
|
14
|
Minello LVP, Kuntzler SG, Lamb TI, Neves CDO, Berghahn E, da Paschoa RP, Silveira V, de Lima JC, Aguzzoli C, Sperotto RA. Rice plants treated with biochar derived from Spirulina ( Arthrospira platensis) optimize resource allocation towards seed production. FRONTIERS IN PLANT SCIENCE 2024; 15:1422935. [PMID: 39359626 PMCID: PMC11444984 DOI: 10.3389/fpls.2024.1422935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae/cyanobacteria can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina (Arthrospira platensis) biomass on the development and seed production of rice plants. Biochar was produced by slow pyrolysis at 300°C, and characterization was performed through microscopy, chemical, and structural composition analyses. Molecular and physiological analyses were performed in rice plants submitted to different biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and productivity parameters. Morphological and physicochemical characterization revealed a heterogeneous morphology and the presence of several minerals (Na, K, P, Mg, Ca, S, Fe, and Si) in the biochar composition. Chemical modification of compounds post-pyrolysis and a highly porous structure with micropores were observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease in root length, followed by an increase in root dry weight. The same concentration influenced seed production, with an increase of 44% in the number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain area. Differential proteomic analyses in shoots and roots of rice plants submitted to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource allocation towards seed production. These results suggest that biochar derived from Arthrospira platensis biomass can stimulate rice seed production.
Collapse
Affiliation(s)
- Luana Vanessa Peretti Minello
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| | | | - Thainá Inês Lamb
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | | | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - Roberta Pena da Paschoa
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | | - Cesar Aguzzoli
- Area of Knowledge in Exact Sciences and Engineering, Graduate Program in Materials Engineering and Science, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Raul Antonio Sperotto
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
15
|
Hu Z, He D, Peng X, Yang J. OsCBL1 mediates rice response to local nitrate signaling: insights into regulatory networks and gene expression. FRONTIERS IN PLANT SCIENCE 2024; 15:1418119. [PMID: 39345982 PMCID: PMC11427294 DOI: 10.3389/fpls.2024.1418119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Nitrate is a significant source of nitrogen in soils and also serves as a critical signal for root development. Previous studies have demonstrated that the local nitrate supply promotes lateral root elongation primarily through local nitrate signals, rather than nutritional effects. In this study, we report that Calcineurin B-like protein 1 (OsCBL1) positively regulates local nitrate signaling, thereby triggering lateral root colonization, as revealed by a comparative analysis of the phenotype and whole transcriptome of the knockdown mutant (OsCBL1-KD) and the wild-type (WT). In the split-root system, the knockdown of OsCBL1 was found to inhibit local nitrate-induced lateral root growth. Transcriptome analyses identified 398 differentially expressed genes (DEGs) that were under the control of OsCBL1 and associated with the phenotype of nitrate-induced lateral root colonization. Further analysis revealed that the nitrate transporter/sensor gene OsNRT1.1B was up-regulated under Sp-NaNO3 conditions compared to Sp-NaCl in WT but not in OsCBL1-KD plants. Pathway mapping of DEGs (i.e., genes exhibiting a significant change in expression in the Sp-NaNO3 condition compared to the Sp-NaCl condition) revealed a preferential upregulation of genes involved in lignin biosynthesis and a downregulation of genes involved in auxin and salicylic acid signaling. This suggests that OsCBL1 might function as a transmitter within the auxin, salicylic acid signaling, lignin biosynthesis, and nitrate sensor (OsNRT1.1B)-mediated pathways in response to local nitrate signaling. We also identified a transcriptional regulatory network downstream of OsCBL1 in nitrate-rich patches that is centered on several core transcription factors. Our study provides new insights into how plants adapt to an inhomogeneous distribution of nitrogen in the soil.
Collapse
Affiliation(s)
- Zhao Hu
- College of Life Science, Nanchang University, Nanchang, China
| | - Dongchen He
- College of Life Science, Nanchang University, Nanchang, China
| | - Xiaojue Peng
- College of Life Science, Nanchang University, Nanchang, China
| | - Jing Yang
- College of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Jing Y, Pei T, Zhang S, Li C, Zhan M, Li C, Gong X, Mao K, Liu C, Ma F. Overexpression of FERONIA receptor kinase MdMRLK2 regulates lignin accumulation and enhances water use efficiency in apple under long-term water deficit condition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2638-2653. [PMID: 39039969 DOI: 10.1111/tpj.16938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Water use efficiency (WUE) is crucial for apple tree fitness and survival, especially in response to climatic changes. The receptor-like kinase FERONIA is reportedly an essential regulator of plant stress responses, but its role in regulating WUE under water deficit conditions is unclear. Here, we found that overexpressing the apple FERONIA receptor kinase gene, MdMRLK2, enhanced apple WUE under long-term water deficit conditions. Under drought treatment, 35S::MdMRLK2 apple plants exhibited higher photosynthetic capacity and antioxidant enzyme activities than wild-type (WT) plants. 35S::MdMRLK2 apple plants also showed increased biomass accumulation, root activity, and water potential compared to WT plants. Moreover, MdMRLK2 physically interacts with and phosphorylates cinnamoyl-CoA reductase 1, MdCCR1, an enzyme essential for lignin synthesis, at position Ser260. This interaction likely contributed to increased vessel density, vascular cylinder area, and lignin content in 35S::MdMRLK2 apple plants under drought conditions. Therefore, our findings reveal a novel function of MdMRLK2 in regulating apple WUE under water deficit conditions.
Collapse
Affiliation(s)
- Yuanyuan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Tingting Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunrong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minghui Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
17
|
Yang J, Li M, Yin Y, Liu Y, Gan X, Mu X, Li H, Li J, Li H, Zheng J, Gou M. Spatial accumulation of lignin monomers and cellulose underlying stalk strength in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108918. [PMID: 38986238 DOI: 10.1016/j.plaphy.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Lodging largely affects yield, quality and mechanical harvesting of maize. Stalk strength is one of the major factors that affect maize lodging. Although plant cell wall components including lignin and cellulose were known to be associated with stalk strength and lodging resistance, spatial accumulation of specific lignin monomers and cellulose in different tissues and their association with stalk strength in maize was not clearly understood. In this study, we found that both G and S lignin monomers accumulate highest in root, stem rind and leaf vein. Consistently, most lignin biosynthetic genes were expressed higher in root and stem than in other tissues. However, cellulose appears to be lowest in root. There are only mild changes of G lignin and cellulose in different internodes. Instead, we noticed a dramatic decrease of S-lignin accumulation and lignin biosynthetic gene expression in 2nd to 4th internodes wherein stem breakage usually occurs, thereby revealing a few candidate lignin biosynthetic genes associated with stalk strength. Moreover, stalk strength is positively correlated with G, S lignin, and cellulose, but negatively correlated with S/G ratio based on data of maize lines with high or low stalk strength. Loss-of-function of a caffeic acid o-methyltransferase (COMT), which is involved in S lignin biosynthesis, in the maize bm3 mutant, leads to lower stalk strength. Our data collectively suggest that stalk strength is determined by tissue-specific accumulation of lignin monomers and cellulose, and manipulation of the cell wall components by genetic engineering is vital to improve maize stalk strength and lodging resistance.
Collapse
Affiliation(s)
- Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Meng Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yue Yin
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yan Liu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinke Gan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Hanqin Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Haochuan Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
18
|
Xuan H, Cheng J, Pang L, Yin L, Guan Y, Cheng J, Lu X, Lu G. Physiological-Biochemical Characteristics and a Transcriptomic Profiling Analysis Reveal the Postharvest Wound Healing Mechanisms of Sweet Potatoes under Ascorbic Acid Treatment. Foods 2024; 13:2569. [PMID: 39200496 DOI: 10.3390/foods13162569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Sweet potatoes are extremely vulnerable to mechanical wounds during harvesting and postharvest handling. It is highly necessary to take measures to accelerate wound healing. The effect of 20 g L-1 of ascorbic acid (AA) treatment on the wound healing of sweet potatoes and its mechanisms were studied. The results validated that AA treatment significantly reduced the weight loss rate and disease index. AA treatment effectively enhanced the formation speed of lignin and SPP at the wound sites, decreased the MDA content, and maintained the cell membrane integrity. AA enhanced the activities of PAL, C4H, 4CL, CAD, and POD and increased the contents of chlorogenic acid, caffeic acid, sinapic acid, ferulic acid, cinnamic acid, p-coumaryl alcohol, sinapyl alcohol, coniferyl alcohol, and lignin. Based on a transcriptomic analysis, a total of 1200 genes were differentially expressed at the sweet potato wound sites by the AA treatment, among which 700 genes were upregulated and 500 genes were downregulated. The KEGG pathway analysis showed that the differentially expressed genes were mainly involved in phenylalanine, tyrosine, and tryptophan biosynthesis; phenylpropanoid biosynthesis; and other wound healing-related pathways. As verified by a qRT-PCR, the AA treatment significantly upregulated the gene expression levels of IbSKDH, IbADT/PDT, IbPAL, and Ib4CL at the wound sties.
Collapse
Affiliation(s)
- Hongxia Xuan
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiyu Cheng
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Linjiang Pang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Liqing Yin
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuge Guan
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Junfeng Cheng
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinghua Lu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Guoquan Lu
- Institute of Root & Tuber Crops, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
19
|
Fan Z, Fang L, Liu Q, Lin H, Lin M, Lin Y, Wang H, Hung YC, Chen Y. Comparative transcriptome and metabolome reveal the role of acidic electrolyzed oxidizing water in improving postharvest disease resistance of longan fruit. Food Chem 2024; 449:139235. [PMID: 38583405 DOI: 10.1016/j.foodchem.2024.139235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Acidic electrolyzed oxidizing water (AEOW) was applied to suppress disease development and maintain good quality of fresh fruit. However, the involvement of AEOW in improving disease resistance of fresh longan remains unknown. Here, transcriptomic and metabolic analyses were performed to compare non-treated and AEOW-treated longan during storage. The transcriptome analysis showed AEOW-induced genes associated with phenylpropanoid and flavonoid biosynthesis. The metabolome analysis found the contents of coumarin, phenolic acid, and tannin maintained higher levels in AEOW-treated longan than non-treated longan. Moreover, the weighted correlation network analysis (WGCNA) was performed to identify hub genes, and a gene-metabolite correlation network associated with AEOW-improved disease resistance in longan was constructed by the co-analysis of transcriptomics and metabolomics. These findings identified a series of important genes and metabolites involving in AEOW-induced disease resistance of longan fruit, expanding our knowledges on fruit disease resistance and quality maintenance at the transcript and metabolic levels.
Collapse
Affiliation(s)
- Zhongqi Fan
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Ling Fang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Qingqing Liu
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China
| | - Yen-Con Hung
- Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, United States
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products, Fujian Province University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
20
|
Gutschker S, Ruescher D, Rabbi IY, Rosado-Souza L, Pommerrenig B, Pauly M, Robertz S, van Doorn AM, Schlereth A, Neuhaus HE, Fernie AR, Reinert S, Sonnewald U, Zierer W. Carbon usage in yellow-fleshed Manihot esculenta storage roots shifts from starch biosynthesis to cell wall and raffinose biosynthesis via the myo-inositol pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2045-2062. [PMID: 38961707 DOI: 10.1111/tpj.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.
Collapse
Affiliation(s)
- Sindy Gutschker
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - David Ruescher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Ismail Y Rabbi
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | | | - Markus Pauly
- Heinrich-Heine-University, Institute of Plant Cell Biology and Biotechnology, Düsseldorf, Germany
| | - Stefan Robertz
- Heinrich-Heine-University, Institute of Plant Cell Biology and Biotechnology, Düsseldorf, Germany
| | - Anna M van Doorn
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Stephan Reinert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| | - Wolfgang Zierer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Division of Biochemistry, Erlangen, Germany
| |
Collapse
|
21
|
Zhao X, Song W, Chen S, Xu G, Long Z, Yang H, Cao Y, Hu S. Identification of the Key Gene DfCCoAOMT1 through Comparative Analysis of Lignification in Dendrocalamus farinosus XK4 and ZPX Bamboo Shoots during Cold Storage. Int J Mol Sci 2024; 25:8065. [PMID: 39125636 PMCID: PMC11311333 DOI: 10.3390/ijms25158065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Dendrocalamus farinosus bamboo shoots, a species with rich nutritional value, are important in Southwest China. Lignin is an important factor affecting the postharvest flavor quality of bamboo shoots; however, the underlying mechanism of lignin deposition in D. farinosus bamboo shoots during cold storage is still not fully understood. In this study, the mutant D. farinosus XK4 with low lignin content at 3.11% and the cultivated variety ZPX at 4.47% were used as experimental materials. The lignin content of D. farinosus XK4 and ZPX, as well as the gene expression differences between them, were compared and analyzed during cold storage using transcriptomic and physiological methods. Our analysis revealed several key genes and found that D. farinosus CCoAOMT1 plays a key role in the regulatory network of bamboo shoots during cold storage. Tobacco heterologous transformation experiments demonstrated that overexpression of DfCCoAOMT1 significantly increases lignin content. This study provides a novel foundation for future research aimed at improving the postharvest quality and flavor of D. farinosus bamboo shoots through targeted genetic manipulation during cold storage.
Collapse
Affiliation(s)
- Xin Zhao
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenjuan Song
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Sen Chen
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Gang Xu
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhijian Long
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Heyi Yang
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
| | - Ying Cao
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shanglian Hu
- Laboratory of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Sichuan Provincial Forestry and Grass Land Key Laboratory for Conservation and Sustainable Utilization of Bamboo Genetic Resources in Southwest of China, Mianyang 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
22
|
Mantilla-Blandon RG, Mancilla-Margalli NA, Molina-Montes JA, Uvalle-Bueno JX, Avila-Miranda ME. Agave Wilt Susceptibility by Reduction of Free Hexoses in Root Tissue of Agave tequilana Weber var. azul Commercial Plants in the Fructan Accumulation Process. Int J Mol Sci 2024; 25:7357. [PMID: 39000470 PMCID: PMC11242120 DOI: 10.3390/ijms25137357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Agave tequilana stems store fructan polymers, the main carbon source for tequila production. This crop takes six or more years for industrial maturity. In conducive conditions, agave wilt disease increases the incidence of dead plants after the fourth year. Plant susceptibility induced for limited photosynthates for defense is recognized in many crops and is known as "sink-induced loss of resistance". To establish whether A. tequilana is more prone to agave wilt as it ages, because the reduction of water-soluble carbohydrates in roots, as a consequence of greater assembly of highly polymerized fructans, were quantified roots sucrose, fructose, and glucose, as well as fructans in stems of agave plants of different ages. The damage induced by inoculation with Fusarium solani or F. oxysporum in the roots or xylem bundles, respectively, was recorded. As the agave plant accumulated fructans in the stem as the main sink, the amount of these hexoses diminished in the roots of older plants, and root rot severity increased when plants were inoculated with F. solani, as evidence of more susceptibility. This knowledge could help to structure disease management that reduces the dispersion of agave wilt, dead plants, and economic losses at the end of agave's long crop cycle.
Collapse
Affiliation(s)
- Rodrigo Guillermo Mantilla-Blandon
- Postgraduate Studies and Research Division, Tecnológico Nacional de México/Instituto Tecnológico de Tlajomulco, Circuito Vicente Fernández-Gómez km 10, Tlajomulco de Zúñiga CP 45640, Jalisco, Mexico; (R.G.M.-B.); (N.A.M.-M.)
| | - Norma Alejandra Mancilla-Margalli
- Postgraduate Studies and Research Division, Tecnológico Nacional de México/Instituto Tecnológico de Tlajomulco, Circuito Vicente Fernández-Gómez km 10, Tlajomulco de Zúñiga CP 45640, Jalisco, Mexico; (R.G.M.-B.); (N.A.M.-M.)
| | - Joaquín Adolfo Molina-Montes
- Postgraduate Studies and Research Division, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla-Gutiérrez, Carr. Panamericana km 1080, Tuxtla Gutiérrez CP 29050, Chiapas, Mexico;
| | - Jaime Xavier Uvalle-Bueno
- Research Department, Casa Cuervo México S.A. de C.V., Circunvalación Sur 51-A, Colonia Las Fuentes, Zapopan CP 45070, Jalisco, Mexico;
| | - Martín Eduardo Avila-Miranda
- Postgraduate Studies and Research Division, Tecnológico Nacional de México/Instituto Tecnológico de Tlajomulco, Circuito Vicente Fernández-Gómez km 10, Tlajomulco de Zúñiga CP 45640, Jalisco, Mexico; (R.G.M.-B.); (N.A.M.-M.)
| |
Collapse
|
23
|
Zhang X, Dong Y, Li Y, Wu X, Chen S, Wang M, Li Y, Ge Z, Zhang M, Mao L. The evolutionary adaptation of wood-decay macrofungi to host gymnosperms differs from that to host angiosperms. Ecol Evol 2024; 14:e70019. [PMID: 39026950 PMCID: PMC11255378 DOI: 10.1002/ece3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Wood-decay macrofungi play a vital role in forest ecosystems by promoting nutrient cycling and soil structure, and their evolution is closely related to their host plants. This study investigates the potential evolutionary adaptation of wood-decay macrofungi to their host plants, focusing on whether these relationships differ between gymnosperms and angiosperms. While previous research has suggested non-random associations between specific fungi and plant deadwood, direct evidence of evolutionary adaptation has been lacking. Our study, conducted in a subtropical region, utilized metabarcoding techniques to identify deadwood species and associated fungi. We found significant evidence of evolutionary adaptation when considering all sampled species collectively. However, distinct patterns emerged when comparing angiosperms and gymnosperms: a significant evolutionary adaptation was observed of wood-decay macrofungi to angiosperms, but not to gymnosperms. This variation may be due to the longer evolutionary history and more stable species interactions of gymnosperms, as indicated by a higher modularity coefficient (r = .452), suggesting greater specialization. In contrast, angiosperms, being evolutionarily younger, displayed less stable and more coevolving interactions with fungi, reflected in a lower modularity coefficient (r = .387). Our findings provide the first direct evidence of differential evolutionary adaptation dynamics of these fungi to angiosperms versus gymnosperms, enhancing our understanding of forest ecosystem carbon cycling and resource management.
Collapse
Affiliation(s)
- Xuetong Zhang
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Yuran Dong
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Yuying Li
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Xiuping Wu
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Siyu Chen
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Mingyuan Wang
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Yao Li
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Zhiwei Ge
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| | - Min Zhang
- College of Life ScienceNanjing Forestry UniversityNanjingChina
| | - Lingfeng Mao
- Laboratory of Biodiversity and Conservation, Co‐Innovation Center for Sustainable Forestry in Southern China, College of Ecology and EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
24
|
Mori BA, Coutu C, Erlandson MA, Hegedus DD. Exploring the contribution of the salivary gland and midgut to digestion in the swede midge (Contarinia nasturtii) through a genomics-guided approach. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22135. [PMID: 39038196 DOI: 10.1002/arch.22135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The larvae of Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), the swede midge, targets the meristem of brassica crops where they induce the formation of galls and disrupt seed and vegetable production. Previously, we examined the salivary gland transcriptome of newly-hatched first instar larvae as they penetrated the host and initiated gall formation. Here we examine the salivary gland and midgut transcriptome of third instar larvae and provide evidence for cooperative nutrient acquisition beginning with secretion of enzymes and feeding facilitators followed by gastrointestinal digestion. Sucrose, presumably obtained from the phloem, appeared to be a major nutrient source as several α-glucosidases (sucrases, maltases) and β-fructofuranosidases (invertases) were identified. Genes encoding β-fructofuranosidases/invertases were among the most highly expressed in both tissues and represented two distinct gene families that may have originated via horizontal gene transfer from bacteria. The importance of the phloem as a nutrient source is underscored by the expression of genes encoding regucalcin and ARMET (arginine-rich mutated in early stages of tumor) which interfere with calcium signalling and prevent sieve tube occlusion. Lipids, proteins, and starch appear to serve as a secondary nutrient sources. Genes encoding enzymes involved in the detoxification of glucosinolates (myrosinases, arylsulfatases, and glutathione-S-transferases) were expressed indicative of Brassicaceae host specialization. The midgut expressed simple peritrophins and mucins typical of those found in Type II peritrophic matrices, the first such description for a gall midge.
Collapse
Affiliation(s)
- Boyd A Mori
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Martin A Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Pérez-de-Lis G, Richard B, Quilès F, Deveau A, Adikurnia IK, Rathgeber CBK. Multimodal imaging analysis in silver fir reveals coordination in cellulose and lignin deposition. PLANT PHYSIOLOGY 2024; 195:2428-2442. [PMID: 38590143 PMCID: PMC11213250 DOI: 10.1093/plphys/kiae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Despite lignin being a key component of wood, the dynamics of tracheid lignification are generally overlooked in xylogenesis studies, which hampers our understanding of environmental drivers and blurs the interpretation of isotopic and anatomical signals stored in tree rings. Here, we analyzed cell wall formation in silver fir (Abies alba Mill.) tracheids to determine if cell wall lignification lags behind secondary wall deposition. For this purpose, we applied a multimodal imaging approach combining transmitted light microscopy (TLM), confocal laser scanning microscopy (CLSM), and confocal Raman microspectroscopy (RMS) on anatomical sections of wood microcores collected in northeast France on 11 dates during the 2010 growing season. Wood autofluorescence after laser excitation at 405 and 488 nm associated with the RMS scattering of lignin and cellulose, respectively, which allowed identification of lignifying cells (cells showing lignified and nonlignified wall fractions at the same time) in CLSM images. The number of lignifying cells in CLSM images mirrored the number of wall-thickening birefringent cells in polarized TLM images, revealing highly synchronized kinetics for wall thickening and lignification (similar timings and durations at the cell level). CLSM images and RMS chemical maps revealed a substantial incorporation of lignin into the wall at early stages of secondary wall deposition. Our results show that most of the cellulose and lignin contained in the cell wall undergo concurrent periods of deposition. This suggests a strong synchronization between cellulose and lignin-related features in conifer tree-ring records, as they originated over highly overlapped time frames.
Collapse
Affiliation(s)
- Gonzalo Pérez-de-Lis
- BIOAPLIC, Departamento de Botánica, Universidade de Santiago de Compostela, EPSE, Campus Terra, 27002 Lugo, Spain
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Béatrice Richard
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | | | - Aurélie Deveau
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | | |
Collapse
|
26
|
Busch A, Gerbracht JV, Davies K, Hoecker U, Hess S. Comparative transcriptomics elucidates the cellular responses of an aeroterrestrial zygnematophyte to UV radiation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3624-3642. [PMID: 38520340 PMCID: PMC11156808 DOI: 10.1093/jxb/erae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
The zygnematophytes are the closest relatives of land plants and comprise several lineages that adapted to a life on land. Species of the genus Serritaenia form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation, one of the major terrestrial stressors. In eukaryotic algae, this 'sunscreen mucilage' represents a unique photoprotective strategy, whose induction and chemical background are unknown. We generated a de novo transcriptome of Serritaenia testaceovaginata and studied its gene regulation under moderate UV radiation (UVR) that triggers sunscreen mucilage under experimental conditions. UVR induced the repair of DNA and the photosynthetic apparatus as well as the synthesis of aromatic specialized metabolites. Specifically, we observed pronounced expressional changes in the production of aromatic amino acids, phenylpropanoid biosynthesis genes, potential cross-membrane transporters of phenolics, and extracellular, oxidative enzymes. Interestingly, the most up-regulated enzyme was a secreted class III peroxidase, whose embryophyte homologs are involved in apoplastic lignin formation. Overall, our findings reveal a conserved, plant-like UVR perception system (UVR8 and downstream factors) in zygnematophyte algae and point to a polyphenolic origin of the sunscreen pigment of Serritaenia, whose synthesis might be extracellular and oxidative, resembling that of plant lignins.
Collapse
Affiliation(s)
- Anna Busch
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Jennifer V Gerbracht
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Kevin Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, D-50674, Cologne, Germany
| | - Sebastian Hess
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| |
Collapse
|
27
|
Xue B, Duan W, Gong L, Zhu D, Li X, Li X, Liang YK. The OsDIR55 gene increases salt tolerance by altering the root diffusion barrier. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1550-1568. [PMID: 38412303 DOI: 10.1111/tpj.16696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024]
Abstract
The increased soil salinity is becoming a major challenge to produce more crops and feed the growing population of the world. In this study, we demonstrated that overexpression of OsDIR55 gene enhances rice salt tolerance by altering the root diffusion barrier. OsDIR55 is broadly expressed in all examined tissues and organs with the maximum expression levels at lignified regions in rice roots. Salt stress upregulates the expression of OsDIR55 gene in an abscisic acid (ABA)-dependent manner. Loss-function and overexpression of OsDIR55 compromised and improved the development of CS and root diffusion barrier, manifested with the decreased and increased width of CS, respectively, and ultimately affected the permeability of the apoplastic diffusion barrier in roots. OsDIR55 deficiency resulted in Na+ accumulation, ionic imbalance, and growth arrest, whereas overexpression of OsDIR55 enhances salinity tolerance and provides an overall benefit to plant growth and yield potential. Collectively, we propose that OsDIR55 is crucial for ions balance control and salt stress tolerance through regulating lignification-mediated root barrier modifications in rice.
Collapse
Affiliation(s)
- Baoping Xue
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen Duan
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Dongmei Zhu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xueying Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemei Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
28
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
29
|
Xu Y, Tao M, Xu W, Xu L, Yue L, Cao X, Chen F, Wang Z. Nano-CeO 2 activates physical and chemical defenses of garlic (Allium sativum L.) for reducing antibiotic resistance genes in plant endosphere. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116289. [PMID: 38570269 DOI: 10.1016/j.ecoenv.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10 mg L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10 mg L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.
Collapse
Affiliation(s)
- Yinuo Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Wei Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; School of Environment & Energy, South China University of Technology, Guangzhou 510006, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
30
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
31
|
Liu C, He S, Chen J, Wang M, Li Z, Wei L, Chen Y, Du M, Liu D, Li C, An C, Bhadauria V, Lai J, Zhu W. A dual-subcellular localized β-glucosidase confers pathogen and insect resistance without a yield penalty in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1017-1032. [PMID: 38012865 PMCID: PMC10955503 DOI: 10.1111/pbi.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Maize is one of the most important crops for food, cattle feed and energy production. However, maize is frequently attacked by various pathogens and pests, which pose a significant threat to maize yield and quality. Identification of quantitative trait loci and genes for resistance to pests will provide the basis for resistance breeding in maize. Here, a β-glucosidase ZmBGLU17 was identified as a resistance gene against Pythium aphanidermatum, one of the causal agents of corn stalk rot, by genome-wide association analysis. Genetic analysis showed that both structural variations at the promoter and a single nucleotide polymorphism at the fifth intron distinguish the two ZmBGLU17 alleles. The causative polymorphism near the GT-AG splice site activates cryptic alternative splicing and intron retention of ZmBGLU17 mRNA, leading to the downregulation of functional ZmBGLU17 transcripts. ZmBGLU17 localizes in both the extracellular matrix and vacuole and contribute to the accumulation of two defence metabolites lignin and DIMBOA. Silencing of ZmBGLU17 reduces maize resistance against P. aphanidermatum, while overexpression significantly enhances resistance of maize against both the oomycete pathogen P. aphanidermatum and the Asian corn borer Ostrinia furnacalis. Notably, ZmBGLU17 overexpression lines exhibited normal growth and yield phenotype in the field. Taken together, our findings reveal that the apoplastic and vacuolar localized ZmBGLU17 confers resistance to both pathogens and insect pests in maize without a yield penalty, by fine-tuning the accumulation of lignin and DIMBOA.
Collapse
Affiliation(s)
- Chuang Liu
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Shengfeng He
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Junbin Chen
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mingyu Wang
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Zhenju Li
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Luyang Wei
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Yan Chen
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Meida Du
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Dandan Liu
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Cai Li
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Chunju An
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
- State Key Laboratory of Maize Bio‐breedingChina Agricultural UniversityBeijingChina
| | - Vijai Bhadauria
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Wangsheng Zhu
- China Key Laboratory of Pest Monitoring and Green Management, MOA, and College of Plant ProtectionChina Agricultural UniversityBeijingChina
- State Key Laboratory of Maize Bio‐breedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
32
|
Li W, Zhao J, Zhang Z, Ren Z, Li X, Zhang R, Ma X. Uptake and effect of carboxyl-modified polystyrene microplastics on cotton plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133581. [PMID: 38271872 DOI: 10.1016/j.jhazmat.2024.133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) have emerged as a significant global environmental concern, particularly within agricultural soil systems. The extensive use of plastic film mulching in cotton cultivation has led to the alarming presence of MP pollution in cotton fields. However, the uptake and effects of MPs on the growth of cotton plants are poorly understood. In this study, we conducted a comprehensive analysis of hydroponically cultured cotton seedlings at the phenotypic, transcriptional, and metabolic levels after exposure to carboxyl-modified polystyrene microplastics (PS-COOH). Treatment with three concentrations of PS-COOH (100, 300, and 500 mg/L) resulted in notable growth inhibition of treated plants and exhibited a dose-dependent effect. And, PS-COOH can invade cotton roots and be absorbed through the intercellular spaces via apoplastic uptake, with accumulation commensurate with treatment duration. Transcriptomic analysis showed significant up-regulation of genes associated with antioxidant activity in response to 300 mg/L PS-COOH treatment, suggesting the induction of oxidative stress. In addition, the PS-COOH treatment activated the phenylpropanoid biosynthesis pathway, leading to lignin and flavonoid accumulation, and altered sucrose catabolism. These findings illustrate the absorption and effects of MPs on cotton seedlings and offer valuable insights into the potential toxicity of MPs to plants in soil mulched with plastic film.
Collapse
Affiliation(s)
- Wei Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Junjie Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Zhiqiang Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhongying Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ruoyu Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Xiongfeng Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
33
|
Wang H, Li L, Ma L, Fernie AR, Fu A, Bai C, Sang Z, Guo S, Zhang F, Wang Q, Zheng Y, Zuo J. Revealing the specific regulations of nitric oxide on the postharvest ripening and senescence of bitter melon fruit. ABIOTECH 2024; 5:29-45. [PMID: 38576434 PMCID: PMC10987440 DOI: 10.1007/s42994-023-00110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/27/2023] [Indexed: 04/06/2024]
Abstract
Bitter melon fruit is susceptible to yellowing, softening, and rotting under room-temperature storage conditions, resulting in reduced commercial value. Nitric oxide (NO) is an important signaling molecule and plays a crucial role in regulating the fruit postharvest quality. In this study, we investigated the effects of NO treatment on changes in sensory and firmness of bitter melon fruit during postharvest storage. Moreover, transcriptomic, metabolomic, and proteomic analyses were performed to elucidate the regulatory mechanisms through which NO treatment delays the ripening and senescence of bitter melon fruit. Our results show that differentially expressed genes (DEGs) were involved in fruit texture (CSLE, β-Gal, and PME), plant hormone signal transduction (ACS, JAR4, and AUX28), and fruit flavor and aroma (SUS2, LOX, and GDH2). In addition, proteins differentially abundant were associated with fruit texture (PLY, PME, and PGA) and plant hormone signal transduction (PBL15, JAR1, and PYL9). Moreover, NO significantly increased the abundance of key enzymes involved in the phenylpropanoid biosynthetic pathway, thus enhancing the disease resistance and alleviating softening of bitter melon fruit. Finally, differential metabolites mainly included phenolic acids, terpenoids, and flavonoids. These results provide a theoretical basis for further studies on the physiological changes associated with postharvest ripening and senescence of bitter melon fruit. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00110-y.
Collapse
Affiliation(s)
- Hongwei Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300392 China
| | - Ling Li
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300392 China
| | - Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam Golm, Germany
| | - Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Chunmei Bai
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Zhaoze Sang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Susu Guo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Fan Zhang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yanyan Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Peracchi LM, Panahabadi R, Barros-Rios J, Bartley LE, Sanguinet KA. Grass lignin: biosynthesis, biological roles, and industrial applications. FRONTIERS IN PLANT SCIENCE 2024; 15:1343097. [PMID: 38463570 PMCID: PMC10921064 DOI: 10.3389/fpls.2024.1343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Lignin is a phenolic heteropolymer found in most terrestrial plants that contributes an essential role in plant growth, abiotic stress tolerance, and biotic stress resistance. Recent research in grass lignin biosynthesis has found differences compared to dicots such as Arabidopsis thaliana. For example, the prolific incorporation of hydroxycinnamic acids into grass secondary cell walls improve the structural integrity of vascular and structural elements via covalent crosslinking. Conversely, fundamental monolignol chemistry conserves the mechanisms of monolignol translocation and polymerization across the plant phylum. Emerging evidence suggests grass lignin compositions contribute to abiotic stress tolerance, and periods of biotic stress often alter cereal lignin compositions to hinder pathogenesis. This same recalcitrance also inhibits industrial valorization of plant biomass, making lignin alterations and reductions a prolific field of research. This review presents an update of grass lignin biosynthesis, translocation, and polymerization, highlights how lignified grass cell walls contribute to plant development and stress responses, and briefly addresses genetic engineering strategies that may benefit industrial applications.
Collapse
Affiliation(s)
- Luigi M. Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Rahele Panahabadi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jaime Barros-Rios
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Laura E. Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
35
|
Wang H, Zhang Y, Feng X, Hong J, Aamir Manzoor M, Zhou X, Zhou Q, Cai Y. Transcription factor PbMYB80 regulates lignification of stone cells and undergoes RING finger protein PbRHY1-mediated degradation in pear fruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:883-900. [PMID: 37944017 DOI: 10.1093/jxb/erad434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The Chinese white pear (Pyrus bretschneideri) fruit carries a high proportion of stone cells, adversely affecting fruit quality. Lignin is a main component of stone cells in pear fruit. In this study, we discovered that a pear MYB transcription factor, PbMYB80, binds to the promoters of key lignin biosynthesis genes and inhibits their expression. Stable overexpression of PbMYB80 in Arabidopsis showed that lignin deposition and secondary wall thickening were inhibited, and the expression of the lignin biosynthesis genes in transgenic Arabidopsis was decreased. Transient overexpression of PbMYB80 in pear fruit inhibited lignin metabolism and stone cell development, and the expression of some genes in the lignin metabolism pathway was reduced. In contrast, silencing PbMYB80 with VIGS increased the lignin and stone cell content in pear fruit, and increased expression of genes in the lignin metabolism pathway. By screening a pear fruit cDNA library in yeast, we found that PbMYB80 binds to a RING finger (PbRHY1) protein. We also showed that PbRHY1 exhibits E3 ubiquitin ligase activity and degrades ubiquitinated PbMYB80 in vivo and in vitro. This investigation contributes to a better understanding of the regulation of lignin biosynthesis in pear fruit, and provides a theoretical foundation for increasing pear fruit quality at the molecular level.
Collapse
Affiliation(s)
- Han Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yingjie Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaofeng Feng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jiayi Hong
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xinyue Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qifang Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
36
|
Coatsworth P, Cotur Y, Naik A, Asfour T, Collins ASP, Olenik S, Zhou Z, Gonzalez-Macia L, Chao DY, Bozkurt T, Güder F. Time-resolved chemical monitoring of whole plant roots with printed electrochemical sensors and machine learning. SCIENCE ADVANCES 2024; 10:eadj6315. [PMID: 38295162 PMCID: PMC10830104 DOI: 10.1126/sciadv.adj6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Traditional single-point measurements fail to capture dynamic chemical responses of plants, which are complex, nonequilibrium biological systems. We report TETRIS (time-resolved electrochemical technology for plant root environment in situ chemical sensing), a real-time chemical phenotyping system for continuously monitoring chemical signals in the often-neglected plant root environment. TETRIS consisted of low-cost, highly scalable screen-printed electrochemical sensors for monitoring concentrations of salt, pH, and H2O2 in the root environment of whole plants, where multiplexing allowed for parallel sensing operation. TETRIS was used to measure ion uptake in tomato, kale, and rice and detected differences between nutrient and heavy metal ion uptake. Modulation of ion uptake with ion channel blocker LaCl3 was monitored by TETRIS and machine learning used to predict ion uptake. TETRIS has the potential to overcome the urgent "bottleneck" in high-throughput screening in producing high-yielding plant varieties with improved resistance against stress.
Collapse
Affiliation(s)
- Philip Coatsworth
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Yasin Cotur
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Atharv Naik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Tarek Asfour
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Alex Silva-Pinto Collins
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Selin Olenik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Zihao Zhou
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Laura Gonzalez-Macia
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Dai-Yin Chao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tolga Bozkurt
- Imperial College London, Department of Life Sciences, Royal School of Mines, SW7 2AZ London, UK
| | - Firat Güder
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| |
Collapse
|
37
|
Knoch D, Meyer RC, Heuermann MC, Riewe D, Peleke FF, Szymański J, Abbadi A, Snowdon RJ, Altmann T. Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:713-728. [PMID: 37964699 DOI: 10.1111/tpj.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477 spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight into the complex relations during early vegetative growth and reanalysed the transcriptome data based on the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL, many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics layers and correlations between omics features allowed us to discover prime candidate genes for metabolic and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass production.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Marc C Heuermann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, 14195, Berlin, Germany
| | - Fritz F Peleke
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Institute of Bio- and Geosciences IBG-4: Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363, Holtsee, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition (iFZ), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| |
Collapse
|
38
|
Clark KR, Goldberg Oppenheimer P. Vibrational spectroscopic profiling of biomolecular interactions between oak powdery mildew and oak leaves. SOFT MATTER 2024; 20:959-970. [PMID: 38189096 PMCID: PMC10828924 DOI: 10.1039/d3sm01392h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Oak powdery mildew, caused by the biotrophic fungus Erysiphe alphitoides, is a prevalent disease affecting oak trees, such as English oak (Quercus robur). While mature oak populations are generally less susceptible to this disease, it can endanger young oak seedlings and new leaves on mature trees. Although disruptions of photosynthate and carbohydrate translocation have been observed, accurately detecting and understanding the specific biomolecular interactions between the fungus and the leaves of oak trees is currently lacking. Herein, via hybrid Raman spectroscopy combined with an advanced artificial neural network algorithm, the underpinning biomolecular interactions between biological soft matter, i.e., Quercus robur leaves and Erysiphe alphitoides, are investigated and profiled, generating a spectral library and shedding light on the changes induced by fungal infection and the tree's defence response. The adaxial surfaces of oak leaves are categorised based on either the presence or absence of Erysiphe alphitoides mildew and further distinguishing between covered or not covered infected leaf tissues, yielding three disease classes including healthy controls, non-mildew covered and mildew-covered. By analysing spectral changes between each disease category per tissue type, we identified important biomolecular interactions including disruption of chlorophyll in the non-vein and venule tissues, pathogen-induced degradation of cellulose and pectin and tree-initiated lignification of cell walls in response, amongst others, in lateral vein and mid-vein tissues. Via our developed computational algorithm, the underlying biomolecular differences between classes were identified and allowed accurate and rapid classification of disease with high accuracy of 69.6% for non-vein, 73.5% for venule, 82.1% for lateral vein and 85.6% for mid-vein tissues. Interfacial wetting differences between non-mildew covered and mildew-covered tissue were further analysed on the surfaces of non-vein and venule tissue. The overall results demonstrated the ability of Raman spectroscopy, combined with advanced AI, to act as a powerful and specific tool to probe foliar interactions between forest pathogens and host trees with the simultaneous potential to probe and catalogue molecular interactions between biological soft matter, paving the way for exploring similar relations in broader forest tree-pathogen systems.
Collapse
Affiliation(s)
- Kieran R Clark
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
39
|
Seliem MK, Taha NA, El-Feky NI, Abdelaal K, El-Ramady H, El-Mahrouk ME, Bayoumi YA. Evaluation of Five Chrysanthemum morifolium Cultivars against Leaf Blight Disease Caused by Alternaria alternata at Rooting and Seedling Growth Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:252. [PMID: 38256805 PMCID: PMC10820434 DOI: 10.3390/plants13020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
During the winter of 2018, leaf blight on florist's daisy (Chrysanthemum morifolium L.) was noticed in Egypt. The disease, which was identified as caused by Alternaria alternata, was widely spread and led to serious damage for the exportation sector of this crop. Therefore, a study was conducted to better understand what can be conducted to minimize the problem in the future. Isolates were gathered and evaluated on five chrysanthemum cultivars (i.e., 'Feeling Green Dark', 'Talitha', 'Chrystal Regan', 'Arctic queen', and 'Podolsk Purple') grown in a greenhouse. The objectives were to isolate and identify the phytopathogen and detect the resistant degree of these cultivars with emphasis on the early growth stages of the crop. The results showed that 'Podolsk Purple' was the most resistant cultivar against the different isolates during the rooting and seedling growth stages. 'Chrystal Regan' was very susceptible to the different isolates. In addition, the isolate from 'Feeling Green Dark' was the strongest, which negatively affected the chlorophyll content and its fluorescence parameters besides other measured vegetative and anatomical features. The findings indicated that the best anatomical characters of the stem and leaf, like the thickness of cuticle and cortex, stem diameter, xylem vessel diameter, and thickness of epidermis as well as lamina thickness were recorded in the 'Podolsk Purple' cultivar. This study highlighted that by using the right cultivars, chrysanthemum can be cultivated during the winter season under Egyptian conditions. These results can be a part of solution to overcome the leaf blight caused by A. alternata on chrysanthemum during the early growing stages.
Collapse
Affiliation(s)
- Mayada K. Seliem
- Ornamental and Floriculture Department, Horticulture Research Institute, El-Sabahia, Alexandria 21599, Egypt;
| | - Naglaa A. Taha
- Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt; (N.A.T.); (N.I.E.-F.)
| | - Nahla I. El-Feky
- Plant Pathology Research Institute, Agriculture Research Center, Giza 12619, Egypt; (N.A.T.); (N.I.E.-F.)
| | - Khaled Abdelaal
- EPCRS Excellence Center, Plant Pathology and Biotechnology Lab., Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Hassan El-Ramady
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammed E. El-Mahrouk
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Yousry A. Bayoumi
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| |
Collapse
|
40
|
Qian R, Li Y, Liu Y, Sun N, Liu L, Lin X, Sun C. Integrated transcriptomic and metabolomic analysis reveals the potential mechanisms underlying indium-induced inhibition of root elongation in wheat plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168477. [PMID: 37951262 DOI: 10.1016/j.scitotenv.2023.168477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Soil contamination by indium, an emerging contaminant from electronics, has a negative impact on crop growth. Inhibition of root growth serves as a valuable biomarker for predicting indium phytotoxicity. Therefore, elucidating the molecular mechanisms underlying indium-induced root damage is essential for developing strategies to mitigate its harmful effects. Our transcriptomic findings revealed that indium affects the expression of numerous genes related to cell wall composition and metabolism in wheat roots. Morphological and compositional analysis revealed that indium induced a 2.9-fold thickening and a 17.5 % increase in the content of cell walls in wheat roots. Untargeted metabolomics indicated a substantial upregulation of the phenylpropanoid biosynthesis pathway. As the major end product of phenylpropanoid metabolism, lignin significantly accumulated in root cell walls after indium exposure. Together with increased lignin precursors, enhanced activity of lignin biosynthesis-related enzymes was observed. Moreover, analysis of the monomeric content and composition of lignin revealed a significant enrichment of p-hydroxyphenyl (H) and syringyl (S) units in root cell walls under indium stress. The present study contributes to the existing knowledge of indium toxicity. It provides valuable insights for developing sustainable solutions to address the challenges posed by electronic waste and indium contamination on agroecosystems.
Collapse
Affiliation(s)
- Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhao Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Pesquet E, Blaschek L, Takahashi J, Yamamoto M, Champagne A, Nuoendagula, Subbotina E, Dimotakis C, Bacisk Z, Kajita S. Bulk and In Situ Quantification of Coniferaldehyde Residues in Lignin. Methods Mol Biol 2024; 2722:201-226. [PMID: 37897609 DOI: 10.1007/978-1-0716-3477-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Lignin is a group of cell wall localised heterophenolic polymers varying in the chemistry of the aromatic and aliphatic parts of its units. The lignin residues common to all vascular plants have an aromatic ring with one para hydroxy group and one meta methoxy group, also called guaiacyl (G). The terminal function of the aliphatic part of these G units, however, varies from alcohols, which are generally abundant, to aldehydes, which represent a smaller proportion of lignin monomers. The proportions of aldehyde to alcohol G units in lignin are, nevertheless, precisely controlled to respond to environmental and development cues. These G aldehyde to alcohol unit proportions differ between each cell wall layer of each cell type to fine-tune the cell wall biomechanical and physico-chemical properties. To precisely determine changes in lignin composition, we, herein, describe the various methods to detect and quantify the levels and positions of G aldehyde units, also called coniferaldehyde residues, of lignin polymers in ground plant samples as well as in situ in histological cross-sections.
Collapse
Affiliation(s)
- Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
| | - Leonard Blaschek
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Junko Takahashi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Masanobu Yamamoto
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Antoine Champagne
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Elena Subbotina
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Charilaos Dimotakis
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Zoltán Bacisk
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
42
|
Radotić K, Melø TB, Lindgren M. A fluorescence spectroscopic study of light transmission and adaxial-abaxial distribution of emitting compounds in leaves of Christmas star (Euphorbia pulcherrima). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123269. [PMID: 37598447 DOI: 10.1016/j.saa.2023.123269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
In situ fluorescence measurements have been used to investigate relative amounts of blue-green pigments and their distributions in plant leaves from Euphorbia pulcherrima. Advantage was taken from the fact that this species has white leaves on the top, with low pigment concentrations, and green leaves on the stem with ordinary pigment concentrations. Excitation- and emission spectra below 410 nm from white leaves, where pigment absorption is low, are not distorted by self-absorption. Absorption- and reflection spectra from white and green leaves were measured using a spectrophotometer equipped with an integrating sphere. The absorption spectra were used to correct recorded fluorescence spectra for self-absorption. Self-absorption corrected photosystem fluorescence from green leaves, modeling light transmission in leaf tissue exponentially, matches to the excitation/emission spectra from white leaves, apart from small differences due to the pigment concentrations and selective scattering. The introduced exponentially decaying transmission relation also predicts that the ratio of excitation spectra from a white and green leaf is in proportion to the absorption spectrum of the green leaf, which was validated for Photosystem II particle fluorescence. This relation was also used to find a scaled absorption spectrum responsible for blue-green emission, which was assumed to originate from lignin. Excitation/emission spectra of the blue-green fluorescence were decomposed into five components and their relative amounts from adaxial and abaxial sides of the leaves have been quantified. Fluorescence lifetime measurements of the leaves, upon 403 nm excitation, revealed three decay times corresponding to the lignin fluorophores emitting in blue and green spectral region, and indicated that emissions at 500 and 550 nm may originate from the same fluorophore residing in the two physically different environments.
Collapse
Affiliation(s)
- Ksenija Radotić
- University of Belgrade - Institute for Multidisciplinary research, Kneza Višeslava 1, Belgrade 11000, Serbia.
| | - Thor B Melø
- Department of Physics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
43
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
44
|
Li W, Yuan K, Ren M, Xie Z, Qi K, Gong X, Wang Q, Zhang S, Tao S. PbPDCB16-mediated callose deposition affects the plasmodesmata blockage and reduces lignification in pear fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111876. [PMID: 37748584 DOI: 10.1016/j.plantsci.2023.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Stone cell, a type of lignified cell, is a unique trait in pear and one of the key factors affects pear fruit quality and economic value. The transmissibility of cell lignification process has been proven to exist, however the effects of callose on the permeability of plasmodesmata (PD) and how to influence cell lignification processes are still unknown. In this study, the genome-wide analysis of PD callose binding proteins (PDCB) gene family in pear genome was performed, and 25 PbPDCB genes were identified and divided into four branches. Similar intron/exon structural patterns were observed in the same branch, strongly supporting their close evolutionary relationship. The expression of PbPDCB16 was negatively correlated with lignin accumulation through qRT-PCR analysis. With transient expression in pear fruit and stable expression in pear calli, the increased callose content accompanied by decreased lignin content was further observed. Besides, compared with wild type Arabidopsis, the transgenic plants grew slowly, and cell walls in the stem were thinner, while fewer PDs were observed on the cell walls, and the interspore filaments were also blocked in transgenic Arabidopsis through the transmission electron microscope (TEM). In summary, overexpression of PbPDCB16 could promote accumulation of callose at PD to affect the PD-mediated intercellular connectivity, and inhibit the intercellular communication. This study will provide new insight in reducing the lignin content through callose deposition, and also provide the theoretical basis for further exploration of lignin metabolism and cell wall lignification to form stone cells in pear fruit.
Collapse
Affiliation(s)
- Wen Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaili Yuan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Ren
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Gong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572000, China.
| |
Collapse
|
45
|
Chang LF, Fei J, Wang YS, Ma XY, Zhao Y, Cheng H. Comparative Analysis of Cd Uptake and Tolerance in Two Mangrove Species ( Avicennia marina and Rhizophora stylosa) with Distinct Apoplast Barriers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3786. [PMID: 38005683 PMCID: PMC10674663 DOI: 10.3390/plants12223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
Mangrove plants demonstrate an impressive ability to tolerate environmental pollutants, but excessive levels of cadmium (Cd) can impede their growth. Few studies have focused on the effects of apoplast barriers on heavy metal tolerance in mangrove plants. To investigate the uptake and tolerance of Cd in mangrove plants, two distinct mangrove species, Avicennia marina and Rhizophora stylosa, are characterized by unique apoplast barriers. The results showed that both mangrove plants exhibited the highest concentration of Cd2+ in roots, followed by stems and leaves. The Cd2+ concentrations in all organs of R. stylosa consistently exhibited lower levels than those of A. marina. In addition, R. stylosa displayed a reduced concentration of apparent PTS and a smaller percentage of bypass flow when compared to A. marina. The root anatomical characteristics indicated that Cd treatment significantly enhanced endodermal suberization in both A. marina and R. stylosa roots, and R. stylosa exhibited a higher degree of suberization. The transcriptomic analysis of R. stylosa and A. marina roots under Cd stress revealed 23 candidate genes involved in suberin biosynthesis and 8 candidate genes associated with suberin regulation. This study has confirmed that suberized apoplastic barriers play a crucial role in preventing Cd from entering mangrove roots.
Collapse
Affiliation(s)
- Li-Fang Chang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Jiao Fei
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - You-Shao Wang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - Xiao-Yu Ma
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Yan Zhao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Hao Cheng
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| |
Collapse
|
46
|
Khan MKU, Zhang X, Ma Z, Huang M, Yang C, Wang X, Liu M, Peng J. Contribution of the LAC Genes in Fruit Quality Attributes of the Fruit-Bearing Plants: A Comprehensive Review. Int J Mol Sci 2023; 24:15768. [PMID: 37958753 PMCID: PMC10650289 DOI: 10.3390/ijms242115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Laccase genes produce laccase enzymes that play a crucial role in the production of lignin and oxidation reactions within plants. Lignin is a complex polymer that provides structure and toughness to the cell walls of numerous fruit plants. The LAC genes that encode laccase enzymes play vital roles in plant physiology, including the synthesis of pigments like PA that contribute to the colors of fruits, and in defending against pathogens and environmental stresses. They are crucial for fruit development, ripening, structural maintenance in plants, and adaptation to various environmental factors. As such, these genes and enzymes are essential for plant growth and development, as well as for various biotechnological applications in environmental remediation and industrial processes. This review article emphasizes the significance of genes encoding laccase enzymes during fruit growth, specifically pertaining to the strengthening of the endocarp through lignification. This process is crucial for ensuring fruit defense and optimizing seed scattering. The information gathered in this article will aid breeders in producing future fruit-bearing plants that are resistant to disease, cost-effective, and nutrient-rich.
Collapse
Affiliation(s)
- Muhammad Khalil Ullah Khan
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
| | - Xiaojie Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
| | - Zitan Ma
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
| | - Mingxia Huang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
| | - Ce Yang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
| | - Xiaoming Wang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
- Research Center of Chinese jujube, Hebei Agricultural University, Baoding 071001, China
| | - Jianying Peng
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (M.K.U.K.); (X.Z.); (Z.M.); (M.H.); (C.Y.); (X.W.)
| |
Collapse
|
47
|
Schulz K, Machaj G, Knox P, Hancock RD, Verrall SR, Korpinen R, Saranpää P, Kärkönen A, Karpinska B, Foyer CH. Restraining Quiescence Release-Related Ageing in Plant Cells: A Case Study in Carrot. Cells 2023; 12:2465. [PMID: 37887309 PMCID: PMC10605352 DOI: 10.3390/cells12202465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The blackening of cut carrots causes substantial economic losses to the food industry. Blackening was not observed in carrots that had been stored underground for less than a year, but the susceptibility to blackening increased with the age of the carrots that were stored underground for longer periods. Samples of black, border, and orange tissues from processed carrot batons and slices, prepared under industry standard conditions, were analyzed to identify the molecular and metabolic mechanisms underpinning processing-induced blackening. The black tissues showed substantial molecular and metabolic rewiring and large changes in the cell wall structure, with a decreased abundance of xyloglucan, pectins (homogalacturonan, rhamnogalacturonan-I, galactan and arabinan), and higher levels of lignin and other phenolic compounds when compared to orange tissues. Metabolite profiling analysis showed that there was a major shift from primary to secondary metabolism in the black tissues, which were depleted in sugars, amino acids, and tricarboxylic acid (TCA) cycle intermediates but were rich in phenolic compounds. These findings suggest that processing triggers a release from quiescence. Transcripts encoding proteins associated with secondary metabolism were less abundant in the black tissues, but there were no increases in transcripts associated with oxidative stress responses, programmed cell death, or senescence. We conclude that restraining quiescence release alters cell wall metabolism and composition, particularly regarding pectin composition, in a manner that increases susceptibility to blackening upon processing.
Collapse
Affiliation(s)
- Katie Schulz
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.S.); (P.K.)
| | - Gabriela Machaj
- Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 31-120 Krakow, Poland;
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.S.); (P.K.)
| | - Robert D. Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Susan R. Verrall
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 1BE, UK;
| | - Risto Korpinen
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Pekka Saranpää
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Anna Kärkönen
- Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland; (R.K.); (P.S.); (A.K.)
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
48
|
Hameed A, Ghani N, Mughal TA, Abbas M, Abrar A, Javed H. Pharmacognostical evaluation and physiochemical analysis of Salsola Kali as medicinal plant. Microsc Res Tech 2023; 86:1322-1332. [PMID: 36919921 DOI: 10.1002/jemt.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/06/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
One of the largest genera Salsola include halophytic plants with therapeutic potential. For the treatment of various ailments, plants of the genus are acclaimed. Salsola kali is an important medicinal plant exhibiting specific phytochemical and biological makeup that is frequently overlooked. The current study aimed at the pharmacognostical evaluation of leaves and stem of Salsola kali to ensure the purity, quality, and efficacy of this valuable medicinal species. For the identification, evaluation and standardization of diagnostic attributes of intact and powdered material of Salsola kali leaves and stem, various methods including organoleptic, macroscopic, microscopic, and physicochemical analysis were employed. The plant was identified to possess significant characteristics with a view to authenticate drug. Light Microscopy (LM) and Scanning Electron Microscopy (SEM) of aerial parts of Salsola kali manifested specialized anatomical features essential for the adaptability in dry-saline environment. Upon quantitative pharmacognostic analysis of powder of leaves and stem, the moisture content of 1.3% and 11.1%, respectively was found. The total ash (%) in leaves and stem was computed to be 65.95 and 85.3, respectively. The water soluble and alcohol soluble extractive values (%) were computed to be 79.38 and 75.4 in leaves and 78.0 and 76.8 in stem, respectively. The swelling index (cm) in leaves and stem was enumerated to be 0.8 and 0.5. The current study will be helpful in the quality check and authentication of various parts of Salsola kali that can be used as principal component of herbal medicine formulation. Based on various microscopic analyses, that is, Light Microscopy and Scanning Electron Microscopy, the detailed description and valuable information on Salsola kali, a medicinal plant, has been provided. The present study can make a significant contribution in the literature as the findings may contribute to the determination of purity of Salsola kali for future perspectives.
Collapse
Affiliation(s)
- Aiza Hameed
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | - Nadia Ghani
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | - Tahira Aziz Mughal
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | - Moneeza Abbas
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | - Amina Abrar
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| | - Houda Javed
- Department of Environmental Science, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
49
|
Bini AP, Rossi GD, Poeschl Y, Serra MCD, Camargo LEA, Monteiro-Vitorello CB, van Sluys MA, van Dam NM, Uthe H, Creste S. Molecular, biochemical and metabolomics analyses reveal constitutive and pathogen-induced defense responses of two sugarcane contrasting genotypes against leaf scald disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108033. [PMID: 37757720 DOI: 10.1016/j.plaphy.2023.108033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Leaf scald caused by the bacteria Xanthomonas albilineans is one of the major concerns to sugarcane production. To breed for resistance, mechanisms underlying plant-pathogen interaction need deeper investigations. Herein, we evaluated sugarcane defense responses against X. albilineans using molecular and biochemical approaches to assess pathogen-triggered ROS, phytohormones and metabolomics in two contrasting sugarcane genotypes from 0.5 to 144 h post-inoculation (hpi). In addition, the infection process was monitored using TaqMan-based quantification of X. albilineans and the disease symptoms were evaluated in both genotypes after 15 d post-inoculation (dpi). The susceptible genotype presented a response to the infection at 0.5 hpi, accumulating defense-related metabolites such as phenolics and flavonoids with no significant defense responses thereafter, resulting in typical symptoms of leaf scald at 15 dpi. The resistant genotype did not respond to the infection at 0.5 hpi but constitutively presented higher levels of salicylic acid and of the same metabolites induced by the infection in the susceptible genotype. Moreover, two subsequent pathogen-induced metabolic responses at 12 and 144 hpi were observed only in the resistant genotype in terms of amino acids, quinic acids, coumarins, polyamines, flavonoids, phenolics and phenylpropanoids together with an increase of hydrogen peroxide, ROS-related genes expression, indole-3-acetic-acid and salicylic acid. Multilevel approaches revealed that constitutive chemical composition and metabolic reprogramming hampers the development of leaf scald at 48 and 72 hpi, reducing the disease symptoms in the resistant genotype at 15 dpi. Phenylpropanoid pathway is suggested as a strong candidate marker for breeding sugarcane resistant to leaf scald.
Collapse
Affiliation(s)
- Andressa Peres Bini
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil
| | - Guilherme Duarte Rossi
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Via de Acesso Professor Paulo Donato Castellane S/N, 14884-900, Jaboticabal, SP, Brazil
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Marina Carnaz Duarte Serra
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil
| | - Luis Eduardo Aranha Camargo
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Av. Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil
| | | | - Marie-Anne van Sluys
- Universidade de São Paulo, Departamento de Botânica - Instituto de Biociências, Rua do Matão 277, 05508-090, São Paulo, SP, Brazil
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
| | - Silvana Creste
- Instituto Agronômico (IAC), Centro de Cana, Rodovia Antônio Duarte Nogueira KM 321, 14032-800, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
50
|
Zhang L, Kamitakahara H, Takano T, Morimoto T, Sakamoto S, Mitsuda N, Itai A. Stone cell formation in the pedicel of pears and apples. PLANTA 2023; 258:85. [PMID: 37747516 DOI: 10.1007/s00425-023-04240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
MAIN CONCLUSION For the first time, stone cells in pear and apple pedicel were studied. The lignification of the pedicel outer part was correlated with flesh, and the secondary cell wall biosynthesis genes were activated. Fruit pedicels act as bridges between the fruit and the shoot. They have secondary thickened cell walls that presumably function in mechanical support, water and nutrient transport. Stone cells are cells with a secondary cell wall thickening. In pears, yet not in apples, the stone cells affect the flesh texture. There have been few reports on stone cell formation in pear and apple pedicels; therefore, we studied these cells for the first time. The apple pedicel had few stone cells in the cortex. The formation of stone cells in pear continued until seven weeks after flowering (WAF), and the density was significantly higher than in apple. The stone cell formation degree (SFD) of pear was 3.6-7.1 times higher than that of apple. Total lignin and lignin non-condensed structure (G and S units) content in the pear pedicle outer part was 1.5-2.7 times higher than that of the apple at harvest. The SFD of the pedicel outer part had a positive correlation with the G and S units content of the flesh. The total lignin and G and S units content between flesh and the pedicel outer part were positively correlated. Correlation analysis revealed a positive relationship between fruit and pedicel formation of the stone cells. The WGCNA showed that NST3 was linked to NAC028, MYB46, CESA, POD, LAC, and VSR6. These genes were highly expressed in the outer part of the pear pedicel, while they were suppressed in that issue of the apple at 4 WAF.
Collapse
Affiliation(s)
- Lumin Zhang
- Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Nancheng Street 150, Yuanmou, 651300, Yunnan, China
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kitaina-Yazuma Oji 74, Seika-Cho, Soraku-Gun, Kyoto, 619-0244, Japan
| | - Hiroshi Kamitakahara
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Toshiyuki Takano
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Takuya Morimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kitaina-Yazuma Oji 74, Seika-Cho, Soraku-Gun, Kyoto, 619-0244, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Akihiro Itai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kitaina-Yazuma Oji 74, Seika-Cho, Soraku-Gun, Kyoto, 619-0244, Japan.
| |
Collapse
|