1
|
Yonemoto E, Ihara R, Tanaka E, Mitani T. Cocoa extract induces browning of white adipocytes and improves glucose intolerance in mice fed a high-fat diet. Biosci Biotechnol Biochem 2024; 88:1188-1198. [PMID: 39025807 DOI: 10.1093/bbb/zbae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Cocoa extract (CE) offers several health benefits, such as antiobesity and improved glucose intolerance. However, the mechanisms remain unclear. Adipose tissue includes white adipose tissue (WAT) and brown adipose tissue. Brown adipose tissue leads to body fat reduction by metabolizing lipids to heat via uncoupling protein 1 (UCP1). The conversion of white adipocytes into brown-like adipocytes (beige adipocytes) is called browning, and it contributes to the anti-obesity effect and improved glucose tolerance. This study aimed to evaluate the effect of CE on glucose tolerance in terms of browning. We found that dietary supplementation with CE improved glucose intolerance in mice fed a high-fat diet, and it increased the expression levels of Ucp1 and browning-associated gene in inguinal WAT. Furthermore, in primary adipocytes of mice, CE induced Ucp1 expression through β3-adrenergic receptor stimulation. These results suggest that dietary CE improves glucose intolerance by inducing browning in WAT.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Glucose Intolerance/drug therapy
- Glucose Intolerance/metabolism
- Cacao/chemistry
- Plant Extracts/pharmacology
- Mice
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Male
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Mice, Inbred C57BL
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
Collapse
Affiliation(s)
- Eito Yonemoto
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Risa Ihara
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| | - Emi Tanaka
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
2
|
Watanabe S, Haruyama R, Umezawa K, Tomioka I, Nakamura S, Katayama S, Mitani T. Genistein enhances NAD + biosynthesis by upregulating nicotinamide phosphoribosyltransferase in adipocytes. J Nutr Biochem 2023; 121:109433. [PMID: 37648097 DOI: 10.1016/j.jnutbio.2023.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
A decrease in the NAD+ level in adipocytes causes adipose-tissue dysfunction, leading to systemic glucose, and lipid metabolism failure. Therefore, it is necessary to develop small molecules and nutraceuticals that can increase NAD+ levels in adipocytes. Genistein, a nutraceutical derived from soybeans, has various physiological activities and improves glucose and lipid metabolism. In this study, we aimed to unravel the effects of genistein on the NAD+ level in adipocytes and the underlying molecular mechanisms. Genistein enhanced NAD+ biosynthesis by increasing the expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis. A pull-down assay using genistein-immobilized beads revealed prohibitin 1 (PHB1) as a target protein of genistein. The knockdown of Phb1 suppressed the genistein-induced increase in NAMPT expression and NAD+ level in adipocytes. Genistein-bound PHB1 contributed to the stabilization of the transcription factor CCAAT/enhancer-binding protein β through the activation of extracellular signal-regulated kinase, resulting in increased NAMPT expression at the transcriptional level. Genistein induced the dephosphorylation of peroxisome proliferator-activated receptor at serine 273 and increased the level of the insulin-sensitizing adipokine adiponectin in adipocytes, whereas the knockdown of Nampt and Phb1 abolished these genistein-mediated effects. Our results proved the potential efficacy of genistein in increasing the NAD+ level and restoring metabolic function in adipocytes. Furthermore, we identified PHB1, localized to the plasma membrane, as a novel candidate target protein for increased expression of NAMPT in adipocytes. Overall, these findings will assist in developing NAD+-boosting nutraceuticals to alleviate metabolic dysfunctions in adipose tissues.
Collapse
Affiliation(s)
- Shun Watanabe
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Riki Haruyama
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Koji Umezawa
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Ikuo Tomioka
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan; Division of Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Soichiro Nakamura
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Shigeru Katayama
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takakazu Mitani
- Division of Food Science and Biotechnology, Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan.
| |
Collapse
|
3
|
Anti-Cancer Effects of Dietary Polyphenols via ROS-Mediated Pathway with Their Modulation of MicroRNAs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123816. [PMID: 35744941 PMCID: PMC9227902 DOI: 10.3390/molecules27123816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Consumption of coffee, tea, wine, curry, and soybeans has been linked to a lower risk of cancer in epidemiological studies. Several cell-based and animal studies have shown that dietary polyphenols like chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin and resveratrol play a major role in these anticancer effects. Several mechanisms have been proposed to explain the anticancer effects of polyphenols. Depending on the cellular microenvironment, these polyphenols can exert double-faced actions as either an antioxidant or a prooxidant, and one of the representative anticancer mechanisms is a reactive oxygen species (ROS)-mediated mechanism. These polyphenols can also influence microRNA (miR) expression. In general, they can modulate the expression/activity of the constituent molecules in ROS-mediated anticancer pathways by increasing the expression of tumor-suppressive miRs and decreasing the expression of oncogenic miRs. Thus, miR modulation may enhance the anticancer effects of polyphenols through the ROS-mediated pathways in an additive or synergistic manner. More precise human clinical studies on the effects of dietary polyphenols on miR expression will provide convincing evidence of the preventive roles of dietary polyphenols in cancer and other diseases.
Collapse
|