1
|
Russell AC, Kenna MA, Huynh AV, Rice AM. Microbial DNA extraction method for avian feces and preen oil from diverse species. Ecol Evol 2024; 14:e70220. [PMID: 39224152 PMCID: PMC11368492 DOI: 10.1002/ece3.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
As DNA sequencing technology continues to rapidly improve, studies investigating the microbial communities of host organisms (i.e., microbiota) are becoming not only more popular but also more financially accessible. Across many taxa, microbiomes can have important impacts on organismal health and fitness. To evaluate the microbial community composition of a particular microbiome, microbial DNA must be successfully extracted. Fecal samples are often easy to collect and are a good source of gut microbial DNA. Additionally, interest in the avian preen gland microbiome is rapidly growing, due to the importance of preen oil for many aspects of avian life. Microbial DNA extractions from avian fecal and preen oil samples present multiple challenges, however. Here, we describe a modified PrepMan Ultra Sample Preparation Reagent microbial DNA extraction method that is less expensive than other commonly used methodologies and is highly effective for both fecal and preen oil samples collected from a broad range of avian species. We expect our method will facilitate microbial DNA extractions from multiple avian microbiome reservoirs, which have previously proved difficult and expensive. Our method therefore increases the feasibility of future studies of avian host microbiomes.
Collapse
Affiliation(s)
- Austin C. Russell
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Margaret A. Kenna
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Alex Van Huynh
- Department of BiologyDeSales UniversityCenter ValleyPennsylvaniaUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
2
|
Mazorra-Alonso M, Peralta-Sánchez JM, Martín-Vivaldi M, Martínez-Bueno M, Gómez RN, Soler JJ. Volatiles of symbiotic bacterial origin explain ectoparasitism and fledging success of hoopoes. Anim Microbiome 2024; 6:26. [PMID: 38725090 PMCID: PMC11084096 DOI: 10.1186/s42523-024-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Some parasites use olfactory cues to detect their hosts and, since bacterial symbionts are partially responsible for animal odours, they could influence host parasitism. By autoclaving nest materials of hoopoe (Upupa epops) nests before reproduction started, we explored the hypothetical links between host-associated bacteria, volatiles and parasitism. During the nestling stage, we (i) estimated the level of ectoparasitism by chewing lice (Suborder Mallophaga) in adult hoopoe females and by Carnus haemapterus flies in nestlings, and (ii) characterized microbial communities and volatile profiles of nest environments (nest material and nest cavity, respectively) and uropygial secretions. RESULTS Experimental nests had less diverse bacterial communities and more diverse volatile profiles than control nests, while occupants experienced lower intensity of parasitism in experimental than in control nests. The experiment also affected beta diversity of the microbial communities of nest material and of the volatiles of the nestling uropygial secretions. Moreover, microbial communities of uropygial secretions and of nest materials covaried with their volatile profiles, while the volatile profile of the bird secretions explained nest volatile profile. Finally, a subset of the volatiles and bacteria detected in the nest material and uropygial secretions were associated with the ectoparasitism intensity of both adult females and nestlings, and with fledging success. CONCLUSIONS These results show that a component of animal odours is linked with the microbial communities of the host and its reproductive environment, and emphasize that the associations between bacteria, ectoparasitism and reproductive success are partially mediated by volatiles of bacterial origin. Future work should focus on mechanisms underlying the detected patterns.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | | | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Rafael Núñez Gómez
- Servicio de Instrumentación Científica, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain.
| |
Collapse
|
3
|
Gilles M, Kosztolányi A, Rocha AD, Cuthill IC, Székely T, Caspers BA. No sex difference in preen oil chemical composition during incubation in Kentish plovers. PeerJ 2024; 12:e17243. [PMID: 38737740 PMCID: PMC11088368 DOI: 10.7717/peerj.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/25/2024] [Indexed: 05/14/2024] Open
Abstract
Preen oil, the secretion from the uropygial gland of birds, may have a specific function in incubation. Consistent with this, during incubation, the chemical composition of preen oil is more likely to differ between sexes in species where only one sex incubates than in species where both sexes incubate. In this study, we tested the generality of this apparent difference, by investigating sex differences in the preen oil composition of a shorebird species, the Kentish plover (Anarhynchus, formerly Charadrius, alexandrinus). As both sexes incubate in this species, we predicted the absence of sex differences in preen oil composition during incubation. In the field, we sampled preen oil from nine females and 11 males during incubation, which we analysed with gas chromatography-mass spectrometry (GC-MS). Consistent with predictions, we found no sex difference in preen oil composition, neither in beta diversity (Bray-Curtis dissimilarities) nor in alpha diversity (Shannon index and number of substances). Based on these results, we cannot conclude whether preen oil has a function during incubation in Kentish plovers. Still, we discuss hypothetical roles, such as olfactory crypsis, protection against ectoparasites or olfactory intraspecific communication, which remain to be tested.
Collapse
Affiliation(s)
- Marc Gilles
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - András Kosztolányi
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Afonso D. Rocha
- Ecology in the Anthropocene, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Innes C. Cuthill
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Debrecen Biodiversity Centre, University of Debrecen, Debrecen, Hungary
| | - Barbara A. Caspers
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
- JICE, Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
4
|
Gvoždíková Javůrková V, Doležal P, Fraňková A, Horák M, Chodová D, Langrová I, Tůmová E. Effects of genotype, sex, and feed restriction on the biochemical composition of chicken preen gland secretions and their implications for commercial poultry production. J Anim Sci 2022; 101:6956961. [PMID: 36547363 PMCID: PMC9923712 DOI: 10.1093/jas/skac411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Preen gland secretions spread on the feathers contain various chemical compounds dominated by fatty acids (FAs) and volatile organic compounds (VOCs). These chemicals may significantly affect plumage condition, microbial and ectoparasitic load on feathers, and chemical communication of birds. However, how chemical composition of preen secretions varies in commercially produced chickens with respect to their genotype, sex, and feeding regime remain largely unknown, as well as the welfare implications for farmed poultry. We found that while polyunsaturated fatty acids in chicken preen secretions differed significantly with genotype (P << 0.001), saturated fatty acids and monounsaturated fatty acids varied with genotype-dependent preen gland volume (P < 0.01). Chickens of meat-type fast-growing Ross 308 genotype had reduced preen gland volume and lower proportions of all FA categories in their preen secretions compared with dual-purpose slow-growing ISA Dual chickens. A total of 34 FAs and 77 VOCs with tens of unique FAs were detected in preen secretions of both genotypes. While differences in the relative proportion of 6 of the 10 most dominant VOCs in chicken preen gland secretions were related to genotype (P < 0.001), only 1 of the 10 most dominant VOCs showed a sex effect (P < 0.01), and only 2 of the 10 most dominant VOCs showed a genotype-dependent effect of feed restriction (P < 0.05). Feed restriction had no effect on the relative proportion of any of the FAs in chicken preen gland secretions. Moreover, we found that meat-type Ross 308 preen secretions were dominated by VOCs, which are proven attractants for poultry red mite and may also increase infestation with other ectoparasites and negatively influence overall odor-mediated intraspecific communication and welfare. This study shows that no feeding management, but long-term genetic selection in commercial breeding may be the main cause of the differences in the biochemistry and function of chicken preen secretions. This might have negative consequences for chemosignaling, antiparasitic, and antimicrobial potential of preen secretions and can lead to increased susceptibility to ectoparasites, plumage care disorders, and can affect the overall condition, welfare, and productivity of commercially bred chickens. Selection-induced preen gland impairments must therefore be considered and compensated by proper management of the chicken farm and increased care about animal well-being.
Collapse
Affiliation(s)
| | - Petr Doležal
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic,Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Adéla Fraňková
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Monika Horák
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Iva Langrová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6 - Suchdol, Czech Republic
| |
Collapse
|
5
|
Amo L, Amo de Paz G, Kabbert J, Machordom A. House sparrows do not exhibit a preference for the scent of potential partners with different MHC-I diversity and genetic distances. PLoS One 2022; 17:e0278892. [PMID: 36542616 PMCID: PMC9770374 DOI: 10.1371/journal.pone.0278892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
MHC genes play a fundamental role in immune recognition of pathogens and parasites. Therefore, females may increase offspring heterozygosity and genetic diversity by selecting males with genetically compatible or heterozygous MHC. In birds, several studies suggest that MHC genes play a role in mate choice, and recent evidence suggests that olfaction may play a role in the MHC-II discrimination. However, whether olfaction is involved in MHC-I discrimination in birds remains unknown. Previous studies indicate that house sparrow females with low allelic diversity prefer males with higher diversity in MHC-I alleles. Here, we directly explored whether female and male house sparrows (Passer domesticus) could estimate by scent MHC-I diversity and/or dissimilarity of potential partners. Our results show that neither females nor males exhibit a preference related to MHC-I diversity or dissimilarity of potential partners, suggesting that MHC-I is not detected through olfaction. Further studies are needed to understand the mechanisms responsible for mate discrimination based on MHC-I in birds.
Collapse
Affiliation(s)
- Luisa Amo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos, Móstoles, Spain
- * E-mail:
| | - Guillermo Amo de Paz
- Departamento de Farmacología, Farmacognosia y Botánica, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Johanna Kabbert
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Grieves LA, Bottini CLJ, Gloor GB, MacDougall-Shackleton EA. Uropygial gland microbiota differ between free-living and captive songbirds. Sci Rep 2022; 12:18283. [PMID: 36316352 PMCID: PMC9622905 DOI: 10.1038/s41598-022-22425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Symbiotic microbes can affect host behavior and fitness. Gut microbiota have received the most study, with less attention to other important microbial communities like those of scent-producing glands such as mammalian anal glands and the avian uropygial gland. However, mounting evidence suggests that microbes inhabiting scent-producing glands play an important role in animal behavior by contributing to variation in chemical signals. Free-living and captive conditions typically differ in social environment, food diversity and availability, disease exposure, and other factors-all of which can translate into differences in gut microbiota. However, whether extrinsic factors such as captivity alter microbial communities in scent glands remains an open question. We compared the uropygial gland microbiota of free-living and captive song sparrows (Melospiza melodia) and tested for an effect of dietary manipulations on the gland microbiota of captive birds. As predicted, the uropygial gland microbiota was significantly different between free-living and captive birds. Surprisingly, microbial diversity was higher in captive than free-living birds, and we found no effect of dietary treatments on captive bird microbiota. Identifying the specific factors responsible for microbial differences among groups and determining whether changes in symbiotic microbiota alter behavior and fitness are important next steps in this field.
Collapse
Affiliation(s)
- L. A. Grieves
- grid.39381.300000 0004 1936 8884Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7 Canada ,grid.25073.330000 0004 1936 8227Present Address: Department of Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 3L8 Canada
| | - C. L. J. Bottini
- grid.39381.300000 0004 1936 8884Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7 Canada
| | - G. B. Gloor
- grid.39381.300000 0004 1936 8884Department of Biochemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1 Canada
| | - E. A. MacDougall-Shackleton
- grid.39381.300000 0004 1936 8884Department of Biology, The University of Western Ontario, 1151 Richmond St., London, ON N6A 5B7 Canada
| |
Collapse
|
7
|
Talbott KM, Becker DJ, Soini HA, Higgins BJ, Novotny MV, Ketterson ED. Songbird preen oil odour reflects haemosporidian parasite load. Anim Behav 2022; 188:147-155. [PMID: 35756157 PMCID: PMC9223275 DOI: 10.1016/j.anbehav.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Investigating the impact of parasitism on host phenotype is key to understanding parasite transmission ecology, host behavioural ecology and host-parasite coevolution. Previous studies have provided evidence that avian odour is one such phenotypic trait, as mosquitoes that vector the haemosporidian blood parasite Plasmodium tend to prefer birds that are already infected. Preen oil is a major source of avian odour, yet studies to date have not identified differences in preen oil odour based on the presence or absence of haemosporidian infection. Because preen oil can vary with physiological dynamics, we predicted that the composition of preen oil odours might vary according to parasite load, rather than solely by the presence or absence of infection. We used gas chromatography-mass spectrometry to characterize the composition of volatile compounds in preen oil taken from female dark-eyed juncos, Junco hyemalis carolinensis, and asked whether their composition varied with relative haemosporidian parasite load, which we assessed using quantitative PCR. We identified a subset of volatile compounds (a 'blend') and two specific compounds that varied with increasing parasite load. Importantly, the quantity of these compounds did not vary based on parasite presence or absence, suggesting that birds with low parasite loads might be phenotypically indistinguishable from uninfected birds. The volatile blend associated with parasite load also varied with sampling date, suggesting a possible seasonal relapse of chronic infections triggered by shifts in junco host reproductive state. Furthermore, we found a positive relationship between parasite load and a volatile blend shown in a previous study to predict reproductive success in juncos. This is the first study to demonstrate quantitative differences in avian host odour based on haemosporidian parasite load. Our findings highlight the importance of focusing on parasite load, rather than solely presence or absence, in investigating host-parasite interactions.
Collapse
Affiliation(s)
- K. M. Talbott
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
| | - D. J. Becker
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
- Department of Biology, University of Oklahoma, Norman, OK, U.S.A
| | - H. A. Soini
- Department of Chemistry, Indiana University, Bloomington, IN, U.S.A
| | - B. J. Higgins
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
| | - M. V. Novotny
- Department of Chemistry, Indiana University, Bloomington, IN, U.S.A
| | - E. D. Ketterson
- Department of Biology, Indiana University, Bloomington, IN, U.S.A
| |
Collapse
|
8
|
Grieves LA, Gilles M, Cuthill IC, Székely T, MacDougall-Shackleton EA, Caspers BA. Olfactory camouflage and communication in birds. Biol Rev Camb Philos Soc 2022; 97:1193-1209. [PMID: 35128775 DOI: 10.1111/brv.12837] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Smell is a sensory modality that is rarely considered in birds, but evidence is mounting that olfaction is an important aspect of avian behaviour and ecology. The uropygial gland produces an odoriferous secretion (preen oil) that can differ seasonally and between the sexes. These differences are hypothesized to function in olfactory camouflage, i.e. minimizing detection by nest predators (olfactory crypsis hypothesis), and/or intraspecific olfactory communication, particularly during breeding (sex semiochemical hypothesis). However, evidence for seasonal and sex differences in preen oil is mixed, with some studies finding differences and others not, and direct evidence for the putative function(s) of seasonal variation and sex differences in preen oil remains limited. We conducted a systematic review of the evidence for such changes in preen oil chemical composition, finding seasonal differences in 95% of species (57/60 species in 35 studies) and sex differences in 47% of species (28/59 species in 46 studies). We then conducted phylogenetic comparative analyses using data from 59 bird species to evaluate evidence for both the olfactory crypsis and sex semiochemical hypotheses. Seasonal differences were more likely in the incubating than non-incubating sex in ground-nesting species, but were equally likely regardless of incubation strategy in non-ground-nesting species. This result supports the olfactory crypsis hypothesis, if ground nesters are more vulnerable to olfactorily searching predators than non-ground nesters. Sex differences were more likely in species with uniparental than biparental incubation and during breeding than non-breeding, consistent with both the olfactory crypsis and sex semiochemical hypotheses. At present, the data do not allow us to disentangle these two hypotheses, but we provide recommendations that will enable researchers to do so.
Collapse
Affiliation(s)
- Leanne A Grieves
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, L8S 4M4, Canada
| | - Marc Gilles
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| | - Innes C Cuthill
- School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K
| | - Tamás Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, U.K.,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem ter 1, Debrecen, H-4032, Hungary
| | | | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, Bielefeld, 33615, Germany
| |
Collapse
|
9
|
Graham JL, Charlier TD, Bonadonna F, Caro SP. Olfactory detection of trace amounts of plant volatiles is correlated with testosterone in a passerine bird. Horm Behav 2021; 136:105045. [PMID: 34537486 DOI: 10.1016/j.yhbeh.2021.105045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/09/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
In response to damage by insects, plants release herbivore-induced plant volatiles (HIPVs) into the air. Insectivorous birds exploit these cues and, consequently, reduce the damages inflicted to the plants. However, little is known about whether they solely use HIPVs as foraging cues, or if they also use them to modulate traits linked to reproduction. As caterpillars are the primary food source required for insectivorous birds to raise offspring, their ability to locate and predict future peaks in caterpillar biomass using olfaction is likely to be advantageous. Therefore, we tested whether an insectivorous songbird that naturally inhabits oak dominated forests can be trained to detect early spring infestation by hatchling caterpillars, at a time when oaks begin bursting, and birds prepare to breed. Tree buds were either infested with caterpillars or left as a control and visually obscured in a Y-Maze choice test. Additionally, we measured testosterone and 17β-estradiol as they influence olfactory perception in mammals and are linked to reproduction in vertebrates. After being trained to associate the presence of HIPVs with that of food, blue tits spent more time with, were more active around, and more frequently chose to first visit the infested trees, showing that blue tits can smell caterpillar activity. Males with higher testosterone spent more time around infested trees, suggesting that foraging behavior during the pre-breeding season is linked with a major reproductive signal. There was no relationship between foraging and estradiol in females. These results are an important foundation for further investigation of the role of hormones in avian olfaction and how smell may be useful for making breeding decisions that could improve reproductive success.
Collapse
Affiliation(s)
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| | | | - Samuel P Caro
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
10
|
Amo L, Saavedra I. Attraction to Smelly Food in Birds: Insectivorous Birds Discriminate between the Pheromones of Their Prey and Those of Non-Prey Insects. BIOLOGY 2021; 10:1010. [PMID: 34681109 PMCID: PMC8533543 DOI: 10.3390/biology10101010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Natural selection has favored the evolution of different capabilities that allow animals to obtain food-e.g., the development of senses for improving prey/food detection. Among these senses, chemical sense is possibly the most ancient mechanism used by organisms for environmental assessment. Comparative studies suggest the prime role of foraging ecology in the evolution of the olfactory apparatus of vertebrates, including birds. Here, we review empirical studies that have shown birds' abilities to detect prey/food via olfaction and report the results of a study aiming to analyze the specificity of eavesdropping on prey pheromones in insectivorous birds. In a field study, we placed artificial larvae and a dispenser with one of three treatments-prey (Operopthera brumata) pheromones, non-prey (Rhynchophorus ferrugineus) pheromones, or a control unscented dispenser-on the branches of Pyrenean oak trees (Quercus pyrenaica). We then measured the predation rate of birds on artificial larvae. Our results show that more trees had larvae with signs of avian predation when they contained a prey pheromone dispenser than when they contained a non-prey pheromone dispenser or an unscented dispenser. Our results indicate that insectivorous birds can discriminate between the pheromones emitted by their prey and those emitted by non-prey insects and that they only exhibit attraction to prey pheromones. These results highlight the potential use of insectivorous birds in the biological control of insect pests.
Collapse
Affiliation(s)
- Luisa Amo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal, 2, E-28006 Madrid, Spain;
- Area of Biodiversity and Conservation, Universidad Rey Juan Carlos, c/Tulipán s/n., E-28933 Madrid, Spain
| | - Irene Saavedra
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal, 2, E-28006 Madrid, Spain;
| |
Collapse
|
11
|
Grieves LA, Gloor GB, Kelly TR, Bernards MA, MacDougall-Shackleton EA. Preen gland microbiota of songbirds differ across populations but not sexes. J Anim Ecol 2021; 90:2202-2212. [PMID: 34002375 DOI: 10.1111/1365-2656.13531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
Metabolites produced by symbiotic microbes can affect the odour of their hosts, providing olfactory cues of identity, sex or other salient features. In birds, preen oil is a major source of body odour that differs between populations and sexes. We hypothesized that population and sex differences in preen oil chemistry reflect underlying differences in preen gland microbiota, predicting that these microbes also differ among populations and between the sexes. We further predicted that pairwise similarity in the community composition of preen gland microbiota would covary with that of preen oil chemical composition, consistent with the fermentation hypothesis for chemical recognition. We analysed preen oil chemistry and preen gland bacterial communities of song sparrows Melospiza melodia. Birds were sampled at sites for which population and sex differences in preen oil have been reported, and at a third site that has been less studied. Consistent with prior work in this system, we found population and sex differences in preen oil chemistry. By contrast, we found population differences but not sex differences in the community composition of preen gland microbes. Overall similarity in the community composition of preen gland microbiota did not significantly covary with that of preen oil chemistry. However, we identified a subset of six microbial genera that maximally correlated with preen oil composition. Although both preen gland microbiota and preen oil composition differ across populations, we did not observe an overall association between them that would implicate symbiotic microbes in mediating variation in olfactory cues associated with preen oil. Instead, certain subsets of microbes may be involved in mediating olfactory cues in birds, but experiments are required to test this.
Collapse
Affiliation(s)
| | - Gregory B Gloor
- Biochemistry, University of Western Ontario, London, ON, Canada
| | - Tosha R Kelly
- Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | | |
Collapse
|
12
|
Whittaker DJ, Hagelin JC. Female-Based Patterns and Social Function in Avian Chemical Communication. J Chem Ecol 2020; 47:43-62. [PMID: 33103230 DOI: 10.1007/s10886-020-01230-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
Much of the growing interest in avian chemical signals has focused on the role of kin recognition or mate attraction, often with an emphasis on males, with uropygial gland secretions perhaps providing information about an individual's identity and quality. Yet, data collected to date suggest sexual dimorphism in uropygial glands and secretions are often emphasized in female, rather than in male birds. That is, when a sexual difference occurs (often during the breeding season only), it is the female that typically exhibits one of three patterns: (1) a larger uropygial gland, (2) a greater abundance of volatile or semi-volatile preen oil compounds and/or (3) greater diversity of preen oil compounds or associated microbes. These patterns fit a majority of birds studied to date (23 of 30 chemically dimorphic species exhibit a female emphasis). Multiple species that do not fit are confounded by a lack of data for seasonal effects or proper quantitative measures of chemical compounds. We propose several social functions for these secretions in female-based patterns, similar to those reported in mammals, but which are largely unstudied in birds. These include: (1) intersexual advertisement of female receptivity or quality, including priming effects on male physiology, (2) intrasexual competition, including scent marking and reproductive suppression or (3) parental behaviors, such as parent-offspring recognition and chemical protection of eggs and nestlings. Revisiting the gaps of chemical studies to quantify the existence of female social chemosignals and any fitness benefit(s) during breeding are potentially fruitful but overlooked areas of future research.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.
| | - Julie C Hagelin
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| |
Collapse
|
13
|
Tomás G, Zamora-Muñoz C, Martín-Vivaldi M, Barón MD, Ruiz-Castellano C, Soler JJ. Effects of Chemical and Auditory Cues of Hoopoes (Upupa epops) in Repellence and Attraction of Blood-Feeding Flies. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.579667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Grieves LA, MacDougall-Shackleton EA. No evidence that songbirds use odour cues to avoid malaria-infected conspecifics. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Many animals have evolved mechanisms to detect and avoid parasitized conspecifics, primarily through odour cues, but whether birds are capable of odour-mediated parasite avoidance is unknown. Recently, we showed that exposing song sparrows (Melospiza melodia) to avian malaria parasites (Plasmodium sp.) alters the chemical composition of their preen oil, which is the major source of body odour in birds. Here, we presented song sparrows with preen oil from uninfected (sham-inoculated) and malaria-infected conspecifics, predicting that birds would spend more time with odour cues from uninfected than infected birds. Birds without detectable malarial infections spent about 50% more time with preen oil from uninfected than infected conspecifics, and females spent nearly twice as much time with preen oil from uninfected than infected conspecifics. However, neither difference was statistically significant. Song sparrows may be able to detect odour cues of infection, but further experiments are needed to confirm or refute this.
Collapse
Affiliation(s)
- Leanne A. Grieves
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
15
|
Individual Chemical Profiles in the Leach's Storm-Petrel. J Chem Ecol 2020; 46:845-864. [PMID: 32856136 DOI: 10.1007/s10886-020-01207-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
Abstract
Avian chemical communication, once largely overlooked, is a growing field that has revealed the important role that olfaction plays in the social lives of some birds. Leach's storm-petrels (Oceanodroma leucorhoa) have a remarkable sense of smell and a strong, musky scent. This long-lived, monogamous seabird relies on olfaction for nest relocation and foraging, but whether they use scent for communication is less well studied. They are nocturnally active at the breeding colony and yet successfully reunite with their mate despite poor night-vision, indicating an important role for non-visual communication. We investigated the chemical profiles of Leach's storm-petrels to determine whether there is socially relevant information encoded in their plumage odor. To capture the compounds comprising their strong scent, we developed a method to study the compounds present in the air surrounding their feathers using headspace stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. We collected feathers from Leach's storm-petrels breeding on Bon Portage Island in Nova Scotia, Canada in both 2015 and 2016. Our method detected 142 commonly occurring compounds. We found interannual differences in chemical profiles between the two sampling years. Males and females had similar chemical profiles, while individuals had distinct chemical signatures across the two years. These findings suggest that the scent of the Leach's storm-petrel provides sociochemical information that could facilitate olfactory recognition of individuals and may inform mate choice decisions.
Collapse
|
16
|
Magallanes S, Møller AP, Luján-Vega C, Fong E, Vecco D, Flores-Saavedra W, García-Longoriaa L, de Lope F, Iannacone JA, Marzal A. Exploring the adjustment to parasite pressure hypothesis: differences in uropygial gland volume and haemosporidian infection in palearctic and neotropical birds. Curr Zool 2020; 67:147-156. [PMID: 33854532 PMCID: PMC8026150 DOI: 10.1093/cz/zoaa037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022] Open
Abstract
Parasites are globally widespread pathogenic organisms, which impose important selective forces upon their hosts. Thus, in accordance with the Adjustment to parasite pressure hypothesis, it is expected that defenses among hosts vary relative to the selective pressure imposed by parasites. According to the latitudinal gradient in diversity, species richness and abundance of parasites peak near the equator. The uropygial gland is an important defensive exocrine gland against pathogens in birds. Size of the uropygial gland has been proposed to vary among species of birds because of divergent selection by pathogens on their hosts. Therefore, we should expect that bird species from the tropics should have relatively larger uropygial glands for their body size than species from higher latitudes. However, this hypothesis has not yet been explored. Here, we analyze the size of the uropygial gland of 1719 individual birds belonging to 36 bird species from 3 Neotropical (Peru) and 3 temperate areas (Spain). Relative uropygial gland volume was 12.52% larger in bird species from the tropics than from temperate areas. This finding is consistent with the relative size of this defensive organ being driven by selective pressures imposed by parasites. We also explored the potential role of this gland as a means of avoiding haemosporidian infection, showing that species with large uropygial glands for their body size tend to have lower mean prevalence of haemosporidian infection, regardless of their geographical origin. This result provides additional support for the assumption that secretions from the uropygial gland reduce the likelihood of becoming infected with haemosporidians.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, Orsay 91400, France.,Key Laboratory for Biodiversity Science and Ecological Engineering of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Charlene Luján-Vega
- Pharmacology and Toxicology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Esteban Fong
- EverGreen Institute-San Rafael, Distrito de Indiana, Loreto 16200, Perú
| | - Daniel Vecco
- Centro Urku de Estudios Amazónicos, Tarapoto 22202, Perú
| | | | - Luz García-Longoriaa
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund 221 00, Sweden.,Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - Florentino de Lope
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| | - José A Iannacone
- Laboratorio de Ingeniería Ambiental, Universidad Científica del Sur-Villa el Salvador, Lima 15067, Perú.,Laboratorio de Invertebrados, Universidad Ricardo Palma, Santiago de Surco 15039, Perú
| | - Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avda. de Elvas S/N, Badajoz ES-06006, Spain
| |
Collapse
|
17
|
Griebel IA, Dawson RD. Nestling tree swallows (
Tachycineta bicolor
) alter begging behaviour in response to odour of familiar adults, but not their nests. Ethology 2020. [DOI: 10.1111/eth.13015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilsa A. Griebel
- Ecosystem Science and Management Program University of Northern British Columbia Prince George BC Canada
| | - Russell D. Dawson
- Ecosystem Science and Management Program University of Northern British Columbia Prince George BC Canada
| |
Collapse
|
18
|
Fischer I, Meissner W, Haliński ŁP, Stepnowski P. Preen oil chemical composition in herring gull Larus argentatus, common gull Larus canus and black-headed gull Chroicocephalus ridibundus confirms their status as two separate genera. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2019.103987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Whittaker DJ, Slowinski SP, Greenberg JM, Alian O, Winters AD, Ahmad MM, Burrell MJE, Soini HA, Novotny MV, Ketterson ED, Theis KR. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. ACTA ACUST UNITED AC 2019; 222:jeb.202978. [PMID: 31537652 DOI: 10.1242/jeb.202978] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Symbiotic microbes that inhabit animal scent glands can produce volatile compounds used as chemical signals by the host animal. Though several studies have demonstrated correlations between scent gland bacterial community structure and host animal odour profiles, none have systematically demonstrated a causal relationship. In birds, volatile compounds in preen oil secreted by the uropygial gland serve as chemical cues and signals. Here, we tested whether manipulating the uropygial gland microbial community affects chemical profiles in the dark-eyed junco (Junco hyemalis). We found an effect of antibiotic treatment targeting the uropygial gland on both bacterial and volatile profiles. In a second experiment, we cultured bacteria from junco preen oil, and found that all of the cultivars produced at least one volatile compound common in junco preen oil, and that most cultivars produced multiple preen oil volatiles. In both experiments, we identified experimentally generated patterns in specific volatile compounds previously shown to predict junco reproductive success. Together, our data provide experimental support for the hypothesis that symbiotic bacteria produce behaviourally relevant volatile compounds within avian chemical cues and signals.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Samuel P Slowinski
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Osama Alian
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Madison M Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mikayla J E Burrell
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Helena A Soini
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Institute for Pheromone Research, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
21
|
Grieves LA, Bernards MA, MacDougall-Shackleton EA. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Van Huynh A, Rice AM. Conspecific olfactory preferences and interspecific divergence in odor cues in a chickadee hybrid zone. Ecol Evol 2019; 9:9671-9683. [PMID: 31534684 PMCID: PMC6745874 DOI: 10.1002/ece3.5497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/11/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding how mating cues promote reproductive isolation upon secondary contact is important in describing the speciation process in animals. Divergent chemical cues have been shown to act in reproductive isolation across many animal taxa. However, such cues have been overlooked in avian speciation, particularly in passerines, in favor of more traditional signals such as song and plumage. Here, we aim to test the potential for odor to act as a mate choice cue, and therefore contribute to premating reproductive isolation between the black-capped (Poecile atricapillus) and Carolina chickadee (P. carolinensis) in eastern Pennsylvania hybrid zone populations. Using gas chromatography-mass spectrometry, we document significant species differences in uropygial gland oil chemistry, especially in the ratio of ester to nonester compounds. We also show significant preferences for conspecific over heterospecific odor cues in wild chickadees using a Y-maze design. Our results suggest that odor may be an overlooked but important mating cue in these chickadees, potentially promoting premating reproductive isolation. We further discuss several promising avenues for future research in songbird olfactory communication and speciation.
Collapse
Affiliation(s)
- Alex Van Huynh
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| | - Amber M. Rice
- Department of Biological SciencesLehigh UniversityBethlehemPAUSA
| |
Collapse
|
23
|
Whittaker DJ, Kuzel M, Burrell MJ, Soini HA, Novotny MV, DuVal EH. Chemical profiles reflect heterozygosity and seasonality in a tropical lekking passerine bird. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Kimmitt AA, Dietz SL, Reichard DG, Ketterson ED. Male courtship preference during seasonal sympatry may maintain population divergence. Ecol Evol 2018; 8:11833-11841. [PMID: 30598780 PMCID: PMC6303717 DOI: 10.1002/ece3.4640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 01/15/2023] Open
Abstract
Animal migration can lead to a population distribution known as seasonal sympatry, in which closely-related migrant and resident populations of the same species co-occur in sympatry during part of the year, but are otherwise allopatric. During seasonal sympatry in early spring, residents may initiate reproduction before migrants depart, presenting an opportunity for gene flow. Differences in reproductive timing between migrant and resident populations may favor residents that exhibit preferences for potential mates of similar migratory behavior and reproductive timing, thus maintaining population divergence. We studied dark-eyed juncos (Junco hyemalis), a songbird that exhibits seasonal sympatry. We conducted simulated courtship interactions in which we presented free-living resident males with either a caged migrant or resident female and quantified courtship behavior prior to the departure of the migrants. We found that resident males preferred to court resident females: they sang more short-range songs and exhibited more visual displays associated with courtship when presented with resident females. We conclude that males distinguish between migrant and resident females during seasonal sympatry when the risk of interacting with non-reproductive, migrant females is high. Male mate choice in seasonal sympatry is likely adaptive for male reproductive success. As a secondary effect, male mating preference could act to maintain or promote divergence between populations that differ in migratory strategy.
Collapse
Affiliation(s)
| | - Samantha L. Dietz
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth Carolina
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida
| | | | | |
Collapse
|
25
|
Grieves LA, Bernards MA, MacDougall-Shackleton EA. Wax Ester Composition of Songbird Preen Oil Varies Seasonally and Differs between Sexes, Ages, and Populations. J Chem Ecol 2018; 45:37-45. [PMID: 30456558 DOI: 10.1007/s10886-018-1033-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/11/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023]
Abstract
Chemical signaling has been well studied in invertebrates and mammals but less so in birds, due to the longstanding misconception that olfaction is unimportant or even non-existent in this taxon. However, recent findings suggest that olfaction plays an important role in avian mate choice and reproductive behavior, similar to other taxa. The leading candidate source for compounds involved in avian chemical communication is preen oil, a complex mixture secreted from the uropygial gland. Preen oil contains volatile compounds and their potential wax ester precursors, and may act as a reproductive chemosignal. Reproductive signals are generally sexually dimorphic, age-specific, seasonally variable, and may also vary geographically. We tested whether preen oil meets these expectations by using gas chromatography to examine the wax ester composition of preen oil in song sparrows (Melospiza melodia). We found that the wax ester composition of preen oil was significantly different between sexes, age classes, seasons, and populations. Collectively, our results suggest that song sparrow preen oil meets the criteria of a chemical cue that may influence mate choice and reproduction. Our findings in song sparrows, which are sexually monomorphic in plumage, also parallel patterns described for dark-eyed juncos (Junco hyemalis), a closely related songbird with sexually dimorphic plumage. Behavioral tests are needed to confirm that song sparrows attend to the cues present in preen oil, but our findings support the increasingly accepted idea that chemical communication is common and widespread in birds as it is in other taxa.
Collapse
Affiliation(s)
- Leanne A Grieves
- Department of Biology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada.
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 5B7, Canada
| | | |
Collapse
|
26
|
Maraci Ö, Engel K, Caspers BA. Olfactory Communication via Microbiota: What Is Known in Birds? Genes (Basel) 2018; 9:E387. [PMID: 30065222 PMCID: PMC6116157 DOI: 10.3390/genes9080387] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Animal bodies harbour a complex and diverse community of microorganisms and accumulating evidence has revealed that microbes can influence the hosts' behaviour, for example by altering body odours. Microbial communities produce odorant molecules as metabolic by-products and thereby modulate the biochemical signalling profiles of their animal hosts. As the diversity and the relative abundance of microbial species are influenced by several factors including host-specific factors, environmental factors and social interactions, there are substantial individual variations in the composition of microbial communities. In turn, the variations in microbial communities would consequently affect social and communicative behaviour by influencing recognition cues of the hosts. Therefore, microbiota studies have a great potential to expand our understanding of recognition of conspecifics, group members and kin. In this review, we aim to summarize existing knowledge of the factors influencing the microbial communities and the effect of microbiota on olfactory cue production and social and communicative behaviour. We concentrate on avian taxa, yet we also include recent research performed on non-avian species when necessary.
Collapse
Affiliation(s)
- Öncü Maraci
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Kathrin Engel
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Barbara A Caspers
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| |
Collapse
|
27
|
Fracasso G, Tuliozi B, Hoi H, Griggio M. Can house sparrows recognize familiar or kin-related individuals by scent? Curr Zool 2018; 65:53-59. [PMID: 30697238 PMCID: PMC6347097 DOI: 10.1093/cz/zoy018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/27/2018] [Indexed: 11/12/2022] Open
Abstract
In the last decades, higher attention has been paid to olfactory perception in birds. As a consequence, a handful of avian species have been discovered to use olfaction in different contexts. Nevertheless, we still have a very limited knowledge about the use of odor cues in avian social life, particularly, in the case of songbirds. Here, we investigate if female house sparrows Passer domesticus show any preference for the odor of kin and nonkin conspecifics and we also test a possible role of familiarity based on male scent in female choice. We performed the experiment with captive birds twice, during the nonbreeding and breeding seasons. Our results show that female house sparrows strongly avoided the odor of unrelated familiar (UF) males, both in the breeding and nonbreeding seasons. Our results suggest recognition for olfactory stimuli related to familiarity and kinship. We suggest that avoidance for UF males is associated with previous experience in this species. Also, we provided further evidence to the use of olfaction in passerine species by using a new experimental setup.
Collapse
Affiliation(s)
- Gerardo Fracasso
- Evolutionary Ecology Group, Biology Department, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, Belgium.,Department of Biology, University of Padova, Via U. Bassi 58/B, Padova, Italy, and
| | - Beniamino Tuliozi
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova, Italy, and
| | - Herbert Hoi
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine of Vienna, Savoyenstrasse 1/A, Vienna, Austria
| | - Matteo Griggio
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padova, Italy, and
| |
Collapse
|
28
|
Saavedra I, Amo L. Insectivorous birds eavesdrop on the pheromones of their prey. PLoS One 2018; 13:e0190415. [PMID: 29414994 PMCID: PMC5802436 DOI: 10.1371/journal.pone.0190415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/14/2017] [Indexed: 12/23/2022] Open
Abstract
Chemical cues play a fundamental role in mate attraction and mate choice. Lepidopteran females, such as the winter moth (Operophtera brumata), emit pheromones to attract males in the reproductive period. However, these chemical cues could also be eavesdropped by predators. To our knowledge, no studies have examined whether birds can detect pheromones of their prey. O. brumata adults are part of the winter diet of some insectivorous tit species, such as the great tit (Parus major) and blue tit (Cyanistes caeruleus). We performed a field experiment aimed to disentangle whether insectivorous birds can exploit the pheromones emitted by their prey for prey location. We placed artificial larvae and a dispenser on branches of Pyrenean oak trees (Quercus pyrenaica). In half of the trees we placed an O. brumata pheromone dispenser and in the other half we placed a control dispenser. We measured the predation rate of birds on artificial larvae. Our results show that more trees had larvae with signs of avian predation when they contained an O. brumata pheromone than when they contained a control dispenser. Furthermore, the proportion of artificial larvae with signs of avian predation was greater in trees that contained the pheromone than in control trees. Our results indicate that insectivorous birds can exploit the pheromones emitted by moth females to attract males, as a method of prey detection. These results highlight the potential use of insectivorous birds in the biological control of insect pests.
Collapse
Affiliation(s)
- Irene Saavedra
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal, Madrid, Spain
- * E-mail:
| | - Luisa Amo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), C/ José Gutiérrez Abascal, Madrid, Spain
| |
Collapse
|
29
|
Krause ET, Bischof HJ, Engel K, Golüke S, Maraci Ö, Mayer U, Sauer J, Caspers BA. Olfaction in the Zebra Finch ( Taeniopygia guttata ): What Is Known and Further Perspectives. ADVANCES IN THE STUDY OF BEHAVIOR 2018. [DOI: 10.1016/bs.asb.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Slade JWG, Watson MJ, Kelly TR, Gloor GB, Bernards MA, MacDougall-Shackleton EA. Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds. Proc Biol Sci 2017; 283:rspb.2016.1966. [PMID: 27807264 DOI: 10.1098/rspb.2016.1966] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/14/2022] Open
Abstract
In jawed vertebrates, genes of the major histocompatibility complex (MHC) play a key role in immunity by encoding cell-surface proteins that recognize and bind non-self antigens. High variability at MHC suggests that these loci may also function in social signalling such as mate choice and kin recognition. This requires that MHC genotype covaries with some perceptible phenotypic trait. In mammals and fish, MHC is signalled chemically through volatile and non-volatile peptide odour cues, facilitating MHC-dependent mate choice and other behaviours. In birds, despite evidence for MHC-dependent mating, candidate mechanisms for MHC signalling remain largely unexplored. However, feather preen wax has recently been implicated as a potential source of odour cues. We examined whether the chemical composition of preen wax correlates with MHC class IIβ genotypes of wild song sparrows (Melospiza melodia). Pairwise chemical distance reflected amino acid distance at MHC for male-female dyads, although not for same-sex dyads. Chemical diversity did not reflect MHC diversity. We used gas chromatography-mass spectrometry (GC-MS) to characterize preen wax compounds, and identified four wax esters that best reflect MHC similarity. Provided songbirds can detect variation in preen wax composition, this cue may allow individuals to assess MHC compatibility of potential mates.
Collapse
Affiliation(s)
- J W G Slade
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - M J Watson
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - T R Kelly
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - G B Gloor
- Biochemistry, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - M A Bernards
- Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
31
|
Whittaker DJ, Rosvall KA, Slowinski SP, Soini HA, Novotny MV, Ketterson ED. Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:5-15. [PMID: 29063285 DOI: 10.1007/s00359-017-1221-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/25/2022]
Abstract
Chemical signals can provide useful information to potential mates and rivals. The production mechanisms of these signals are poorly understood in birds, despite emerging evidence that volatile compounds from preen oil may serve as chemosignals. Steroid hormones, including testosterone (T), may influence the production of these signals, yet variation in circulating T only partly accounts for this variation. We hypothesized that odor is a T-mediated signal of an individual's phenotype, regulated in part by androgen sensitivity in the uropygial gland. We quantified natural variation in chemosignals, T, uropygial gland androgen sensitivity, and aggressive behavior in dark-eyed juncos (Junco hyemalis). The interaction between circulating T and androgen receptor transcript abundance significantly correlated with volatile concentrations in male, but not female, preen oil. In both sexes, odorant variables correlated with aggressive response to an intruder. Our results suggest that preen oil volatiles could function as signals of aggressive intent, and, at least in males, may be regulated by local androgen receptor signaling in the uropygial gland. Because these behavioral and chemical traits have been linked with reproductive success, local regulation of androgen sensitivity in the periphery has the potential to be a target of selection in the evolution of avian olfactory signaling.
Collapse
Affiliation(s)
- Danielle J Whittaker
- BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd. Room 1441, East Lansing, MI, 48824, USA.
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Samuel P Slowinski
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| | - Helena A Soini
- Department of Chemistry and Institute for Pheromone Research, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Milos V Novotny
- Department of Chemistry and Institute for Pheromone Research, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Ellen D Ketterson
- Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, IN, 47405, USA
| |
Collapse
|
32
|
Mihailova M, Berg ML, Buchanan KL, Bennett ATD. Olfactory eavesdropping: The odor of feathers is detectable to mammalian predators and competitors. Ethology 2017. [DOI: 10.1111/eth.12701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Milla Mihailova
- Centre for Integrative Ecology; School of Life and Environmental Sciences; Deakin University; Geelong Vic. Australia
| | - Mathew L. Berg
- Centre for Integrative Ecology; School of Life and Environmental Sciences; Deakin University; Geelong Vic. Australia
| | - Katherine L. Buchanan
- Centre for Integrative Ecology; School of Life and Environmental Sciences; Deakin University; Geelong Vic. Australia
| | - Andrew T. D. Bennett
- Centre for Integrative Ecology; School of Life and Environmental Sciences; Deakin University; Geelong Vic. Australia
| |
Collapse
|
33
|
|
34
|
Gomes ACR, Funghi C, Soma M, Sorenson MD, Cardoso GC. Multimodal signalling in estrildid finches: song, dance and colour are associated with different ecological and life‐history traits. J Evol Biol 2017; 30:1336-1346. [DOI: 10.1111/jeb.13102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Affiliation(s)
- A. C. R. Gomes
- CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos Campus Agrário de Vairão Universidade do Porto Vairão Portugal
| | - C. Funghi
- CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos Campus Agrário de Vairão Universidade do Porto Vairão Portugal
| | - M. Soma
- Department of Biology Faculty of Science Hokkaido University Sapporo Hokkaido Japan
| | | | - G. C. Cardoso
- CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos Campus Agrário de Vairão Universidade do Porto Vairão Portugal
- Behavioural Ecology Group Department of Biology University of Copenhagen Copenhagen Ø Denmark
| |
Collapse
|
35
|
Moreno-Rueda G. Preen oil and bird fitness: a critical review of the evidence. Biol Rev Camb Philos Soc 2017; 92:2131-2143. [PMID: 28231637 DOI: 10.1111/brv.12324] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
Abstract
The uropygial gland is a holocrine complex exclusive to birds that produces an oleaginous secretion (preen oil) whose function is still debated. Herein, I examine critically the evidence for the many hypotheses of potential functions of this gland. The main conclusion is that our understanding of this gland is still in its infancy. Even for functions that are considered valid by most researchers, real evidence is scarce. Although it seems clear that preen oil contributes to plumage maintenance, we do not know whether this is due to a role in reducing mechanical abrasion or in reducing feather degradation by keratinophilic organisms. Evidence for a function against pathogenic bacteria is mixed, as preen oil has been demonstrated to act against bacteria in vitro, but not in vivo. Nor is it clear whether preen oil can combat pathogenic bacteria on eggshells to improve hatching success. Studies on the effect of preen oil against dermatophytes are very scarce and there is no evidence of a function against chewing lice. It seems clear, however, that preen oil improves waterproofing, but it is unclear whether this acts by creating a hydrophobic layer or simply by improving plumage structure. Several hypotheses proposed for the function of preen oil have been poorly studied, such as reduction of drag in flight. Similarly, we do not know whether preen oil functions as repellent against predators or parasites, makes birds unpalatable, or functions to camouflage birds with ambient odours. On the other hand, a growing body of work shows the important implications of volatiles in preen oil with regard to social communication in birds. Moreover, preen oil clearly alters plumage colouration. Finally, studies examining the impact of preen oil on fitness are lacking, and the costs or limitations of preen-oil production also remain poorly known. The uropygial gland appears to have several non-mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures. Therefore, future studies should consider how the inevitable trade-offs among different functions drive the evolution of uropygial gland secretions.
Collapse
Affiliation(s)
- Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain
| |
Collapse
|
36
|
Campos SM, Strauss C, Martins EP. In Space and Time: Territorial Animals are Attracted to Conspecific Chemical Cues. Ethology 2017; 123:136-144. [PMID: 28413237 PMCID: PMC5390687 DOI: 10.1111/eth.12582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Territorial animals lay scent marks around their territories to broadcast their presence, but these olfactory signals can both attract and repel con-specifics. Attraction or aversion can have a profound impact in terms of space use and thereby influence an individual's access to resources and mates. Here, we test the impact of chemical signals on the long-term space use and activity of receivers, comparing the response of males and females, territory holders, and temporary visitors in Sceloporus undulatus lizards in the field. We placed either male femoral gland secretions (chemical) or blank (control) cues on resident male landmarks, repeatedly over 5 d, while monitoring the activity and location of all lizards in the vicinity. We found that resident males and females, but not non-resident males, were active on more days near landmarks treated with chemical cues than landmarks treated with control cues. Non-resident males remained closer to chemical than control cues. These results suggest that territorial scent marks are attractive to conspecifics and impact space use, but that the specific effects depend on receiver sex and residency status. Such subtle or gradual changes in behavior may frequently be overlooked by short-term choice experiments. Future studies investigating the behavioral significance of a communicative signal should consider these finer details of behavior for a more comprehensive assessment.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Chloe Strauss
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Emília P Martins
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
37
|
Leclaire S, Bourret V, Bonadonna F. Blue petrels recognize the odor of their egg. J Exp Biol 2017; 220:3022-3025. [DOI: 10.1242/jeb.163899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022]
Abstract
Most studies on avian olfactory communication have focused on mate choice, and the importance of olfaction in subsequent nesting stages has been poorly explored. In particular, the role of olfactory cues in egg recognition has received little attention, despite eggs potentially being spread with parental odorous secretions known to elicit individual discrimination. Here we used behavioral choice tests to determine whether female blue petrels (Halobaena caerulea) can discriminate the odor of their own egg from the odor of a conspecific egg. Females preferentially approached the odor of their own egg, suggesting that blue petrels can recognize their own egg using odor cues. This finding raises the question of the adaptive value of this mechanism, and may inspire further research on odor-based egg discrimination in species suffering brood parasitism.
Collapse
Affiliation(s)
- Sarah Leclaire
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, 1919 rte de Mende, Montpellier, France
- Laboratoire Evolution & Diversité Biologique, CNRS UMR 5174, 118 rte de Narbonne, 31062 Toulouse, France
| | - Vincent Bourret
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, 1919 rte de Mende, Montpellier, France
| | - Francesco Bonadonna
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, UMR 5175, 1919 rte de Mende, Montpellier, France
| |
Collapse
|
38
|
Golüke S, Dörrenberg S, Krause ET, Caspers BA. Female Zebra Finches Smell Their Eggs. PLoS One 2016; 11:e0155513. [PMID: 27192061 PMCID: PMC4871452 DOI: 10.1371/journal.pone.0155513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/30/2016] [Indexed: 11/24/2022] Open
Abstract
Parental investment in unrelated offspring seems maladaptive from an evolutionary perspective, due to the costs of energy and resources that cannot be invested in related offspring at the same time. Therefore selection should favour mechanisms to discriminate between own and foreign offspring. In birds, much emphasis has been placed on understanding the visual mechanisms underlying egg recognition. However, olfactory egg recognition has almost been completely ignored. Here, we investigated whether female zebra finches (Taeniopygia guttata) are able to discriminate between their own and a conspecific egg based on olfactory cues alone. Zebra finches are colonial—breeding songbirds. Eggs are monomorphic, i.e. without any spotting pattern, and intraspecific brood parasitism frequently occurs. In a binary choice experiment, female zebra finches were given the choice between the scent of their own and a conspecific egg. After the onset of incubation, females chose randomly and showed no sign of discrimination. However, shortly before hatching, females preferred significantly the odour of their own egg. The finding that females are capable to smell their own egg may inspire more research on the potential of olfaction involved in egg recognition, especially in cases where visual cues might be limited.
Collapse
Affiliation(s)
- Sarah Golüke
- Research Group Olfactory Communication, Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- * E-mail: (SG); (BAC)
| | - Sebastian Dörrenberg
- Research Group Olfactory Communication, Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - E. Tobias Krause
- Friedrich-Loeffler Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Barbara A. Caspers
- Research Group Olfactory Communication, Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- * E-mail: (SG); (BAC)
| |
Collapse
|
39
|
Amo L, López-Rull I, Pagán I, García CM. Evidence that the house finch (Carpodacus mexicanus) uses scent to avoid omnivore mammals. REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0036-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Caro SP, Balthazart J, Bonadonna F. The perfume of reproduction in birds: chemosignaling in avian social life. Horm Behav 2015; 68:25-42. [PMID: 24928570 PMCID: PMC4263688 DOI: 10.1016/j.yhbeh.2014.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/23/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Chemical cues were probably the first cues ever used to communicate and are still ubiquitous among living organisms. Birds have long been considered an exception: it was believed that birds were anosmic and relied on their acute visual and acoustic capabilities. Birds are however excellent smellers and use odors in various contexts including food searching, orientation, and also breeding. Successful reproduction in most vertebrates involves the exchange of complex social signals between partners. The first evidence for a role of olfaction in reproductive contexts in birds only dates back to the seventies, when ducks were shown to require a functional sense of smell to express normal sexual behaviors. Nowadays, even if the interest for olfaction in birds has largely increased, the role that bodily odors play in reproduction still remains largely understudied. The few available studies suggest that olfaction is involved in many reproductive stages. Odors have been shown to influence the choice and synchronization of partners, the choice of nest-building material or the care for the eggs and offspring. How this chemical information is translated at the physiological level mostly remains to be described, although available evidence suggests that, as in mammals, key reproductive brain areas like the medial preoptic nucleus are activated by relevant olfactory signals. Olfaction in birds receives increasing attention and novel findings are continuously published, but many exciting discoveries are still ahead of us, and could make birds one of the animal classes with the largest panel of developed senses ever described.
Collapse
Affiliation(s)
- Samuel P Caro
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France; Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, Center for Cellular and Molecular Neurobiology, University of Liège, Belgium
| | - Francesco Bonadonna
- Research Group in Behavioural Ecology, Department of Evolutionary Ecology, CEFE-CNRS (UMR 5175), Montpellier, France
| |
Collapse
|
41
|
Wascher CAF, Heiss RS, Baglione V, Canestrari D. Behavioural responses to olfactory cues in carrion crows. Behav Processes 2014; 111:1-5. [PMID: 25447513 DOI: 10.1016/j.beproc.2014.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 10/03/2014] [Accepted: 11/10/2014] [Indexed: 11/28/2022]
Abstract
Until recently, the use of olfactory signals in birds has been largely ignored, despite the fact that birds do possess a fully functioning olfactory system and have been shown to use odours in social and foraging tasks, predator detection and orientation. The present study investigates whether carrion crows (Corvus corone corone), a bird species living in complex social societies, respond behaviourally to olfactory cues of conspecifics. During our experiment, carrion crows were observed less often close to the conspecific scent compared to a control side. Because conspecific scent was extracted during handling, a stressful procedure for birds, we interpreted the general avoidance of the 'scent' side as disfavour against a stressed conspecific. However, males, unlike females, showed less avoidance towards the scent of a familiar individual compared to an unfamiliar one, which might reflect a stronger interest in the information conveyed and/or willingness to provide social support.
Collapse
Affiliation(s)
| | - Rebecca S Heiss
- Department of Biology, South Carolina Governor's School for Science and Mathematics, Hartsville, SC, USA
| | - Vittorio Baglione
- Departamento de Ciencias Agro-Forestales, University of Valladolid, Spain
| | - Daniela Canestrari
- Unidad Mixta de Investigación en Biodiversidad, Campus de Mieres, University of Oviedo, Spain
| |
Collapse
|
42
|
Corfield JR, Eisthen HL, Iwaniuk AN, Parsons S. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:214-26. [PMID: 25376305 DOI: 10.1159/000365564] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/25/2014] [Indexed: 11/19/2022]
Abstract
The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.
Collapse
Affiliation(s)
- Jeremy R Corfield
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
43
|
Avian olfactory displays: a hypothesis for the function of bill-wiping in a social context. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Amo L, Tomás G, Parejo D, Avilés JM. Are female starlings able to recognize the scent of their offspring? PLoS One 2014; 9:e109505. [PMID: 25299305 PMCID: PMC4192304 DOI: 10.1371/journal.pone.0109505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Although there is growing evidence that birds may have individual chemical profiles that can function in several social contexts, offspring recognition based on olfactory cues has never been explored. This ability should be more likely evolved in colonial birds and/or species suffering brood parasitism, in which the risk of being engaged in costly misdirected parental care is high. Methodology/Principal Findings We performed a choice experiment to examine whether females of the spotless starling, Sturnus unicolor, a species that is colonial, and where a fraction of the population is exposed to intraspecific brood parasitism, can discriminate between the scent of their offspring and that of unrelated nestlings. We also explored whether the development of the uropygial gland secretion may play a role in such olfactory discrimination by performing the choice experiments to females rearing nestlings of two different ages, that is, without and with developed uropygial glands. Results showed that female starlings did not preferentially choose the scent of their offspring, independently of whether the gland of nestlings was developed or not. Conclusions/Significance Our results suggest that female starlings do not have or do not show the ability to distinguish their offspring based on olfaction, at least up to 12–14 days of nestling age. Further research is needed to examine whether odour-based discrimination may function when fledgling starlings leave the nest and the risk of costly misidentification is likely to increase.
Collapse
Affiliation(s)
- Luisa Amo
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
- * E-mail:
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
| | - Deseada Parejo
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
| | - Jesús Miguel Avilés
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
45
|
Mihailova M, Berg ML, Buchanan KL, Bennett AT. Odour-based discrimination of subspecies, species and sexes in an avian species complex, the crimson rosella. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Differences in olfactory species recognition in the females of two Australian songbird species. Behav Ecol Sociobiol 2014. [DOI: 10.1007/s00265-014-1791-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
|
48
|
Soini HA, Whittaker DJ, Wiesler D, Ketterson ED, Novotny MV. Chemosignaling diversity in songbirds: chromatographic profiling of preen oil volatiles in different species. J Chromatogr A 2013; 1317:186-92. [PMID: 23998336 DOI: 10.1016/j.chroma.2013.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/19/2013] [Accepted: 08/01/2013] [Indexed: 11/19/2022]
Abstract
Large foraging seabirds are known to navigate to food sources using their excellent sense of smell, but much less is known about the use of olfaction by the songbirds (passerine birds). Some evidence of individual recognition based on the bird preen oil volatile organic compound (VOC) compositions, which is the main odor source in birds, have been reported for dark-eyed junco and house finch. In this study we have investigated preen oil VOCs in 16 different songbird species and two other small bird species in order to determine whether the VOC compositions follow phylogenetic and evolutionary relatedness. We have used the stir bar sorptive extraction (SBSE) methodology followed by gas chromatography-mass spectrometry (GC-MS) to determine preen oil VOCs during the long light summer conditions for mostly wild caught birds. Large diversity among the VOC compositions was observed, while some compound classes were found in almost all species. The divergent VOC profiles did not follow the phylogenetic family lines among the bird species. This suggests that songbirds may use VOC odors as a mate recognition cue.
Collapse
Affiliation(s)
- Helena A Soini
- Institute for Pheromone Research and Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
49
|
Zhang YH, Du YF, Zhang JX. Uropygial gland volatiles facilitate species recognition between two sympatric sibling bird species. Behav Ecol 2013. [DOI: 10.1093/beheco/art068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Vincze O, Vágási CI, Kovács I, Galván I, Pap PL. Sources of variation in uropygial gland size in European birds. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - István Kovács
- ‘Milvus Group’ Bird and Nature Protection Association; Márton Áron street 9/B; RO-540058; Tîrgu Mureş; Romania
| | - Ismael Galván
- Laboratoire d'Ecologie; Systématique et Evolution; Université Paris-Sud; CNRS UMR 8079; 11, Bâtiment 362; F-91405; Orsay, Cedex; France
| | - Péter L. Pap
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Clinicilor Street 5-7; RO-400006; Cluj Napoca; Romania
| |
Collapse
|