1
|
Shiratsuru S, Pauli JN. Food-safety trade-offs drive dynamic behavioural antipredator responses among snowshoe hares. J Anim Ecol 2024; 93:1710-1721. [PMID: 39311413 DOI: 10.1111/1365-2656.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024]
Abstract
Prey adopt various antipredator responses to minimize the risk of predation, and the fitness costs of antipredator responses can have emergent effects on the population dynamics of prey species. While the trade-off between food acquisition and predation avoidance has long been recognized in predicting antipredator responses, less attention has been paid to the dynamics of the food-safety trade-off driven by temporal variation in multiple risk factors under changing seasonal conditions. Here, we monitored foraging and vigilance behaviour of a central prey species, snowshoe hares (Lepus americanus), at fine temporal scales over the winter with various types of predation risk, while also experimentally manipulating predation risk by attracting predators to foraging patches. Hares increased foraging and decreased vigilance over the winter, but hares under chronic risk decreased their antipredator efforts to a lesser degree, indicating that those individuals prioritized risk avoidance over food acquisition. Hares also decreased foraging and increased antipredator efforts in response to the temporal activity of predators and environmental cues of predation risk. However, the magnitude of the responses to the environmental cues was mediated by time of winter. While we did not detect a reactive response of hares to acute risk, we did find that hares exhibiting camouflage mismatch proactively increased vigilance. Overall, our results highlight the importance of species-specific traits and changing seasonal conditions in addition to temporal variation in multiple risk factors in predicting antipredator responses and the context dependence of risk effects.
Collapse
Affiliation(s)
- Shotaro Shiratsuru
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Perrig PL, Lambertucci SA, Donadio E, Smith JA, Middleton AD, Pauli JN. Risk effects cascade up to an obligate scavenger. Ecology 2023; 104:e3871. [PMID: 36116060 DOI: 10.1002/ecy.3871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 02/03/2023]
Abstract
The effects of predation risk on prey populations have been studied extensively; yet, how risk is manifested in a trophically linked guild-scavengers-has been overlooked. Risk could be particularly consequential for obligate scavengers that are vulnerable while foraging and rely on carrion provisioned by, and shared with, apex predators. We investigated whether Andean condors (Vultur gryphus) respond to predation risk in a landscape where the main source of carrion are camelids killed by pumas (Puma concolor). We hypothesized that condors would exhibit different behavioral responses to predation risk while they search, encounter, and exploit carrion. We explored condor habitat selection while flying by tracking nine birds with satellite transmitters and monitored via camera traps 41 natural carcasses and 25 experimental carrion stations. We found that condors searched for carrion in areas with a high probability of occurrence of puma kills. However, condors avoided exploiting carrion in areas featuring tall vegetation and steep slopes-selected by pumas to stalk prey-suggesting that condors manage risk primarily through the identification of safe foraging sites prior to landing. Our finding that condors avoided foraging near stalking cover for pumas highlights the importance of risk effects beyond predator-prey interactions, particularly for obligate scavengers.
Collapse
Affiliation(s)
- Paula L Perrig
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA (Universidad Nacional del Comahue - CONICET), Bariloche, Argentina.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sergio A Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA (Universidad Nacional del Comahue - CONICET), Bariloche, Argentina
| | - Emiliano Donadio
- Fundación Rewilding Argentina, Estancia La Ascensión, Los Antiguos, Argentina
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California - Davis, Davis, California, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, California, USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Rudolf MF, Wilson EC, Pauli JN. Anomalous snow events increase mortality for a winter-adapted species. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Winter is a costly time for animals, requiring individuals to adapt to increased energetic costs, and reduced resources. Porcupines (Erethizon dorsatum Linnaeus, 1758) confront winter by storing and catabolizing somatic stores. Increasing temperatures and attenuated snow conditions due to climate change increase porcupine survival, but impacts of greater weather variability has not been explored. In April of 2018, an anomalously heavy and late snowstorm occurred at our long-term study site in central Wisconsin followed by multiple mortalities among adult porcupines. We assessed cause of mortality and determined nutritional condition by extracting bone marrow, and quantifying lipid content. Porcupines that died following the snow event had lower fat stores than the fall 2019 group, and likely died of starvation. We estimated survival of female porcupines during the winters 2012 & 2015-2018 to assess the effects of snow conditions and nutritional condition on survival. Survival declined with increased snow depth but increased with improved nutritional condition. The mass starvation event we observed in 2018 appeared to have resulted from deep snow increasing locomotive costs and reducing nutritional condition. As climate change increases the frequency of extreme weather events, including extreme snowfalls, we predict that the frequency of such clustered mortalities will increase.
Collapse
Affiliation(s)
- Michaela Floren Rudolf
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, Wisconsin, United States
| | - Evan Costello Wilson
- University of Wisconsin-Madison, Department of Forest & Wildlife Ecology, Madison, Wisconsin, United States
- University of Michigan, 1259, School of Environment and Sustainability, Ann Arbor, Michigan, United States,
| | - Jonathan N Pauli
- University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, Madison, Wisconsin, United States
| |
Collapse
|
4
|
Wilson EC, Zuckerberg B, Peery MZ, Pauli JN. Experimental repatriation of snowshoe hares along a southern range boundary reveals historical community interactions. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Evan C. Wilson
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - M. Zachariah Peery
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| |
Collapse
|
5
|
Hongo S, Nakashima Y, Akomo-Okoue EF, Mindonga-Nguelet FL. Seasonality in daily movement patterns of mandrills revealed by combining direct tracking and camera traps. J Mammal 2022; 103:159-168. [PMID: 35087330 PMCID: PMC8789762 DOI: 10.1093/jmammal/gyab141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/05/2021] [Indexed: 11/27/2022] Open
Abstract
Movement is a fundamental characteristic of animals, but challenging to measure noninvasively. Noninvasive methods for measuring travel have different weaknesses, so multiple techniques need to be applied multiple techniques for reliable inferences. We used two methods, direct tracking and camera trapping, to examine the variation in time and seasonal differences in movement rates of mandrills (Mandrillus sphinx), an elusive primate that lives in large groups in central Africa. In a 400-km2 rainforest area in Moukalaba-Doudou National Park, Gabon, we tracked unidentified groups 46 times from 2009 to 2013. We systematically placed 157 terrestrial camera traps in the same area from 2012 to 2014 and recorded groups 309 times. Generalized additive mixed models (GAMMs) of the tracking data indicated that the group travel speed varied with time and season. In the fruiting season, the movement rate fluctuated with time in a bimodal pattern, whereas in the nonfruiting season, it increased monotonously with time. The predicted day range was longer in the fruiting season (6.98 km) than in the nonfruiting season (6.06 km). These seasonal differences suggest responses to changes in food resources and temperature. Camera-trap detection rates showed similar temporal and seasonal patterns to the tracking data, allowing us to generalize our findings to the population level. Moreover, cameras never detected mandrills at night, and we observed that they slept high in trees and hardly moved until the next morning, all suggesting their strict avoidance of nighttime movement. This study demonstrated the significance of the multiple-method approach in drawing robust conclusions on temporal patterns of animal movement.
Collapse
Affiliation(s)
- Shun Hongo
- The Center for African Area Studies, Kyoto University, 46, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Yoshihiro Nakashima
- Department of Forest Science and Resources, Nihon University College of Bioresource Science, 1866, Kameino, Fujisawa, Kanagawa, Japan
| | - Etienne François Akomo-Okoue
- Institut de Recherche en Écologie Tropicale, Centre National de la Recherche Scientifique et Technologique (IRET–CENAREST), B.P. 13354, Libreville, Estuaire, Gabon
| | - Fred Loïque Mindonga-Nguelet
- Institut de Recherche en Écologie Tropicale, Centre National de la Recherche Scientifique et Technologique (IRET–CENAREST), B.P. 13354, Libreville, Estuaire, Gabon
| |
Collapse
|
6
|
Richmond IC, Balluffi-Fry J, Vander Wal E, Leroux SJ, Rizzuto M, Heckford TR, Kennah JL, Riefesel GR, Wiersma YF. Individual snowshoe hares manage risk differently: integrating stoichiometric distribution models and foraging ecology. J Mammal 2021. [DOI: 10.1093/jmammal/gyab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Herbivores making space use decisions must consider the trade-off between perceived predation risk and forage quality. Herbivores, specifically snowshoe hares (Lepus americanus), must constantly navigate landscapes that vary in predation risk and food quality, providing researchers with the opportunity to explore the factors that govern their foraging decisions. Herein, we tested predictions that intersect the risk allocation hypothesis (RAH) and optimal foraging theory (OFT) in a spatially explicit ecological stoichiometry framework to assess the trade-off between predation risk and forage quality. We used individual and population estimates of snowshoe hare (n = 29) space use derived from biotelemetry across three summers. We evaluated resource forage quality for lowbush blueberry (Vaccinium angustifolium), a common and readily available forage species within our system, using carbon:nitrogen and carbon:phosphorus ratios. We used habitat complexity to proxy perceived predation risk. We analyzed how forage quality of blueberry, perceived predation risk, and their interaction impact the intensity of herbivore space use. We used generalized mixed effects models, structured to enable us to make inferences at the population and individual home range level. We did not find support for RAH and OFT. However, variation in the individual-level reactions norms in our models showed that individual hares have unique responses to forage quality and perceived predation risk. Our finding of individual-level responses indicates that there is fine-scale decision-making by hares, although we did not identify the mechanism. Our approach illustrates spatially explicit empirical support for individual behavioral responses to the food quality–predation risk trade-off.
Collapse
Affiliation(s)
- Isabella C Richmond
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Juliana Balluffi-Fry
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Travis R Heckford
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Joanie L Kennah
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gabrielle R Riefesel
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
7
|
Gable TD, Homkes AT, Johnson-Bice SM, Windels SK, Bump JK. Wolves choose ambushing locations to counter and capitalize on the sensory abilities of their prey. Behav Ecol 2021. [DOI: 10.1093/beheco/araa147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Comprehensive knowledge of ambush behavior requires an understanding of where a predator expects prey to be, which is generally unknowable because ambush predators often hunt mobile prey that exhibit complex, irregular, or inconspicuous movements. Wolves (Canis lupus) are primarily cursorial predators, but they use ambush strategies to hunt beavers (Castor canadensis). Terrestrial beaver activity is predictable because beavers use well-defined, conspicuous habitat features repeatedly. Thus, studying where wolves wait-in-ambush for beavers provides a unique opportunity to understand how predators choose ambush locations in relation to prey activity. We searched 11 817 clusters of GPS locations from wolves in the Greater Voyageurs Ecosystem, International Falls, MN, and documented 748 ambushing sites and 214 instances where wolves killed beavers. Wolves chose ambush locations: 1) with olfactory concealment to avoid detection from the highly developed olfactory senses of beavers and 2) close (generally <5 m) to beaver habitat features to take advantage of beavers’ inability to visually detect motionless predators. Our work describes in detail the ambush strategies wolves use to hunt beavers and continues to overturn the traditional notion that wolves rely solely on cursorial hunting strategies. We also demonstrate that ambush predators can anticipate the movements and behavior of their prey due to a fundamental understanding of their prey’s sensory abilities. Wolves, therefore, and likely ambush predators in general, appear capable of simultaneously accounting for abiotic and biotic factors when choosing ambush locations, ultimately allowing them to counter and capitalize on the sensory abilities of their prey.
Collapse
Affiliation(s)
- Thomas D Gable
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Austin T Homkes
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Sean M Johnson-Bice
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steve K Windels
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
- Voyageurs National Park, National Park Service, International Falls, MN, USA
| | - Joseph K Bump
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
8
|
Wilson ML, Lonsdorf EV, Mjungu DC, Kamenya S, Kimaro EW, Collins DA, Gillespie TR, Travis DA, Lipende I, Mwacha D, Ndimuligo SA, Pintea L, Raphael J, Mtiti ER, Hahn BH, Pusey AE, Goodall J. Research and Conservation in the Greater Gombe Ecosystem: Challenges and Opportunities. BIOLOGICAL CONSERVATION 2020; 252:108853. [PMID: 33343005 DOI: 10.1016/j.biocon.2020.108731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The study of chimpanzees in Gombe National Park, Tanzania, started by Jane Goodall in 1960, provided pioneering accounts of chimpanzee behavior and ecology. With funding from multiple sources, including the Jane Goodall Institute (JGI) and grants from private foundations and federal programs, the project has continued for sixty years, providing a wealth of information about our evolutionary cousins. These chimpanzees face two main challenges to their survival: infectious disease - including simian immunodeficiency virus (SIVcpz), which can cause Acquired Immune Deficiency Syndrome (AIDS) in chimpanzees - and the deforestation of land outside the park. A health monitoring program has increased understanding of the pathogens affecting chimpanzees and has promoted measures to characterize and reduce disease risk. Deforestation reduces connections between Gombe and other chimpanzee populations, which can cause loss of genetic diversity. To promote habitat restoration, JGI facilitated participatory village land use planning, in which communities voluntarily allocated land to a network of Village Land Forest Reserves. Expected benefits to people include stabilizing watersheds, improving water supplies, and ensuring a supply of forest resources. Surveys and genetic analyses confirm that chimpanzees persist on village lands and remain connected to the Gombe population. Many challenges remain, but the regeneration of natural forest on previously degraded lands provides hope that conservation solutions can be found that benefit both people and wildlife. Conservation work in the Greater Gombe Ecosystem has helped promote broader efforts to plan and work for conservation elsewhere in Tanzania and across Africa.
Collapse
Affiliation(s)
- Michael L Wilson
- Department of Anthropology, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108 USA
- Institute on the Environment, University of Minnesota, St. Paul, MN 55108 USA
| | - Elizabeth V Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, PA 17604 USA
| | - Deus C Mjungu
- Gombe Stream Research Centre, the Jane Goodall Institute - Tanzania, Kigoma, Tanzania
| | - Shadrack Kamenya
- Gombe Stream Research Centre, the Jane Goodall Institute - Tanzania, Kigoma, Tanzania
| | - Elihuruma Wilson Kimaro
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108 USA
- Gombe National Park, Kigoma, Tanzania
| | - D Anthony Collins
- Gombe Stream Research Centre, the Jane Goodall Institute - Tanzania, Kigoma, Tanzania
| | - Thomas R Gillespie
- Department of Environmental Sciences, Emory University, Atlanta, Georgia 30322 USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322 USA
- Program in Population, Biology, Ecology and Evolution, Emory University, Atlanta, Georgia 30322 USA
| | - Dominic A Travis
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108 USA
| | - Iddi Lipende
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Dismas Mwacha
- Gombe Stream Research Centre, the Jane Goodall Institute - Tanzania, Kigoma, Tanzania
| | - Sood A Ndimuligo
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Norway
| | | | | | | | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708 USA
| | - Jane Goodall
- The Jane Goodall Institute, Vienna, VA, 22182 USA
| |
Collapse
|
9
|
Wirsing AJ, Heithaus MR, Brown JS, Kotler BP, Schmitz OJ. The context dependence of non-consumptive predator effects. Ecol Lett 2020; 24:113-129. [PMID: 32990363 DOI: 10.1111/ele.13614] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023]
Abstract
Non-consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator-induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti-predator behaviours, we conceptualise the multi-stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey-specific patterns of evasion success ('evasion landscapes') as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non-consumptive predator-prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context-dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.
Collapse
Affiliation(s)
- Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle, WA, 98195, USA
| | - Michael R Heithaus
- Department of Biological Sciences, Marine Sciences Program, Florida International University, 3000 NE 151st St, North Miami, FL, 33181, USA
| | - Joel S Brown
- Department of Biological Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA.,Department of Integrated Mathematical Oncology, Moffitt Cancer Center, 12902 Magnolia Dr, Tampa, FL, 33613, USA
| | - Burt P Kotler
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet, Ben-Gurion, 84990, Israel
| | - Oswald J Schmitz
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
10
|
Garcés-Restrepo MF, Peery MZ, Pauli JN. The demography of a resource specialist in the tropics: Cecropia trees and the fitness of three-toed sloths. Proc Biol Sci 2020; 286:20182206. [PMID: 30963880 DOI: 10.1098/rspb.2018.2206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resource specialists persist in a narrow range of resources. Consequently, the abundance of key resources should drive vital rates, individual fitness, and population viability. While Neotropical forests feature both high levels of biodiversity and numbers of specialist species, no studies have directly evaluated how the variation of key resources affects the fitness of a tropical specialist. Here, we quantified the effect of key tree species density and forest cover on the fitness of three-toed sloths ( Bradypus variegatus), an arboreal folivore strongly associated with Cecropia trees in Costa Rica, using a multi-year demographic, genetic, and space-use dataset. We found that the density of Cecropia trees was strongly and positively related to both adult survival and reproductive output. A matrix model parametrized with Cecropia-demography relationships suggested positive growth of sloth populations, even at low densities of Cecropia (0.7 trees ha-1). Our study shows the first direct link between the density of a key resource to demographic consequences of a tropical specialist, underscoring the sensitivity of tropical specialists to the loss of a single key resource, but also point to targeted conservation measures to increase that resource. Finally, our study reveals that previously disturbed and regenerating environments can support viable populations of tropical specialists.
Collapse
Affiliation(s)
- Mario F Garcés-Restrepo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison , 1630 Linden Drive, Madison, WI 53706 , USA
| | - M Zachariah Peery
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison , 1630 Linden Drive, Madison, WI 53706 , USA
| | - Jonathan N Pauli
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison , 1630 Linden Drive, Madison, WI 53706 , USA
| |
Collapse
|
11
|
Snow roosting reduces temperature-associated stress in a wintering bird. Oecologia 2019; 190:309-321. [DOI: 10.1007/s00442-019-04389-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
|
12
|
|
13
|
DeWitt PD, Visscher DR, Schuler MS, Thiel RP. Predation risks suppress lifetime fitness in a wild mammal. OIKOS 2019. [DOI: 10.1111/oik.05935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Philip D. DeWitt
- Science and Research Branch, Ontario Ministry of Natural Resources and Forestry, Peterborough ON K9J 3C7 Canada
| | | | - Matthew S. Schuler
- Dept of Biological Sciences, Darrin Fresh Water Inst., Rensselaer Polytechnic Institute Troy NY USA
| | | |
Collapse
|
14
|
Appel CL, Belamaric PN, Bean WT. Seasonal resource acquisition strategies of a facultative specialist herbivore at the edge of its range. J Mammal 2018. [DOI: 10.1093/jmammal/gyy079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cara L Appel
- Department of Wildlife, Humboldt State University, Arcata, CA, USA
| | | | - William T Bean
- Department of Wildlife, Humboldt State University, Arcata, CA, USA
| |
Collapse
|
15
|
DeWitt PD, Schuler MS, Visscher DR, Thiel RP. Nutritional state reveals complex consequences of risk in a wild predator-prey community. Proc Biol Sci 2017; 284:rspb.2017.0757. [PMID: 28701562 DOI: 10.1098/rspb.2017.0757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/09/2017] [Indexed: 11/12/2022] Open
Abstract
Animal populations are regulated by the combined effects of top-down, bottom-up and abiotic processes. Ecologists have struggled to isolate these mechanisms because their effects on prey behaviour, nutrition, security and fitness are often interrelated. We monitored how forage, non-consumptive effects (NCEs), consumptive predation and climatic conditions influenced the demography and nutritional state of a wild prey population during predator recolonization. Combined measures of nutrition, survival and population growth reveal that predators imposed strong effects on the prey population through interacting non-consumptive and consumptive effects, and forage mechanisms. Predation was directly responsible for adult survival, while declining recruitment was attributed to predation risk-sensitive foraging, manifested in poor female nutrition and juvenile recruitment. Substituting nutritional state into the recruitment model through a shared term reveals that predation risk-sensitive foraging was nearly twice as influential as summer forage conditions. Our findings provide a novel, mechanistic insight into the complex means by which predators and forage conditions affect prey populations, and point to a need for more ecological studies that integrate behaviour, nutrition and demography. This line of inquiry can provide further insight into how NCEs interactively contribute to the dynamics of terrestrial prey populations; particularly, how predation risk-sensitive foraging has the potential to stabilize predator-prey coexistence.
Collapse
Affiliation(s)
- Philip D DeWitt
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 .,Science and Research Branch, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada K9J 3C7
| | - Matthew S Schuler
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Darcy R Visscher
- Department of Biology, The King's University, Alberta, Canada T6B 2H3
| | | |
Collapse
|