1
|
Ezoe A, Seki M. Exploring the complexity of genome size reduction in angiosperms. PLANT MOLECULAR BIOLOGY 2024; 114:121. [PMID: 39485504 PMCID: PMC11530473 DOI: 10.1007/s11103-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
2
|
Arifulin EA, Sorokin DV, Anoshina NA, Kuznetsova MA, Valyaeva AA, Potashnikova DM, Omelchenko DO, Schubert V, Kolesnikova TD, Sheval EV. Global nuclear reorganization during heterochromatin replication in the giant-genome plant Nigella damascena L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39432689 DOI: 10.1111/tpj.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Among flowering plants, genome size varies remarkably, by >2200-fold, and this variation depends on the loss and gain of noncoding DNA sequences that form distinct heterochromatin complexes during interphase. In plants with giant genomes, most chromatin remains condensed during interphase, forming a dense network of heterochromatin threads called interphase chromonemata. Using super-resolution light and electron microscopy, we studied the ultrastructure of chromonemata during and after replication in root meristem nuclei of Nigella damascena L. During S-phase, heterochromatin undergoes transient decondensation locally at DNA replication sites. Due to the abundance of heterochromatin, the replication leads to a robust disassembly of the chromonema meshwork and a general reorganization of the nuclear morphology visible even by conventional light microscopy. After replication, heterochromatin recondenses, restoring the chromonema structure. Thus, we show that heterochromatin replication in interphase nuclei of giant-genome plants induces a global nuclear reorganization.
Collapse
Affiliation(s)
- Eugene A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry V Sorokin
- Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda A Anoshina
- Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A Kuznetsova
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Anna A Valyaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria M Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis O Omelchenko
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, D-06466, Germany
| | | | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Ye H, Luo G, Zheng Z, Li X, Cao J, Liu J, Dai J. Plant synthetic genomics: Big lessons from the little yeast. Cell Chem Biol 2024; 31:1745-1754. [PMID: 39214084 DOI: 10.1016/j.chembiol.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Yeast has been extensively studied and engineered due to its genetic amenability. Projects like Sc2.0 and Sc3.0 have demonstrated the feasibility of constructing synthetic yeast genomes, yielding promising results in both research and industrial applications. In contrast, plant synthetic genomics has faced challenges due to the complexity of plant genomes. However, recent advancements of the project SynMoss, utilizing the model moss plant Physcomitrium patens, offer opportunities for plant synthetic genomics. The shared characteristics between P. patens and yeast, such as high homologous recombination rates and dominant haploid life cycle, enable researchers to manipulate P. patens genomes similarly, opening promising avenues for research and application in plant synthetic biology. In conclusion, harnessing insights from yeast synthetic genomics and applying them to plants, with P. patens as a breakthrough, shows great potential for revolutionizing plant synthetic genomics.
Collapse
Affiliation(s)
- Hao Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Guangyu Luo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenwu Zheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jie Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jia Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
4
|
Kitony JK, Colt K, Abramson BW, Hartwick NT, Petrus S, Konozy EHE, Karimi N, Yant L, Michael TP. Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation. Nat Commun 2024; 15:8833. [PMID: 39396056 PMCID: PMC11470940 DOI: 10.1038/s41467-024-53157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Baobab (Adansonia digitata) is a long-lived tree endemic to Africa with economic, ecological, and cultural importance, yet its genomic features are underexplored. Here, we report a chromosome-level reference genome anchored to 42 chromosomes for A. digitata, alongside draft assemblies for a sibling tree, two trees from distinct locations in Africa, and A. za from Madagascar. The baobab genome is uniquely rich in DNA transposons, which make up 33%, while LTR retrotransposons account for 10%. A. digitata experienced whole genome multiplication (WGM) around 30 million years ago (MYA), followed by a second WGM event 3-11 MYA, likely linked to autotetraploidy. Resequencing of 25 trees identify three subpopulations, with gene flow across West Africa distinct from East Africa. Gene enrichment and fixation index (Fst) analyses show baobab retained multiple circadian, flowering, and light-responsive genes, which likely support longevity through the UV RESISTANCE LOCUS 8 (UVR8) pathway. In sum, we provide genomic resources and insights for baobab breeding and conservation.
Collapse
Affiliation(s)
- Justine K Kitony
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bradley W Abramson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Noblis, Inc., Washington, DC, USA
| | - Nolan T Hartwick
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Semar Petrus
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Cepheid, Sunnyvale, CA, USA
| | - Emadeldin H E Konozy
- Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Nisa Karimi
- Missouri Botanical Garden, Science and Conservation Division, St. Louis, MO, USA
- Department of Botany, University of Wisconsin - Madison, Madison, WI, USA
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
5
|
Xavier A, Yadav R, Gowda V. Evolutionary patterns of variations in chromosome counts and genome sizes show positive correlations with taxonomic diversity in tropical gingers. AMERICAN JOURNAL OF BOTANY 2024; 111:e16334. [PMID: 38825815 DOI: 10.1002/ajb2.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024]
Abstract
PREMISE Cytogenetic traits such as an organism's chromosome number and genome size are taxonomically critical as they are instrumental in defining angiosperm diversity. Variations in these traits can be traced to evolutionary processes such as polyploidization, although geographic variations across cytogenetic traits remain underexplored. In the pantropical monocot family Zingiberaceae (~1500 species), cytogenetic traits have been well documented; however, the role of these traits in shaping taxonomic diversity and biogeographic patterns of gingers is not known. METHODS A time-calibrated Bayesian phylogenetic tree was constructed for 290 taxa covering three of the four subfamilies in Zingiberaceae. We tested models of chromosome number and genome size evolution within the family and whether lineage age, taxonomic diversity, and distributional range explain the variations in the cytogenetic traits. Tests were carried out at two taxonomic ranks: within Zingiberaceae and within genus Hedychium using correlations, generalized linear models and phylogenetic least square models. RESULTS The most frequent changes in chromosome number within Zingiberaceae were noted to be demi-polyploidization and polyploidization (~57% of the time), followed by ascending dysploidy (~27%). The subfamily Zingiberoideae showed descending dysploidy at its base, while Alpinioideae showed polyploidization at its internal nodes. Although chromosome counts and genome sizes did not corroborate with each other, suggesting that they are not equivalent; higher chromosome number variations and higher genome size variations were associated with higher taxonomic diversity and wider biogeographic distribution. CONCLUSIONS Within Zingiberaceae, multiple incidences of polyploidization were discovered, and cytogenetic events appear to have reduced the genome sizes and increased taxonomic diversity, distributional ranges and invasiveness.
Collapse
Affiliation(s)
- Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Ritu Yadav
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Decena MÁ, Sancho R, Inda LA, Pérez-Collazos E, Catalán P. Expansions and contractions of repetitive DNA elements reveal contrasting evolutionary responses to the polyploid genome shock hypothesis in Brachypodium model grasses. FRONTIERS IN PLANT SCIENCE 2024; 15:1419255. [PMID: 39049853 PMCID: PMC11266827 DOI: 10.3389/fpls.2024.1419255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Brachypodium grass species have been selected as model plants for functional genomics of grass crops, and to elucidate the origins of allopolyploidy and perenniality in monocots, due to their small genome sizes and feasibility of cultivation. However, genome sizes differ greatly between diploid or polyploid Brachypodium lineages. We have used genome skimming sequencing data to uncover the composition, abundance, and phylogenetic value of repetitive elements in 44 representatives of the major Brachypodium lineages and cytotypes. We also aimed to test the possible mechanisms and consequences of the "polyploid genome shock hypothesis" (PGSH) under three different evolutionary scenarios of variation in repeats and genome sizes of Brachypodium allopolyploids. Our data indicated that the proportion of the genome covered by the repeatome in the Brachypodium species showed a 3.3-fold difference between the highest content of B. mexicanum-4x (67.97%) and the lowest of B. stacei-2x (20.77%), and that changes in the sizes of their genomes were a consequence of gains or losses in their repeat elements. LTR-Retand and Tekay retrotransposons were the most frequent repeat elements in the Brachypodium genomes, while Ogre retrotransposons were found exclusively in B. mexicanum. The repeatome phylogenetic network showed a high topological congruence with plastome and nuclear rDNA and transcriptome trees, differentiating the ancestral outcore lineages from the recently evolved core-perennial lineages. The 5S rDNA graph topologies had a strong match with the ploidy levels and nature of the subgenomes of the Brachypodium polyploids. The core-perennial B. sylvaticum presents a large repeatome and characteristics of a potential post-polyploid diploidized origin. Our study evidenced that expansions and contractions in the repeatome were responsible for the three contrasting responses to the PGSH. The exacerbated genome expansion of the ancestral allotetraploid B. mexicanum was a consequence of chromosome-wide proliferation of TEs and not of WGD, the additive repeatome pattern of young allotetraploid B. hybridum of stabilized post-WGD genome evolution, and the genomecontraction of recent core-perennials polyploids (B. pinnatum, B. phoenicoides) of repeat losses through recombination of these highly hybridizing lineages. Our analyses have contributed to unraveling the evolution of the repeatome and the genome size variation in model Brachypodium grasses.
Collapse
Affiliation(s)
- María Ángeles Decena
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Rubén Sancho
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Luis A. Inda
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Centro de Investigaciones Tecnológicas y Agroalimentarias de Aragón (CITA), Zaragoza, Spain
| | - Ernesto Pérez-Collazos
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional (Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza), Unidad Asociada al Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| |
Collapse
|
7
|
Wang B, Jia Y, Dang N, Yu J, Bush SJ, Gao S, He W, Wang S, Guo H, Yang X, Ma W, Ye K. Near telomere-to-telomere genome assemblies of two Chlorella species unveil the composition and evolution of centromeres in green algae. BMC Genomics 2024; 25:356. [PMID: 38600443 PMCID: PMC11005252 DOI: 10.1186/s12864-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.
Collapse
Affiliation(s)
- Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ningxin Dang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxi He
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sirui Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
Bernal-Gallardo JJ, de Folter S. Plant genome information facilitates plant functional genomics. PLANTA 2024; 259:117. [PMID: 38592421 PMCID: PMC11004055 DOI: 10.1007/s00425-024-04397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION In this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome information in different research areas.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico.
| |
Collapse
|
9
|
Schmidt N, Sielemann K, Breitenbach S, Fuchs J, Pucker B, Weisshaar B, Holtgräwe D, Heitkam T. Repeat turnover meets stable chromosomes: repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:171-190. [PMID: 38128038 DOI: 10.1111/tpj.16599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615, Bielefeld, Germany
| | - Sarah Breitenbach
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) & Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, 01069, Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Graz, Austria
| |
Collapse
|
10
|
Fleck SJ, Jobson RW. Molecular Phylogenomics Reveals the Deep Evolutionary History of Carnivory across Land Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3356. [PMID: 37836100 PMCID: PMC10574757 DOI: 10.3390/plants12193356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Plastid molecular phylogenies that broadly sampled angiosperm lineages imply that carnivorous plants evolved at least 11 times independently in 13 families and 6 orders. Within and between these clades, the different prey capture strategies involving flypaper and pitfall structures arose in parallel with the subsequent evolution of snap traps and suction bladders. Attempts to discern the deep ontological history of carnivorous structures using multigene phylogenies have provided a plastid-level picture of sister relationships at the family level. Here, we present a molecular phylogeny of the angiosperms based on nuclear target sequence capture data (Angiosperms-353 probe set), assembled by the Kew Plant Trees of Life initiative, which aims to complete the tree of life for plants. This phylogeny encompasses all carnivorous and protocarnivorous families, although certain genera such as Philcoxia (Plantaginaceae) are excluded. This study offers a novel nuclear gene-based overview of relationships within and between carnivorous families and genera. Consistent with previous broadly sampled studies, we found that most carnivorous families are not affiliated with any single family. Instead, they emerge as sister groups to large clades comprising multiple non-carnivorous families. Additionally, we explore recent genomic studies across various carnivorous clades that examine the evolution of the carnivorous syndrome in relation to whole-genome duplication, subgenome dominance, small-scale gene duplication, and convergent evolution. Furthermore, we discuss insights into genome size evolution through the lens of carnivorous plant genomes.
Collapse
Affiliation(s)
- Steven J. Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Jobson
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| |
Collapse
|
11
|
Gonzalez‐García LN, Lozano‐Arce D, Londoño JP, Guyot R, Duitama J. Efficient homology-based annotation of transposable elements using minimizers. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11520. [PMID: 37601317 PMCID: PMC10439823 DOI: 10.1002/aps3.11520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 08/22/2023]
Abstract
Premise Transposable elements (TEs) make up more than half of the genomes of complex plant species and can modulate the expression of neighboring genes, producing significant variability of agronomically relevant traits. The availability of long-read sequencing technologies allows the building of genome assemblies for plant species with large and complex genomes. Unfortunately, TE annotation currently represents a bottleneck in the annotation of genome assemblies. Methods and Results We present a new functionality of the Next-Generation Sequencing Experience Platform (NGSEP) to perform efficient homology-based TE annotation. Sequences in a reference library are treated as long reads and mapped to an input genome assembly. A hierarchical annotation is then assigned by homology using the annotation of the reference library. We tested the performance of our algorithm on genome assemblies of different plant species, including Arabidopsis thaliana, Oryza sativa, Coffea humblotiana, and Triticum aestivum (bread wheat). Our algorithm outperforms traditional homology-based annotation tools in speed by a factor of three to >20, reducing the annotation time of the T. aestivum genome from months to hours, and recovering up to 80% of TEs annotated with RepeatMasker with a precision of up to 0.95. Conclusions NGSEP allows rapid analysis of TEs, especially in very large and TE-rich plant genomes.
Collapse
Affiliation(s)
- Laura Natalia Gonzalez‐García
- Systems and Computing Engineering DepartmentUniversidad de los AndesBogotáColombia
- UMR DIADE, Institut de Recherche pour le DéveloppementUniversité de Montpellier, CIRAD34394MontpellierFrance
| | - Daniela Lozano‐Arce
- Systems and Computing Engineering DepartmentUniversidad de los AndesBogotáColombia
| | | | - Romain Guyot
- UMR DIADE, Institut de Recherche pour le DéveloppementUniversité de Montpellier, CIRAD34394MontpellierFrance
| | - Jorge Duitama
- Systems and Computing Engineering DepartmentUniversidad de los AndesBogotáColombia
| |
Collapse
|
12
|
Zhang Y, Wei Y, Meng J, Wang Y, Nie S, Zhang Z, Wang H, Yang Y, Gao Y, Wu J, Li T, Liu X, Zhang H, Gu L. Chromosome-scale de novo genome assembly and annotation of three representative Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1490-1505. [PMID: 36971060 DOI: 10.1111/tpj.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 06/17/2023]
Abstract
Australian pine (Casuarina spp.) is extensively planted in tropical and subtropical regions for wood production, shelterbelts, environmental protection, and ecological restoration due to their superior biological characteristics, such as rapid growth, wind and salt tolerance, and nitrogen fixation. To analyze the genomic diversity of Casuarina, we sequenced the genomes and constructed de novo genome assemblies of the three most widely planted Casuarina species: C. equisetifolia, C. glauca, and C. cunninghamiana. We generated chromosome-scale genome sequences using both Pacific Biosciences (PacBio) Sequel sequencing and chromosome conformation capture technology (Hi-C). The total genome sizes for C. equisetifolia, C. glauca, and C. cunninghamiana are 268 942 579 bp, 296 631 783 bp, and 293 483 606 bp, respectively, of which 25.91, 27.15, and 27.74% were annotated as repetitive sequences. We annotated 23 162, 24 673, and 24 674 protein-coding genes in C. equisetifolia, C. glauca, and C. cunninghamiana, respectively. We then collected branchlets from male and female individuals for whole-genome bisulfite sequencing (BS-seq) to explore the epigenetic regulation of sex determination in these three species. Transcriptome sequencing (RNA-seq) revealed differential expression of phytohormone-related genes between male and female plants. In summary, we generated three chromosome-level genome assemblies and comprehensive DNA methylation and transcriptome datasets from both male and female material for three Casuarina species, providing a basis for the comprehensive investigation of genomic diversity and functional gene discovery of Casuarina in the future.
Collapse
Affiliation(s)
- Yong Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yongcheng Wei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jingxiang Meng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Yujiao Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Sen Nie
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian, 350012, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongkang Yang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tuhe Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuqing Liu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
13
|
Hong Z, Peng D, Tembrock LR, Liao X, Xu D, Liu X, Wu Z. Chromosome-level genome assemblies from two sandalwood species provide insights into the evolution of the Santalales. Commun Biol 2023; 6:587. [PMID: 37264116 DOI: 10.1038/s42003-023-04980-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Sandalwood is one of the most expensive woods in the world and is well known for its long-lasting and distinctive aroma. In our study, chromosome-level genome assemblies for two sandalwood species (Santalum album and Santalum yasi) were constructed by integrating NGS short reads, RNA-seq, and Hi-C libraries with PacBio HiFi long reads. The S. album and S. yasi genomes were both assembled into 10 pseudochromosomes with a length of 229.59 Mb and 232.64 Mb, containing 21,673 and 22,816 predicted genes and a repeat content of 28.93% and 29.54% of the total genomes, respectively. Further analyses resolved a Santalum-specific whole-genome triplication event after divergence from ancestors of the Santalales lineage Malania, yet due to dramatic differences in transposon content, the Santalum genomes were only one-sixth the size of the Malania oleifera genome. Examination of RNA-seq data revealed a suite of genes that are differentially expressed in haustoria and might be involved in host hemiparasite interactions. The two genomes presented here not only provide an important comparative dataset for studying genome evolution in early diverging eudicots and hemiparasitic plants but will also hasten the application of conservation genomics for a lineage of trees recovering from decades of overexploitation.
Collapse
Affiliation(s)
- Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 510520, Guangzhou, China
| | - Dan Peng
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, 518120, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, 518120, Shenzhen, China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 510520, Guangzhou, China
| | - Xiaojing Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, 510520, Guangzhou, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, 518120, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518124, Shenzhen, China.
| |
Collapse
|
14
|
Liao Y, Zhao S, Zhang W, Zhao P, Lu B, Moody ML, Tan N, Chen L. Chromosome-level genome and high nitrogen stress response of the widespread and ecologically important wetland plant Typha angustifolia. FRONTIERS IN PLANT SCIENCE 2023; 14:1138498. [PMID: 37265642 PMCID: PMC10230045 DOI: 10.3389/fpls.2023.1138498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Typha angustifolia L., known as narrowleaf cattail, is widely distributed in Eurasia but has been introduced to North America. Typha angustifolia is a semi-aquatic, wetland obligate plant that is widely distributed in Eurasia and North America. It is ecologically important for nutrient cycling in wetlands where it occurs and is used in phytoremediation and traditional medicine. In order to construct a high-quality genome for Typha angustifolia and investigate genes in response to high nitrogen stress, we carried out complete genome sequencing and high-nitrogen-stress experiments. We generated a chromosomal-level genome of T. angustifolia, which had 15 pseudochromosomes, a size of 207 Mb, and a contig N50 length of 13.57 Mb. Genome duplication analyses detected no recent whole-genome duplication (WGD) event for T. angustifolia. An analysis of gene family expansion and contraction showed that T. angustifolia gained 1,310 genes and lost 1,426 genes. High-nitrogen-stress experiments showed that a high nitrogen level had a significant inhibitory effect on root growth and differential gene expression analyses using 24 samples found 128 differentially expressed genes (DEGs) between the nitrogen-treated and control groups. DEGs in the roots and leaves were enriched in alanines, aspartate, and glutamate metabolism, nitrogen metabolism, photosynthesis, phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase pathways, among others. This study provides genomic data for a medicinal and ecologically important herb and lays a theoretical foundation for plant-assisted water pollution remediation.
Collapse
Affiliation(s)
- Yang Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuying Zhao
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Wenda Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Puguang Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bei Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Michael L. Moody
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ninghua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyun Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Zhu S, Zhang X, Ren C, Xu X, Comes HP, Jiang W, Fu C, Feng H, Cai L, Hong D, Li K, Kai G, Qiu Y. Chromosome-level reference genome of Tetrastigma hemsleyanum (Vitaceae) provides insights into genomic evolution and the biosynthesis of phenylpropanoids and flavonoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:805-823. [PMID: 36864731 DOI: 10.1111/tpj.16169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Here, we present a high-quality chromosome-scale genome assembly (2.19 Gb) and annotation of Tetrastigma hemsleyanum, a perennial herbaceous liana native to subtropical China with diverse medicinal applications. Approximately 73% of the genome was comprised of transposable elements (TEs), of which long terminal repeat retrotransposons (LTR-RTs) were a predominant group (69% of the genome). The genome size increase of T. hemsleyanum (relative to Vitis species) was mostly due to the proliferation of LTR-RTs. Of the different modes of gene duplication identified, transposed duplication (TRD) and dispersed duplication (DSD) were the predominant ones. Genes, particularly those involved in the phenylpropanoid-flavonoid (PF) pathway and those associated with therapeutic properties and environmental stress resistance, were significantly amplified through recent tandem duplications. We dated the divergence of two intraspecific lineages in Southwest (SW) versus Central-South-East (CSE) China to the late Miocene (approximately 5.2 million years ago). Of those, the former showed more upregulated genes and metabolites. Based on resequencing data of 38 individuals representing both lineages, we identified various candidate genes related to 'response to stimulus' and 'biosynthetic process', including ThFLS11, which is putatively involved in flavonoid accumulation. Overall, this study provides abundant genomic resources for future evolutionary, ecological, and functional genomics studies in T. hemsleyanum and related species.
Collapse
Affiliation(s)
- Shanshan Zhu
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyi Zhang
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chaoqian Ren
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinhan Xu
- Hangzhou Sanyeqing Agricultural Science and Technology Co. LTD, Hangzhou, Zhejiang, 310058, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Weimei Jiang
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huixia Feng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Liming Cai
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Deyuan Hong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yingxiong Qiu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| |
Collapse
|
16
|
Li MW, Isobe S, Lam HM. Power Up Plant Genetic Research with Genomic Data. Int J Mol Sci 2023; 24:ijms24086876. [PMID: 37108040 PMCID: PMC10138455 DOI: 10.3390/ijms24086876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The official debut of the reference genome of Arabidopsis thaliana in 2000 [...].
Collapse
Affiliation(s)
- Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Sachiko Isobe
- Laboratory of Plant Genetics and Genomics, Kazusa DNA Research Institute, Kisarazu 292-0828, Chiba, Japan
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
Xie W, Guo Z, Wang J, He Z, Li Y, Feng X, Zhong C, Shi S. Evolution of woody plants to the land-sea interface - The atypical genomic features of mangroves with atypical phenotypic adaptation. Mol Ecol 2023; 32:1351-1365. [PMID: 35771769 DOI: 10.1111/mec.16587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
How plants adapt and diverge in extreme environments is a key question of plant evolution and ecology. Mangrove invasion of intertidal environments is facilitated by adaptive phenotypes such as aerial roots, salt-secreting leaf, and viviparity, and genomic mechanisms including whole genome duplication and transposable element number reduction. However, a number of mangroves lack these typical phenotypes. The question we ask is whether these phenotypically atypical mangroves also have distinct genomic features? The sibling mangrove species Lumnitzera littorea and Lumnitzera racemosa provide a model to study this question. We sequenced and assembled their genomes to chromosome level, together with a closely related species Combretum micranthum. While most mangroves have small genomes, the genomes of both Lumnitzera species are large (1443 and 1317 Mb) and carry a high proportion of repeat sequences (~75%). Moreover, Lumnitzera species have not undergone post-gamma whole-genome duplications. Their genome size increased mainly due to the expansion of repeat sequences in their ancestors. However, Lumnitzera genomes have reduced transposable elements by constraining the proliferation of new LTR-RTs. Meanwhile, the two species have more gene families contracted than expanded, and some gene families with reversed size change may underlie their differentiation in root morphology and local distribution. We identified 86 chromosomal inversions, five of which are measured between 6.5 and 12.8 megabases. A number of genes located in these inversions function in pigment biosynthesis, a process likely involved in flower colour differentiation between the Lumnitzera species. We conclude that the mangroves with atypical phenotypes also have atypical genomic evolution.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiayan Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yulong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China.,School of Ecology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, Hainan, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, Fletcher P, Jakob A, Cauz-Santos LA, Vignolle G, Dodsworth S, Christenhusz MJM, Buril MT, Paun O. Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). ANNALS OF BOTANY 2023; 131:123-142. [PMID: 35029647 PMCID: PMC9904355 DOI: 10.1093/aob/mcac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
Collapse
Affiliation(s)
- Mark W Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | - John G Conran
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Felipe Nollet
- Universidade Federal Rural de Pernambuco, Centro de Ciências Biológicas, Departamento de Botânica, Rua Manuel de Medeiros, S/N, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Paul Fletcher
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Aljaž Jakob
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Gabriel Vignolle
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Maarten J M Christenhusz
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Maria Teresa Buril
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
19
|
Giant Fern Genomes Show Complex Evolution Patterns: A Comparative Analysis in Two Species of Tmesipteris (Psilotaceae). Int J Mol Sci 2023; 24:ijms24032708. [PMID: 36769031 PMCID: PMC9916801 DOI: 10.3390/ijms24032708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Giant genomes are rare across the plant kingdom and their study has focused almost exclusively on angiosperms and gymnosperms. The scarce genetic data that are available for ferns, however, indicate differences in their genome organization and a lower dynamism compared to other plant groups. Tmesipteris is a small genus of mainly epiphytic ferns that occur in Oceania and several Pacific Islands. So far, only two species with giant genomes have been reported in the genus, T. tannensis (1C = 73.19 Gbp) and T. obliqua (1C = 147.29 Gbp). Low-coverage genome skimming sequence data were generated in these two species and analyzed using the RepeatExplorer2 pipeline to identify and quantify the repetitive DNA fraction of these genomes. We found that both species share a similar genomic composition, with high repeat diversity compared to taxa with small (1C < 10 Gbp) genomes. We also found that, in general, characterized repetitive elements have relatively high heterogeneity scores, indicating ancient diverging evolutionary trajectories. Our results suggest that a whole genome multiplication event, accumulation of repetitive elements, and recent activation of those repeats have all played a role in shaping these genomes. It will be informative to compare these data in the future with data from the giant genome of the angiosperm Paris japonica, to determine if the structures observed here are an emergent property of massive genomic inflation or derived from lineage specific processes.
Collapse
|
20
|
Acién JM, Cañizares E, Candela H, González-Guzmán M, Arbona V. From Classical to Modern Computational Approaches to Identify Key Genetic Regulatory Components in Plant Biology. Int J Mol Sci 2023; 24:ijms24032526. [PMID: 36768850 PMCID: PMC9916757 DOI: 10.3390/ijms24032526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The selection of plant genotypes with improved productivity and tolerance to environmental constraints has always been a major concern in plant breeding. Classical approaches based on the generation of variability and selection of better phenotypes from large variant collections have improved their efficacy and processivity due to the implementation of molecular biology techniques, particularly genomics, Next Generation Sequencing and other omics such as proteomics and metabolomics. In this regard, the identification of interesting variants before they develop the phenotype trait of interest with molecular markers has advanced the breeding process of new varieties. Moreover, the correlation of phenotype or biochemical traits with gene expression or protein abundance has boosted the identification of potential new regulators of the traits of interest, using a relatively low number of variants. These important breakthrough technologies, built on top of classical approaches, will be improved in the future by including the spatial variable, allowing the identification of gene(s) involved in key processes at the tissue and cell levels.
Collapse
Affiliation(s)
- Juan Manuel Acién
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Eva Cañizares
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Miguel González-Guzmán
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
- Correspondence: (M.G.-G.); (V.A.); Tel.: +34-964-72-9415 (M.G.-G.); +34-964-72-9401 (V.A.)
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
- Correspondence: (M.G.-G.); (V.A.); Tel.: +34-964-72-9415 (M.G.-G.); +34-964-72-9401 (V.A.)
| |
Collapse
|
21
|
Mueller RL, Cressler CE, Schwartz RS, Chong RA, Butler M. Metamorphosis Imposes Variable Constraints on Genome Expansion through Effects on Development. Integr Org Biol 2023; 5:obad015. [PMID: 37143961 PMCID: PMC10153748 DOI: 10.1093/iob/obad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/25/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
Genome size varies ∼100,000-fold across eukaryotes and has long been hypothesized to be influenced by metamorphosis in animals. Transposable element accumulation has been identified as a major driver of increase, but the nature of constraints limiting the size of genomes has remained unclear, even as traits such as cell size and rate of development co-vary strongly with genome size. Salamanders, which possess diverse metamorphic and non-metamorphic life histories, join the lungfish in having the largest vertebrate genomes-3 to 40 times that of humans-as well as the largest range of variation in genome size. We tested 13 biologically-inspired hypotheses exploring how the form of metamorphosis imposes varying constraints on genome expansion in a broadly representative phylogeny containing 118 species of salamanders. We show that metamorphosis during which animals undergo the most extensive and synchronous remodeling imposes the most severe constraint against genome expansion, with the severity of constraint decreasing with reduced extent and synchronicity of remodeling. More generally, our work demonstrates the potential for broader interpretation of phylogenetic comparative analysis in exploring the balance of multiple evolutionary pressures shaping phenotypic evolution.
Collapse
Affiliation(s)
| | - C E Cressler
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - R S Schwartz
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - R A Chong
- School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| | - M Butler
- School of Life Sciences, University of Hawai'i, Honolulu, HI 96822, USA
| |
Collapse
|
22
|
Linscott TM, González-González A, Hirano T, Parent CE. De novo genome assembly and genome skims reveal LTRs dominate the genome of a limestone endemic Mountainsnail (Oreohelix idahoensis). BMC Genomics 2022; 23:796. [PMID: 36460988 PMCID: PMC9719178 DOI: 10.1186/s12864-022-09000-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Calcareous outcrops, rocky areas composed of calcium carbonate (CaCO3), often host a diverse, specialized, and threatened biomineralizing fauna. Despite the repeated evolution of physiological and morphological adaptations to colonize these mineral rich substrates, there is a lack of genomic resources for calcareous rock endemic species. This has hampered our ability to understand the genomic mechanisms underlying calcareous rock specialization and manage these threatened species. RESULTS Here, we present a new draft genome assembly of the threatened limestone endemic land snail Oreohelix idahoensis and genome skim data for two other Oreohelix species. The O. idahoensis genome assembly (scaffold N50: 404.19 kb; 86.6% BUSCO genes) is the largest (~ 5.4 Gb) and most repetitive mollusc genome assembled to date (85.74% assembly size). The repetitive landscape was unusually dominated by an expansion of long terminal repeat (LTR) transposable elements (57.73% assembly size) which have shaped the evolution genome size, gene composition through retrotransposition of host genes, and ectopic recombination. Genome skims revealed repeat content is more than 2-3 fold higher in limestone endemic O. idahoensis compared to non-calcareous Oreohelix species. Gene family size analysis revealed stress and biomineralization genes have expanded significantly in the O. idahoensis genome. CONCLUSIONS Hundreds of threatened land snail species are endemic to calcareous rock regions but there are very few genomic resources available to guide their conservation or determine the genomic architecture underlying CaCO3 resource specialization. Our study provides one of the first high quality draft genomes of a calcareous rock endemic land snail which will serve as a foundation for the conservation genomics of this threatened species and for other groups. The high proportion and activity of LTRs in the O. idahoensis genome is unprecedented in molluscan genomics and sheds new light how transposable element content can vary across molluscs. The genomic resources reported here will enable further studies of the genomic mechanisms underlying calcareous rock specialization and the evolution of transposable element content across molluscs.
Collapse
Affiliation(s)
- T. Mason Linscott
- grid.266456.50000 0001 2284 9900Department of Biological Sciences, University of Idaho, Moscow, ID USA ,grid.266456.50000 0001 2284 9900Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID USA
| | - Andrea González-González
- grid.15276.370000 0004 1936 8091Department of Biology, University of Florida, Gainesville, Florida USA
| | - Takahiro Hirano
- grid.69566.3a0000 0001 2248 6943Center for Northeast Asian Studies, Tohoku University, Sendai, Miyagi Japan
| | - Christine E. Parent
- grid.266456.50000 0001 2284 9900Department of Biological Sciences, University of Idaho, Moscow, ID USA ,grid.266456.50000 0001 2284 9900Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID USA
| |
Collapse
|
23
|
Shen G, Luo Y, Yao Y, Meng G, Zhang Y, Wang Y, Xu C, Liu X, Zhang C, Ding G, Pang Y, Zhang H, Guo B. The discovery of a key prenyltransferase gene assisted by a chromosome-level Epimedium pubescens genome. FRONTIERS IN PLANT SCIENCE 2022; 13:1034943. [PMID: 36452098 PMCID: PMC9702526 DOI: 10.3389/fpls.2022.1034943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Epimedium pubescens is a species of the family Berberidaceae in the basal eudicot lineage, and a main plant source for the traditional Chinese medicine "Herba Epimedii". The current study achieved a chromosome-level genome assembly of E. pubescens with the genome size of 3.34 Gb, and the genome guided discovery of a key prenyltransferase (PT) in E. pubescens. Our comparative genomic analyses confirmed the absence of Whole Genome Triplication (WGT-γ) event shared in core eudicots and further revealed the occurrence of an ancient Whole Genome Duplication (WGD) event approximately between 66 and 81 Million Years Ago (MYA). In addition, whole genome search approach was successfully applied to identify 19 potential flavonoid PT genes and an important flavonoid PT (EpPT8) was proven to be an enzyme for the biosynthesis of medicinal compounds, icaritin and its derivatives in E. pubescens. Therefore, our results not only provide a good reference genome to conduct further molecular biological studies in Epimedium genus, but also give important clues for synthetic biology and industrial production of related prenylated flavonoids in future.
Collapse
Affiliation(s)
- Guoan Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanjiao Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Guoqing Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yuanyue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Cheng Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Key Laboratory of Biodiversity Science and Ecological Engineering, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yongzhen Pang
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Cerbin S, Ou S, Li Y, Sun Y, Jiang N. Distinct composition and amplification dynamics of transposable elements in sacred lotus (Nelumbo nucifera Gaertn.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:172-192. [PMID: 35959634 PMCID: PMC9804982 DOI: 10.1111/tpj.15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Sacred lotus (Nelumbo nucifera Gaertn.) is a basal eudicot plant with a unique lifestyle, physiological features, and evolutionary characteristics. Here we report the unique profile of transposable elements (TEs) in the genome, using a manually curated repeat library. TEs account for 59% of the genome, and hAT (Ac/Ds) elements alone represent 8%, more than in any other known plant genome. About 18% of the lotus genome is comprised of Copia LTR retrotransposons, and over 25% of them are associated with non-canonical termini (non-TGCA). Such high abundance of non-canonical LTR retrotransposons has not been reported for any other organism. TEs are very abundant in genic regions, with retrotransposons enriched in introns and DNA transposons primarily in flanking regions of genes. The recent insertion of TEs in introns has led to significant intron size expansion, with a total of 200 Mb in the 28 455 genes. This is accompanied by declining TE activity in intergenic regions, suggesting distinct control efficacy of TE amplification in different genomic compartments. Despite the prevalence of TEs in genic regions, some genes are associated with fewer TEs, such as those involved in fruit ripening and stress responses. Other genes are enriched with TEs, and genes in epigenetic pathways are the most associated with TEs in introns, indicating a dynamic interaction between TEs and the host surveillance machinery. The dramatic differential abundance of TEs with genes involved in different biological processes as well as the variation of target preference of different TEs suggests the composition and activity of TEs influence the path of evolution.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Ecology & Evolutionary BiologyUniversity of Kansas1200 Sunnyside AvenueLawrenceKS66045USA
| | - Shujun Ou
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
- Present address:
Department of Computer ScienceJohns Hopkins UniversityBaltimoreMD21218USA
| | - Yang Li
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Yanni Sun
- Department of Electrical EngineeringCity University of Hong KongKowloonHong Kong SARChina
| | - Ning Jiang
- Department of HorticultureMichigan State University1066 Bogue StreetEast LansingMI48824USA
| |
Collapse
|
25
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
26
|
Sreeharsha RV, Mudalkar S, Reddy AR. Genome sequencing and analysis uncover the regulatory elements involved in the development and oil biosynthesis of Pongamia pinnata (L.) - A potential biodiesel feedstock. FRONTIERS IN PLANT SCIENCE 2022; 13:747783. [PMID: 36092428 PMCID: PMC9454018 DOI: 10.3389/fpls.2022.747783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Due to rapid industrialization, the consumption of petro-products has increased, while fossil fuel resources have been gradually depleted. There has been a resurgence of interest in plant-derived biofuels as a sustainable alternative to fossil fuels for the purpose of reducing greenhouse gas emissions. Pongamia pinnata L., which is also known as Millettia pinnata is an oil-yielding, leguminous tree with a large and complex genome. Despite its multiple industrial applications, this orphan tree species has inconsistent yields and a limited understanding of its functional genomics. We assessed physiological and morphological characteristics of five high-yielding pongamia accessions and deduced important yield descriptors. Furthermore, we sequenced the genome of this potential biofuel feedstock using Illumina HiSeq, NextSeq, and MiSeq platforms to generate paired-end reads. Around 173 million processed reads amounting to 65.2 Gb were assembled into a 685 Mb genome, with a gap rate of 0.02%. The sequenced scaffolds were used to identify 30,000 gene models, 406,385 Simple-Sequence-Repeat (SSR) markers, and 43.6% of repetitive sequences. We further analyzed the structural information of genes belonging to certain key metabolic pathways, including lipid metabolism, photosynthesis, circadian rhythms, plant-pathogen interactions, and karanjin biosynthesis, all of which are commercially significant for pongamia. A total of 2,219 scaffolds corresponding to 29 transcription factor families provided valuable information about gene regulation in pongamia. Similarity studies and phylogenetic analysis revealed a monophyletic group of Fabaceae members wherein pongamia out-grouped from Glycine max and Cajanus cajan, revealing its unique ability to synthesize oil for biodiesel. This study is the first step toward completing the genome sequence of this imminent biofuel tree species. Further attempts at re-sequencing with different read chemistry will certainly improve the genetic resources at the chromosome level and accelerate the molecular breeding programs.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Shalini Mudalkar
- Department of Tree Breeding and Improvement, Forest College and Research Institute (FCRI), Hyderabad, India
| | | |
Collapse
|
27
|
Wang L, Lee M, Sun F, Song Z, Yang Z, Yue GH. A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. PLANT COMMUNICATIONS 2022; 3:100326. [PMID: 35605203 PMCID: PMC9284293 DOI: 10.1016/j.xplc.2022.100326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 05/26/2023]
Abstract
Chia (Salvia hispanica) is a functional food crop for humans. Although its seeds contain high omega-3 fatty acids, the seed yield of chia is still low. Genomic resources available for this plant are limited. We report the first high-quality chromosome-level genome sequence of chia. The assembled genome size was 347.6 Mb and covered 98.1% of the estimated genome size. A total of 31 069 protein-coding genes were predicted. The absence of recent whole-genome duplication and the relatively low intensity of transposable element expansion in chia compared to its sister species contribute to its small genome size. Transcriptome sequencing and gene duplication analysis reveal that the expansion of the fab2 gene family is likely to be related to the high content of omega-3 in seeds. The white seed coat color is determined by a single locus on chromosome 4. This study provides novel insights into the evolution of Salvia species and high omega-3 content, as well as valuable genomic resources for genetic improvement of important commercial traits of chia and its related species.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Fei Sun
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zhuojun Song
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zituo Yang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
28
|
Moreno-Aguilar MF, Inda LA, Sánchez-Rodríguez A, Arnelas I, Catalán P. Evolutionary Dynamics of the Repeatome Explains Contrasting Differences in Genome Sizes and Hybrid and Polyploid Origins of Grass Loliinae Lineages. FRONTIERS IN PLANT SCIENCE 2022; 13:901733. [PMID: 35845705 PMCID: PMC9284676 DOI: 10.3389/fpls.2022.901733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The repeatome is composed of diverse families of repetitive DNA that keep signatures on the historical events that shaped the evolution of their hosting species. The cold seasonal Loliinae subtribe includes worldwide distributed taxa, some of which are the most important forage and lawn species (fescues and ray-grasses). The Loliinae are prone to hybridization and polyploidization. It has been observed a striking two-fold difference in genome size between the broad-leaved (BL) and fine-leaved (FL) Loliinae diploids and a general trend of genome reduction of some high polyploids. We have used genome skimming data to uncover the composition, abundance, and potential phylogenetic signal of repetitive elements across 47 representatives of the main Loliinae lineages. Independent and comparative analyses of repetitive sequences and of 5S rDNA loci were performed for all taxa under study and for four evolutionary Loliinae groups [Loliinae, Broad-leaved (BL), Fine-leaved (FL), and Schedonorus lineages]. Our data showed that the proportion of the genome covered by the repeatome in the Loliinae species was relatively high (average ∼ 51.8%), ranging from high percentages in some diploids (68.7%) to low percentages in some high-polyploids (30.7%), and that changes in their genome sizes were likely caused by gains or losses in their repeat elements. Ty3-gypsy Retand and Ty1-copia Angela retrotransposons were the most frequent repeat families in the Loliinae although the relatively more conservative Angela repeats presented the highest correlation of repeat content with genome size variation and the highest phylogenetic signal of the whole repeatome. By contrast, Athila retrotransposons presented evidence of recent proliferations almost exclusively in the Lolium clade. The repeatome evolutionary networks showed an overall topological congruence with the nuclear 35S rDNA phylogeny and a geographic-based structure for some lineages. The evolution of the Loliinae repeatome suggests a plausible scenario of recurrent allopolyploidizations followed by diploidizations that generated the large genome sizes of BL diploids as well as large genomic rearrangements in highly hybridogenous lineages that caused massive repeatome and genome contractions in the Schedonorus and Aulaxyper polyploids. Our study has contributed to disentangling the impact of the repeatome dynamics on the genome diversification and evolution of the Loliinae grasses.
Collapse
Affiliation(s)
| | - Luis A. Inda
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Instituto Agroalimentario de Aragón, Universidad de Zaragoza, Centro de Investigación y Tecnología Agroalimentaria, Zaragoza, Spain
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Itziar Arnelas
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Huesca, Spain
- Grupo de Bioquímica, Biofísica y Biología Computacional, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
29
|
Wang L, Sun X, Peng Y, Chen K, Wu S, Guo Y, Zhang J, Yang H, Jin T, Wu L, Zhou X, Liang B, Zhao Z, Liu D, Fei Z, Bai L. Genomic insights into the origin, adaptive evolution, and herbicide resistance of Leptochloa chinensis, a devastating tetraploid weedy grass in rice fields. MOLECULAR PLANT 2022; 15:1045-1058. [PMID: 35524410 DOI: 10.1016/j.molp.2022.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Chinese sprangletop (Leptochloa chinensis), belonging to the grass subfamily Chloridoideae, is one of the most notorious weeds in rice ecosystems. Here, we report a chromosome-scale reference genome assembly and a genomic variation map of the tetraploid L. chinensis. The L. chinensis genome is derived from two diploid progenitors that diverged ∼10.9 million years ago, and its two subgenomes display neither fractionation bias nor overall gene expression dominance. Comparative genomic analyses reveal substantial genome rearrangements in L. chinensis after its divergence from the common ancestor of Chloridoideae and, together with transcriptome profiling, demonstrate the important contribution of tetraploidization to the gene sources for the herbicide resistance of L. chinensis. Population genomic analyses of 89 accessions from China reveal that L. chinensis accessions collected from southern/southwestern provinces have substantially higher nucleotide diversity than those from the middle and lower reaches of the Yangtze River, suggesting that L. chinensis spread in China from the southern/southwestern provinces to the middle and lower reaches of the Yangtze River. During this spread, L. chinensis developed significantly increased herbicide resistance, accompanied by the selection of numerous genes involved in herbicide resistance. Taken together, our study generated valuable genomic resources for future fundamental research and agricultural management of L. chinensis, and provides significant new insights into the herbicide resistance as well as the origin and adaptive evolution of L. chinensis.
Collapse
Affiliation(s)
- Lifeng Wang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuepeng Sun
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA; College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Chen
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yanan Guo
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jingyuan Zhang
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tao Jin
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Lamei Wu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaomao Zhou
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bin Liang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhenghong Zhao
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ducai Liu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA; USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Lianyang Bai
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
30
|
Kornaliková M, Hampl V, Treitli SC. Investigation of the Genome Sizes and Ploidy Within the Genus
Monocercomonoides. J Eukaryot Microbiol 2022; 69:e12925. [DOI: 10.1111/jeu.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martina Kornaliková
- Department of Parasitology, Faculty of Science Charles University, BIOCEV Vestec Czech Republic
| | - Vladimir Hampl
- Department of Parasitology, Faculty of Science Charles University, BIOCEV Vestec Czech Republic
| | | |
Collapse
|
31
|
Melton AE, Child AW, Beard RS, Dumaguit CDC, Forbey JS, Germino M, de Graaff MA, Kliskey A, Leitch IJ, Martinez P, Novak SJ, Pellicer J, Richardson BA, Self D, Serpe M, Buerki S. A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands. G3 (BETHESDA, MD.) 2022; 12:6585877. [PMID: 35567476 PMCID: PMC9258541 DOI: 10.1093/g3journal/jkac122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022]
Abstract
Increased ecological disturbances, species invasions, and climate change are creating severe conservation problems for several plant species that are widespread and foundational. Understanding the genetic diversity of these species and how it relates to adaptation to these stressors are necessary for guiding conservation and restoration efforts. This need is particularly acute for big sagebrush (Artemisia tridentata; Asteraceae), which was once the dominant shrub over 1,000,000 km2 in western North America but has since retracted by half and thus has become the target of one of the largest restoration seeding efforts globally. Here, we present the first reference-quality genome assembly for an ecologically important subspecies of big sagebrush (A. tridentata subsp. tridentata) based on short and long reads, as well as chromatin proximity ligation data analyzed using the HiRise pipeline. The final 4.2-Gb assembly consists of 5,492 scaffolds, with nine pseudo-chromosomal scaffolds (nine scaffolds comprising at least 90% of the assembled genome; n = 9). The assembly contains an estimated 43,377 genes based on ab initio gene discovery and transcriptional data analyzed using the MAKER pipeline, with 91.37% of BUSCOs being completely assembled. The final assembly was highly repetitive, with repeat elements comprising 77.99% of the genome, making the Artemisia tridentata subsp. tridentata genome one of the most highly repetitive plant genomes to be sequenced and assembled. This genome assembly advances studies on plant adaptation to drought and heat stress and provides a valuable tool for future genomic research.
Collapse
Affiliation(s)
- Anthony E Melton
- Corresponding author: Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| | | | - Richard S Beard
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | | | - Jennifer S Forbey
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Matthew Germino
- Forest and Rangeland Ecosystem Science Center, United States Geological Survey, Boise, ID 83706, USA
| | | | | | | | - Peggy Martinez
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Stephen J Novak
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jaume Pellicer
- Royal Botanic Gardens, Richmond TW9 3AE, UK,Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona 08038, Spain
| | - Bryce A Richardson
- Rocky Mountain Research Station, United States Forest Service, Moscow, ID 83843, USA
| | - Desiree Self
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Marcelo Serpe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Sven Buerki
- Corresponding author: Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
32
|
Sun Y, Shang L, Zhu QH, Fan L, Guo L. Twenty years of plant genome sequencing: achievements and challenges. TRENDS IN PLANT SCIENCE 2022; 27:391-401. [PMID: 34782248 DOI: 10.1016/j.tplants.2021.10.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 05/27/2023]
Abstract
Publication of the complete genome sequence of Arabidopsis thaliana, the first plant reference genome, in December 2000 heralded the beginning of the plant genome era. Over the past 20 years reference genomes have been generated for hundreds of plant species, spanning non-vascular to flowering plants. Releasing these plant genomes has dramatically advanced studies in all disciplines of plant biology. Importantly, multiple reference-level genomes have been generated for the major crops and their progenitors, enabling the creation of pan-genomes and exploration of domestication history and natural variations that can be adopted by modern crop breeding. We summarize the progress of plant genome sequencing and the challenges of sequencing more complex plant genomes and generating pan-genomes.
Collapse
Affiliation(s)
- Yanqing Sun
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, Australia
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China; Zhejiang University City College School of Medicine, Hangzhou, China.
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
33
|
Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, Liu X, Soltis PS. Green plant genomes: What we know in an era of rapidly expanding opportunities. Proc Natl Acad Sci U S A 2022; 119:e2115640118. [PMID: 35042803 PMCID: PMC8795535 DOI: 10.1073/pnas.2115640118] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.
Collapse
Affiliation(s)
- W John Kress
- National Museum of Natural History, Smithsonian Institution, Department of Botany, Washington, DC 20013-7012;
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Arnold Arboretum, Harvard University, Boston, MA 02130
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Paul J Kersey
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics: Computational Biology Core, University of Connecticut, Storrs, CT 06269-3214
| | - James H Leebens-Mack
- Department of Plant Biology, 2101 Miller Plant Sciences, University of Georgia, Athens, GA 30602-7271
| | - Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, TX 76107-3400
| | - Xin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
34
|
Epigenome guided crop improvement: current progress and future opportunities. Emerg Top Life Sci 2022; 6:141-151. [PMID: 35072210 PMCID: PMC9023013 DOI: 10.1042/etls20210258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Epigenomics encompasses a broad field of study, including the investigation of chromatin states, chromatin modifications and their impact on gene regulation; as well as the phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of information superimposed on DNA sequences, instructing their usage in gene expression. As such, it is an emerging focus of efforts to improve crop performance. Broadly, this might be divided into avenues that leverage chromatin information to better annotate and decode plant genomes, and into complementary strategies that aim to identify and select for heritable epialleles that control crop traits independent of underlying genotype. In this review, we focus on the first approach, which we term ‘epigenome guided’ improvement. This encompasses the use of chromatin profiles to enhance our understanding of the composition and structure of complex crop genomes. We discuss the current progress and future prospects towards integrating this epigenomic information into crop improvement strategies; in particular for CRISPR/Cas9 gene editing and precision genome engineering. We also highlight some specific opportunities and challenges for grain and horticultural crops.
Collapse
|
35
|
Choi J, Lyons DB, Zilberman D. Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin. eLife 2021; 10:72676. [PMID: 34850679 PMCID: PMC8828055 DOI: 10.7554/elife.72676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
Flowering plants utilize small RNA (sRNA) molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here, we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with sRNA biogenesis, and without H1 sRNA production quantitatively expands to non-CG-methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the sRNA-generating branch of RdDM from non-CG-methylated heterochromatin. Cells adapt to different roles by turning different groups of genes on and off. One way cells control which genes are on or off is by creating regions of active and inactive DNA, which are created and maintained by different groups of proteins. Genes in active DNA regions can be turned on, while genes in inactive regions are switched off or silenced. Silenced DNA regions also turn off ‘transposable elements’: pieces of DNA that can copy themselves and move to other regions of the genome if they become active. Transposons can be dangerous if they are activated, because they can disrupt genes or regulatory sequences when they move. There are different types of active and inactive DNA, but it is not always clear why these differences exist, or how they are maintained over time. In plants, such as the commonly-studied weed Arabidopsis thaliana, there are two types of inactive DNA, called E and H, that can silence transposons. In both types, DNA has small chemicals called methyl groups attached to it, which help inactivate the DNA. Type E DNA is methylated by a process called RNA-directed DNA methylation (RdDM), but RdDM is rarely seen in type H DNA. Choi, Lyons and Zilberman showed that RdDM is attracted to E and H regions by previously existing methylated DNA. However, in the H regions, a protein called histone H1 blocks RdDM from attaching methyl groups. This helps focus RdDM onto E regions where it is most needed, because E regions contain the types of transposons RdDM is best suited to silence. When Choi, Lyons and Zilberman examined genetically modified A. thaliana plants that do not produce histone H1, they found that RdDM happened in both E and H regions. There are many more H regions than E regions, so stretching RdDM across both made it less effective at silencing DNA. This work shows how different DNA silencing processes are focused onto specific genetic regions, helping explain why there are different types of active and inactive DNA within cells. RdDM has been studied as a way to affect crop growth and yield by altering DNA methylation. These results may help such studies by explaining how RdDM is naturally targeted.
Collapse
Affiliation(s)
- Jaemyung Choi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - David B Lyons
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Centre, Klosterneuburg, Austria
| |
Collapse
|
36
|
Abstract
Objective Dianjixueteng is a geoherb in Yunnan Province, the source plant of which is Kadsura interior. However, the formation of this geoherb is not clear in genetic mechanism, in which genome size is the first step that should be known on the genomic level. In this study we aimed to estimate the genome sizes of source plants of K. interior and three related herbs K. heteroclita, K. longipedunculata, and K. coccinea by flow cytometry (FCM) and make a comparison. Methods The genome sizes of K. interior, K. heteroclita, K. longipedunculata and K. coccinea, i.e., the source plants of Dianjixueteng and its relative medicinal materials, were estimated by FCM. The nuclei of K. interior were isolated using modified LB01 buffer, for the rest species, by the Galbraith’s buffer. Results The genome sizes of K. interior, K. heteroclita, K. longipedunculata, and K. coccinea were 7.36, 7.12, 7.01, and 5.15 pg/1C, respectively. Genome size of K. interior had no significant variation with those of K. heteroclita and K. longipedunculata (P = 0.296), which was significantly larger than that of K. coccinea. Conclusion Genome size can not distinguish K. interior from K. heteroclita and K. longipedunculata, but could distinguish them from K. coccinea, which lays the foundation for future studies on genetic mechanism of the geoherb formation.
Collapse
|
37
|
SINE Insertion in the Intron of Pig GHR May Decrease Its Expression by Acting as a Repressor. Animals (Basel) 2021; 11:ani11071871. [PMID: 34201672 PMCID: PMC8300111 DOI: 10.3390/ani11071871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary GH/IGF axis genes play a central role in the regulation of skeletal accretion during development and growth, and thus represent candidate genes for growth traits. Retrotransposon insertion polymorphisms are major contributors to structural variations. They tend to generate large effect mutations resulting in variations in target gene activity and phenotype due to the fact that they carry functional elements, such as enhancers, insulators, or promoters. In the present study, RIPs in four GH/IGF axis genes (GH, GHR, IGF1, and IGF1R) were investigated by comparative genomics and PCR. Four RIPs in the GHR gene and one RIP in the IGF1 gene were identified. Further analysis revealed that one RIP in the first intron of GHR might play a role in the regulation of GHR expression by acting as a repressor. These findings contribute to the understanding of the role of RIPs in the genetic variation of GH/IGF axis genes and phenotypic variation in pigs. Abstract The genetic diversity of the GH/IGF axis genes and their association with the variation of gene expression and phenotypic traits, principally represented by SNPs, have been extensively reported. Nevertheless, the impact of retrotransposon insertion polymorphisms (RIPs) on the GH/IGF axis gene activity has not been reported. In the present study, bioinformatic prediction and PCR verification were performed to screen RIPs in four GH/IGF axis genes (GH, GHR, IGF1 and IGF1R). In total, five RIPs, including one SINE RIP in intron 3 of IGF1, one L1 RIP in intron 7 of GHR, and three SINE RIPs in intron 1, intron 5 and intron 9 of GHR, were confirmed by PCR, displaying polymorphisms in diverse breeds. Dual luciferase reporter assay revealed that the SINE insertion in intron 1 of GHR significantly repressed the GHR promoter activity in PK15, Hela, C2C12 and 3T3-L1 cells. Furthermore, qPCR results confirmed that this SINE insertion was associated with a decreased expression of GHR in the leg muscle and longissimus dorsi, indicating that it may act as a repressor involved in the regulation of GHR expression. In summary, our data revealed that RIPs contribute to the genetic variation of GH/IGF axis genes, whereby one SINE RIP in the intron 1 of GHR may decrease the expression of GHR by acting as a repressor.
Collapse
|
38
|
Yang Y, Huang L, Xu C, Qi L, Wu Z, Li J, Chen H, Wu Y, Fu T, Zhu H, Saand MA, Li J, Liu L, Fan H, Zhou H, Qin W. Chromosome-scale genome assembly of areca palm (Areca catechu). Mol Ecol Resour 2021; 21:2504-2519. [PMID: 34133844 DOI: 10.1111/1755-0998.13446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Areca palm (Areca catechu L.; family Arecaceae) is an important tropical medicinal crop and is also used for masticatory and religious purposes in Asia. Improvements to areca properties made by traditional breeding tools have been very slow, and further advances in its cultivation and practical use require genomic information, which is still unavailable. Here, we present a chromosome-scale reference genome assembly for areca by combining Illumina and PacBio data with Hi-C mapping technologies, covering the predicted A. catechu genome length (2.59 Gb, variety "Reyan#1") to an estimated 240× read depth. The assembly was 2.51 Gb in length with a scaffold N50 of 1.7Mb. The scaffolds were then further assembled into 16 pseudochromosomes, with an N50 of 172 Mb. Transposable elements comprised 80.37% of the areca genome, and 68.68% of them were long-terminal repeat retrotransposon elements. The areca palm genome was predicted to harbour 31,571 protein-coding genes and overall, 92.92% of genes were functionally annotated, including enriched and expanded families of genes responsible for biosynthesis of flavonoid, anthocyanin, monoterpenoid and their derivatives. Comparative analyses indicated that A. catechu probably diverged from its close relatives Elaeis guineensis and Cocos nucifera approximately 50.3 million years ago (Ma). Two whole genome duplication events in areca palm were found to be shared by palms and monocots, respectively. This genome assembly and associated resources represents an important addition to the palm genomics community and will be a valuable resource that will facilitate areca palm breeding and improve our understanding of areca palm biology and evolution.
Collapse
Affiliation(s)
- Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Liyun Huang
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lan Qi
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Jia Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Tao Fu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hui Zhu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Mumtaz Ali Saand
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Liyun Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Haikou Fan
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Huanqi Zhou
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Weiquan Qin
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
39
|
RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genet 2021; 17:e1009326. [PMID: 34125827 PMCID: PMC8224964 DOI: 10.1371/journal.pgen.1009326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/24/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
In large complex plant genomes, RNA-directed DNA methylation (RdDM) ensures that epigenetic silencing is maintained at the boundary between genes and flanking transposable elements. In maize, RdDM is dependent on Mediator of Paramutation1 (Mop1), a gene encoding a putative RNA dependent RNA polymerase. Here we show that although RdDM is essential for the maintenance of DNA methylation of a silenced MuDR transposon in maize, a loss of that methylation does not result in a restoration of activity. Instead, heritable maintenance of silencing is maintained by histone modifications. At one terminal inverted repeat (TIR) of this element, heritable silencing is mediated via histone H3 lysine 9 dimethylation (H3K9me2), and histone H3 lysine 27 dimethylation (H3K27me2), even in the absence of DNA methylation. At the second TIR, heritable silencing is mediated by histone H3 lysine 27 trimethylation (H3K27me3), a mark normally associated with somatically inherited gene silencing. We find that a brief exposure of high temperature in a mop1 mutant rapidly reverses both of these modifications in conjunction with a loss of transcriptional silencing. These reversals are heritable, even in mop1 wild-type progeny in which methylation is restored at both TIRs. These observations suggest that DNA methylation is neither necessary to maintain silencing, nor is it sufficient to initiate silencing once has been reversed. However, given that heritable reactivation only occurs in a mop1 mutant background, these observations suggest that DNA methylation is required to buffer the effects of environmental stress on transposable elements. Most plant genomes are mostly transposable elements (TEs), most of which are held in check by modifications of both DNA and histones. The bulk of silenced TEs are associated with methylated DNA and histone H3 lysine 9 dimethylation (H3K9me2). In contrast, epigenetically silenced genes are often associated with histone lysine 27 trimethylation (H3K27me3). Although stress can affect each of these modifications, plants are generally competent to rapidly reset them following that stress. Here we demonstrate that although DNA methylation is not required to maintain silencing of the MuDR element, it is essential for preventing heat-induced, stable and heritable changes in both H3K9me2 and H3K27me3 at this element, and for concomitant changes in transcriptional activity. These finding suggest that RdDM acts to buffer the effects of heat on silenced transposable elements, and that a loss of DNA methylation under conditions of stress can have profound and long-lasting effects on epigenetic silencing in maize.
Collapse
|
40
|
Flavell RB. Perspective: 50 years of plant chromosome biology. PLANT PHYSIOLOGY 2021; 185:731-753. [PMID: 33604616 PMCID: PMC8133586 DOI: 10.1093/plphys/kiaa108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The past 50 years has been the greatest era of plant science discovery, and most of the discoveries have emerged from or been facilitated by our knowledge of plant chromosomes. At last we have descriptive and mechanistic outlines of the information in chromosomes that programs plant life. We had almost no such information 50 years ago when few had isolated DNA from any plant species. The important features of genes have been revealed through whole genome comparative genomics and testing of variants using transgenesis. Progress has been enabled by the development of technologies that had to be invented and then become widely available. Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have played extraordinary roles as model species. Unexpected evolutionary dramas were uncovered when learning that chromosomes have to manage constantly the vast numbers of potentially mutagenic families of transposons and other repeated sequences. The chromatin-based transcriptional and epigenetic mechanisms that co-evolved to manage the evolutionary drama as well as gene expression and 3-D nuclear architecture have been elucidated these past 20 years. This perspective traces some of the major developments with which I have become particularly familiar while seeking ways to improve crop plants. I draw some conclusions from this look-back over 50 years during which the scientific community has (i) exposed how chromosomes guard, readout, control, recombine, and transmit information that programs plant species, large and small, weed and crop, and (ii) modified the information in chromosomes for the purposes of genetic, physiological, and developmental analyses and plant improvement.
Collapse
Affiliation(s)
- Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| |
Collapse
|
41
|
Ngoot-Chin T, Zulkifli MA, van de Weg E, Zaki NM, Serdari NM, Mustaffa S, Zainol Abidin MI, Sanusi NSNM, Smulders MJM, Low ETL, Ithnin M, Singh R. Detection of ploidy and chromosomal aberrations in commercial oil palm using high-throughput SNP markers. PLANTA 2021; 253:63. [PMID: 33544231 DOI: 10.1007/s00425-021-03567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
Karyotyping using high-density genome-wide SNP markers identified various chromosomal aberrations in oil palm (Elaeis guineensis Jacq.) with supporting evidence from the 2C DNA content measurements (determined using FCM) and chromosome counts. Oil palm produces a quarter of the world's total vegetable oil. In line with its global importance, an initiative to sequence the oil palm genome was carried out successfully, producing huge amounts of sequence information, allowing SNP discovery. High-capacity SNP genotyping platforms have been widely used for marker-trait association studies in oil palm. Besides genotyping, a SNP array is also an attractive tool for understanding aberrations in chromosome inheritance. Exploiting this, the present study utilized chromosome-wide SNP allelic distributions to determine the ploidy composition of over 1,000 oil palms from a commercial F1 family, including 197 derived from twin-embryo seeds. Our method consisted of an inspection of the allelic intensity ratio using SNP markers. For palms with a shifted or abnormal distribution ratio, the SNP allelic frequencies were plotted along the pseudo-chromosomes. This method proved to be efficient in identifying whole genome duplication (triploids) and aneuploidy. We also detected several loss of heterozygosity regions which may indicate small chromosomal deletions and/or inheritance of identical by descent regions from both parents. The SNP analysis was validated by flow cytometry and chromosome counts. The triploids were all derived from twin-embryo seeds. This is the first report on the efficiency and reliability of SNP array data for karyotyping oil palm chromosomes, as an alternative to the conventional cytogenetic technique. Information on the ploidy composition and chromosomal structural variation can help to better understand the genetic makeup of samples and lead to a more robust interpretation of the genomic data in marker-trait association analyses.
Collapse
Affiliation(s)
- Ting Ngoot-Chin
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Muhammad Azwan Zulkifli
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Noorhariza Mohd Zaki
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Norhalida Mohamed Serdari
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Suzana Mustaffa
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Isa Zainol Abidin
- Plant Breeding and Services Department, KULIM Plantations Berhad, 81900, Kota Tinggi, Johor, Malaysia
| | - Nik Shazana Nik Mohd Sanusi
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | - Eng Ti Leslie Low
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Maizura Ithnin
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
42
|
Marx HE, Jorgensen SA, Wisely E, Li Z, Dlugosch KM, Barker MS. Pilot RNA-seq data from 24 species of vascular plants at Harvard Forest. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11409. [PMID: 33680580 PMCID: PMC7910807 DOI: 10.1002/aps3.11409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Large-scale projects such as the National Ecological Observatory Network (NEON) collect ecological data on entire biomes to track climate change. NEON provides an opportunity to launch community transcriptomic projects that ask integrative questions in ecology and evolution. We conducted a pilot study to investigate the challenges of collecting RNA-seq data from diverse plant communities. METHODS We generated >650 Gbp of RNA-seq for 24 vascular plant species representing 12 genera and nine families at the Harvard Forest NEON site. Each species was sampled twice in 2016 (July and August). We assessed transcriptome quality and content with TransRate, BUSCO, and Gene Ontology annotations. RESULTS Only modest differences in assembly quality were observed across multiple k-mers. On average, transcriptomes contained hits to >70% of loci in the BUSCO database. We found no significant difference in the number of assembled and annotated transcripts between diploid and polyploid transcriptomes. DISCUSSION We provide new RNA-seq data sets for 24 species of vascular plants in Harvard Forest. Challenges associated with this type of study included recovery of high-quality RNA from diverse species and access to NEON sites for genomic sampling. Overcoming these challenges offers opportunities for large-scale studies at the intersection of ecology and genomics.
Collapse
Affiliation(s)
- Hannah E. Marx
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichigan48109‐1048USA
| | - Stacy A. Jorgensen
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
| | - Eldridge Wisely
- Genetics Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizona85721USA
| | - Zheng Li
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
| | - Katrina M. Dlugosch
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
| | - Michael S. Barker
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizona85721USA
| |
Collapse
|
43
|
Giraud D, Lima O, Huteau V, Coriton O, Boutte J, Kovarik A, Leitch AR, Leitch IJ, Aïnouche M, Salmon A. Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110671. [PMID: 33288000 DOI: 10.1016/j.plantsci.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Virginie Huteau
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Olivier Coriton
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Julien Boutte
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK.
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| |
Collapse
|
44
|
Neves CJ, Matzrafi M, Thiele M, Lorant A, Mesgaran MB, Stetter MG. Male Linked Genomic Region Determines Sex in Dioecious Amaranthus palmeri. J Hered 2020; 111:606-612. [PMID: 33340320 PMCID: PMC7846199 DOI: 10.1093/jhered/esaa047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022] Open
Abstract
Dioecy, the separation of reproductive organs on different individuals, has evolved repeatedly in different plant families. Several evolutionary paths to dioecy have been suggested, but the mechanisms behind sex determination is not well understood. The diploid dioecious Amaranthus palmeri represents a well-suited model system to study sex determination in plants. Despite the agricultural importance of the species, the genetic control and evolutionary state of dioecy in A. palmeri is currently unknown. Early cytogenetic experiments did not identify heteromorphic chromosomes. Here, we used whole-genome sequencing of male and female pools from 2 independent populations to elucidate the genetic control of dioecy in A. palmeri. Read alignment to a close monoecious relative and allele frequency comparisons between male and female pools did not reveal significant sex-linked genes. Consequently, we employed an alignment-free k-mer comparison which enabled us to identify a large number of male-specific k-mers. We assembled male-specific contigs comprising a total of almost 2 Mb sequence, proposing a XY sex-determination system in the species. We were able to identify the potential Y chromosome in the A. palmeri draft genome sequence as 90% of our male-specific sequence aligned to a single scaffold. Based on our findings, we suggest an intermediate evolutionary state of dioecy with a young Y chromosome in A. palmeri. Our findings give insight into the evolution of sex chromosomes in plants and may help to develop sustainable strategies for weed management.
Collapse
Affiliation(s)
- Cátia José Neves
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Maor Matzrafi
- Department of Plant Sciences, University of California, Davis, Davis, CA.,Department of Plant Pathology and Weed Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Meik Thiele
- Institute for Plant Sciences, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, CA
| | - Mohsen B Mesgaran
- Department of Plant Sciences, University of California, Davis, Davis, CA
| | - Markus G Stetter
- Institute for Plant Sciences, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Bhardwaj E, Lal M, Anand S, Das S. Independent recurrent evolution of MICRORNA genes converging onto similar non-canonical organisation across green plant lineages is driven by local and segmental duplication events in species, family and lineages. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110661. [PMID: 33218629 DOI: 10.1016/j.plantsci.2020.110661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The relationship between evolutionary history, organisation and transcriptional regulation of genes are intrinsically linked. These have been well studied in canonically organised protein-coding genes but not of MIRNAs. In the present study, we investigated the non-canonical arrangement of MIRNAs across taxonomic boundaries from algae to angiosperms employing a combination of genome organization, phylogeny and synteny. We retrieved the complete dataset of MIRNA from twenty-five species to identify and classify based on organisational patterns. The median size of cluster was between 2-5 kb and between 1-20 % of all MIRNAs are organized in head-to-head (with bidirectional promoter), head-to-tail (tandem), and overlapping manner. Although majority of the clusters are composed of MIRNA homologs, 25% of all clusters comprises of non-homologous genes with a potential of generating functional and regulatory complexity. A comparison of phylogeny and organizational patterns revealed that multiple independent events, some of which are species-specific, and some ancient, in different lineages, are responsible for non-canonical organization. Detailed investigation of MIR395 family across the plants revealed a complex origin of non-canonical arrangement through ancient and recent, segmental and local duplications; analysis of MIR399 family revealed major expansion occurred prior to monocot-dicot split, with few lineage-specific events. Evolution of "convergent" organization pattern of non-canonical arrangement originating from independent loci through recurrent event highlights our poor understanding of evolutionary process of MIRNA genes. The present investigation thus paves way for comparative functional genomics to understand the role of non-canonical organization on transcriptional regulation and regulatory diversity in MIRNA gene families.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - S Anand
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
46
|
Shinozuka H, Shinozuka M, de Vries EM, Sawbridge TI, Spangenberg GC, Cocks BG. Fungus-originated genes in the genomes of cereal and pasture grasses acquired through ancient lateral transfer. Sci Rep 2020; 10:19883. [PMID: 33199756 PMCID: PMC7670438 DOI: 10.1038/s41598-020-76478-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
Evidence for ancestral gene transfer between Epichloë fungal endophyte ancestors and their host grass species is described. From genomes of cool-season grasses (the Poeae tribe), two Epichloë-originated genes were identified through DNA sequence similarity analysis. The two genes showed 96% and 85% DNA sequence identities between the corresponding Epichloë genes. One of the genes was specific to the Loliinae sub-tribe. The other gene was more widely conserved in the Poeae and Triticeae tribes, including wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). The genes were independently transferred during the last 39 million years. The transferred genes were expressed in plant tissues, presumably retaining molecular functions. Multiple gene transfer events between the specific plant and fungal lineages are unique. A range of cereal crops is included in the Poeae and Triticeae tribes, and the Loliinae sub-tribe is consisted of economically important pasture and forage crops. Identification and characterisation of the 'natural' adaptation transgenes in the genomes of cereals, and pasture and forage grasses, that worldwide underpin the production of major foods, such as bread, meat, and milk, may change the 'unnatural' perception status of transgenic and gene-edited plants.
Collapse
Affiliation(s)
- Hiroshi Shinozuka
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.
| | - Maiko Shinozuka
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia
| | - Ellen M de Vries
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Timothy I Sawbridge
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - German C Spangenberg
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Benjamin G Cocks
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3086, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| |
Collapse
|
47
|
Sarpan N, Taranenko E, Ooi SE, Low ETL, Espinoza A, Tatarinova TV, Ong-Abdullah M. DNA methylation changes in clonally propagated oil palm. PLANT CELL REPORTS 2020; 39:1219-1233. [PMID: 32591850 DOI: 10.1007/s00299-020-02561-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Several hypomethylated sites within the Karma region of EgDEF1 and hotspot regions in chromosomes 1, 2, 3, and 5 may be associated with mantling. One of the main challenges faced by the oil palm industry is fruit abnormalities, such as the "mantled" phenotype that can lead to reduced yields. This clonal abnormality is an epigenetic phenomenon and has been linked to the hypomethylation of a transposable element within the EgDEF1 gene. To understand the epigenome changes in clones, methylomes of clonal oil palms were compared to methylomes of seedling-derived oil palms. Whole-genome bisulfite sequencing data from seedlings, normal, and mantled clones were analyzed to determine and compare the context-specific DNA methylomes. In seedlings, coding and regulatory regions are generally hypomethylated while introns and repeats are extensively methylated. Genes with a low number of guanines and cytosines in the third position of codons (GC3-poor genes) were increasingly methylated towards their 3' region, while GC3-rich genes remain demethylated, similar to patterns in other eukaryotic species. Predicted promoter regions were generally hypomethylated in seedlings. In clones, CG, CHG, and CHH methylation levels generally decreased in functionally important regions, such as promoters, 5' UTRs, and coding regions. Although random regions were found to be hypomethylated in clonal genomes, hypomethylation of certain hotspot regions may be associated with the clonal mantling phenotype. Our findings, therefore, suggest other hypomethylated CHG sites within the Karma of EgDEF1 and hypomethylated hotspot regions in chromosomes 1, 2, 3 and 5, are associated with mantling.
Collapse
Affiliation(s)
- Norashikin Sarpan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Elizaveta Taranenko
- Department of Biology, University of La Verne, La Verne, CA, USA
- Department of Fundamental Biology and Biotechnology, Siberian Federal University, 660074, Krasnoyarsk, Russia
| | - Siew-Eng Ooi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, CA, USA.
- Department of Fundamental Biology and Biotechnology, Siberian Federal University, 660074, Krasnoyarsk, Russia.
- Vavilov Institute for General Genetics, Moscow, Russia.
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | - Meilina Ong-Abdullah
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| |
Collapse
|
48
|
Perumal S, Koh CS, Jin L, Buchwaldt M, Higgins EE, Zheng C, Sankoff D, Robinson SJ, Kagale S, Navabi ZK, Tang L, Horner KN, He Z, Bancroft I, Chalhoub B, Sharpe AG, Parkin IAP. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. NATURE PLANTS 2020; 6:929-941. [PMID: 32782408 PMCID: PMC7419231 DOI: 10.1038/s41477-020-0735-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/28/2020] [Indexed: 05/19/2023]
Abstract
It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra, we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (<1 Ma). Genomic distances calculated based on synteny relationships were used to define a post-triplication Brassica-specific ancestral genome, and to calculate the extensive rearrangements that define the evolutionary distance separating B. nigra from its diploid relatives.
Collapse
Affiliation(s)
- Sampath Perumal
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Chu Shin Koh
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lingling Jin
- Department of Computing Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Miles Buchwaldt
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Erin E Higgins
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Sateesh Kagale
- National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Zahra-Katy Navabi
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lily Tang
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Kyla N Horner
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Zhesi He
- Department of Biology, University of York, York, UK
| | - Ian Bancroft
- Department of Biology, University of York, York, UK
| | - Boulos Chalhoub
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | |
Collapse
|
49
|
Li A, Li A, Deng Z, Guo J, Wu H. Cross-Species Annotation of Expressed Genes and Detection of Different Functional Gene Modules Between 10 Cold- and 10 Hot-Propertied Chinese Herbal Medicines. Front Genet 2020; 11:532. [PMID: 32625232 PMCID: PMC7314971 DOI: 10.3389/fgene.2020.00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
According to the traditional Chinese medicine (TCM) system, Chinese herbal medicines (HMs) can be divided into four categories: hot, warm, cold, and cool. A cool nature usually is categorized as a cold nature, and a warm nature is classified as a hot nature. However, the detectable characteristics of the gene expression profile associated with the cold and hot properties have not been studied. To address this question, a strategy for the cross-species annotation of conserved genes was established in the present study by using transcriptome data of 20 HMs with cold and hot properties. Functional enrichment analysis was performed on group-specific expressed genes inferred from the functional genome of the reference species (i.e., Arabidopsis). Results showed that metabolic pathways relevant to chrysoeriol, luteolin, paniculatin, and wogonin were enriched for cold-specific genes, and pathways of inositol, heptadecane, lauric acid, octanoic acid, hexadecanoic acid, and pentadecanoic acid were enriched for hot-specific genes. Six functional modules were identified in the HMs with the cold property: nucleotide biosynthetic process, peptidy-L-cysteine S-palmitoylation, lipid modification, base-excision repair, dipeptide transport, and response to endoplasmic reticulum stress. For the hot HMs, another six functional modules were identified: embryonic meristem development, embryonic pattern specification, axis specification, regulation of RNA polymerase II transcriptional preinitiation complex assembly, mitochondrial RNA modification, and cell redox homeostasis. The research provided a new insight into HMs’ cold and hot properties from the perspective of the gene expression profile of plants.
Collapse
Affiliation(s)
- Arong Li
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Aqian Li
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhijun Deng
- Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Jiewen Guo
- Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Ibiapino A, García MÁ, Costea M, Stefanović S, Guerra M. Intense proliferation of rDNA sites and heterochromatic bands in two distantly related Cuscuta species (Convolvulaceae) with very large genomes and symmetric karyotypes. Genet Mol Biol 2020; 43:e20190068. [PMID: 32542306 PMCID: PMC7295182 DOI: 10.1590/1678-4685-gmb-2019-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
The genome size varies widely among angiosperms but only a few clades present huge variation at a low phylogenetic level. Among diploid species of the genus Cuscuta the genome size increased enormously in at least two independent lineages: in species of subgenus Monogynella and in at least one species (C. indecora) of the subgenus Grammica. Curiously, the independent events lead to similar karyotypes, with 2n = 30 mostly metacentric chromosomes. In this paper we compared the patterns of heterochromatic bands and rDNA sites of C. indecora and C. monogyna, aiming to evaluate the role of these repetitive fractions in these karyotypes. We found out that the large genomes of these species were incremented by a huge number of small heterochromatic CMA+ and DAPI+ bands and 5S and 35 rDNA sites, most of them clearly colocalized with CMA+ bands. Silver nitrate impregnation revealed that the maximum number of nucleoli per nucleus was low in both species, suggesting that some of these sites may be inactive. Noteworthy, the tandem repeats did not generate large bands or sites but rather dozens of small blocks dispersed throughout the chromosomes, apparently contributing to conserve the original karyotype symmetry.
Collapse
Affiliation(s)
- Amália Ibiapino
- Universidade Federal de Pernambuco, Departamento de Botânica,
Recife, PE, Brazil
| | - Miguel Ángel García
- University of Toronto Mississauga, Department of Biology,
Mississauga, ON, Canada
- Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
| | - Mihai Costea
- Wilfrid Laurier University, Department of Biology, Waterloo, ON,
Canada
| | - Saša Stefanović
- University of Toronto Mississauga, Department of Biology,
Mississauga, ON, Canada
| | - Marcelo Guerra
- Universidade Federal de Pernambuco, Departamento de Botânica,
Recife, PE, Brazil
| |
Collapse
|