1
|
Chang S, Shin KS, Park B, Park S, Shin J, Park H, Jung IK, Kim JH, Bae SE, Kim JO, Baek SH, Kim G, Hong JJ, Seo H, Volz E, Kang CY. Strategy to develop broadly effective multivalent COVID-19 vaccines against emerging variants based on Ad5/35 platform. Proc Natl Acad Sci U S A 2024; 121:e2313681121. [PMID: 38408238 DOI: 10.1073/pnas.2313681121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/28/2024] [Indexed: 02/28/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron strain has evolved into highly divergent variants with several sub-lineages. These newly emerging variants threaten the efficacy of available COVID-19 vaccines. To mitigate the occurrence of breakthrough infections and re-infections, and more importantly, to reduce the disease burden, it is essential to develop a strategy for producing updated multivalent vaccines that can provide broad neutralization against both currently circulating and emerging variants. We developed bivalent vaccine AdCLD-CoV19-1 BA.5/BA.2.75 and trivalent vaccines AdCLD-CoV19-1 XBB/BN.1/BQ.1.1 and AdCLD-CoV19-1 XBB.1.5/BN.1/BQ.1.1 using an Ad5/35 platform-based non-replicating recombinant adenoviral vector. We compared immune responses elicited by the monovalent and multivalent vaccines in mice and macaques. We found that the BA.5/BA.2.75 bivalent and the XBB/BN.1/BQ.1.1 and XBB.1.5/BN.1/BQ.1.1 trivalent vaccines exhibited improved cross-neutralization ability compared to their respective monovalent vaccines. These data suggest that the developed multivalent vaccines enhance immunity against circulating Omicron subvariants and effectively elicit neutralizing antibodies across a broad spectrum of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Soojeong Chang
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - Kwang-Soo Shin
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - Bongju Park
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - Seowoo Park
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - Jieun Shin
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - Hyemin Park
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - In Kyung Jung
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - Jong Heon Kim
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| | - Seong Eun Bae
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Jae-Ouk Kim
- Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28116, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science & Technology, Daejeon 34141, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Cell & Gene Therapy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Erik Volz
- Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London W2 1PG, United Kingdom
| | - Chang-Yuil Kang
- Research & Development Center, Cellid Co., Ltd., Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Gadir M, Azimi SM, Harzandi N, Hemati B, Eskandarzade N. Whole-genome sequencing of foot-and-mouth disease virus serotype O/PanAsia-2/QOM-15 and comparison of its VP1-encoding region with two vaccine strains. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:615-623. [PMID: 38169601 PMCID: PMC10758011 DOI: 10.30466/vrf.2023.1978294.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/20/2023] [Indexed: 01/05/2024]
Abstract
Despite widespread vaccination against foot-and-mouth disease, many outbreaks still occur in endemic areas. We attempted to determine the genetic and antigenic properties of the O/PanAsia-2/QOM-15 foot-and-mouth disease virus new vaccine strain. Thus, whole-genome sequencing was used to identify vulnerable pinpoint sites across the genome. The VP1 sequence (1D gene) of the O/PanAsia-2/QOM-15 viral genome was then compared to the VP1 sequences of two previously used vaccine strains, O/PanAsia (JQ321837) and O/PanAsia-2 (JN676146). The antigenic relationship of these three viruses was calculated by the two dimensional-virus neutralization test. At the nucleotide level, 47 single variants were identified, of which 19.00% were in the 5' untranslated region (UTR), 79.00% in the polyprotein region, and 2.00% in the 3' UTR region. Approximately half of the single nucleotide polymorphisms that have occurred in 1D gene resulted in amino acid (AA) substitutions in the VP1 structure. The single nucleotide polymorphisms also caused AA substitutions in other structural proteins, including VP2 and VP3, and some non-structural proteins (Lpro, 2C, and 3A). The O/PanAsia-2/QOM-15 shared higher sequence similarity with O/PanAsia-2 (91.00%) compared to O/PanAsia (87.30%). Evaluating r-value showed that the antigenic relationship of O/PanAsia-2/QOM-15 with O/PanAsia-2 (29.00%) was greater than that of the O/PanAsia (24.00%); however, all three viruses were immunologically distinct. After 10 years, the alteration of virus antigenicity and the lack of detectable adaptive pressure on VP1 sequence suggest that studying genetic dynamics beyond the VP1 region is necessary to evaluate FMDV pathogenicity and vaccine failure.
Collapse
Affiliation(s)
- Mehrnoosh Gadir
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Seyed Mahmoud Azimi
- Foot and Mouth Disease Reference Laboratory, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran;
| | - Naser Harzandi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Behzad Hemati
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Sanyal D, Banerjee S, Bej A, Chowdhury VR, Uversky VN, Chowdhury S, Chattopadhyay K. An integrated understanding of the evolutionary and structural features of the SARS-CoV-2 spike receptor binding domain (RBD). Int J Biol Macromol 2022; 217:492-505. [PMID: 35841961 PMCID: PMC9278002 DOI: 10.1016/j.ijbiomac.2022.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022]
Abstract
Conventional drug development strategies typically use pocket in protein structures as drug-target sites. They overlook the plausible effects of protein evolvability and resistant mutations on protein structure which in turn may impair protein-drug interaction. In this study, we used an integrated evolution and structure guided strategy to develop potential evolutionary-escape resistant therapeutics using receptor binding domain (RBD) of SARS-CoV-2 spike-protein/S-protein as a model. Deploying an ensemble of sequence space exploratory tools including co-evolutionary analysis and deep mutational scans we provide a quantitative insight into the evolutionarily constrained subspace of the RBD sequence-space. Guided by molecular simulation and structure network analysis we highlight regions inside the RBD, which are critical for providing structural integrity and conformational flexibility. Using fuzzy C-means clustering we combined evolutionary and structural features of RBD and identified a critical region. Subsequently, we used computational drug screening using a library of 1615 small molecules and identified one lead molecule, which is expected to target the identified region, critical for evolvability and structural stability of RBD. This integrated evolution-structure guided strategy to develop evolutionary-escape resistant lead molecules have potential general applications beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Dwipanjan Sanyal
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Suharto Banerjee
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Aritra Bej
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Vaidehi Roy Chowdhury
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Sourav Chowdhury
- Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Group, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
4
|
Eskandarzade N, Ghorbani A, Samarfard S, Diaz J, Guzzi PH, Fariborzi N, Tahmasebi A, Izadpanah K. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Comput Biol Med 2022; 146:105575. [PMID: 35533462 PMCID: PMC9055686 DOI: 10.1016/j.compbiomed.2022.105575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2, the causal agent of COVID-19, is primarily a pulmonary virus that can directly or indirectly infect several organs. Despite many studies carried out during the current COVID-19 pandemic, some pathological features of SARS-CoV-2 have remained unclear. It has been recently attempted to address the current knowledge gaps on the viral pathogenicity and pathological mechanisms via cellular-level tropism of SARS-CoV-2 using human proteomics, visualization of virus-host protein-protein interactions (PPIs), and enrichment analysis of experimental results. The synergistic use of models and methods that rely on graph theory has enabled the visualization and analysis of the molecular context of virus/host PPIs. We review current knowledge on the SARS-COV-2/host interactome cascade involved in the viral pathogenicity through the graph theory concept and highlight the hub proteins in the intra-viral network that create a subnet with a small number of host central proteins, leading to cell disintegration and infectivity. Then we discuss the putative principle of the "gene-for-gene and "network for network" concepts as platforms for future directions toward designing efficient anti-viral therapies.
Collapse
Affiliation(s)
- Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran,Corresponding author
| | - Samira Samarfard
- Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Berrimah, NT, 0828, Australia
| | - Jose Diaz
- Laboratorio de Dinámica de Redes Genéticas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Pietro H. Guzzi
- Department of Medical and Surgical Sciences, Laboratory of Bioinformatics Unit, Italy
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
5
|
Ma L, Li H, Lan J, Hao X, Liu H, Wang X, Huang Y. Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. Comput Biol Chem 2021; 95:107599. [PMID: 34773807 PMCID: PMC8560182 DOI: 10.1016/j.compbiolchem.2021.107599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which can be transmitted from person to person. As of September 21, 2021, over 228 million cases were diagnosed as COVID-19 infection in more than 200 countries and regions worldwide. The death toll is more than 4.69 million and the mortality rate has reached about 2.05% as it has gradually become a global plague, and the numbers are growing. Therefore, it is important to gain a deeper understanding of the genome and protein characteristics, clinical diagnostics, pathogenic mechanisms, and the development of antiviral drugs and vaccines against the novel coronavirus to deal with the COVID-19 pandemic. The traditional biology technologies are limited for COVID-19-related studies to understand the pandemic happening. Bioinformatics is the application of computational methods and analytical tools in the field of biological research which has obvious advantages in predicting the structure, product, function, and evolution of unknown genes and proteins, and in screening drugs and vaccines from a large amount of sequence information. Here, we comprehensively summarized several of the most important methods and applications relating to COVID-19 based on currently available reports of bioinformatics technologies, focusing on future research for overcoming the virus pandemic. Based on the next-generation sequencing (NGS) and third-generation sequencing (TGS) technology, not only virus can be detected, but also high quality SARS-CoV-2 genome could be obtained quickly. The emergence of data of genome sequences, variants, haplotypes of SARS-CoV-2 help us to understand genome and protein structure, variant calling, mutation, and other biological characteristics. After sequencing alignment and phylogenetic analysis, the bat may be the natural host of the novel coronavirus. Single-cell RNA sequencing provide abundant resource for discovering the mechanism of immune response induced by COVID-19. As an entry receptor, angiotensin-converting enzyme 2 (ACE2) can be used as a potential drug target to treat COVID-19. Molecular dynamics simulation, molecular docking and artificial intelligence (AI) technology of bioinformatics methods based on drug databases for SARS-CoV-2 can accelerate the development of drugs. Meanwhile, computational approaches are helpful to identify suitable vaccines to prevent COVID-19 infection through reverse vaccinology, Immunoinformatics and structural vaccinology.
Collapse
Affiliation(s)
- Lifei Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China,College of Lab Medicine, Hebei North University, Zhangjiakou, Hebei 075000, China,Corresponding author at: State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Jinping Lan
- College of Lab Medicine, Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Xiuqing Hao
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Huiying Liu
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Xiaoman Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China,Corresponding authors
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Zhangjiakou, Hebei 075000, China,Corresponding authors
| |
Collapse
|
6
|
Chaintoutis SC, Thomou Z, Mouchtaropoulou E, Tsiolas G, Chassalevris T, Stylianaki I, Lagou M, Michailidou S, Moutou E, Koenen JJH, Dijkshoorn JW, Paraskevis D, Poutahidis T, Siarkou VI, Sypsa V, Argiriou A, Fortomaris P, Dovas CI. Outbreaks of SARS-CoV-2 in naturally infected mink farms: Impact, transmission dynamics, genetic patterns, and environmental contamination. PLoS Pathog 2021; 17:e1009883. [PMID: 34492088 PMCID: PMC8448373 DOI: 10.1371/journal.ppat.1009883] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/17/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 infection outbreaks in minks have serious implications associated with animal health and welfare, and public health. In two naturally infected mink farms (A and B) located in Greece, we investigated the outbreaks and assessed parameters associated with virus transmission, immunity, pathology, and environmental contamination. Symptoms ranged from anorexia and mild depression to respiratory signs of varying intensity. Although the farms were at different breeding stages, mortality was similarly high (8.4% and 10.0%). The viral strains belonged to lineages B.1.1.218 and B.1.1.305, possessing the mink-specific S-Y453F substitution. Lung histopathology identified necrosis of smooth muscle and connective tissue elements of vascular walls, and vasculitis as the main early key events of the acute SARS-CoV-2-induced broncho-interstitial pneumonia. Molecular investigation in two dead minks indicated a consistently higher (0.3-1.3 log10 RNA copies/g) viral load in organs of the male mink compared to the female. In farm A, the infected farmers were responsible for the significant initial infection of 229 out of 1,000 handled minks, suggesting a very efficient human-to-mink transmission. Subsequent infections across the sheds wherein animals were being housed occurred due to airborne transmission. Based on a R0 of 2.90 and a growth rate equal to 0.293, the generation time was estimated to be 3.6 days, indicative of the massive SARS-CoV-2 dispersal among minks. After the end of the outbreaks, a similar percentage of animals were immune in the two farms (93.0% and 93.3%), preventing further virus transmission whereas, viral RNA was detected in samples collected from shed surfaces and air. Consequently, strict biosecurity is imperative during the occurrence of clinical signs. Environmental viral load monitoring, in conjunction with NGS should be adopted in mink farm surveillance. The minimum proportion of minks that need to be immunized to avoid outbreaks in farms was calculated at 65.5%, which is important for future vaccination campaigns.
Collapse
Affiliation(s)
- Serafeim C. Chaintoutis
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zoi Thomou
- Pecon Hellas PC, Dispilio, Kastoria, Greece
| | | | - George Tsiolas
- Institute of Applied Biosciences, Centre of Research and Technology Hellas, Thermi, Greece
| | - Taxiarchis Chassalevris
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Stylianaki
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Lagou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Michailidou
- Institute of Applied Biosciences, Centre of Research and Technology Hellas, Thermi, Greece
| | - Evangelia Moutou
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Victoria I. Siarkou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vana Sypsa
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anagnostis Argiriou
- Institute of Applied Biosciences, Centre of Research and Technology Hellas, Thermi, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Greece
| | - Paschalis Fortomaris
- Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos I. Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Abstract
Selective pressures drive adaptive changes in the coronavirus spike proteins directing virus-cell entry. These changes are concentrated in the amino-terminal domains (NTDs) and the receptor-binding domains (RBDs) of complex modular spike protein trimers. The impact of this hypervariability on virus entry is often unclear, particularly with respect to sarbecovirus NTD variations. Therefore, we constructed indels and substitutions within hypervariable NTD regions and used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus-like particles and quantitative virus-cell entry assays to elucidate spike structures controlling this initial infection stage. We identified NTD variations that increased SARS-CoV-2 spike protein-mediated membrane fusion and cell entry. Increased cell entry correlated with greater presentation of RBDs to ACE2 receptors. This revealed a significant allosteric effect, in that changes within the NTDs can orient RBDs for effective virus-cell binding. Yet, those NTD changes elevating receptor binding and membrane fusion also reduced interdomain associations, leaving spikes on virus-like particles susceptible to irreversible inactivation. These findings parallel those obtained decades ago, in which comparisons of murine coronavirus spike protein variants established inverse relationships between membrane fusion potential and virus stability. Considerable hypervariability in the SARS-CoV-2 spike protein NTDs also appear to be driven by counterbalancing pressures for effective virus-cell entry and durable extracellular virus infectivity. These forces may selectively amplify SARS-CoV-2 variants of concern.
Collapse
|