1
|
Csikász-Nagy A, Fichó E, Noto S, Reguly I. Computational tools to predict context-specific protein complexes. Curr Opin Struct Biol 2024; 88:102883. [PMID: 38986166 DOI: 10.1016/j.sbi.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Interactions between thousands of proteins define cells' protein-protein interaction (PPI) network. Some of these interactions lead to the formation of protein complexes. It is challenging to identify a protein complex in a haystack of protein-protein interactions, and it is even more difficult to predict all protein complexes of the complexome. Simulations and machine learning approaches try to crack these problems by looking at the PPI network or predicted protein structures. Clustering of PPI networks led to the first protein complex predictions, while most recently, atomistic models of protein complexes and deep-learning-based structure prediction methods have also emerged. The simulation of PPI level interactions even enables the quantitative prediction of protein complexes. These methods, the required data sources, and their potential future developments are discussed in this review.
Collapse
Affiliation(s)
- Attila Csikász-Nagy
- Cytocast Hungary Kft, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | | | - Santiago Noto
- Cytocast Hungary Kft, Budapest, Hungary; Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| | - István Reguly
- Cytocast Hungary Kft, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
2
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
3
|
Xian L, Wang Y. Advances in Computational Methods for Protein–Protein Interaction Prediction. ELECTRONICS 2024; 13:1059. [DOI: 10.3390/electronics13061059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein–protein interactions (PPIs) are pivotal in various physiological processes inside biological entities. Accurate identification of PPIs holds paramount significance for comprehending biological processes, deciphering disease mechanisms, and advancing medical research. Given the costly and labor-intensive nature of experimental approaches, a multitude of computational methods have been devised to enable swift and large-scale PPI prediction. This review offers a thorough examination of recent strides in computational methodologies for PPI prediction, with a particular focus on the utilization of deep learning techniques within this domain. Alongside a systematic classification and discussion of relevant databases, feature extraction strategies, and prominent computational approaches, we conclude with a thorough analysis of current challenges and prospects for the future of this field.
Collapse
Affiliation(s)
- Lei Xian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
4
|
He X, Ghasemian A, Lee E, Clauset A, Mucha PJ. Sequential stacking link prediction algorithms for temporal networks. Nat Commun 2024; 15:1364. [PMID: 38355612 PMCID: PMC10866871 DOI: 10.1038/s41467-024-45598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Link prediction algorithms are indispensable tools in many scientific applications by speeding up network data collection and imputing missing connections. However, in many systems, links change over time and it remains unclear how to optimally exploit such temporal information for link predictions in such networks. Here, we show that many temporal topological features, in addition to having high computational cost, are less accurate in temporal link prediction than sequentially stacked static network features. This sequential stacking link prediction method uses 41 static network features that avoid detailed feature engineering choices and is capable of learning a highly accurate predictive distribution of future connections from historical data. We demonstrate that this algorithm works well for both partially observed and completely unobserved target layers, and on two temporal stochastic block models achieves near-oracle-level performance when combined with other single predictor methods as an ensemble learning method. Finally, we empirically illustrate that stacking multiple predictive methods together further improves performance on 19 real-world temporal networks from different domains.
Collapse
Affiliation(s)
- Xie He
- Department of Mathematics, Dartmouth College, Hanover, NH, USA
| | - Amir Ghasemian
- Yale Institute for Network Science, Yale University, New Haven, CT, USA
| | - Eun Lee
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Aaron Clauset
- Department of Computer Science, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, Boulder, CO, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Peter J Mucha
- Department of Mathematics, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
5
|
Yao D, Mei S, Tang W, Xu X, Lu Q, Shi Z. AAAKB: A manually curated database for tracking and predicting genes of Abdominal aortic aneurysm (AAA). PLoS One 2023; 18:e0289966. [PMID: 38100461 PMCID: PMC10723669 DOI: 10.1371/journal.pone.0289966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/31/2023] [Indexed: 12/17/2023] Open
Abstract
Abdominal aortic aneurysm (AAA), an extremely dangerous vascular disease with high mortality, causes massive internal bleeding due to aneurysm rupture. To boost the research on AAA, efforts should be taken to organize and link the information about AAA-related genes and their functions. Currently, most researchers screen through genetic databases manually, which is cumbersome and time-consuming. Here, we developed "AAAKB" a manually curated knowledgebase containing genes, SNPs and pathways associated with AAA. In order to facilitate researchers to further explore the mechanism network of AAA, AAAKB provides predicted genes that are potentially associated with AAA. The prediction is based on the protein interaction information of genes collected in the database, and the random forest algorithm (RF) is used to build the prediction model. Some of these predicted genes are differentially expressed in patients with AAA, and some have been reported to play a role in other cardiovascular diseases, illustrating the utility of the knowledgebase in predicting novel genes. Also, AAAKB integrates a protein interaction visualization tool to quickly determine the shortest paths between target proteins. As the first knowledgebase to provide a comprehensive catalog of AAA-related genes, AAAKB will be an ideal research platform for AAA. Database URL: http://www.lqlgroup.cn:3838/AAAKB/.
Collapse
Affiliation(s)
- Di Yao
- Institute of Industrial Internet and Internet of Things, China Academy of Information and Communications Technology (CAICT), China
| | - Shuyuan Mei
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wangyang Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Xingyu Xu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhiguang Shi
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Mostaffa NH, Suhaimi AH, Al-Idrus A. Interactomics in plant defence: progress and opportunities. Mol Biol Rep 2023; 50:4605-4618. [PMID: 36920596 DOI: 10.1007/s11033-023-08345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Interactomics is a branch of systems biology that deals with the study of protein-protein interactions and how these interactions influence phenotypes. Identifying the interactomes involved during host-pathogen interaction events may bring us a step closer to deciphering the molecular mechanisms underlying plant defence. Here, we conducted a systematic review of plant interactomics studies over the last two decades and found that while a substantial progress has been made in the field, plant-pathogen interactomics remains a less-travelled route. As an effort to facilitate the progress in this field, we provide here a comprehensive research pipeline for an in planta plant-pathogen interactomics study that encompasses the in silico prediction step to the validation step, unconfined to model plants. We also highlight four challenges in plant-pathogen interactomics with plausible solution(s) for each.
Collapse
Affiliation(s)
- Nur Hikmah Mostaffa
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Husaini Suhaimi
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aisyafaznim Al-Idrus
- Programme of Genetics, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Lucas M, Morris A, Townsend-Teague A, Tichit L, Habermann B, Barrat A. Inferring cell cycle phases from a partially temporal network of protein interactions. CELL REPORTS METHODS 2023; 3:100397. [PMID: 36936083 PMCID: PMC10014271 DOI: 10.1016/j.crmeth.2023.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/13/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The temporal organization of biological systems is key for understanding them, but current methods for identifying this organization are often ad hoc and require prior knowledge. We present Phasik, a method that automatically identifies this multiscale organization by combining time series data (protein or gene expression) and interaction data (protein-protein interaction network). Phasik builds a (partially) temporal network and uses clustering to infer temporal phases. We demonstrate the method's effectiveness by recovering well-known phases and sub-phases of the cell cycle of budding yeast and phase arrests of mutants. We also show its general applicability using temporal gene expression data from circadian rhythms in wild-type and mutant mouse models. We systematically test Phasik's robustness and investigate the effect of having only partial temporal information. As time-resolved, multiomics datasets become more common, this method will allow the study of temporal regulation in lesser-known biological contexts, such as development, metabolism, and disease.
Collapse
Affiliation(s)
- Maxime Lucas
- Aix Marseille University, CNRS, I2M UMR 7373, Turing Center for Living Systems, Marseille, France
- Aix Marseille University, CNRS, IBDM UMR 7288, Turing Center for Living Systems, Marseille, France
- Aix Marseille University, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| | | | | | - Laurent Tichit
- Aix Marseille University, CNRS, I2M UMR 7373, Turing Center for Living Systems, Marseille, France
| | - Bianca Habermann
- Aix Marseille University, CNRS, IBDM UMR 7288, Turing Center for Living Systems, Marseille, France
| | - Alain Barrat
- Aix Marseille University, Université de Toulon, CNRS, CPT, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
8
|
Hosseinzadeh MM, Cannataro M, Guzzi PH, Dondi R. Temporal networks in biology and medicine: a survey on models, algorithms, and tools. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 12:10. [PMID: 36618274 PMCID: PMC9803903 DOI: 10.1007/s13721-022-00406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023]
Abstract
The use of static graphs for modelling and analysis of biological and biomedical data plays a key role in biomedical research. However, many real-world scenarios present dynamic behaviours resulting in both node and edges modification as well as feature evolution. Consequently, ad-hoc models for capturing these evolutions along the time have been introduced, also referred to as dynamic, temporal, time-varying graphs. Here, we focus on temporal graphs, i.e., graphs whose evolution is represented by a sequence of time-ordered snapshots. Each snapshot represents a graph active in a particular timestamp. We survey temporal graph models and related algorithms, presenting fundamentals aspects and the recent advances. We formally define temporal graphs, focusing on the problem setting and we present their main applications in biology and medicine. We also present temporal graph embedding and the application to recent problems such as epidemic modelling. Finally, we further state some promising research directions in the area. Main results of this study include a systematic review of fundamental temporal network problems and their algorithmic solutions considered in the literature, in particular those having application in computational biology and medicine. We also include the main software developed in this context.
Collapse
Affiliation(s)
| | - Mario Cannataro
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Riccardo Dondi
- Department of Literature, Philosophy, Communication Studies, University of Bergamo, Bergamo, Italy
| |
Collapse
|
9
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
10
|
Ma L, Shao Z, Li L, Huang J, Wang S, Lin Q, Li J, Gong M, Nandi AK. Heuristics and metaheuristics for biological network alignment: A review. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.08.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Noori S, Al‐A'araji N, Al‐Shamery E. Construction of dynamic protein interaction network based on gene expression data and quartile one principle. Proteins 2022; 90:1219-1228. [DOI: 10.1002/prot.26304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Soheir Noori
- Software Department University of Babylon Hillah Babylon Iraq
- Computer Science Department University of Kerbala Karbala Iraq
| | | | - Eman Al‐Shamery
- Software Department University of Babylon Hillah Babylon Iraq
| |
Collapse
|
12
|
Xiang J, Meng X, Zhao Y, Wu FX, Li M. HyMM: hybrid method for disease-gene prediction by integrating multiscale module structure. Brief Bioinform 2022; 23:6547263. [PMID: 35275996 DOI: 10.1093/bib/bbac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 02/13/2022] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Identifying disease-related genes is an important issue in computational biology. Module structure widely exists in biomolecule networks, and complex diseases are usually thought to be caused by perturbations of local neighborhoods in the networks, which can provide useful insights for the study of disease-related genes. However, the mining and effective utilization of the module structure is still challenging in such issues as a disease gene prediction. RESULTS We propose a hybrid disease-gene prediction method integrating multiscale module structure (HyMM), which can utilize multiscale information from local to global structure to more effectively predict disease-related genes. HyMM extracts module partitions from local to global scales by multiscale modularity optimization with exponential sampling, and estimates the disease relatedness of genes in partitions by the abundance of disease-related genes within modules. Then, a probabilistic model for integration of gene rankings is designed in order to integrate multiple predictions derived from multiscale module partitions and network propagation, and a parameter estimation strategy based on functional information is proposed to further enhance HyMM's predictive power. By a series of experiments, we reveal the importance of module partitions at different scales, and verify the stable and good performance of HyMM compared with eight other state-of-the-arts and its further performance improvement derived from the parameter estimation. CONCLUSIONS The results confirm that HyMM is an effective framework for integrating multiscale module structure to enhance the ability to predict disease-related genes, which may provide useful insights for the study of the multiscale module structure and its application in such issues as a disease-gene prediction.
Collapse
Affiliation(s)
- Ju Xiang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China; Department of Basic Medical Sciences & Academician Workstation, Changsha Medical University, Changsha, Hunan 410219, China
| | - Xiangmao Meng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yichao Zhao
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Wu A, Yuan Y, Ma Y, Wang G. A structure similarity based adaptive sampling method for time-dependent graph embedding. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Greco TM, Secker C, Ramos ES, Federspiel JD, Liu JP, Perez AM, Al-Ramahi I, Cantle JP, Carroll JB, Botas J, Zeitlin SO, Wanker EE, Cristea IM. Dynamics of huntingtin protein interactions in the striatum identifies candidate modifiers of Huntington disease. Cell Syst 2022; 13:304-320.e5. [PMID: 35148841 PMCID: PMC9317655 DOI: 10.1016/j.cels.2022.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a monogenic neurodegenerative disorder with one causative gene, huntingtin (HTT). Yet, HD pathobiology is multifactorial, suggesting that cellular factors influence disease progression. Here, we define HTT protein-protein interactions (PPIs) perturbed by the mutant protein with expanded polyglutamine in the mouse striatum, a brain region with selective HD vulnerability. Using metabolically labeled tissues and immunoaffinity purification-mass spectrometry, we establish that polyglutamine-dependent modulation of HTT PPI abundances and relative stability starts at an early stage of pathogenesis in a Q140 HD mouse model. We identify direct and indirect PPIs that are also genetic disease modifiers using in-cell two-hybrid and behavioral assays in HD human cell and Drosophila models, respectively. Validated, disease-relevant mHTT-dependent interactions encompass mediators of synaptic neurotransmission (SNAREs and glutamate receptors) and lysosomal acidification (V-ATPase). Our study provides a resource for understanding mHTT-dependent dysfunction in cortico-striatal cellular networks, partly through impaired synaptic communication and endosomal-lysosomal system. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alma M Perez
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey P Cantle
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Jeffrey B Carroll
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Scott O Zeitlin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA.
| |
Collapse
|
15
|
Xiang J, Zhang J, Zhao Y, Wu FX, Li M. Biomedical data, computational methods and tools for evaluating disease-disease associations. Brief Bioinform 2022; 23:6522999. [PMID: 35136949 DOI: 10.1093/bib/bbac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, exploring potential relationships between diseases has been an active research field. With the rapid accumulation of disease-related biomedical data, a lot of computational methods and tools/platforms have been developed to reveal intrinsic relationship between diseases, which can provide useful insights to the study of complex diseases, e.g. understanding molecular mechanisms of diseases and discovering new treatment of diseases. Human complex diseases involve both external phenotypic abnormalities and complex internal molecular mechanisms in organisms. Computational methods with different types of biomedical data from phenotype to genotype can evaluate disease-disease associations at different levels, providing a comprehensive perspective for understanding diseases. In this review, available biomedical data and databases for evaluating disease-disease associations are first summarized. Then, existing computational methods for disease-disease associations are reviewed and classified into five groups in terms of the usages of biomedical data, including disease semantic-based, phenotype-based, function-based, representation learning-based and text mining-based methods. Further, we summarize software tools/platforms for computation and analysis of disease-disease associations. Finally, we give a discussion and summary on the research of disease-disease associations. This review provides a systematic overview for current disease association research, which could promote the development and applications of computational methods and tools/platforms for disease-disease associations.
Collapse
Affiliation(s)
- Ju Xiang
- School of Computer Science and Engineering, Central South University, China
| | - Jiashuai Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yichao Zhao
- School of Computer Science and Engineering, Central South University, China
| | - Fang-Xiang Wu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- Division of Biomedical Engineering and Department of Mechanical Engineering at University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
16
|
Hou JW, Ma HF, He D, Sun J, Nie Q, Lin W. Harvesting random embedding for high-frequency change-point detection in temporal complex systems. Natl Sci Rev 2021; 9:nwab228. [PMID: 35571607 PMCID: PMC9097594 DOI: 10.1093/nsr/nwab228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Recent investigations have revealed that dynamics of complex networks and systems are
crucially dependent on the temporal structures. Accurate detection of the time instant at
which a system changes its internal structures has become a tremendously significant
mission, beneficial to fully understanding the underlying mechanisms of evolving systems,
and adequately modeling and predicting the dynamics of the systems as well. In real-world
applications, due to a lack of prior knowledge on the explicit equations of evolving
systems, an open challenge is how to develop a practical and model-free
method to achieve the mission based merely on the time-series data recorded from
real-world systems. Here, we develop such a model-free approach, named temporal
change-point detection (TCD), and integrate both dynamical and statistical methods to
address this important challenge in a novel way. The proposed TCD approach, basing on
exploitation of spatial information of the observed time series of high dimensions, is
able not only to detect the separate change points of the concerned systems without
knowing, a priori, any information of the equations of the systems, but also to harvest
all the change points emergent in a relatively high-frequency manner, which cannot be
directly achieved by using the existing methods and techniques. Practical effectiveness is
comprehensively demonstrated using the data from the representative complex dynamics and
real-world systems from biology to geology and even to social science.
Collapse
Affiliation(s)
- Jia-Wen Hou
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai200433, China
- Centre for Computational Systems Biology, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Huan-Fei Ma
- School of Mathematical Sciences, Soochow University, Suzhou215006, China
| | - Dake He
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai200092, China
| | - Jie Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai200433, China
- School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai200433, China
| | - Qing Nie
- Department of Mathematics, Department of Developmental and Cell Biology, and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA92697-3875, USA
| | - Wei Lin
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai200433, China
- Centre for Computational Systems Biology, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
- School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai200433, China
- Shanghai Key Laboratory for Contemporary Applied Mathematics, LNMS (Fudan University), and LCNBI (Fudan University), Shanghai200433, China
- State Key Laboratory of Medical Neurobiology, and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai200032, China
| |
Collapse
|
17
|
Meng X, Li W, Peng X, Li Y, Li M. Protein interaction networks: centrality, modularity, dynamics, and applications. FRONTIERS OF COMPUTER SCIENCE 2021; 15:156902. [DOI: 10.1007/s11704-020-8179-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/12/2020] [Indexed: 01/03/2025]
|
18
|
Nudelman I, Kudrin D, Nudelman G, Deshpande R, Hartmann BM, Kleinstein SH, Myers CL, Sealfon SC, Zaslavsky E. Comparing Host Module Activation Patterns and Temporal Dynamics in Infection by Influenza H1N1 Viruses. Front Immunol 2021; 12:691758. [PMID: 34335598 PMCID: PMC8317020 DOI: 10.3389/fimmu.2021.691758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza is a serious global health threat that shows varying pathogenicity among different virus strains. Understanding similarities and differences among activated functional pathways in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To compare the types and timing of functional modules activated in host cells by four influenza viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that addresses the need to compare functional module utilization over time. This integrative approach overlays whole genome time series expression data onto an immune-specific functional network, and extracts conserved modules exhibiting either different temporal patterns or overall transcriptional activity. We identified a common core response to influenza virus infection that is temporally shifted for different viruses. We also identified differentially regulated functional modules that reveal unique elements of responses to different virus strains. Our work highlights the usefulness of combining time series gene expression data with a functional interaction map to capture temporal dynamics of the same cellular pathways under different conditions. Our results help elucidate conservation of the immune response both globally and at a granular level, and provide mechanistic insight into the differences in the host response to infection by influenza strains of varying pathogenicity.
Collapse
Affiliation(s)
- Irina Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of General Internal Medicine, New York University Langone Medical Centre, New York, NY, United States
| | - Daniil Kudrin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, United States
| | - Boris M Hartmann
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Steven H Kleinstein
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, United States.,Program in Biomedical Informatics and Computational Biology, University of Minnesota - Twin Cities, Minneapolis, MN, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Pierrelée M, Reynders A, Lopez F, Moqrich A, Tichit L, Habermann BH. Introducing the novel Cytoscape app TimeNexus to analyze time-series data using temporal MultiLayer Networks (tMLNs). Sci Rep 2021; 11:13691. [PMID: 34211067 PMCID: PMC8249521 DOI: 10.1038/s41598-021-93128-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Integrating -omics data with biological networks such as protein-protein interaction networks is a popular and useful approach to interpret expression changes of genes in changing conditions, and to identify relevant cellular pathways, active subnetworks or network communities. Yet, most -omics data integration tools are restricted to static networks and therefore cannot easily be used for analyzing time-series data. Determining regulations or exploring the network structure over time requires time-dependent networks which incorporate time as one component in their structure. Here, we present a method to project time-series data on sequential layers of a multilayer network, thus creating a temporal multilayer network (tMLN). We implemented this method as a Cytoscape app we named TimeNexus. TimeNexus allows to easily create, manage and visualize temporal multilayer networks starting from a combination of node and edge tables carrying the information on the temporal network structure. To allow further analysis of the tMLN, TimeNexus creates and passes on regular Cytoscape networks in form of static versions of the tMLN in three different ways: (i) over the entire set of layers, (ii) over two consecutive layers at a time, (iii) or on one single layer at a time. We combined TimeNexus with the Cytoscape apps PathLinker and AnatApp/ANAT to extract active subnetworks from tMLNs. To test the usability of our app, we applied TimeNexus together with PathLinker or ANAT on temporal expression data of the yeast cell cycle and were able to identify active subnetworks relevant for different cell cycle phases. We furthermore used TimeNexus on our own temporal expression data from a mouse pain assay inducing hindpaw inflammation and detected active subnetworks relevant for an inflammatory response to injury, including immune response, cell stress response and regulation of apoptosis. TimeNexus is freely available from the Cytoscape app store at https://apps.cytoscape.org/apps/TimeNexus .
Collapse
Affiliation(s)
- Michaël Pierrelée
- Aix-Marseille University, CNRS, IBDM UMR 7288, Computational Biology Team, Turing Centre for Living Systems (CENTURI), Marseille, France
| | - Ana Reynders
- Aix-Marseille University, CNRS, IBDM UMR 7288, Team Chronic Pain: Molecular and Cellular Mechanisms, Turing Centre for Living systems (CENTURI), Marseille, France
| | - Fabrice Lopez
- Aix-Marseille University, INSERM, TAGC U 1090, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille University, CNRS, IBDM UMR 7288, Team Chronic Pain: Molecular and Cellular Mechanisms, Turing Centre for Living systems (CENTURI), Marseille, France
| | - Laurent Tichit
- Aix-Marseille University, CNRS, I2M UMR 7373, Turing Centre for Living Systems (CENTURI), Marseille, France
| | - Bianca H Habermann
- Aix-Marseille University, CNRS, IBDM UMR 7288, Computational Biology Team, Turing Centre for Living Systems (CENTURI), Marseille, France. .,Aix-Marseille University, CNRS, IBDM UMR 7288, Turing Center for Living Systems (CENTURI), Parc Scientifique de Luminy, Case 907, 163, Avenue de Luminy, 13009, Marseille, France.
| |
Collapse
|
20
|
Ivanov PC. The New Field of Network Physiology: Building the Human Physiolome. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:711778. [PMID: 36925582 PMCID: PMC10013018 DOI: 10.3389/fnetp.2021.711778] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States.,Harvard Medical School and Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Bulgarian Academy of Sciences, Institute of Solid State Physics, Sofia, Bulgaria
| |
Collapse
|
21
|
Quantifying the distribution of protein oligomerization degree reflects cellular information capacity. Sci Rep 2020; 10:17689. [PMID: 33077848 PMCID: PMC7573690 DOI: 10.1038/s41598-020-74811-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022] Open
Abstract
The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.
Collapse
|
22
|
Wu Z, Liao Q, Liu B. A comprehensive review and evaluation of computational methods for identifying protein complexes from protein-protein interaction networks. Brief Bioinform 2020; 21:1531-1548. [PMID: 31631226 DOI: 10.1093/bib/bbz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2025] Open
Abstract
Protein complexes are the fundamental units for many cellular processes. Identifying protein complexes accurately is critical for understanding the functions and organizations of cells. With the increment of genome-scale protein-protein interaction (PPI) data for different species, various computational methods focus on identifying protein complexes from PPI networks. In this article, we give a comprehensive and updated review on the state-of-the-art computational methods in the field of protein complex identification, especially focusing on the newly developed approaches. The computational methods are organized into three categories, including cluster-quality-based methods, node-affinity-based methods and ensemble clustering methods. Furthermore, the advantages and disadvantages of different methods are discussed, and then, the performance of 17 state-of-the-art methods is evaluated on two widely used benchmark data sets. Finally, the bottleneck problems and their potential solutions in this important field are discussed.
Collapse
Affiliation(s)
- Zhourun Wu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Qing Liao
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
23
|
Application of Systems Engineering Principles and Techniques in Biological Big Data Analytics: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8080951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the past few decades, we have witnessed tremendous advancements in biology, life sciences and healthcare. These advancements are due in no small part to the big data made available by various high-throughput technologies, the ever-advancing computing power, and the algorithmic advancements in machine learning. Specifically, big data analytics such as statistical and machine learning has become an essential tool in these rapidly developing fields. As a result, the subject has drawn increased attention and many review papers have been published in just the past few years on the subject. Different from all existing reviews, this work focuses on the application of systems, engineering principles and techniques in addressing some of the common challenges in big data analytics for biological, biomedical and healthcare applications. Specifically, this review focuses on the following three key areas in biological big data analytics where systems engineering principles and techniques have been playing important roles: the principle of parsimony in addressing overfitting, the dynamic analysis of biological data, and the role of domain knowledge in biological data analytics.
Collapse
|
24
|
SabziNezhad A, Jalili S. DPCT: A Dynamic Method for Detecting Protein Complexes From TAP-Aware Weighted PPI Network. Front Genet 2020; 11:567. [PMID: 32676097 PMCID: PMC7333736 DOI: 10.3389/fgene.2020.00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Detecting protein complexes from the Protein-Protein interaction network (PPI) is the essence of discovering the rules of the cellular world. There is a large amount of PPI data available, generated from high throughput experimental data. The enormous size of the data persuaded us to use computational methods instead of experimental methods to detect protein complexes. In past years, many researchers presented their algorithms to detect protein complexes. Most of the presented algorithms use current static PPI networks. New researches proved the dynamicity of cellular systems, and so, the PPI is not static over time. In this paper, we introduce DPCT to detect protein complexes from dynamic PPI networks. In the proposed method, TAP and GO data are used to make a weighted PPI network and to reduce the noise of PPI. Gene expression data are also used to make dynamic subnetworks from PPI. A memetic algorithm is used to bicluster gene expression data and to create a dynamic subnetwork for each bicluster. Experimental results show that DPCT can detect protein complexes with better correctness than state-of-the-art detection algorithms. The source code and datasets of DPCT used can be found at https://github.com/alisn72/DPCT.
Collapse
Affiliation(s)
- Ali SabziNezhad
- Computer Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Saeed Jalili
- Computer Engineering Department, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Chandran P, Gopal R, Chandrasekar VK, Athavan N. Chimera-like states induced by additional dynamic nonlocal wirings. CHAOS (WOODBURY, N.Y.) 2020; 30:063106. [PMID: 32611102 DOI: 10.1063/1.5144929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We investigate the existence of chimera-like states in a small-world network of chaotically oscillating identical Rössler systems with an addition of randomly switching nonlocal links. By varying the small-world coupling strength, we observe no chimera-like state either in the absence of nonlocal wirings or with static nonlocal wirings. When we give an additional nonlocal wiring to randomly selected nodes and if we allow the random selection of nodes to change with time, we observe the onset of chimera-like states. Upon increasing the number of randomly selected nodes gradually, we find that the incoherent window keeps on shrinking, whereas the chimera-like window widens up. Moreover, the system attains a completely synchronized state comparatively sooner for a lower coupling strength. Also, we show that one can induce chimera-like states by a suitable choice of switching times, coupling strengths, and a number of nonlocal links. We extend the above-mentioned randomized injection of nonlocal wirings for the cases of globally coupled Rössler oscillators and a small-world network of coupled FitzHugh-Nagumo oscillators and obtain similar results.
Collapse
Affiliation(s)
- P Chandran
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| | - R Gopal
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Athavan
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| |
Collapse
|
26
|
Wang R, Wang C, Liu G. A novel graph clustering method with a greedy heuristic search algorithm for mining protein complexes from dynamic and static PPI networks. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Thanasomboon R, Kalapanulak S, Netrphan S, Saithong T. Exploring dynamic protein-protein interactions in cassava through the integrative interactome network. Sci Rep 2020; 10:6510. [PMID: 32300157 PMCID: PMC7162878 DOI: 10.1038/s41598-020-63536-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 04/01/2020] [Indexed: 01/01/2023] Open
Abstract
Protein-protein interactions (PPIs) play an essential role in cellular regulatory processes. Despite, in-depth studies to uncover the mystery of PPI-mediated regulations are still lacking. Here, an integrative interactome network (MePPI-Ux) was obtained by incorporating expression data into the improved genome-scale interactome network of cassava (MePPI-U). The MePPI-U, constructed by both interolog- and domain-based approaches, contained 3,638,916 interactions and 24,590 proteins (59% of proteins in the cassava AM560 genome version 6). After incorporating expression data as information of state, the MePPI-U rewired to represent condition-dependent PPIs (MePPI-Ux), enabling us to envisage dynamic PPIs (DPINs) that occur at specific conditions. The MePPI-Ux was exploited to demonstrate timely PPIs of cassava under various conditions, namely drought stress, brown streak virus (CBSV) infection, and starch biosynthesis in leaf/root tissues. MePPI-Uxdrought and MePPI-UxCBSV suggested involved PPIs in response to stress. MePPI-UxSB,leaf and MePPI-UxSB,root suggested the involvement of interactions among transcription factor proteins in modulating how leaf or root starch is synthesized. These findings deepened our knowledge of the regulatory roles of PPIs in cassava and would undeniably assist targeted breeding efforts to improve starch quality and quantity.
Collapse
Affiliation(s)
- Ratana Thanasomboon
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.,Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Supatcharee Netrphan
- National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Treenut Saithong
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand. .,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|
28
|
Li X, Li W, Zeng M, Zheng R, Li M. Network-based methods for predicting essential genes or proteins: a survey. Brief Bioinform 2020; 21:566-583. [PMID: 30776072 DOI: 10.1093/bib/bbz017] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/03/2025] Open
Abstract
Genes that are thought to be critical for the survival of organisms or cells are called essential genes. The prediction of essential genes and their products (essential proteins) is of great value in exploring the mechanism of complex diseases, the study of the minimal required genome for living cells and the development of new drug targets. As laboratory methods are often complicated, costly and time-consuming, a great many of computational methods have been proposed to identify essential genes/proteins from the perspective of the network level with the in-depth understanding of network biology and the rapid development of biotechnologies. Through analyzing the topological characteristics of essential genes/proteins in protein-protein interaction networks (PINs), integrating biological information and considering the dynamic features of PINs, network-based methods have been proved to be effective in the identification of essential genes/proteins. In this paper, we survey the advanced methods for network-based prediction of essential genes/proteins and present the challenges and directions for future research.
Collapse
Affiliation(s)
- Xingyi Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Wenkai Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Rakshit S, Bera BK, Ghosh D. Invariance and stability conditions of interlayer synchronization manifold. Phys Rev E 2020; 101:012308. [PMID: 32069525 DOI: 10.1103/physreve.101.012308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 11/07/2022]
Abstract
We investigate interlayer synchronization in a stochastic multiplex hypernetwork which is defined by the two types of connections, one is the intralayer connection in each layer with hypernetwork structure and the other is the interlayer connection between the layers. Here all types of interactions within and between the layers are allowed to vary with a certain rewiring probability. We address the question about the invariance and stability of the interlayer synchronization state in this stochastic multiplex hypernetwork. For the invariance of interlayer synchronization manifold, the adjacency matrices corresponding to each tier in each layer should be equal and the interlayer connection should be either bidirectional or the interlayer coupling function should vanish after achieving the interlayer synchronization state. We analytically derive a necessary-sufficient condition for local stability of the interlayer synchronization state using master stability function approach and a sufficient condition for global stability by constructing a suitable Lyapunov function. Moreover, we analytically derive that intralayer synchronization is unattainable for this network architecture due to stochastic interlayer connections. Remarkably, our derived invariance and stability conditions (both local and global) are valid for any rewiring probabilities, whereas most of the previous stability conditions are only based on a fast switching approximation.
Collapse
Affiliation(s)
- Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Bidesh K Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India.,Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
30
|
Xu M, Chen X, Wu WB. Estimation of Dynamic Networks for High-Dimensional Nonstationary Time Series. ENTROPY 2019; 22:e22010055. [PMID: 33285830 PMCID: PMC7516486 DOI: 10.3390/e22010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/01/2022]
Abstract
This paper is concerned with the estimation of time-varying networks for high-dimensional nonstationary time series. Two types of dynamic behaviors are considered: structural breaks (i.e., abrupt change points) and smooth changes. To simultaneously handle these two types of time-varying features, a two-step approach is proposed: multiple change point locations are first identified on the basis of comparing the difference between the localized averages on sample covariance matrices, and then graph supports are recovered on the basis of a kernelized time-varying constrained L1-minimization for inverse matrix estimation (CLIME) estimator on each segment. We derive the rates of convergence for estimating the change points and precision matrices under mild moment and dependence conditions. In particular, we show that this two-step approach is consistent in estimating the change points and the piecewise smooth precision matrix function, under a certain high-dimensional scaling limit. The method is applied to the analysis of network structure of the S&P 500 index between 2003 and 2008.
Collapse
Affiliation(s)
- Mengyu Xu
- Department of Statistics and Data Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL 32816, USA;
| | - Xiaohui Chen
- Department of Statistics, University of Illinois at Urbana-Champaign, S. Wright Street, Champaign, IL 61820, USA;
| | - Wei Biao Wu
- Department of Statistics, University of Chicago, 5747 S. Ellis Avenue, Jones 311, Chicago, IL 60637, USA
- Correspondence:
| |
Collapse
|
31
|
Fraunberger E, Esser MJ. Neuro-Inflammation in Pediatric Traumatic Brain Injury-from Mechanisms to Inflammatory Networks. Brain Sci 2019; 9:E319. [PMID: 31717597 PMCID: PMC6895990 DOI: 10.3390/brainsci9110319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.
Collapse
Affiliation(s)
- Erik Fraunberger
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael J. Esser
- Alberta Children’s Hospital Research Institute, Calgary, AB T3B 6A8, Canada;
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Cumming School Of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
32
|
Identifying Protein Complexes from Dynamic Temporal Interval Protein-Protein Interaction Networks. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3726721. [PMID: 31531351 PMCID: PMC6720829 DOI: 10.1155/2019/3726721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 11/26/2022]
Abstract
Identification of protein complex is very important for revealing the underlying mechanism of biological processes. Many computational methods have been developed to identify protein complexes from static protein-protein interaction (PPI) networks. Recently, researchers are considering the dynamics of protein-protein interactions. Dynamic PPI networks are closer to reality in the cell system. It is expected that more protein complexes can be accurately identified from dynamic PPI networks. In this paper, we use the undulating degree above the base level of gene expression instead of the gene expression level to construct dynamic temporal PPI networks. Further we convert dynamic temporal PPI networks into dynamic Temporal Interval Protein Interaction Networks (TI-PINs) and propose a novel method to accurately identify more protein complexes from the constructed TI-PINs. Owing to preserving continuous interactions within temporal interval, the constructed TI-PINs contain more dynamical information for accurately identifying more protein complexes. Our proposed identification method uses multisource biological data to judge whether the joint colocalization condition, the joint coexpression condition, and the expanding cluster condition are satisfied; this is to ensure that the identified protein complexes have the features of colocalization, coexpression, and functional homogeneity. The experimental results on yeast data sets demonstrated that using the constructed TI-PINs can obtain better identification of protein complexes than five existing dynamic PPI networks, and our proposed identification method can find more protein complexes accurately than four other methods.
Collapse
|
33
|
Xie D, Yi Y, Zhou J, Li X, Wu H. A novel temporal protein complexes identification framework based on density–distance and heuristic algorithm. Neural Comput Appl 2019. [DOI: 10.1007/s00521-018-3660-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Li B, Lu J, Zhong J, Liu Y. Fast-Time Stability of Temporal Boolean Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2285-2294. [PMID: 30530373 DOI: 10.1109/tnnls.2018.2881459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In real systems, most of the biological functionalities come from the fact that the connections are not active all the time. Based on the fact, temporal Boolean networks (TBNs) are proposed in this paper, and the fast-time stability is analyzed via semi-tensor product (STP) of matrices and incidence matrices. First, the algebraic form of a TBN is obtained based on the STP method, and one necessary and sufficient condition for global fast-time stability is presented. Moreover, incidence matrices are used to obtain several sufficient conditions, which reduce the computational complexity from O(n2n) (exponential type) to O(n4) (polynomial type) compared with the STP method. In addition, the global fast-time stabilization of TBNs is considered, and pinning controllers are designed based on the neighbors of controlled nodes rather than all the nodes. Finally, the local fast-time stability of TBNs is considered based on the incidence matrices as well. Several examples are provided to illustrate the effectiveness of the obtained results.
Collapse
|
35
|
Cruz A, Arrais JP, Machado P. Interactive and coordinated visualization approaches for biological data analysis. Brief Bioinform 2019; 20:1513-1523. [PMID: 29590305 DOI: 10.1093/bib/bby019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
The field of computational biology has become largely dependent on data visualization tools to analyze the increasing quantities of data gathered through the use of new and growing technologies. Aside from the volume, which often results in large amounts of noise and complex relationships with no clear structure, the visualization of biological data sets is hindered by their heterogeneity, as data are obtained from different sources and contain a wide variety of attributes, including spatial and temporal information. This requires visualization approaches that are able to not only represent various data structures simultaneously but also provide exploratory methods that allow the identification of meaningful relationships that would not be perceptible through data analysis algorithms alone. In this article, we present a survey of visualization approaches applied to the analysis of biological data. We focus on graph-based visualizations and tools that use coordinated multiple views to represent high-dimensional multivariate data, in particular time series gene expression, protein-protein interaction networks and biological pathways. We then discuss how these methods can be used to help solve the current challenges surrounding the visualization of complex biological data sets.
Collapse
Affiliation(s)
- António Cruz
- Universidade de Coimbra Faculdade de Ciencias e Tecnologia, Departamento de Engenharia Informática
| | - Joel P Arrais
- Universidade de Coimbra Faculdade de Ciencias e Tecnologia, Departamento de Engenharia Informática
| | - Penousal Machado
- Universidade de Coimbra Faculdade de Ciencias e Tecnologia, Departamento de Engenharia Informática
| |
Collapse
|
36
|
Li M, Ni P, Chen X, Wang J, Wu FX, Pan Y. Construction of Refined Protein Interaction Network for Predicting Essential Proteins. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1386-1397. [PMID: 28186903 DOI: 10.1109/tcbb.2017.2665482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Identification of essential proteins based on protein interaction network (PIN) is a very important and hot topic in the post genome era. Up to now, a number of network-based essential protein discovery methods have been proposed. Generally, a static protein interaction network was constructed by using the protein-protein interactions obtained from different experiments or databases. Unfortunately, most of the network-based essential protein discovery methods are sensitive to the reliability of the constructed PIN. In this paper, we propose a new method for constructing refined PIN by using gene expression profiles and subcellular location information. The basic idea behind refining the PIN is that two proteins should have higher possibility to physically interact with each other if they appear together at the same subcellular location and are active together at least at a time point in the cell cycle. The original static PIN is denoted by S-PIN while the final PIN refined by our method is denoted by TS-PIN. To evaluate whether the constructed TS-PIN is more suitable to be used in the identification of essential proteins, 10 network-based essential protein discovery methods (DC, EC, SC, BC, CC, IC, LAC, NC, BN, and DMNC) are applied on it to identify essential proteins. A comparison of TS-PIN and two other networks: S-PIN and NF-APIN (a noise-filtered active PIN constructed by using gene expression data and S-PIN) is implemented on the prediction of essential proteins by using these ten network-based methods. The comparison results show that all of the 10 network-based methods achieve better results when being applied on TS-PIN than that being applied on S-PIN and NF-APIN.
Collapse
|
37
|
Cicaloni V, Trezza A, Pettini F, Spiga O. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:534-554. [PMID: 30836920 DOI: 10.2174/1568026619666190304153901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of Protein-Protein Interactions (PPIs) is a major challenge in modern molecular biology and biochemistry research, due to the unquestionable role of proteins in cells, biological process and pathological states. Over the past decade, the PPIs have evolved from being considered a highly challenging field of research to being investigated and examined as targets for pharmacological intervention. OBJECTIVE Comprehension of protein interactions is crucial to known how proteins come together to build signalling pathways, to carry out their functions, or to cause diseases, when deregulated. Multiplicity and great amount of PPIs structures offer a huge number of new and potential targets for the treatment of different diseases. METHODS Computational techniques are becoming predominant in PPIs studies for their effectiveness, flexibility, accuracy and cost. As a matter of fact, there are effective in silico approaches which are able to identify PPIs and PPI site. Such methods for computational target prediction have been developed through molecular descriptors and data-mining procedures. RESULTS In this review, we present different types of interactions between protein-protein and the application of in silico methods for design and development of drugs targeting PPIs. We described computational approaches for the identification of possible targets on protein surface and to detect of stimulator/ inhibitor molecules. CONCLUSION A deeper study of the most recent bioinformatics methodologies for PPIs studies is vital for a better understanding of protein complexes and for discover new potential PPI modulators in therapeutic intervention.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy.,Toscana Life Sciences Foundation, via Fiorentina 1, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Francesco Pettini
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
38
|
Abstract
BACKGROUND Biological networks describes the mechanisms which govern cellular functions. Temporal networks show how these networks evolve over time. Studying the temporal progression of network topologies is of utmost importance since it uncovers how a network evolves and how it resists to external stimuli and internal variations. Two temporal networks have co-evolving subnetworks if the evolving topologies of these subnetworks remain similar to each other as the network topology evolves over a period of time. In this paper, we consider the problem of identifying co-evolving subnetworks given a pair of temporal networks, which aim to capture the evolution of molecules and their interactions over time. Although this problem shares some characteristics of the well-known network alignment problems, it differs from existing network alignment formulations as it seeks a mapping of the two network topologies that is invariant to temporal evolution of the given networks. This is a computationally challenging problem as it requires capturing not only similar topologies between two networks but also their similar evolution patterns. RESULTS We present an efficient algorithm, Tempo, for solving identifying co-evolving subnetworks with two given temporal networks. We formally prove the correctness of our method. We experimentally demonstrate that Tempo scales efficiently with the size of network as well as the number of time points, and generates statistically significant alignments-even when evolution rates of given networks are high. Our results on a human aging dataset demonstrate that Tempo identifies novel genes contributing to the progression of Alzheimer's, Huntington's and Type II diabetes, while existing methods fail to do so. CONCLUSIONS Studying temporal networks in general and human aging specifically using Tempo enables us to identify age related genes from non age related genes successfully. More importantly, Tempo takes the network alignment problem one huge step forward by moving beyond the classical static network models.
Collapse
Affiliation(s)
- Rasha Elhesha
- University of Florida, CISE Department, Gainesville, Florida, 32611, US
| | - Aisharjya Sarkar
- University of Florida, CISE Department, Gainesville, Florida, 32611, US
| | - Christina Boucher
- University of Florida, CISE Department, Gainesville, Florida, 32611, US
| | - Tamer Kahveci
- University of Florida, CISE Department, Gainesville, Florida, 32611, US.
| |
Collapse
|
39
|
Rasti S, Vogiatzis C. A survey of computational methods in protein–protein interaction networks. ANNALS OF OPERATIONS RESEARCH 2019; 276:35-87. [DOI: 10.1007/s10479-018-2956-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Wu J, Khodaverdian A, Weitz B, Yosef N. Connectivity problems on heterogeneous graphs. Algorithms Mol Biol 2019; 14:5. [PMID: 30899321 PMCID: PMC6408827 DOI: 10.1186/s13015-019-0141-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Network connectivity problems are abundant in computational biology research, where graphs are used to represent a range of phenomena: from physical interactions between molecules to more abstract relationships such as gene co-expression. One common challenge in studying biological networks is the need to extract meaningful, small subgraphs out of large databases of potential interactions. A useful abstraction for this task turned out to be the Steiner Network problems: given a reference "database" graph, find a parsimonious subgraph that satisfies a given set of connectivity demands. While this formulation proved useful in a number of instances, the next challenge is to account for the fact that the reference graph may not be static. This can happen for instance, when studying protein measurements in single cells or at different time points, whereby different subsets of conditions can have different protein milieu. RESULTS AND DISCUSSION We introduce the condition Steiner Network problem in which we concomitantly consider a set of distinct biological conditions. Each condition is associated with a set of connectivity demands, as well as a set of edges that are assumed to be present in that condition. The goal of this problem is to find a minimal subgraph that satisfies all the demands through paths that are present in the respective condition. We show that introducing multiple conditions as an additional factor makes this problem much harder to approximate. Specifically, we prove that for C conditions, this new problem is NP-hard to approximate to a factor of C - ϵ , for every C ≥ 2 and ϵ > 0 , and that this bound is tight. Moving beyond the worst case, we explore a special set of instances where the reference graph grows monotonically between conditions, and show that this problem admits substantially improved approximation algorithms. We also developed an integer linear programming solver for the general problem and demonstrate its ability to reach optimality with instances from the human protein interaction network. CONCLUSION Our results demonstrate that in contrast to most connectivity problems studied in computational biology, accounting for multiplicity of biological conditions adds considerable complexity, which we propose to address with a new solver. Importantly, our results extend to several network connectivity problems that are commonly used in computational biology, such as Prize-Collecting Steiner Tree, and provide insight into the theoretical guarantees for their applications in a multiple condition setting.
Collapse
|
41
|
Liu J, Chi Y, Liu Z, He S. Ensemble multi‐objective evolutionary algorithm for gene regulatory network reconstruction based on fuzzy cognitive maps. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2019. [DOI: 10.1049/trit.2018.1059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Jing Liu
- School of Artificial IntelligenceXidian UniversityXi'anPeople's Republic of China
| | - Yaxiong Chi
- School of Artificial IntelligenceXidian UniversityXi'anPeople's Republic of China
| | - Zongdong Liu
- School of Artificial IntelligenceXidian UniversityXi'anPeople's Republic of China
| | - Shan He
- School of Computer ScienceUniversity of BirminghamBirminghamUK
| |
Collapse
|
42
|
Xiao Q, Luo P, Li M, Wang J, Wu FX. A Novel Core-Attachment-Based Method to Identify Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks. Proteomics 2019; 19:e1800129. [PMID: 30650262 DOI: 10.1002/pmic.201800129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/09/2018] [Indexed: 11/06/2022]
Abstract
Cellular functions are always performed by protein complexes. At present, many approaches have been proposed to identify protein complexes from protein-protein interaction (PPI) networks. Some approaches focus on detecting local dense subgraphs in PPI networks which are regarded as protein-complex cores, then identify protein complexes by including local neighbors. However, from gene expression profiles at different time points or tissues it is known that proteins are dynamic. Therefore, identifying dynamic protein complexes should become very important and meaningful. In this study, a novel core-attachment-based method named CO-DPC to detect dynamic protein complexes is presented. First, CO-DPC selects active proteins according to gene expression profiles and the 3-sigma principle, and constructs dynamic PPI networks based on the co-expression principle and PPI networks. Second, CO-DPC detects local dense subgraphs as the cores of protein complexes and then attach close neighbors of these cores to form protein complexes. In order to evaluate the method, the method and the existing algorithms are applied to yeast PPI networks. The experimental results show that CO-DPC performs much better than the existing methods. In addition, the identified dynamic protein complexes can match very well and thus become more meaningful for future biological study.
Collapse
Affiliation(s)
- Qianghua Xiao
- School of Mathematics and Physics, University of South China, Hengyang, 421001, P. R. China
| | - Ping Luo
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Min Li
- School of Information Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
43
|
Zhang F, Peng W, Yang Y, Dai W, Song J. A Novel Method for Identifying Essential Genes by Fusing Dynamic Protein⁻Protein Interactive Networks. Genes (Basel) 2019; 10:genes10010031. [PMID: 30626157 PMCID: PMC6356314 DOI: 10.3390/genes10010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Essential genes play an indispensable role in supporting the life of an organism. Identification of essential genes helps us to understand the underlying mechanism of cell life. The essential genes of bacteria are potential drug targets of some diseases genes. Recently, several computational methods have been proposed to detect essential genes based on the static protein⁻protein interactive (PPI) networks. However, these methods have ignored the fact that essential genes play essential roles under certain conditions. In this work, a novel method was proposed for the identification of essential proteins by fusing the dynamic PPI networks of different time points (called by FDP). Firstly, the active PPI networks of each time point were constructed and then they were fused into a final network according to the networks' similarities. Finally, a novel centrality method was designed to assign each gene in the final network a ranking score, whilst considering its orthologous property and its global and local topological properties in the network. This model was applied on two different yeast data sets. The results showed that the FDP achieved a better performance in essential gene prediction as compared to other existing methods that are based on the static PPI network or that are based on dynamic networks.
Collapse
Affiliation(s)
- Fengyu Zhang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093, China.
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093, China.
- Computer Center of Kunming University of Science and Technology, Kunming 650093, China.
| | - Yunfei Yang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093, China.
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650093, China.
| | - Junrong Song
- Faculty of Management and Economics, Kunming University of Science and Technology, Kunming 650093, China.
| |
Collapse
|
44
|
Lautz JD, Brown EA, Williams VanSchoiack AA, Smith SEP. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem 2018; 146:540-559. [PMID: 29804286 PMCID: PMC6150823 DOI: 10.1111/jnc.14466] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
Abstract
Cells utilize dynamic, network-level rearrangements in highly interconnected protein interaction networks to transmit and integrate information from distinct signaling inputs. Despite the importance of protein interaction network dynamics, the organizational logic underlying information flow through these networks is not well understood. Previously, we developed the quantitative multiplex co-immunoprecipitation platform, which allows for the simultaneous and quantitative measurement of the amount of co-association between large numbers of proteins in shared complexes. Here, we adapt quantitative multiplex co-immunoprecipitation to define the activity-dependent dynamics of an 18-member protein interaction network in order to better understand the underlying principles governing glutamatergic signal transduction. We first establish that immunoprecipitation detected by flow cytometry can detect activity-dependent changes in two known protein-protein interactions (Homer1-mGluR5 and PSD-95-SynGAP). We next demonstrate that neuronal stimulation elicits a coordinated change in our targeted protein interaction network, characterized by the initial dissociation of Homer1 and SynGAP-containing complexes followed by increased associations among glutamate receptors and PSD-95. Finally, we show that stimulation of distinct glutamate receptor types results in different modular sets of protein interaction network rearrangements, and that cells activate both modules in order to integrate complex inputs. This analysis demonstrates that cells respond to distinct types of glutamatergic input by modulating different combinations of protein co-associations among a targeted network of proteins. Our data support a model of synaptic plasticity in which synaptic stimulation elicits dissociation of pre-existing multiprotein complexes, opening binding slots in scaffold proteins and allowing for the recruitment of additional glutamatergic receptors. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Emily A Brown
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Pires HR, Boxem M. Mapping the Polarity Interactome. J Mol Biol 2018; 430:3521-3544. [DOI: 10.1016/j.jmb.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
|
46
|
Stoney R, Robertson DL, Nenadic G, Schwartz JM. Mapping biological process relationships and disease perturbations within a pathway network. NPJ Syst Biol Appl 2018; 4:22. [PMID: 29900005 PMCID: PMC5995814 DOI: 10.1038/s41540-018-0055-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
Molecular interaction networks are routinely used to map the organization of cellular function. Edges represent interactions between genes, proteins, or metabolites. However, in living cells, molecular interactions are dynamic, necessitating context-dependent models. Contextual information can be integrated into molecular interaction networks through the inclusion of additional molecular data, but there are concerns about completeness and relevance of this data. We developed an approach for representing the organization of human cellular processes using pathways as the nodes in a network. Pathways represent spatial and temporal sets of context-dependent interactions, generating a high-level network when linked together, which incorporates contextual information without the need for molecular interaction data. Analysis of the pathway network revealed linked communities representing functional relationships, comparable to those found in molecular networks, including metabolism, signaling, immunity, and the cell cycle. We mapped a range of diseases onto this network and find that pathways associated with diseases tend to be functionally connected, highlighting the perturbed functions that result in disease phenotypes. We demonstrated that disease pathways cluster within the network. We then examined the distribution of cancer pathways and showed that cancer pathways tend to localize within the signaling, DNA processes and immune modules, although some cancer-associated nodes are found in other network regions. Altogether, we generated a high-confidence functional network, which avoids some of the shortcomings faced by conventional molecular models. Our representation provides an intuitive functional interpretation of cellular organization, which relies only on high-quality pathway and Gene Ontology data. The network is available at https://data.mendeley.com/datasets/3pbwkxjxg9/1.
Collapse
Affiliation(s)
- Ruth Stoney
- School of Computer Science, University of Manchester, M13 9PT, Manchester, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, G61 1QH UK
| | - Goran Nenadic
- School of Computer Science, University of Manchester, M13 9PT, Manchester, UK
| | - Jean-Marc Schwartz
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|
47
|
Rakshit S, Bera BK, Ghosh D, Sinha S. Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks. Phys Rev E 2018; 97:052304. [PMID: 29906979 DOI: 10.1103/physreve.97.052304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 06/08/2023]
Abstract
We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f. We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.
Collapse
Affiliation(s)
- Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Bidesh K Bera
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sudeshna Sinha
- Indian Institute of Science Education and Research Mohali, Manauli P.O. 140 306, Punjab, India
| |
Collapse
|
48
|
Muetze T, Lynn DJ. Using the Contextual Hub Analysis Tool (CHAT) in Cytoscape to Identify Contextually Relevant Network Hubs. ACTA ACUST UNITED AC 2018; 59:8.24.1-8.24.13. [DOI: 10.1002/cpbi.35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tanja Muetze
- EMBL Australia Biomedical Informatics Group, Infection & Immunity Theme, South Australian Health and Medical Research Institute North Terrace Adelaide Australia
| | - David J. Lynn
- EMBL Australia Biomedical Informatics Group, Infection & Immunity Theme, South Australian Health and Medical Research Institute North Terrace Adelaide Australia
- School of Medicine, Flinders University Bedford Park Australia
| |
Collapse
|
49
|
Ignatius Pang CN, Goel A, Wilkins MR. Investigating the Network Basis of Negative Genetic Interactions in Saccharomyces cerevisiae with Integrated Biological Networks and Triplet Motif Analysis. J Proteome Res 2018; 17:1014-1030. [DOI: 10.1021/acs.jproteome.7b00649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chi Nam Ignatius Pang
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Apurv Goel
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R. Wilkins
- Systems
Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
50
|
Botero D, Alvarado C, Bernal A, Danies G, Restrepo S. Network Analyses in Plant Pathogens. Front Microbiol 2018; 9:35. [PMID: 29441045 PMCID: PMC5797656 DOI: 10.3389/fmicb.2018.00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/09/2018] [Indexed: 11/14/2022] Open
Abstract
Even in the age of big data in Biology, studying the connections between the biological processes and the molecular mechanisms behind them is a challenging task. Systems biology arose as a transversal discipline between biology, chemistry, computer science, mathematics, and physics to facilitate the elucidation of such connections. A scenario, where the application of systems biology constitutes a very powerful tool, is the study of interactions between hosts and pathogens using network approaches. Interactions between pathogenic bacteria and their hosts, both in agricultural and human health contexts are of great interest to researchers worldwide. Large amounts of data have been generated in the last few years within this area of research. However, studies have been relatively limited to simple interactions. This has left great amounts of data that remain to be utilized. Here, we review the main techniques in network analysis and their complementary experimental assays used to investigate bacterial-plant interactions. Other host-pathogen interactions are presented in those cases where few or no examples of plant pathogens exist. Furthermore, we present key results that have been obtained with these techniques and how these can help in the design of new strategies to control bacterial pathogens. The review comprises metabolic simulation, protein-protein interactions, regulatory control of gene expression, host-pathogen modeling, and genome evolution in bacteria. The aim of this review is to offer scientists working on plant-pathogen interactions basic concepts around network biology, as well as an array of techniques that will be useful for a better and more complete interpretation of their data.
Collapse
Affiliation(s)
- David Botero
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia.,Grupo de Biología Computacional y Ecología Microbiana, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Camilo Alvarado
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Laboratory of Molecular Interactions of Agricultural Microbes, LIMMA, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Giovanna Danies
- Department of Design, Universidad de Los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Laboratory of Mycology and Plant Pathology (LAMFU), Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|