1
|
Zhang S, Xiao Y, Mo X, Chen X, Zhong J, Chen Z, Liu X, Qiu Y, Dai W, Chen J, Jin X, Fan G, Hu Y. Simultaneous profiling of RNA isoforms and chromatin accessibility of single cells of human retinal organoids. Nat Commun 2024; 15:8022. [PMID: 39271703 PMCID: PMC11399327 DOI: 10.1038/s41467-024-52335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Single-cell multi-omics sequencing is a powerful approach to analyze complex mechanisms underlying neuronal development and regeneration. However, current methods lack the ability to simultaneously profile RNA alternative splicing and chromatin accessibility at the single-cell level. We develop a technique, single-cell RNA isoform and chromatin accessibility sequencing (scRICA-seq), which demonstrates higher sensitivity and cost-effectiveness compared to existing methods. scRICA-seq can profile both isoforms and chromatin accessibility for up to 10,000 single cells in a single run. Applying this method to human retinal organoids, we construct a multi-omic cell atlas and reveal associations between chromatin accessibility, isoform expression of fate-determining factors, and alternative splicing events in their binding sites. This study provides insights into integrating epigenetics, transcription, and RNA splicing to elucidate the mechanisms underlying retinal neuronal development and fate determination.
Collapse
Affiliation(s)
- Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xinzhi Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiawei Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zheyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuanhui Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xishan Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
2
|
Gupta P, O’Neill H, Wolvetang E, Chatterjee A, Gupta I. Advances in single-cell long-read sequencing technologies. NAR Genom Bioinform 2024; 6:lqae047. [PMID: 38774511 PMCID: PMC11106032 DOI: 10.1093/nargab/lqae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
With an increase in accuracy and throughput of long-read sequencing technologies, they are rapidly being assimilated into the single-cell sequencing pipelines. For transcriptome sequencing, these techniques provide RNA isoform-level information in addition to the gene expression profiles. Long-read sequencing technologies not only help in uncovering complex patterns of cell-type specific splicing, but also offer unprecedented insights into the origin of cellular complexity and thus potentially new avenues for drug development. Additionally, single-cell long-read DNA sequencing enables high-quality assemblies, structural variant detection, haplotype phasing, resolving high-complexity regions, and characterization of epigenetic modifications. Given that significant progress has primarily occurred in single-cell RNA isoform sequencing (scRiso-seq), this review will delve into these advancements in depth and highlight the practical considerations and operational challenges, particularly pertaining to downstream analysis. We also aim to offer a concise introduction to complementary technologies for single-cell sequencing of the genome, epigenome and epitranscriptome. We conclude by identifying certain key areas of innovation that may drive these technologies further and foster more widespread application in biomedical science.
Collapse
Affiliation(s)
- Pallavi Gupta
- University of Queensland – IIT Delhi Research Academy, Hauz Khas, New Delhi 110016, India
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hannah O’Neill
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ernst J Wolvetang
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. Science 2024; 384:eadi5199. [PMID: 38781369 PMCID: PMC11365579 DOI: 10.1126/science.adi5199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Chicago, IL 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Cuevas-Diaz Duran R, Wei H, Wu J. Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets. BMC Genomics 2024; 25:444. [PMID: 38711017 PMCID: PMC11073985 DOI: 10.1186/s12864-024-10364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Normalization is a critical step in the analysis of single-cell RNA-sequencing (scRNA-seq) datasets. Its main goal is to make gene counts comparable within and between cells. To do so, normalization methods must account for technical and biological variability. Numerous normalization methods have been developed addressing different sources of dispersion and making specific assumptions about the count data. MAIN BODY The selection of a normalization method has a direct impact on downstream analysis, for example differential gene expression and cluster identification. Thus, the objective of this review is to guide the reader in making an informed decision on the most appropriate normalization method to use. To this aim, we first give an overview of the different single cell sequencing platforms and methods commonly used including isolation and library preparation protocols. Next, we discuss the inherent sources of variability of scRNA-seq datasets. We describe the categories of normalization methods and include examples of each. We also delineate imputation and batch-effect correction methods. Furthermore, we describe data-driven metrics commonly used to evaluate the performance of normalization methods. We also discuss common scRNA-seq methods and toolkits used for integrated data analysis. CONCLUSIONS According to the correction performed, normalization methods can be broadly classified as within and between-sample algorithms. Moreover, with respect to the mathematical model used, normalization methods can further be classified into: global scaling methods, generalized linear models, mixed methods, and machine learning-based methods. Each of these methods depict pros and cons and make different statistical assumptions. However, there is no better performing normalization method. Instead, metrics such as silhouette width, K-nearest neighbor batch-effect test, or Highly Variable Genes are recommended to assess the performance of normalization methods.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, 64710, Mexico.
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Yuan CU, Quah FX, Hemberg M. Single-cell and spatial transcriptomics: Bridging current technologies with long-read sequencing. Mol Aspects Med 2024; 96:101255. [PMID: 38368637 DOI: 10.1016/j.mam.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Single-cell technologies have transformed biomedical research over the last decade, opening up new possibilities for understanding cellular heterogeneity, both at the genomic and transcriptomic level. In addition, more recent developments of spatial transcriptomics technologies have made it possible to profile cells in their tissue context. In parallel, there have been substantial advances in sequencing technologies, and the third generation of methods are able to produce reads that are tens of kilobases long, with error rates matching the second generation short reads. Long reads technologies make it possible to better map large genome rearrangements and quantify isoform specific abundances. This further improves our ability to characterize functionally relevant heterogeneity. Here, we show how researchers have begun to combine single-cell, spatial transcriptomics, and long-read technologies, and how this is resulting in powerful new approaches to profiling both the genome and the transcriptome. We discuss the achievements so far, and we highlight remaining challenges and opportunities.
Collapse
Affiliation(s)
- Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Gene Lay Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585576. [PMID: 38562822 PMCID: PMC10983939 DOI: 10.1101/2024.03.18.585576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA, 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Opthalmology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Inc., Chicago, IL, 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA, 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Michael Margolis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Manman Shi
- Tempus Labs, Inc., Chicago, IL, 60654, USA
| | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
7
|
Nieves-Rodriguez S, Barthélémy F, Woods JD, Douine ED, Wang RT, Scripture-Adams DD, Chesmore KN, Galasso F, Miceli MC, Nelson SF. Transcriptomic analysis of paired healthy human skeletal muscles to identify modulators of disease severity in DMD. Front Genet 2023; 14:1216066. [PMID: 37576554 PMCID: PMC10415210 DOI: 10.3389/fgene.2023.1216066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Muscle damage and fibro-fatty replacement of skeletal muscles is a main pathologic feature of Duchenne muscular dystrophy (DMD) with more proximal muscles affected earlier and more distal affected later in the disease course, suggesting that different skeletal muscle groups possess distinctive characteristics that influence their susceptibility to disease. To explore transcriptomic factors driving differential gene expression and modulating DMD skeletal muscle severity, we characterized the transcriptome of vastus lateralis (VL), a more proximal and susceptible muscle, relative to tibialis anterior (TA), a more distal and protected muscle, in 15 healthy individuals using bulk RNA sequencing to identify gene expression differences that may mediate their relative susceptibility to damage with loss of dystrophin. Matching single nuclei RNA sequencing data was generated for 3 of the healthy individuals, to infer cell composition in the bulk RNA sequencing dataset and to improve mapping of differentially expressed genes to their cell source of expression. A total of 3,410 differentially expressed genes were identified and mapped to cell type using single nuclei RNA sequencing of muscle, including long non-coding RNAs and protein coding genes. There was an enrichment of genes involved in calcium release from the sarcoplasmic reticulum, particularly in the myofibers and these myofiber genes were higher in the VL. There was an enrichment of genes in "Collagen-Containing Extracellular Matrix" expressed by fibroblasts, endothelial, smooth muscle and pericytes, with most genes higher in the TA, as well as genes in "Regulation Of Apoptotic Process" expressed across all cell types. Previously reported genetic modifiers were also enriched within the differentially expressed genes. We also identify 6 genes with differential isoform usage between the VL and TA. Lastly, we integrate our findings with DMD RNA sequencing data from the TA, and identify "Collagen-Containing Extracellular Matrix" and "Negative Regulation Of Apoptotic Process" as differentially expressed between DMD compared to healthy. Collectively, these findings propose novel candidate mechanisms that may mediate differential muscle susceptibility in muscular dystrophies and provide new insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Shirley Nieves-Rodriguez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremy D. Woods
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emilie D. Douine
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Richard T. Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Deirdre D. Scripture-Adams
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin N. Chesmore
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Francesca Galasso
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - M. Carrie Miceli
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Gundesli H, Kori M, Arga KY. The Versatility of Plectin in Cancer: A Pan-Cancer Analysis on Potential Diagnostic and Prognostic Impacts of Plectin Isoforms. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37262182 DOI: 10.1089/omi.2023.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plectin, encoded by PLEC, is a cytoskeletal and scaffold protein with a number of unique isoforms that act on various cellular functions such as cell adhesion, signal transduction, cancer cell invasion, and migration. While plectin has been shown to display high expression and mislocalization in tumor cells, our knowledge of the biological significance of plectin and its isoforms in tumorigenesis remain limited. In this study, we first performed pathway enrichment analysis to identify cancer hallmark proteins associated with plectin. Then, a pan-cancer analysis was performed using RNA-seq data collected from the Cancer Genome Atlas (TCGA) to detect the mRNA expression levels of PLEC and its transcript isoforms, and the prognostic as well as diagnostic significance of the transcript isoforms was evaluated considering cancer stages. We show here that several tissue specific PLEC isoforms are dysregulated in different cancer types and stages but not the expression of PLEC. Among them, PLEC 1d and PLEC 1f are potential biomarker candidates and call for further translational and personalized medicine research. This study makes a contribution as a stride to unravel the molecular mechanisms underpinning plectin isoforms in cancer development and progression by revealing the potent plectin isoforms in different stages of cancer as potential early cancer detection biomarkers. Importantly, uncovering how plectin isoforms guide malignancy and particular cancer types by comprehensive functional studies might open new avenues toward novel cancer therapeutics.
Collapse
Affiliation(s)
- Hulya Gundesli
- Gulhane Faculty of Medicine, University of Health Sciences, Ankara, Turkey
| | - Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Pan L, Shan S, Tremmel R, Li W, Liao Z, Shi H, Chen Q, Zhang X, Li X. HTCA: a database with an in-depth characterization of the single-cell human transcriptome. Nucleic Acids Res 2022; 51:D1019-D1028. [PMID: 36130266 PMCID: PMC9825435 DOI: 10.1093/nar/gkac791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 01/30/2023] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) is one of the most used single-cell omics in recent decades. The exponential growth of single-cell data has immense potential for large-scale integration and in-depth explorations that are more representative of the study population. Efforts have been made to consolidate published data, yet extensive characterization is still lacking. Many focused on raw-data database constructions while others concentrate mainly on gene expression queries. Hereby, we present HTCA (www.htcatlas.org), an interactive database constructed based on ∼2.3 million high-quality cells from ∼3000 scRNA-seq samples and comprised in-depth phenotype profiles of 19 healthy adult and matching fetal tissues. HTCA provides a one-stop interactive query to gene signatures, transcription factor (TF) activities, TF motifs, receptor-ligand interactions, enriched gene ontology (GO) terms, etc. across cell types in adult and fetal tissues. At the same time, HTCA encompasses single-cell splicing variant profiles of 16 adult and fetal tissues, spatial transcriptomics profiles of 11 adult and fetal tissues, and single-cell ATAC-sequencing (scATAC-seq) profiles of 27 adult and fetal tissues. Besides, HTCA provides online analysis tools to perform major steps in a typical scRNA-seq analysis. Altogether, HTCA allows real-time explorations of multi-omics adult and fetal phenotypic profiles and provides tools for a flexible scRNA-seq analysis.
Collapse
Affiliation(s)
| | | | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart 70376, Germany,University of Tuebingen, Tuebingen 72076, Germany
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunnan, Yunnan 650091, China
| | - Zehuan Liao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Solna 17177, Sweden,School of Biological Sciences, Nanyang Technological University, 637 551, Singapore
| | - Hangyu Shi
- Department of Acupuncture, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, China
| | - Qishuang Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolu Zhang
- Correspondence may also be addressed to Xiaolu Zhang.
| | - Xuexin Li
- To whom correspondence should be addressed. Tel: +46 0704998515;
| |
Collapse
|
10
|
Zhang Q, Tang Y, Hu G, Yuan Z, Zhang S, Sun Y, Yin D, Dong C, Zhao J, Wu G, Huang X, Yang J, Tang Y. Comprehensive pan-cancer analysis identifies cellular senescence as a new therapeutic target for cancer: multi-omics analysis and single-cell sequencing validation. Am J Cancer Res 2022; 12:4103-4119. [PMID: 36225642 PMCID: PMC9548012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
Although cellular senescence has long been recognized as an anti-tumor mechanism, mounting evidence suggests that in some circumstances, senescent cells promote tumor growth and malignancy spread. Therefore, research into the exact relationship between cellular senescence and tumor immunity is ongoing. We analyzed changes in the expression, copy number variation, single-nucleotide variation, methylation, and drug sensitivity of cellular senescence-related genes in 33 tumor types. The cellular senescence score was calculated using the single-sample gene-set enrichment analysis. The correlations between cellular senescence score and prognosis, tumor immune microenvironment (TIME), and expression of tumor immune-related genes were comprehensively analyzed. Single-cell transcriptome sequencing data were used to assess the activation state of cellular senescence in the tumor microenvironment (TME). The expression of cellular senescence-associated hub genes varied significantly across cancer types. In these genes, missense mutation was the major type of single nucleotide polymorphism, and heterozygous deletion and heterozygous amplification were the major types of copy number variation. Moreover, the cellular senescence pathway in tumors was sensitive to drugs such as XMD13-2, TPCA-1, methotrexate, and KIN001-102. Furthermore, the cellular senescence score was significantly higher in most cancer types, related to poor prognosis. The expression of immune checkpoint molecules such as NRP1, CD276, and CD44 was significantly correlated with the cellular senescence score. Monocyte cellular senescence was significantly higher in the TME of kidney renal clear cell carcinoma cells than in normal tissues. The findings of this study provide insights into the important role of cellular senescence in the TIME of human cancers and the effect of immunotherapy.
Collapse
Affiliation(s)
- Qiuhuan Zhang
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesGuangxi, China
| | - Yi Tang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesGuangxi, China
| | - Guimei Hu
- Department of Colorectal and Anal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxi, China
| | - Zhuoer Yuan
- Department of Colorectal and Anal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxi, China
| | - Shengyue Zhang
- Department of Colorectal and Anal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxi, China
| | - Yucao Sun
- Department of Colorectal and Anal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxi, China
| | - De Yin
- Department of Colorectal and Anal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxi, China
| | - Chencheng Dong
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesGuangxi, China
| | - Jiehua Zhao
- Department of Breast and Thyroid Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesGuangxi, China
| | - Guo Wu
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesGuangxi, China
| | - Xiaoliang Huang
- Department of Colorectal and Anal Surgery, Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxi, China
| | - Jianrong Yang
- Department of Breast and Thyroid Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesGuangxi, China
| | - Yuntian Tang
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical SciencesGuangxi, China
| |
Collapse
|