1
|
Konstantinovsky T, Peres A, Polak P, Yaari G. An unbiased comparison of immunoglobulin sequence aligners. Brief Bioinform 2024; 25:bbae556. [PMID: 39489605 PMCID: PMC11531861 DOI: 10.1093/bib/bbae556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is critical for our understanding of the adaptive immune system's dynamics in health and disease. Reliable analysis of AIRR-seq data depends on accurate rearranged immunoglobulin (Ig) sequence alignment. Various Ig sequence aligners exist, but there is no unified benchmarking standard representing the complexities of AIRR-seq data, obscuring objective comparisons of aligners across tasks. Here, we introduce GenAIRR, a modular simulation framework for generating Ig sequences alongside their ground truths. GenAIRR realistically simulates the intricacies of V(D)J recombination, somatic hypermutation, and an array of sequence corruptions. We comprehensively assessed prominent Ig sequence aligners across various metrics, unveiling unique performance characteristics for each aligner. The GenAIRR-produced datasets, combined with the proposed rigorous evaluation criteria, establish a solid basis for unbiased benchmarking of immunogenetics computational tools. It sets up the ground for further improving the crucial task of Ig sequence alignment, ultimately enhancing our understanding of adaptive immunity.
Collapse
Affiliation(s)
- Thomas Konstantinovsky
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Pazit Polak
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Scheffer L, Reber EE, Mehta BB, Pavlović M, Chernigovskaya M, Richardson E, Akbar R, Lund-Johansen F, Greiff V, Haff IH, Sandve GK. Predictability of antigen binding based on short motifs in the antibody CDRH3. Brief Bioinform 2024; 25:bbae537. [PMID: 39438077 PMCID: PMC11495870 DOI: 10.1093/bib/bbae537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Adaptive immune receptors, such as antibodies and T-cell receptors, recognize foreign threats with exquisite specificity. A major challenge in adaptive immunology is discovering the rules governing immune receptor-antigen binding in order to predict the antigen binding status of previously unseen immune receptors. Many studies assume that the antigen binding status of an immune receptor may be determined by the presence of a short motif in the complementarity determining region 3 (CDR3), disregarding other amino acids. To test this assumption, we present a method to discover short motifs which show high precision in predicting antigen binding and generalize well to unseen simulated and experimental data. Our analysis of a mutagenesis-based antibody dataset reveals 11 336 position-specific, mostly gapped motifs of 3-5 amino acids that retain high precision on independently generated experimental data. Using a subset of only 178 motifs, a simple classifier was made that on the independently generated dataset outperformed a deep learning model proposed specifically for such datasets. In conclusion, our findings support the notion that for some antibodies, antigen binding may be largely determined by a short CDR3 motif. As more experimental data emerge, our methodology could serve as a foundation for in-depth investigations into antigen binding signals.
Collapse
Affiliation(s)
- Lonneke Scheffer
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Eric Emanuel Reber
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Milena Pavlović
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Eve Richardson
- La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA, United States
| | - Rahmad Akbar
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo, Sognsvannsveien 20, Rikshospitalet, 0372 Oslo, Norway
| | - Ingrid Hobæk Haff
- Department of Mathematics, University of Oslo, Niels Henrik Abels hus, Moltke Moes vei 35, 0851 Oslo, Norway
| | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| |
Collapse
|
3
|
Bashour H, Smorodina E, Pariset M, Zhong J, Akbar R, Chernigovskaya M, Lê Quý K, Snapkow I, Rawat P, Krawczyk K, Sandve GK, Gutierrez-Marcos J, Gutierrez DNZ, Andersen JT, Greiff V. Biophysical cartography of the native and human-engineered antibody landscapes quantifies the plasticity of antibody developability. Commun Biol 2024; 7:922. [PMID: 39085379 PMCID: PMC11291509 DOI: 10.1038/s42003-024-06561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Designing effective monoclonal antibody (mAb) therapeutics faces a multi-parameter optimization challenge known as "developability", which reflects an antibody's ability to progress through development stages based on its physicochemical properties. While natural antibodies may provide valuable guidance for mAb selection, we lack a comprehensive understanding of natural developability parameter (DP) plasticity (redundancy, predictability, sensitivity) and how the DP landscapes of human-engineered and natural antibodies relate to one another. These gaps hinder fundamental developability profile cartography. To chart natural and engineered DP landscapes, we computed 40 sequence- and 46 structure-based DPs of over two million native and human-engineered single-chain antibody sequences. We find lower redundancy among structure-based compared to sequence-based DPs. Sequence DP sensitivity to single amino acid substitutions varied by antibody region and DP, and structure DP values varied across the conformational ensemble of antibody structures. We show that sequence DPs are more predictable than structure-based ones across different machine-learning tasks and embeddings, indicating a constrained sequence-based design space. Human-engineered antibodies localize within the developability and sequence landscapes of natural antibodies, suggesting that human-engineered antibodies explore mere subspaces of the natural one. Our work quantifies the plasticity of antibody developability, providing a fundamental resource for multi-parameter therapeutic mAb design.
Collapse
Affiliation(s)
- Habib Bashour
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Jahn Zhong
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Kneipp J, Seifert S, Gärber F. SERS microscopy as a tool for comprehensive biochemical characterization in complex samples. Chem Soc Rev 2024; 53:7641-7656. [PMID: 38934892 DOI: 10.1039/d4cs00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Surface enhanced Raman scattering (SERS) spectra of biomaterials such as cells or tissues can be used to obtain biochemical information from nanoscopic volumes in these heterogeneous samples. This tutorial review discusses the factors that determine the outcome of a SERS experiment in complex bioorganic samples. They are related to the SERS process itself, the possibility to selectively probe certain regions or constituents of a sample, and the retrieval of the vibrational information in order to identify molecules and their interaction. After introducing basic aspects of SERS experiments in the context of biocompatible environments, spectroscopy in typical microscopic settings is exemplified, including the possibilities to combine SERS with other linear and non-linear microscopic tools, and to exploit approaches that improve lateral and temporal resolution. In particular the great variation of data in a SERS experiment calls for robust data analysis tools. Approaches will be introduced that have been originally developed in the field of bioinformatics for the application to omics data and that show specific potential in the analysis of SERS data. They include the use of simulated data and machine learning tools that can yield chemical information beyond achieving spectral classification.
Collapse
Affiliation(s)
- Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Stephan Seifert
- Hamburg School of Food Science, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Florian Gärber
- Hamburg School of Food Science, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Wossnig L, Furtmann N, Buchanan A, Kumar S, Greiff V. Best practices for machine learning in antibody discovery and development. Drug Discov Today 2024; 29:104025. [PMID: 38762089 DOI: 10.1016/j.drudis.2024.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
In the past 40 years, therapeutic antibody discovery and development have advanced considerably, with machine learning (ML) offering a promising way to speed up the process by reducing costs and the number of experiments required. Recent progress in ML-guided antibody design and development (D&D) has been hindered by the diversity of data sets and evaluation methods, which makes it difficult to conduct comparisons and assess utility. Establishing standards and guidelines will be crucial for the wider adoption of ML and the advancement of the field. This perspective critically reviews current practices, highlights common pitfalls and proposes method development and evaluation guidelines for various ML-based techniques in therapeutic antibody D&D. Addressing challenges across the ML process, best practices are recommended for each stage to enhance reproducibility and progress.
Collapse
Affiliation(s)
- Leonard Wossnig
- LabGenius Ltd, The Biscuit Factory, 100 Drummond Road, London SE16 4DG, UK; Department of Computer Science, University College London, 66-72 Gower St, London WC1E 6EA, UK.
| | - Norbert Furtmann
- R&D Large Molecules Research Platform, Sanofi Deutschland GmbH, Industriepark Höchst, Frankfurt Am Main, Germany
| | - Andrew Buchanan
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Sandeep Kumar
- Computational Protein Design and Modeling Group, Computational Science, Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Gupta P, O’Neill H, Wolvetang E, Chatterjee A, Gupta I. Advances in single-cell long-read sequencing technologies. NAR Genom Bioinform 2024; 6:lqae047. [PMID: 38774511 PMCID: PMC11106032 DOI: 10.1093/nargab/lqae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
With an increase in accuracy and throughput of long-read sequencing technologies, they are rapidly being assimilated into the single-cell sequencing pipelines. For transcriptome sequencing, these techniques provide RNA isoform-level information in addition to the gene expression profiles. Long-read sequencing technologies not only help in uncovering complex patterns of cell-type specific splicing, but also offer unprecedented insights into the origin of cellular complexity and thus potentially new avenues for drug development. Additionally, single-cell long-read DNA sequencing enables high-quality assemblies, structural variant detection, haplotype phasing, resolving high-complexity regions, and characterization of epigenetic modifications. Given that significant progress has primarily occurred in single-cell RNA isoform sequencing (scRiso-seq), this review will delve into these advancements in depth and highlight the practical considerations and operational challenges, particularly pertaining to downstream analysis. We also aim to offer a concise introduction to complementary technologies for single-cell sequencing of the genome, epigenome and epitranscriptome. We conclude by identifying certain key areas of innovation that may drive these technologies further and foster more widespread application in biomedical science.
Collapse
Affiliation(s)
- Pallavi Gupta
- University of Queensland – IIT Delhi Research Academy, Hauz Khas, New Delhi 110016, India
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hannah O’Neill
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ernst J Wolvetang
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Vu MH, Robert PA, Akbar R, Swiatczak B, Sandve GK, Haug DTT, Greiff V. Linguistics-based formalization of the antibody language as a basis for antibody language models. NATURE COMPUTATIONAL SCIENCE 2024; 4:412-422. [PMID: 38877120 DOI: 10.1038/s43588-024-00642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Apparent parallels between natural language and antibody sequences have led to a surge in deep language models applied to antibody sequences for predicting cognate antigen recognition. However, a linguistic formal definition of antibody language does not exist, and insight into how antibody language models capture antibody-specific binding features remains largely uninterpretable. Here we describe how a linguistic formalization of the antibody language, by characterizing its tokens and grammar, could address current challenges in antibody language model rule mining.
Collapse
Affiliation(s)
- Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway.
| | - Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, Hefei, China
| | | | | | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
8
|
Brooks TG, Lahens NF, Mrčela A, Grant GR. Challenges and best practices in omics benchmarking. Nat Rev Genet 2024; 25:326-339. [PMID: 38216661 DOI: 10.1038/s41576-023-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Technological advances enabling massively parallel measurement of biological features - such as microarrays, high-throughput sequencing and mass spectrometry - have ushered in the omics era, now in its third decade. The resulting complex landscape of analytical methods has naturally fostered the growth of an omics benchmarking industry. Benchmarking refers to the process of objectively comparing and evaluating the performance of different computational or analytical techniques when processing and analysing large-scale biological data sets, such as transcriptomics, proteomics and metabolomics. With thousands of omics benchmarking studies published over the past 25 years, the field has matured to the point where the foundations of benchmarking have been established and well described. However, generating meaningful benchmarking data and properly evaluating performance in this complex domain remains challenging. In this Review, we highlight some common oversights and pitfalls in omics benchmarking. We also establish a methodology to bring the issues that can be addressed into focus and to be transparent about those that cannot: this takes the form of a spreadsheet template of guidelines for comprehensive reporting, intended to accompany publications. In addition, a survey of recent developments in benchmarking is provided as well as specific guidance for commonly encountered difficulties.
Collapse
Affiliation(s)
- Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Brooks TG, Lahens NF, Mrčela A, Sarantopoulou D, Nayak S, Naik A, Sengupta S, Choi PS, Grant GR. BEERS2: RNA-Seq simulation through high fidelity in silico modeling. Brief Bioinform 2024; 25:bbae164. [PMID: 38605641 PMCID: PMC11009461 DOI: 10.1093/bib/bbae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/26/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully length messenger RNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in polymerase chain reaction (PCR) amplification, barcode read errors and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.
Collapse
Affiliation(s)
- Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Current address: National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Soumyashant Nayak
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Current address: Statistics and Mathematics Unit, Indian Statistical Institute, Bengaluru, Karnataka, India
| | - Amruta Naik
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shaon Sengupta
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter S Choi
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Balashova D, van Schaik BDC, Stratigopoulou M, Guikema JEJ, Caniels TG, Claireaux M, van Gils MJ, Musters A, Anang DC, de Vries N, Greiff V, van Kampen AHC. Systematic evaluation of B-cell clonal family inference approaches. BMC Immunol 2024; 25:13. [PMID: 38331731 PMCID: PMC11370117 DOI: 10.1186/s12865-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to understand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the generation of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain (HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropriate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruction without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were compared to each other and to a method that groups sequences based on identical junction sequences and another method that only determines subclones. We found that after accounting for data set variability, in particular sequencing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, including the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance of choosing an appropriate method.
Collapse
Affiliation(s)
- Daria Balashova
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Barbera D C van Schaik
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Stratigopoulou
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Pathology, Lymphoma and Myeloma Center Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Tom G Caniels
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Anne Musters
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Dornatien C Anang
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Niek de Vries
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Antoine H C van Kampen
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Brooks TG, Lahens NF, Mrčela A, Sarantopoulou D, Nayak S, Naik A, Sengupta S, Choi PS, Grant GR. BEERS2: RNA-Seq simulation through high fidelity in silico modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537847. [PMID: 37162982 PMCID: PMC10168222 DOI: 10.1101/2023.04.21.537847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking, and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully-length mRNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM, or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in PCR amplification, barcode read errors, and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.
Collapse
Affiliation(s)
- Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Current address: National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Soumyashant Nayak
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Current address: Statistics and Mathematics Unit, Indian Statistical Institute, Bengaluru, Karnataka, India
| | - Amruta Naik
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shaon Sengupta
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter S Choi
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Al Hajj GS, Pensar J, Sandve GK. DagSim: Combining DAG-based model structure with unconstrained data types and relations for flexible, transparent, and modularized data simulation. PLoS One 2023; 18:e0284443. [PMID: 37058511 PMCID: PMC10104342 DOI: 10.1371/journal.pone.0284443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Data simulation is fundamental for machine learning and causal inference, as it allows exploration of scenarios and assessment of methods in settings with full control of ground truth. Directed acyclic graphs (DAGs) are well established for encoding the dependence structure over a collection of variables in both inference and simulation settings. However, while modern machine learning is applied to data of an increasingly complex nature, DAG-based simulation frameworks are still confined to settings with relatively simple variable types and functional forms. We here present DagSim, a Python-based framework for DAG-based data simulation without any constraints on variable types or functional relations. A succinct YAML format for defining the simulation model structure promotes transparency, while separate user-provided functions for generating each variable based on its parents ensure simulation code modularization. We illustrate the capabilities of DagSim through use cases where metadata variables control shapes in an image and patterns in bio-sequences. DagSim is available as a Python package at PyPI. Source code and documentation are available at: https://github.com/uio-bmi/dagsim.
Collapse
Affiliation(s)
| | - Johan Pensar
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Fernández-Quintero ML, Ljungars A, Waibl F, Greiff V, Andersen JT, Gjølberg TT, Jenkins TP, Voldborg BG, Grav LM, Kumar S, Georges G, Kettenberger H, Liedl KR, Tessier PM, McCafferty J, Laustsen AH. Assessing developability early in the discovery process for novel biologics. MAbs 2023; 15:2171248. [PMID: 36823021 PMCID: PMC9980699 DOI: 10.1080/19420862.2023.2171248] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter M. Tessier
- Department of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCafferty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Babraham Research Campus, Cambridge, UK
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Kanduri C, Scheffer L, Pavlović M, Rand KD, Chernigovskaya M, Pirvandy O, Yaari G, Greiff V, Sandve GK. simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods. Gigascience 2022; 12:giad074. [PMID: 37848619 PMCID: PMC10580376 DOI: 10.1093/gigascience/giad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. RESULTS We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of receptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior assumptions regarding the similarity or commonality of immune state-associated sequences that will be used as true signals. We demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on simAIRR-generated and real-world experimental AIRR datasets. CONCLUSIONS This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.
Collapse
Affiliation(s)
- Chakravarthi Kanduri
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Lonneke Scheffer
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Knut Dagestad Rand
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Oz Pirvandy
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Geir K Sandve
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
15
|
Robert PA, Akbar R, Frank R, Pavlović M, Widrich M, Snapkov I, Slabodkin A, Chernigovskaya M, Scheffer L, Smorodina E, Rawat P, Mehta BB, Vu MH, Mathisen IF, Prósz A, Abram K, Olar A, Miho E, Haug DTT, Lund-Johansen F, Hochreiter S, Haff IH, Klambauer G, Sandve GK, Greiff V. Unconstrained generation of synthetic antibody-antigen structures to guide machine learning methodology for antibody specificity prediction. NATURE COMPUTATIONAL SCIENCE 2022; 2:845-865. [PMID: 38177393 DOI: 10.1038/s43588-022-00372-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2022] [Indexed: 01/06/2024]
Abstract
Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody-antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.
Collapse
Affiliation(s)
- Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Robert Frank
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Michael Widrich
- ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
| | - Igor Snapkov
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Andrei Slabodkin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway
| | | | - Aurél Prósz
- Danish Cancer Society Research Center, Translational Cancer Genomics, Copenhagen, Denmark
| | - Krzysztof Abram
- The Novo Nordisk Foundation Center for Biosustainability, Autoflow, DTU Biosustain and IT University of Copenhagen, Copenhagen, Denmark
| | - Alex Olar
- Department of Complex Systems in Physics, Eötvös Loránd University, Budapest, Hungary
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- aiNET GmbH, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Sepp Hochreiter
- ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
- Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria
| | | | - Günter Klambauer
- ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Linz, Austria
| | | | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|