1
|
Espinosa E, Bautista R, Larrosa R, Plata O. Advancements in long-read genome sequencing technologies and algorithms. Genomics 2024; 116:110842. [PMID: 38608738 DOI: 10.1016/j.ygeno.2024.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
The recent advent of long read sequencing technologies, such as Pacific Biosciences (PacBio) and Oxford Nanopore technology (ONT), have led to substantial improvements in accuracy and computational cost in sequencing genomes. However, de novo whole-genome assembly still presents significant challenges related to the quality of the results. Pursuing de novo whole-genome assembly remains a formidable challenge, underscored by intricate considerations surrounding computational demands and result quality. As sequencing accuracy and throughput steadily advance, a continuous stream of innovative assembly tools floods the field. Navigating this dynamic landscape necessitates a reasonable choice of sequencing platform, depth, and assembly tools to orchestrate high-quality genome reconstructions. This comprehensive review delves into the intricate interplay between cutting-edge long read sequencing technologies, assembly methodologies, and the ever-evolving field of genomics. With a focus on addressing the pivotal challenges and harnessing the opportunities presented by these advancements, we provide an in-depth exploration of the crucial factors influencing the selection of optimal strategies for achieving robust and insightful genome assemblies.
Collapse
Affiliation(s)
- Elena Espinosa
- Department of Computer Architecture, University of Malaga, Louis Pasteur, 35, Campus de Teatinos, Malaga 29071, Spain.
| | - Rocio Bautista
- Supercomputing and Bioinnovation Center, University of Malaga, C. Severo Ochoa, 34, Malaga 29590, Spain.
| | - Rafael Larrosa
- Department of Computer Architecture, University of Malaga, Louis Pasteur, 35, Campus de Teatinos, Malaga 29071, Spain; Supercomputing and Bioinnovation Center, University of Malaga, C. Severo Ochoa, 34, Malaga 29590, Spain.
| | - Oscar Plata
- Department of Computer Architecture, University of Malaga, Louis Pasteur, 35, Campus de Teatinos, Malaga 29071, Spain.
| |
Collapse
|
2
|
Zhang TT, Yan CL, Qiao JX, Yang AS, Liu ML, Kou YX, Li ZH. Demographic dynamics and molecular evolution of the rare and endangered subsect. Gerardianae of Pinus: insights from chloroplast genomes and mitochondrial DNA markers. PLANTA 2024; 259:45. [PMID: 38281265 DOI: 10.1007/s00425-023-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chun-Li Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jin-Xia Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ao-Shuang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yi-Xuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
3
|
Xie F, Zhao S, Zhan X, Zhou Y, Li Y, Zhu W, Pope PB, Attwood GT, Jin W, Mao S. Unraveling the phylogenomic diversity of Methanomassiliicoccales and implications for mitigating ruminant methane emissions. Genome Biol 2024; 25:32. [PMID: 38263062 PMCID: PMC10804542 DOI: 10.1186/s13059-024-03167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Methanomassiliicoccales are a recently identified order of methanogens that are diverse across global environments particularly the gastrointestinal tracts of animals; however, their metabolic capacities are defined via a limited number of cultured strains. RESULTS Here, we profile and analyze 243 Methanomassiliicoccales genomes assembled from cultured representatives and uncultured metagenomes recovered from various biomes, including the gastrointestinal tracts of different animal species. Our analyses reveal the presence of numerous undefined genera and genetic variability in metabolic capabilities within Methanomassiliicoccales lineages, which is essential for adaptation to their ecological niches. In particular, gastrointestinal tract Methanomassiliicoccales demonstrate the presence of co-diversified members with their hosts over evolutionary timescales and likely originated in the natural environment. We highlight the presence of diverse clades of vitamin transporter BtuC proteins that distinguish Methanomassiliicoccales from other archaeal orders and likely provide a competitive advantage in efficiently handling B12. Furthermore, genome-centric metatranscriptomic analysis of ruminants with varying methane yields reveal elevated expression of select Methanomassiliicoccales genera in low methane animals and suggest that B12 exchanges could enable them to occupy ecological niches that possibly alter the direction of H2 utilization. CONCLUSIONS We provide a comprehensive and updated account of divergent Methanomassiliicoccales lineages, drawing from numerous uncultured genomes obtained from various habitats. We also highlight their unique metabolic capabilities involving B12, which could serve as promising targets for mitigating ruminant methane emissions by altering H2 flow.
Collapse
Affiliation(s)
- Fei Xie
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengwei Zhao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiu Zhan
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Zhou
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yin Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Yang Y, Leng H, Fan Q, Xiao X, Zhao W. Thermococcus thermotolerans sp. nov., a hyperthermophilic archaeon isolated from a chimney in the Southwest Indian Ocean. Int J Syst Evol Microbiol 2023; 73. [PMID: 38038219 DOI: 10.1099/ijsem.0.005934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
An anaerobic hyperthermophilic archaeon was isolated from a black smoker chimney with a snail attachment at a water depth of 2 739 m in the Southwest Indian Ocean. The sample was taken from the chimney exterior wall. The enrichment was conducted under a continuous culture with temperature fluctuation of 80-130 °C over 24 h for 42 days at 28 MPa. The isolation was performed at 90 °C at 0.1 MPa. Cells of the isolated strain 813A4T were irregular cocci. Strain 813A4T grew at 60-94 °C (optimal growth at 85 °C) at 0.1 MPa, and growth was detected at up to 99 °C at 28 MPa. At 85 °C, the strain was able to grow at pressures ranging from 0.1 to 110 MPa (optimal pressure, 0.1-40 MPa). At 85 °C, the cells of 813A4T grew at pH 5.5-9 (optimal, pH 7.0) and a NaCl concentration of 1.0-4.0 % (w/v; optimum concentration, 2.5 % NaCl). Strain 813A4T utilized yeast extract, tryptone and peptone as single carbon sources for growth. Elemental sulphur stimulated its growth. The G+C content of the complete genome was 53.48 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 813A4T belonged to the genus Thermococcus, with the highest sequence similarity to Thermococcus barossii SHCK-94T (99.73 %). The average nucleotide identity between strains 813A4T and SHCK-94T was 82.56 %. All these data indicated that strain 813A4T should be classified as representing a novel species of the genus Thermococcus, for which Thermococcus thermotolerans sp. nov. is proposed. The type strain is 813A4T (=JCM 39367T=MCCC M28628T).
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- International Center for Deep Life Investigation, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hao Leng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- International Center for Deep Life Investigation, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qilian Fan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- International Center for Deep Life Investigation, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- International Center for Deep Life Investigation, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, PR China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- International Center for Deep Life Investigation, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Yongyou Industrial Park, Sanya, 572024, PR China
| |
Collapse
|
5
|
Amses K, Desiró A, Bryson A, Grigoriev I, Mondo S, Lipzen A, LaButti K, Riley R, Singan V, Salazar-Hamm P, King J, Ballou E, Pawlowska T, Adeleke R, Bonito G, Uehling J. Convergent reductive evolution and host adaptation in Mycoavidus bacterial endosymbionts of Mortierellaceae fungi. Fungal Genet Biol 2023; 169:103838. [PMID: 37716699 DOI: 10.1016/j.fgb.2023.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but others are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape, and commonalities of eukaryotic endosymbiont genome evolution.
Collapse
Affiliation(s)
- Kevin Amses
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333, USA
| | - Alessandro Desiró
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824, USA
| | - Abigail Bryson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824, USA
| | - Igor Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Stephen Mondo
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vasanth Singan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paris Salazar-Hamm
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333, USA
| | - Jason King
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth Ballou
- School of Biosciences, University of Sheffield, Western Bank S10 2TN, UK
| | - Teresa Pawlowska
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - Rasheed Adeleke
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904, USA; Unit for Environmental Sciences and Management, North-West University, Potchefstroom, Private bag X6001, 2520, South Africa
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824, USA
| | - Jessie Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333, USA.
| |
Collapse
|
6
|
Sharma A, Kaur E, Joshi R, Kumari P, Khatri A, Swarnkar MK, Kumar D, Acharya V, Nadda G. Systematic analyses with genomic and metabolomic insights reveal a new species, Ophiocordyceps indica sp. nov. from treeline area of Indian Western Himalayan region. Front Microbiol 2023; 14:1188649. [PMID: 37547690 PMCID: PMC10399244 DOI: 10.3389/fmicb.2023.1188649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 μg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.
Collapse
Affiliation(s)
- Aakriti Sharma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ekjot Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Gireesh Nadda
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Leng H, Wang Y, Zhao W, Sievert SM, Xiao X. Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution. Nat Commun 2023; 14:4354. [PMID: 37468486 DOI: 10.1038/s41467-023-39960-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
It has been proposed that early bacteria, or even the last universal common ancestor of all cells, were thermophilic. However, research on the origin and evolution of thermophily is hampered by the difficulties associated with the isolation of deep-branching thermophilic microorganisms in pure culture. Here, we isolate a deep-branching thermophilic bacterium from a deep-sea hydrothermal vent, using a two-step cultivation strategy ("Subtraction-Suboptimal", StS) designed to isolate rare organisms. The bacterium, which we name Zhurongbacter thermophilus 3DAC, is a sulfur-reducing heterotroph that is phylogenetically related to Coprothermobacterota and other thermophilic bacterial groups, forming a clade that seems to represent a major, early-diverging bacterial lineage. The ancestor of this clade might be a thermophilic, strictly anaerobic, motile, hydrogen-dependent, and mixotrophic bacterium. Thus, our study provides insights into the early evolution of thermophilic bacteria.
Collapse
Affiliation(s)
- Hao Leng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Weishu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- International Center for Deep Life Investigation (IC-DLI), Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China.
| |
Collapse
|
8
|
Ganbat D, Oh D, Lee YJ, Lee DW, Kim SB, Chi WJ, Lee KE, Lee BH, Jung YJ, Lee JS, Lee SJ. Description of Brachybacterium sillae sp. nov., a thermophilic bacterium isolated from a hot spring. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01842-z. [PMID: 37227603 DOI: 10.1007/s10482-023-01842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
The taxonomic position of strain EF45031T, isolated from the Neungam Carbonate hot spring, was examined using the polyphasic taxonomic approach. Strain EF45031T shared the highest percentage of 16S rRNA gene sequence with Brachybacterium nesterenkovii CIP 104813 T (97.7%). The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values between strain EF45031T and the type strains B. nesterenkovii CIP 104813 T and B. phenoliresistens Phenol-AT were 77.0%, 69.15%, 21.9% and 75.73%, 68.81%, 20.5%, respectively. Phylogenomic analysis using an up-to-date bacterial core gene (UBCG) set revealed that strain EF45031T belonged to the genus Brachybacterium. Growth occurred between 25 and 50 ℃ at pH 6.0-9.0 and could tolerate salinity up to 5% (w/v). Strain had anteiso-C15:0 and anteiso-C17:0 as major fatty acids. Menaquinone-7 (MK-7) was the predominant respiratory menaquinone. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, three aminolipids, and two unidentified glycolipids. The cell-wall peptidoglycan contained meso-diaminopimelic acid as a diagnostic diamino acid. The genome comprised 2,663,796 bp, with a G + C content of 70.9%. Stress-responsive periplasmic chaperone/protease coding genes were identified in the genome of EF45031T and were not detected in other Brachybacterium species. The polyphasic taxonomic properties indicate that the strain represents a novel species within the genus Brachybacterium, for which the name Brachybacterium sillae sp. nov. is proposed. The type strain is EF45031T (= KCTC 49702 T = NBRC 115869 T).
Collapse
Affiliation(s)
- Dariimaa Ganbat
- Major in Food Biotechnology and Research Center for Extremophiles and Marine Microbiology, Silla University, Busan, 46958, South Korea
| | - DoKyung Oh
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Yong-Jik Lee
- Department of Bio-Cosmetics, Seowon University, Chung-Ju, 28674, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, 03722, South Korea
| | - Won-Jae Chi
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Byoung-Hee Lee
- Biological Resources Research Department, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Jung-Sook Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Korean Collection for Type Cultures, Jeongeup, 56212, South Korea
| | - Sang-Jae Lee
- Major in Food Biotechnology and Research Center for Extremophiles and Marine Microbiology, Silla University, Busan, 46958, South Korea.
| |
Collapse
|
9
|
Xiao D, Li W, Li T, Zhou J, Zhang M, Chen X, Zhang L, Yue Q, Dun B, Wang C, Xu Y. Mass Spectrometry-Guided Discovery of Multi- N-Methylated Cyclodecapeptides Auyuittuqamides E-H from Sesquicillium sp. QL0466. JOURNAL OF NATURAL PRODUCTS 2023; 86:1240-1250. [PMID: 37145877 DOI: 10.1021/acs.jnatprod.2c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mass spectrometry-based dereplication and prioritization led to the discovery of four multi-N-methylated cyclodecapeptides, auyuittuqamides E-H (1-4), from a soil-derived Sesquicillium sp. The planar structures of these compounds were elucidated based on analysis of HRESIMS and NMR data. Absolute configurations of the chiral amino acid residues were assigned by a combination of the advanced Marfey's method, chiral-phase LC-MS analysis, and J-based configuration analysis, revealing that 1-4 contain both d- and l-isomers of N-methylleucine (MeLeu). Differentiation of d- and l-MeLeu in the sequence was achieved by advanced Marfey's analysis of the diagnostic peptide fragments generated from partial hydrolysis of 1. Bioinformatic analysis identified a putative biosynthetic gene cluster (auy) for auyuittuqamides E-H, and a plausible biosynthetic pathway was proposed. These newly identified fungal cyclodecapeptides (1-4) displayed in vitro growth inhibitory activity against vancomycin-resistant Enterococcus faecium with MIC values of 8 μg/mL.
Collapse
Affiliation(s)
- Dongliang Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Wenhua Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Tianyi Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Jianshuang Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Mei Zhang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), 7 Fengxian Central Road, Beijing 100094, People's Republic of China
| | - Xinqi Chen
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), 7 Fengxian Central Road, Beijing 100094, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| |
Collapse
|
10
|
Han K, Li Y, Zhang Z, Sun L, Wang ET, Li Y. Comparative genome analysis of Sesbania cannabina-nodulating Rhizobium spp. revealing the symbiotic and transferrable characteristics of symbiosis plasmids. Microb Genom 2023; 9. [PMID: 37133904 DOI: 10.1099/mgen.0.001004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Symbiotic nitrogen fixation between legumes and rhizobia makes a great contribution to the terrestrial ecosystem. The successful symbiosis between the partners mainly depends on the nod and nif genes in rhizobia, while the specific symbiosis is mainly determined by the structure of Nod factors and the corresponding secretion systems (type III secretion system; T3SS), etc. These symbiosis genes are usually located on symbiotic plasmids or a chromosomal symbiotic island, both could be transferred interspecies. In our previous studies, Sesbania cannabina-nodulating rhizobia across the world were classified into 16 species of four genera and all the strains, especially those of Rhizobium spp., harboured extraordinarily highly conserved symbiosis genes, suggesting that horizontal transfer of symbiosis genes might have happened among them. In order to learn the genomic basis of diversification of rhizobia under the selection of host specificity, we performed this study to compare the complete genome sequences of four Rhizobium strains associated with S. cannabina, YTUBH007, YTUZZ027, YTUHZ044 and YTUHZ045. Their complete genomes were sequenced and assembled at the replicon level. Each strain represents a different species according to the average nucleotide identity (ANI) values calculated using the whole-genome sequences; furthermore, except for YTUBH007, which was classified as Rhizobium binae, the remaining three strains were identified as new candidate species. A single symbiotic plasmid sized 345-402 kb containing complete nod, nif, fix, T3SS and conjugal transfer genes was detected in each strain. The high ANI and amino acid identity (AAI) values, as well as the close phylogenetic relationships among the entire symbiotic plasmid sequences, indicate that they have the same origin and the entire plasmid has been transferred among different Rhizobium species. These results indicate that S. cannabina stringently selects a certain symbiosis gene background of the rhizobia for nodulation, which might have forced the symbiosis genes to transfer from some introduced rhizobia to the related native or local-condition-adapted bacteria. The existence of almost complete conjugal transfer related elements, but not the gene virD, indicated that the self-transfer of the symbiotic plasmid in these rhizobial strains may be realized via a virD-independent pathway or through another unidentified gene. This study provides insight for the better understanding of high-frequency symbiotic plasmid transfer, host-specific nodulation and the host shift for rhizobia.
Collapse
Affiliation(s)
- Kunming Han
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Zhenpeng Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, PR China
| | - Liqin Sun
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Yan Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| |
Collapse
|
11
|
Xiong W, Peng W, Fu Y, Deng Z, Lin S, Liang R. Identification of a 17β-estradiol-degrading Microbacterium hominis SJTG1 with high adaptability and characterization of the genes for estrogen degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130371. [PMID: 36423453 DOI: 10.1016/j.jhazmat.2022.130371] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Environmental estrogen contamination poses severe threat to wildlife and human. Biodegradation is an efficient strategy to remove the wide-spread natural estrogen, while strains suitable for hostile environments and fit for practical application are rare. In this work, Microbacterium hominis SJTG1 was isolated and identified with high degrading efficiency for 17β-estradiol (E2) and great environment fitness. It could degrade nearly 100% of 10 mg/L E2 in minimal medium in 6 days, and remove 93% of 1 mg/L E2 and 74% of 10 mg/L E2 in the simulated E2-polluted solid soil in 10 days. It maintained stable E2-degrading efficiency in various harsh conditions like non-neutral pH, high salinity, stress of heavy metals and surfactants. Genome mining and comparative genome analysis revealed that there are multiple genes potentially associated with steroid degradation in strain SJTG1. One 3β/17β-hydroxysteroid dehydrogenase HSD-G129 induced by E2 catalyzed the 3β/17β-dehydrogenation of E2 and other steroids efficiently. The transcription of hsd-G129 gene was negatively regulated by the adjacent LysR-type transcriptional regulator LysR-G128, through specific binding to the conserved site. E2 can release this binding and initiate the degradation process. This work provides an efficient and adaptive E2-degrading strain and promotes the biodegrading mechanism study and actual remediation application.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yali Fu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
12
|
Li HF, Tian L, Lian G, Fan LH, Li ZJ. Engineering Vibrio alginolyticus as a novel chassis for PHB production from starch. Front Bioeng Biotechnol 2023; 11:1130368. [PMID: 36824353 PMCID: PMC9941669 DOI: 10.3389/fbioe.2023.1130368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Vibrio alginolyticus LHF01 was engineered to efficiently produce poly-3-hydroxybutyrate (PHB) from starch in this study. Firstly, the ability of Vibrio alginolyticus LHF01 to directly accumulate PHB using soluble starch as the carbon source was explored, and the highest PHB titer of 2.06 g/L was obtained in 18 h shake flask cultivation. Then, with the analysis of genomic information of V. alginolyticus LHF01, the PHB synthesis operon and amylase genes were identified. Subsequently, the effects of overexpressing PHB synthesis operon and amylase on PHB production were studied. Especially, with the co-expression of PHB synthesis operon and amylase, the starch consumption rate was improved and the PHB titer was more than doubled. The addition of 20 g/L insoluble corn starch could be exhausted in 6-7 h cultivation, and the PHB titer was 4.32 g/L. To the best of our knowledge, V. alginolyticus was firstly engineered to produce PHB with the direct utilization of starch, and this stain can be considered as a novel host to produce PHB using starch as the raw material.
Collapse
Affiliation(s)
- Hong-Fei Li
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,Qingyuan Innovation Laboratory, Quanzhou, China
| | - Linyue Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Guoli Lian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,Qingyuan Innovation Laboratory, Quanzhou, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| | - Zheng-Jun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| |
Collapse
|
13
|
Gladman N, Goodwin S, Chougule K, Richard McCombie W, Ware D. Era of gapless plant genomes: innovations in sequencing and mapping technologies revolutionize genomics and breeding. Curr Opin Biotechnol 2023; 79:102886. [PMID: 36640454 PMCID: PMC9899316 DOI: 10.1016/j.copbio.2022.102886] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Whole-genome sequencing and assembly have revolutionized plant genetics and molecular biology over the last two decades. However, significant shortcomings in first- and second-generation technology resulted in imperfect reference genomes: numerous and large gaps of low quality or undeterminable sequence in areas of highly repetitive DNA along with limited chromosomal phasing restricted the ability of researchers to characterize regulatory noncoding elements and genic regions that underwent recent duplication events. Recently, advances in long-read sequencing have resulted in the first gapless, telomere-to-telomere (T2T) assemblies of plant genomes. This leap forward has the potential to increase the speed and confidence of genomics and molecular experimentation while reducing costs for the research community.
Collapse
Affiliation(s)
- Nicholas Gladman
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA; Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA
| | | | - Doreen Ware
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA; Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 , USA.
| |
Collapse
|
14
|
Ganbat D, Jeong GE, Oh D, Lee DW, Lee YJ, Kim SB, Cha IT, Chi WJ, Park SK, Lee JS, Lee SJ. Description of Microbacterium neungamense sp. nov. isolated from a hot spring. Arch Microbiol 2022; 205:23. [PMID: 36509934 DOI: 10.1007/s00203-022-03343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
The Gram-positive, nonmotile, rod-shaped bacterium EF45044T was isolated from a hot spring in Chungju, South Korea. The strain was able to grow at concentrations of 0‒5% (w/v) NaCl, at pH 6.0‒10.0 and in the temperature range of 18‒50 °C. Strain EF45044T showed the highest 16S rRNA gene sequence similarity (98.2%) with Microbacterium ketosireducens DSM 12510T, and the digital DNA‒DNA hybridization (dDDH), average amino acid identity (AAI), and average nucleotide identity (ANI) values were all lower than the accepted species threshold. Strain EF45044T contained MK‒12 and MK‒13 as the predominant respiratory quinones and anteiso‒C17:0, anteiso‒C15:0, and iso‒C16:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, and glycolipid were detected as the major polar lipids. The cell-wall peptidoglycan contained ornithine. The DNA G + C content was 71.4 mol%. Based on the polyphasic data, strain EF45044T (= KCTC 49703T) presents a novel species of the genus Microbacterium, for which the name Microbacterium neungamense sp. nov. is proposed.
Collapse
Affiliation(s)
- Dariimaa Ganbat
- Major in Food Biotechnology and Research Center for Extremophiles and Marine Microbiology, Silla University, Busan, 46958, South Korea
| | - Ga Eul Jeong
- Library of Marine Samples, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, South Korea
| | - DoKyung Oh
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Jik Lee
- Department of Bio-Cosmetics, Seowon University, Chung-Ju, 28674, South Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul, 03722, South Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Won-Jae Chi
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, South Korea.
| | - Sang-Jae Lee
- Major in Food Biotechnology and Research Center for Extremophiles and Marine Microbiology, Silla University, Busan, 46958, South Korea.
| |
Collapse
|
15
|
Zhou T, Ning K, Mo Z, Zhang F, Zhou Y, Chong X, Zhang D, El-Kassaby YA, Bian J, Chen H. Complete chloroplast genome of Ilex dabieshanensis: Genome structure, comparative analyses with three traditional Ilex tea species, and its phylogenetic relationships within the family Aquifoliaceae. PLoS One 2022; 17:e0268679. [PMID: 35588136 PMCID: PMC9119449 DOI: 10.1371/journal.pone.0268679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ilex dabieshanensis K. Yao & M. B. Deng is not only a highly valued tree species for landscaping, it is also a good material for making kuding tea due to its anti-inflammatory and lipid-lowering medicinal properties. Utilizing next-generation and long-read sequencing technologies, we assembled the whole chloroplast genome of I. dabieshanensis. The genome was 157,218 bp in length, exhibiting a typical quadripartite structure with a large single copy (LSC: 86,607 bp), a small single copy (SSC: 18,427 bp) and a pair of inverted repeat regions (IRA and IRB: each of 26,092 bp). A total of 121 predicted genes were encoded, including 113 distinctive (79 protein-coding genes, 30 tRNAs, and 4 rRNAs) and 8 duplicated (8 protein-coding genes) located in the IR regions. Overall, 132 SSRs and 43 long repeats were detected and could be used as potential molecular markers. Comparative analyses of four traditional Ilex tea species (I. dabieshanensis, I. paraguariensis, I. latifolia and I. cornuta) revealed seven divergent regions: matK-rps16, trnS-psbZ, trnT-trnL, atpB-rbcL, petB-petD, rpl14-rpl16, and rpl32-trnL. These variations might be applicable for distinguishing different species within the genus Ilex. Phylogenetic reconstruction strongly suggested that I. dabieshanensis formed a sister clade to I. cornuta and also showed a close relationship to I. latifolia. The generated chloroplast genome information in our study is significant for Ilex tea germplasm identification, phylogeny and genetic improvement.
Collapse
Affiliation(s)
- Ting Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Kun Ning
- College of Horticulture, Jinling Institute of Technology, Nanjing City, Jiangsu Province, P.R. China
| | - Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Yanwei Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Xinran Chong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA, United States of America
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jian Bian
- Jiangsu Yufeng Tourism Development Co. Ltd., Yancheng, China
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- * E-mail:
| |
Collapse
|
16
|
Langille BL, Tierney SM, Bertozzi T, Beasley-Hall PG, Bradford TM, Fagan-Jeffries EP, Hyde J, Leijs R, Richardson M, Saint KM, Stringer DN, Villastrigo A, Humphreys WF, Austin AD, Cooper SJB. Parallel decay of vision genes in subterranean water beetles. Mol Phylogenet Evol 2022; 173:107522. [PMID: 35595008 DOI: 10.1016/j.ympev.2022.107522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.
Collapse
Affiliation(s)
- Barbara L Langille
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia.
| | - Simon M Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Perry G Beasley-Hall
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Tessa M Bradford
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Erinn P Fagan-Jeffries
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Josephine Hyde
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Western Australia Department of Biodiversity Conservation and Attractions, Kensington, WA 6151, Australia
| | - Remko Leijs
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Matthew Richardson
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Kathleen M Saint
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Danielle N Stringer
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Adrián Villastrigo
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia; Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta, 37-49, 08003, Spain
| | - William F Humphreys
- Western Australian Museum, Locked Bag 40, Welshpool DC, WA 6986, Australia; School of Animal Biology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
17
|
Wang FF, Liu GP, Zhang F, Li ZM, Yang XL, Yang CD, Shen JL, He JZ, Li BL, Zeng JG. Natural selenium stress influences the changes of antibiotic resistome in seleniferous forest soils. ENVIRONMENTAL MICROBIOME 2022; 17:26. [PMID: 35570296 PMCID: PMC9107767 DOI: 10.1186/s40793-022-00419-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/28/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Metal(loid)s can promote the spread and enrichment of antibiotic resistance genes (ARGs) in the environment through a co-selection effect. However, it remains unclear whether exposure of microorganisms to varying concentrations of selenium (Se), an essential but potentially deleterious metal(loid) to living organisms, can influence the migration and distribution of ARGs in forest soils. RESULTS Precisely 235 ARGs conferring resistance to seven classes of antibiotics were detected along a Se gradient (0.06-20.65 mg kg-1) across 24 forest soils. (flor)/(chlor)/(am)phenicol resistance genes were the most abundant in all samples. The total abundance of ARGs first increased and then decreased with an elevated available Se content threshold of 0.034 mg kg-1 (P = 2E-05). A structural equation model revealed that the dominant mechanism through which Se indirectly influences the vertical migration of ARGs is by regulating the abundance of the bacterial community. In addition, the methylation of Se (mediated by tehB) and the repairing of DNA damages (mediated by ruvB and recG) were the dominant mechanisms involved in Se resistance in the forest soils. The co-occurrence network analysis revealed a significant correlated cluster between Se-resistance genes, MGEs and ARGs, suggesting the co-transfer potential. Lelliottia amnigena YTB01 isolated from the soil was able to tolerate 50 μg mL-1 ampicillin and 1000 mg kg-1 sodium selenite, and harbored both Se resistant genes and ARGs in the genome. CONCLUSIONS Our study demonstrated that the spread and enrichment of ARGs are enhanced under moderate Se pressure but inhibited under severe Se pressure in the forest soil (threshold at 0.034 mg kg-1 available Se content). The data generated in this pilot study points to the potential health risk associated with Se contamination and its associated influence on ARGs distribution in soil.
Collapse
Affiliation(s)
- Fang-Fang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025 China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Guo-Ping Liu
- College of Animal Science, Yangtze University, Jingzhou, 434025 China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 China
| | - Fan Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 Hubei China
| | - Zong-Ming Li
- College of Animal Science, Yangtze University, Jingzhou, 434025 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Agro-Ecological Processes in the Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - Xiao-Lin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025 China
| | - Chao-Dong Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 Hubei China
| | - Jian-Lin Shen
- Key Laboratory of Agro-Ecological Processes in the Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - B. Larry Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124 USA
| | - Jian-Guo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
18
|
Geng N, Yang D, Hua J, Huang LJ, Dong H, Sun C, Xu L. Complete genome sequence of Kordiimonas pumila N18T sheds light on biogeochemical roles of the genus Kordiimonas. Mar Genomics 2022; 62:100930. [DOI: 10.1016/j.margen.2022.100930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
|
19
|
Chen Y, You D, Zhang T, Wang G. SLDMS: A Tool for Calculating the Overlapping Regions of Sequences. FRONTIERS IN PLANT SCIENCE 2022; 12:813036. [PMID: 35046988 PMCID: PMC8761809 DOI: 10.3389/fpls.2021.813036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
In the field of genome assembly, contig assembly is one of the most important parts. Contig assembly requires the processing of overlapping regions of a large number of DNA sequences and this calculation usually takes a lot of time. The time consumption of contig assembly algorithms is an important indicator to evaluate the degree of algorithm superiority. Existing methods for processing overlapping regions of sequences consume too much in terms of running time. Therefore, we propose a method SLDMS for processing sequence overlapping regions based on suffix array and monotonic stack, which can effectively improve the efficiency of sequence overlapping regions processing. The running time of the SLDMS is much less than that of Canu and Flye in dealing with the sequence overlap interval and in some data with most sequencing errors occur at both the ends of the sequencing data, the running time of the SLDMS is only about one-tenth of the other two methods.
Collapse
Affiliation(s)
- Yu Chen
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - DongLiang You
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - TianJiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - GuoHua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Zhang Y, Song MF, Li Y, Sun HF, Tang DY, Xu AS, Yin CY, Zhang ZL, Zhang LX. Complete Chloroplast Genome Analysis of Two Important Medicinal Alpinia Species: Alpinia galanga and Alpinia kwangsiensis. FRONTIERS IN PLANT SCIENCE 2021; 12:705892. [PMID: 34975932 PMCID: PMC8714959 DOI: 10.3389/fpls.2021.705892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/18/2021] [Indexed: 06/03/2023]
Abstract
Most Alpinia species are valued as foods, ornamental plants, or plants with medicinal properties. However, morphological characteristics and commonly used DNA barcode fragments are not sufficient for accurately identifying Alpinia species. Difficulties in species identification have led to confusion in the sale and use of Alpinia for medicinal use. To mine resources and improve the molecular methods for distinguishing among Alpinia species, we report the complete chloroplast (CP) genomes of Alpinia galanga and Alpinia kwangsiensis species, obtained via high-throughput Illumina sequencing. The CP genomes of A. galanga and A. kwangsiensis exhibited a typical circular tetramerous structure, including a large single-copy region (87,565 and 87,732 bp, respectively), a small single-copy region (17,909 and 15,181 bp, respectively), and a pair of inverted repeats (27,313 and 29,705 bp, respectively). The guanine-cytosine content of the CP genomes is 36.26 and 36.15%, respectively. Furthermore, each CP genome contained 133 genes, including 87 protein-coding genes, 38 distinct tRNA genes, and 8 distinct rRNA genes. We identified 110 and 125 simple sequence repeats in the CP genomes of A. galanga and A. kwangsiensis, respectively. We then combined these data with publicly available CP genome data from four other Alpinia species (A. hainanensis, A. oxyphylla, A. pumila, and A. zerumbet) and analyzed their sequence characteristics. Nucleotide diversity was analyzed based on the alignment of the complete CP genome sequences, and five candidate highly variable site markers (trnS-trnG, trnC-petN, rpl32-trnL, psaC-ndhE, and ndhC-trnV) were found. Twenty-eight complete CP genome sequences belonging to Alpinieae species were used to construct phylogenetic trees. The results fully demonstrated the phylogenetic relationship among the genera of the Alpinieae, and further proved that Alpinia is a non-monophyletic group. The complete CP genomes of the two medicinal Alpinia species provides lays the foundation for the use of CP genomes in species identification and phylogenetic analyses of Alpinia species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhong-Lian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| | - Li-Xia Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| |
Collapse
|
21
|
Li DM, Li J, Wang DR, Xu YC, Zhu GF. Molecular evolution of chloroplast genomes in subfamily Zingiberoideae (Zingiberaceae). BMC PLANT BIOLOGY 2021; 21:558. [PMID: 34814832 PMCID: PMC8611967 DOI: 10.1186/s12870-021-03315-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Zingiberoideae is a large and diverse subfamily of the family Zingiberaceae. Four genera in subfamily Zingiberoideae each possess 50 or more species, including Globba (100), Hedychium (> 80), Kaempferia (50) and Zingiber (150). Despite the agricultural, medicinal and horticultural importance of these species, genomic resources and suitable molecular markers for them are currently sparse. RESULTS Here, we have sequenced, assembled and analyzed ten complete chloroplast genomes from nine species of subfamily Zingiberoideae: Globba lancangensis, Globba marantina, Globba multiflora, Globba schomburgkii, Globba schomburgkii var. angustata, Hedychium coccineum, Hedychium neocarneum, Kaempferia rotunda 'Red Leaf', Kaempferia rotunda 'Silver Diamonds' and Zingiber recurvatum. These ten chloroplast genomes (size range 162,630-163,968 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 87,172-88,632 bp), a small single copy (SSC, 15,393-15,917 bp) and a pair of inverted repeats (IRs, 29,673-29,833 bp). The genomes contain 111-113 different genes, including 79 protein coding genes, 28-30 tRNAs and 4 rRNA genes. The dynamics of the genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats exhibit similarities, with slight differences observed among the ten genomes. Further comparative analysis of seventeen related Zingiberoideae species, 12 divergent hotspots are identified. Positive selection is observed in 14 protein coding genes, including accD, ccsA, ndhA, ndhB, psbJ, rbcL, rpl20, rpoC1, rpoC2, rps12, rps18, ycf1, ycf2 and ycf4. Phylogenetic analyses, based on the complete chloroplast-derived single-nucleotide polymorphism data, strongly support that Globba, Hedychium, and Curcuma I + "the Kaempferia clade" consisting of Curcuma II, Kaempferia and Zingiber, form a nested evolutionary relationship in subfamily Zingiberoideae. CONCLUSIONS Our study provides detailed information on ten complete Zingiberoideae chloroplast genomes, representing a valuable resource for future studies that seek to understand the molecular evolutionary dynamics in family Zingiberaceae. The identified divergent hotspots can be used for development of molecular markers for phylogenetic inference and species identification among closely related species within four genera of Globba, Hedychium, Kaempferia and Zingiber in subfamily Zingiberoideae.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dai-Rong Wang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ye-Chun Xu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
22
|
Kayani MUR, Huang W, Feng R, Chen L. Genome-resolved metagenomics using environmental and clinical samples. Brief Bioinform 2021; 22:bbab030. [PMID: 33758906 PMCID: PMC8425419 DOI: 10.1093/bib/bbab030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/29/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high-throughput sequencing technologies and computational methods have added a new dimension to metagenomic data analysis i.e. genome-resolved metagenomics. In general terms, it refers to the recovery of draft or high-quality microbial genomes and their taxonomic classification and functional annotation. In recent years, several studies have utilized the genome-resolved metagenome analysis approach and identified previously unknown microbial species from human and environmental metagenomes. In this review, we describe genome-resolved metagenome analysis as a series of four necessary steps: (i) preprocessing of the sequencing reads, (ii) de novo metagenome assembly, (iii) genome binning and (iv) taxonomic and functional analysis of the recovered genomes. For each of these four steps, we discuss the most commonly used tools and the currently available pipelines to guide the scientific community in the recovery and subsequent analyses of genomes from any metagenome sample. Furthermore, we also discuss the tools required for validation of assembly quality as well as for improving quality of the recovered genomes. We also highlight the currently available pipelines that can be used to automate the whole analysis without having advanced bioinformatics knowledge. Finally, we will highlight the most widely adapted and actively maintained tools and pipelines that can be helpful to the scientific community in decision making before they commence the analysis.
Collapse
Affiliation(s)
- Masood ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Wanqiu Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 200,000, China
| | - Ru Feng
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| | - Lei Chen
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai 2,000,025, China
| |
Collapse
|
23
|
Kang L, Qian L, Zheng M, Chen L, Chen H, Yang L, You L, Yang B, Yan M, Gu Y, Wang T, Schiessl SV, An H, Blischak P, Liu X, Lu H, Zhang D, Rao Y, Jia D, Zhou D, Xiao H, Wang Y, Xiong X, Mason AS, Chris Pires J, Snowdon RJ, Hua W, Liu Z. Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat Genet 2021; 53:1392-1402. [PMID: 34493868 PMCID: PMC8423626 DOI: 10.1038/s41588-021-00922-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023]
Abstract
Despite early domestication around 3000 BC, the evolutionary history of the ancient allotetraploid species Brassica juncea (L.) Czern & Coss remains uncertain. Here, we report a chromosome-scale de novo assembly of a yellow-seeded B. juncea genome by integrating long-read and short-read sequencing, optical mapping and Hi-C technologies. Nuclear and organelle phylogenies of 480 accessions worldwide supported that B. juncea is most likely a single origin in West Asia, 8,000-14,000 years ago, via natural interspecific hybridization. Subsequently, new crop types evolved through spontaneous gene mutations and introgressions along three independent routes of eastward expansion. Selective sweeps, genome-wide trait associations and tissue-specific RNA-sequencing analysis shed light on the domestication history of flowering time and seed weight, and on human selection for morphological diversification in this versatile species. Our data provide a comprehensive insight into the origin and domestication and a foundation for genomics-based breeding of B. juncea.
Collapse
Affiliation(s)
- Lei Kang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, China
| | - Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Liu Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Liang You
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Bin Yang
- College of Agronomy, Hunan Agricultural University, Changsha, China
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Mingli Yan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan, China
| | - Yuanguo Gu
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tianyi Wang
- Novogene Bioinformatics Institute, Beijing, China
| | | | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Paul Blischak
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Xianjun Liu
- College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Hongfeng Lu
- Novogene Bioinformatics Institute, Beijing, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan, China
| | - Yong Rao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Donghai Jia
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dinggang Zhou
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan, China
| | - Huagui Xiao
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yonggang Wang
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xinghua Xiong
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- Plant Breeding Department, University of Bonn, Bonn, Germany
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Rod J Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
24
|
Wang S, Narsing Rao MP, Wei D, Sun L, Fang BZ, Li WQ, Yu LH, Li WJ. Complete genome sequencing and comparative genome analysis of the extremely halophilic archaea, Haloterrigena daqingensis. Biotechnol Appl Biochem 2021; 69:1482-1488. [PMID: 34245190 DOI: 10.1002/bab.2220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/04/2021] [Indexed: 11/10/2022]
Abstract
In the present study, we report the complete genome sequencing of Haloterrigena daqingensis species. The genome of H. daqingensis JX313T consisted of a circular chromosome with three plasmids. The genome size and G+C content were estimated to be 3835796 bp and 61.7%, respectively. A total of 4158 genes were predicted with six rRNAs and 45 tRNAs. Metabolic pathway analysis suggests that H. daqingensis JX313T codes for all the necessary genes responsible to sustain its life at saline environment. The pan-genome analysis suggests that the number of singleton-gene between H. daqingensis and other Haloterrigena species varied. The study not only helps us understand H. daqingensis strategy for dealing with high stress, but it also provides an overview of its genomic makeup.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province, Heilongjiang Fertilizer Engineering Research Center, Harbin, PR China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Lei Sun
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province, Heilongjiang Fertilizer Engineering Research Center, Harbin, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Wei-Qun Li
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province, Heilongjiang Fertilizer Engineering Research Center, Harbin, PR China
| | - Li-Hong Yu
- Liaoning Green Agricultural Technology Center, Shen Yang, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
25
|
Genome and transcriptome sequencing of a newly isolated 2,4-dinitrophenol-degrading strain Rhodococcus imtechensis XM24D. Genes Genomics 2021; 43:829-835. [PMID: 33932219 DOI: 10.1007/s13258-021-01101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND 2,4-Dinitrophenol (2,4-DNP) is an important organic environmental pollutant that is highly toxic to all forms of living organisms. A gram-positive strain (designated XM24D) was isolated from 2,4-DNP-contaminated soil by an enrichment technique. OBJECTIVE The study was designed to analyze the ability of XM24D to degrade 2,4-DNP and its analogs and to reveal the degradation pathways of these aromatic compounds. METHODS The degradation ability of XM24D was tested by a growth experiment. 2,4-DNP and its analog degradation pathways were predicted by genome and comparative transcriptome sequencing. RESULTS Growth profiles showed that XM24D was able to utilize 2,4-DNP as the sole source of carbon, nitrogen and energy. Analogs of 2,4-DNP, including 4-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP), can also be degraded by XM24D. Genome analysis showed that the XM24D genome contains two chromosomes with a combined size of 9.08 Mb and an average GC content of 67.07 %. Average nucleotide identity analysis indicated that Rhodococcus imtechensis RKJ300 is the most closely related strain to XM24D. Comparative transcriptome analysis revealed that the 2,4-DNP/PNP/2C4NP degradation pathway in XM24D is highly similar in sequence and organization to the 2,4-DNP degradation pathway in Rhodococcus opacus HL PM-1, the PNP degradation pathway in Rhodococcus opacus SAO101 and the 2C4NP degradation pathway in Rhodococcus imtechensis RKJ300. These results suggested that 2,4-DNP/PNP/2C4NP was degraded via the 2,4-dinitrocyclohexanone/4-nitrocatechol/hydroxyquinol pathway in XM24D. CONCLUSIONS Genomic and transcriptomic information on XM24D provides a valuable reference for further investigating the evolutionary characteristics of nitrophenol degradation pathways in microorganisms.
Collapse
|
26
|
Complete Genome Sequence of Curtobacterium sp. Strain YC1, Isolated from the Surface of Nostoc flagelliforme Colonies in Yinchuan, Ningxia, China. Microbiol Resour Announc 2021; 10:10/10/e01467-20. [PMID: 33707340 PMCID: PMC7953303 DOI: 10.1128/mra.01467-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Curtobacterium belongs to the family Microbacteriaceae, within the phylum Actinobacteria. This genus includes a wide range of Gram-positive species associated with plants and soils. Here, we report the genome sequence of a new strain, Curtobacterium sp. strain YC1, which was isolated from the surface of Nostoc flagelliforme colonies. The genome of this strain contains one chromosome and one plasmid, and its size is 3.4 Mb.
Collapse
|
27
|
Complete and Draft Genome Sequences of Aerobic Methanotrophs Isolated from a Riparian Wetland. Microbiol Resour Announc 2021; 10:10/9/e01438-20. [PMID: 33664141 PMCID: PMC7936639 DOI: 10.1128/mra.01438-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Wetlands are important sources of methane emissions, and the impacts of these emissions can be mitigated by methanotrophic bacteria. The genomes of methanotrophs Methylomonas sp. strain LL1 and Methylosinus sp. strain H3A, as well as Methylocystis sp. strains H4A, H15, H62, and L43, were sequenced and are reported here. Wetlands are important sources of methane emissions, and the impacts of these emissions can be mitigated by methanotrophic bacteria. The genomes of methanotrophs Methylomonas sp. strain LL1 and Methylosinus sp. strain H3A, as well as Methylocystis sp. strains H4A, H15, H62, and L43, were sequenced and are reported here.
Collapse
|
28
|
Fischer C, Koblmüller S, Börger C, Michelitsch G, Trajanoski S, Schlötterer C, Guelly C, Thallinger GG, Sturmbauer C. Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco-morphologically divergent cichlid fishes endemic to Lake Tanganyika. Sci Rep 2021; 11:4309. [PMID: 33619328 PMCID: PMC7900123 DOI: 10.1038/s41598-021-81030-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023] Open
Abstract
With more than 1000 species, East African cichlid fishes represent the fastest and most species-rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversification. We add high-quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3-9 million years ago (mya), representing the earliest split of the so-called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecific), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecific). GO enrichment analysis of gene regions affected by variants revealed several candidates which may influence phenotype modifications related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families.
Collapse
Affiliation(s)
- C Fischer
- Institute of Biology, University of Graz, Graz, Austria
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - S Koblmüller
- Institute of Biology, University of Graz, Graz, Austria
| | - C Börger
- Institute of Biology, University of Graz, Graz, Austria
| | - G Michelitsch
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - S Trajanoski
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - C Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - C Guelly
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - G G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - C Sturmbauer
- Institute of Biology, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
29
|
Cai Z, Guo Q, Yao Z, Zheng W, Xie J, Bai S, Zhang H. Comparative genomics of Klebsiella michiganensis BD177 and related members of Klebsiella sp. reveal the symbiotic relationship with Bactrocera dorsalis. BMC Genet 2020; 21:138. [PMID: 33339499 PMCID: PMC7747454 DOI: 10.1186/s12863-020-00945-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Bactrocera dorsalis is a destructive polyphagous and highly invasive insect pest of tropical and subtropical species of fruit and vegetable crops. The sterile insect technique (SIT) has been used for decades to control insect pests of agricultural, veterinary, and human health importance. Irradiation of pupae in SIT can reduce the ecological fitness of the sterile insects. Our previous study has shown that a gut bacterial strain BD177 that could restore ecological fitness by promoting host food intake and metabolic activities. Results Using long-read sequence technologies, we assembled the complete genome of K. michiganensis BD177 strain. The complete genome of K. michiganensis BD177 comprises one circular chromosome and four plasmids with a GC content of 55.03%. The pan-genome analysis was performed on 119 genomes (strain BD177 genome and 118 out of 128 published Klebsiella sp. genomes since ten were discarded). The pan-genome includes a total of 49305 gene clusters, a small number of 858 core genes, and a high number of accessory (10566) genes. Pan-genome and average nucleotide identity (ANI) analysis showed that BD177 is more similar to the type strain K. michiganensis DSM2544, while away from the type strain K. oxytoca ATCC13182. Comparative genome analysis with 21 K. oxytoca and 12 K. michiganensis strains, identified 213 unique genes, several of them related to amino acid metabolism, metabolism of cofactors and vitamins, and xenobiotics biodegradation and metabolism in BD177 genome. Conclusions Phylogenomics analysis reclassified strain BD177 as a member of the species K. michiganensis. Comparative genome analysis suggested that K. michiganensis BD177 has the strain-specific ability to provide three essential amino acids (phenylalanine, tryptophan and methionine) and two vitamins B (folate and riboflavin) to B. dorsalis. The clear classification status of BD177 strain and identification of unique genetic characteristics may contribute to expanding our understanding of the symbiotic relationship of gut microbiota and B. dorsalis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00945-0.
Collapse
Affiliation(s)
- Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiongyu Guo
- State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenping Zheng
- State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Junfei Xie
- State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuai Bai
- State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
30
|
Pu N, Li W, Li ZJ. Complete genome sequence of Neptunomonas concharum JCM17730T: An acetate assimilating bacterium isolated from a dead ark clam. Mar Genomics 2020; 53:100754. [DOI: 10.1016/j.margen.2020.100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 11/30/2022]
|
31
|
Li DM, Ye YJ, Xu YC, Liu JM, Zhu GF. Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses. PLoS One 2020; 15:e0236590. [PMID: 32735595 PMCID: PMC7394419 DOI: 10.1371/journal.pone.0236590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022] Open
Abstract
Zingiber montanum (Z. montanum) and Zingiber zerumbet (Z. zerumbet) are important medicinal and ornamental herbs in the genus Zingiber and family Zingiberaceae. Chloroplast-derived markers are useful for species identification and phylogenetic studies, but further development is warranted for these two Zingiber species. In this study, we report the complete chloroplast genomes of Z. montanum and Z. zerumbet, which had lengths of 164,464 bp and 163,589 bp, respectively. These genomes had typical quadripartite structures with a large single copy (LSC, 87,856-89,161 bp), a small single copy (SSC, 15,803-15,642 bp), and a pair of inverted repeats (IRa and IRb, 29,393-30,449 bp). We identified 111 unique genes in each chloroplast genome, including 79 protein-coding genes, 28 tRNAs and 4 rRNA genes. We analyzed the molecular structures, gene information, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats (SSRs) and long repeats from the two chloroplast genomes. A comparison of the Z. montanum and Z. zerumbet chloroplast genomes detected 489 single-nucleotide polymorphisms (SNPs) and 172 insertions/deletions (indels). Thirteen highly divergent regions, including ycf1, rps19, rps18-rpl20, accD-psaI, psaC-ndhE, psbA-trnK-UUU, trnfM-CAU-rps14, trnE-UUC-trnT-UGU, ccsA-ndhD, psbC-trnS-UGA, start-psbA, petA-psbJ, and rbcL-accD, were identified and might be useful for future species identification and phylogeny in the genus Zingiber. Positive selection was observed for ATP synthase (atpA and atpB), RNA polymerase (rpoA), small subunit ribosomal protein (rps3) and other protein-coding genes (accD, clpP, ycf1, and ycf2) based on the Ka/Ks ratios. Additionally, chloroplast SNP-based phylogeny analyses found that Zingiber was a monophyletic sister branch to Kaempferia and that chloroplast SNPs could be used to identify Zingiber species. The genome resources in our study provide valuable information for the identification and phylogenetic analysis of the genus Zingiber and family Zingiberaceae.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuan-Jun Ye
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ye-Chun Xu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jin-Mei Liu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
32
|
Kim J, Kang SH, Park SG, Yang TJ, Lee Y, Kim OT, Chung O, Lee J, Choi JP, Kwon SJ, Lee K, Ahn BO, Lee DJ, Yoo SI, Shin IG, Um Y, Lee DY, Kim GS, Hong CP, Bhak J, Kim CK. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. HORTICULTURE RESEARCH 2020; 7:112. [PMID: 32637140 PMCID: PMC7327020 DOI: 10.1038/s41438-020-0329-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 05/19/2023]
Abstract
Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1 Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of β-amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families.
Collapse
Affiliation(s)
- Jungeun Kim
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Sin-Gi Park
- Theragen Etex Bio Institute, Suwon, 16229 Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644 Korea
| | - Ok Tae Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jungho Lee
- Green Plant Institute, Yongin, 16954 Korea
| | - Jae-Pil Choi
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Keunpyo Lee
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Byoung-Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | | | | | | | - Yurry Um
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
- Clinomics Inc, Ulsan, 44919 Korea
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| |
Collapse
|
33
|
Joshi AU, Hinsu AT, Kotadiya RJ, Rank JK, Andharia KN, Kothari RK. Decolorization and biodegradation of textile di-azo dye Acid Blue 113 by Pseudomonas stutzeri AK6. 3 Biotech 2020; 10:214. [PMID: 32351872 DOI: 10.1007/s13205-020-02205-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/12/2020] [Indexed: 11/29/2022] Open
Abstract
Textile industry is one of the anthropogenic activities that consume a large amount of water and pollute water bodies. It uses a massive amount of dyes, which is one of the main constituents of polluting textile effluent. In the present research, biodegradation of Acid Blue 113 dye, a commonly used textile di-azo dye, has been studied exploiting Pseudomonas stutzeri, strain AK6. The dye (300 ppm) was decolorized up to 86.2% within 96 h. The metabolites of Acid Blue 113 obtained after biodegradation were identified by various analytical techniques viz. HPLC (high-performance liquid chromatography) and GC-MS (gas chromatography-mass spectrometry). Genome analysis of isolate AK6 using IMG/M (Integrated Microbial Genomes and Microbiomes) system supported the role of azoreductase and laccase for the decolorization and degradation of azo dye. The ability of P. stutzeri AK6 to tolerate high amount of dye makes it a potential candidate for bioremediation and pre-processing to remove dyes from textile effluents.
Collapse
Affiliation(s)
- Anjali U Joshi
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| | - Ankit T Hinsu
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| | - Rohitkumar J Kotadiya
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| | - Jalpa K Rank
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| | - Kavan N Andharia
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| | - Ramesh K Kothari
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| |
Collapse
|
34
|
Xiong W, Yin C, Wang Y, Lin S, Deng Z, Liang R. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121616. [PMID: 31780289 DOI: 10.1016/j.jhazmat.2019.121616] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 05/26/2023]
Abstract
The efficient bioremediation of estrogen contamination in complex environments is of great concern. Here the strain Stenotrophomonas maltophilia SJTH1 was found with great and stable estrogen-degradation efficiency even under stress environments. The strain could utilize 17β-estradiol (E2) as a carbon source and degrade 90% of 10 mg/L E2 in a week; estrone (E1) was the first degrading intermediate of E2. Notably, diverse pH conditions (3.0-11.0) and supplements of 4% salinity, 6.25 mg/L of heavy metal (Cd2+ or Cu2+), or 1 CMC of surfactant (Tween 80/ Triton X-100) had little effect on its cell growth and estrogen degradation. The addition of low concentrations of copper and Tween 80 even promoted its E2 degradation. Bioaugmentation of strain SJTH1 into solid clay soil achieved over 80% removal of E2 contamination (10 mg/kg) within two weeks. Further, the whole genome sequence of S. maltophilia SJTH1 was obtained, and a series of potential genes participating in stress-tolerance and estrogen-degradation were predicted. Four dehydrogenases similar to 17β-hydroxysteroid dehydrogenases (17β-HSDs) were found to be induced by E2, and the four heterogenous-expressed enzymes could oxidize E2 into E1 efficiently. This work could promote bioremediation appliance potential with microorganisms and biodegradation mechanism study of estrogens in complex real environments.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanqiu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
35
|
Li DM, Zhu GF, Xu YC, Ye YJ, Liu JM. Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae. PLANTS (BASEL, SWITZERLAND) 2020; 9:E286. [PMID: 32102387 PMCID: PMC7076362 DOI: 10.3390/plants9020286] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Alpinia katsumadai (A. katsumadai), Alpinia oxyphylla (A. oxyphylla) and Alpinia pumila (A. pumila), which belong to the family Zingiberaceae, exhibit multiple medicinal properties. The chloroplast genome of a non-model plant provides valuable information for species identification and phylogenetic analysis. Here, we sequenced three complete chloroplast genomes of A. katsumadai, A. oxyphylla sampled from Guangdong and A. pumila, and analyzed the published chloroplast genomes of Alpinia zerumbet (A. zerumbet) and A. oxyphylla sampled from Hainan to retrieve useful chloroplast molecular resources for Alpinia. The five Alpinia chloroplast genomes possessed typical quadripartite structures comprising of a large single copy (LSC, 87,248-87,667 bp), a small single copy (SSC, 15,306-18,295 bp) and a pair of inverted repeats (IR, 26,917-29,707 bp). They had similar gene contents, gene orders and GC contents, but were slightly different in the numbers of small sequence repeats (SSRs) and long repeats. Interestingly, fifteen highly divergent regions (rpl36, ycf1, rps15, rpl22, infA, psbT-psbN, accD-psaI, petD-rpoA, psaC-ndhE, ccsA-ndhD, ndhF-rpl32, rps11-rpl36, infA-rps8, psbC-psbZ, and rpl32-ccsA), which could be suitable for species identification and phylogenetic studies, were detected in the Alpinia chloroplast genomes. Comparative analyses among the five chloroplast genomes indicated that 1891 mutational events, including 304 single nucleotide polymorphisms (SNPs) and 118 insertion/deletions (indels) between A. pumila and A. katsumadai, 367 SNPs and 122 indels between A. pumila and A. oxyphylla sampled from Guangdong, 331 SNPs and 115 indels between A. pumila and A. zerumbet, 371 SNPs and 120 indels between A. pumila and A. oxyphylla sampled from Hainan, and 20 SNPs and 23 indels between the two accessions of A. oxyphylla, were accurately located. Additionally, phylogenetic relationships based on SNP matrix among 28 whole chloroplast genomes showed that Alpinia was a sister branch to Amomum in the family Zingiberaceae, and that the five Alpinia accessions were divided into three groups, one including A. pumila, another including A. zerumbet and A. katsumadai, and the other including two accessions of A. oxyphylla. In conclusion, the complete chloroplast genomes of the three medicinal Alpinia species in this study provided valuable genomic resources for further phylogeny and species identification in the family Zingiberaceae.
Collapse
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.-C.X.); (Y.-J.Y.)
| | - Gen-Fa Zhu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.-C.X.); (Y.-J.Y.)
| | | | | | | |
Collapse
|
36
|
Complete Genome Sequencing of Mycoplasma synoviae Strain HN01, Isolated from Chicken in Henan Province, China. Microbiol Resour Announc 2020; 9:9/6/e01480-19. [PMID: 32029555 PMCID: PMC7005120 DOI: 10.1128/mra.01480-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Mycoplasma synoviae HN01, a virulent epidemic strain isolated from a sick chicken with synovitis in Henan Province, China. HN01 is the Asian source of an M. synoviae strain that is completely sequenced, genome annotated, and published with relevant data. Here, we report the complete genome sequence of Mycoplasma synoviae HN01, a virulent epidemic strain isolated from a sick chicken with synovitis in Henan Province, China. HN01 is the Asian source of an M. synoviae strain that is completely sequenced, genome annotated, and published with relevant data.
Collapse
|
37
|
Shi T, Fan X, Wu Y, Ma Q, Xu Q, Xie X, Chen N. Mutation of genes for cell membrane synthesis in Corynebacterium glutamicum causes temperature-sensitive trait and promotes L-glutamate excretion. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2019.1711186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Tuo Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xiaoguang Fan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yasong Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Qian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xixian Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
38
|
Xiong W, Yin C, Peng W, Deng Z, Lin S, Liang R. Characterization of an 17β-estradiol-degrading bacterium Stenotrophomonas maltophilia SJTL3 tolerant to adverse environmental factors. Appl Microbiol Biotechnol 2019; 104:1291-1305. [PMID: 31834439 DOI: 10.1007/s00253-019-10281-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 01/27/2023]
Abstract
Bioremediation of environmental estrogens requires microorganisms with stable degradation efficiency and great stress tolerance in complex environments. In this work, Stenotrophomonas maltophilia SJTL3 isolated from wastewater was found to be able to degrade over 90% of 10 μg/mL 17β-estradiol (E2) in a week and the degradation dynamic was fitted by the first-order kinetic equations. Estrone was the first and major intermediate of E2 biodegradation. Strain SJTL3 exhibited strong tolerance to several adverse conditions like extreme pH (3.0-11.0), high osmolality (2%), co-existing heavy metals (6.25 μg/mL of Cu2+) and surfactants (5 CMC of Tween 80), and retained normal cell vitality and stable E2-degradaing efficiency. In solid soil, strain SJTL3 could remove nearly 100% of 1 μg/mL of E2 after the bacteria inoculation and 8-day culture. As to the contamination of 10 μg/mL E2 in soil, the biodegradation efficiency was about 90%. The further obtainment of the whole genome of strain SJTL3 and genome analysis revealed that this strain contained not only the potential genes responsible for estrogen degradation, but also the genes encoding proteins involved in stress tolerance. This work could promote the estrogen-biodegrading mechanism study and provide insights into the bioremediation application.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chong Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
39
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 PMCID: PMC6721284 DOI: 10.1186/s13059-019-1768-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya.,Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
40
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 DOI: 10.1101/531749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
41
|
Deng C, Lv X, Liu Y, Li J, Lu W, Du G, Liu L. Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synth Syst Biotechnol 2019; 4:120-129. [PMID: 31198861 PMCID: PMC6558094 DOI: 10.1016/j.synbio.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Glucosamine (GlcN) and its acetylated derivative N-acetylglucosamine (GlcNAc) are widely used in the pharmaceutical industries. Here, we attempted to achieve efficient production of GlcNAc via genomic engineering of Corynebacterium glutamicum. Specifically, we ligated the GNA1 gene, which converts GlcN-6-phosphate to GlcNAc-6-phosphate by transferring the acetyl group in Acetyl-CoA to the amino group of GlcN-6-phosphate, into the plasmid pJYW4 and then transformed this recombinant vector into the C. glutamicum ATCC 13032, ATCC 13869, ATCC 14067, and S9114 strains, and we assessed the GlcNAc titers at 0.5 g/L, 1.2 g/L, 0.8 g/L, and 3.1 g/L from each strain, respectively. This suggested that there were likely to be significant differences among the key genes in the glutamate and GlcNAc synthesis pathways of these C. glutamicum strains. Therefore, we performed whole genome sequencing of the S9114 strain, which has not been previously published, and found that there are many differences among the genes in the glutamate and GlcNAc synthesis pathways among the four strains tested. Next, nagA (encoding GlcNAc-6-phosphate deacetylase) and gamA (encoding GlcN-6-phosphate deaminase) were deleted in C. glutamicum S9114 to block the catabolism of intracellular GlcNAc, leading to a 54.8% increase in GlcNAc production (from 3.1 to 4.8 g/L) when grown in a shaker flask. In addition, lactate synthesis was blocked by knockout of ldh (encoding lactate dehydrogenase); thus, further increasing the GlcNAc titer to 5.4 g/L. Finally, we added a key gene of the GlcN synthetic pathway, glmS, from different sources into the expression vector pJYW-4-ceN, and the resulting recombinant strain CGGN2-GNA1-CgglmS produced the GlcNAc titer of 6.9 g/L. This is the first report concerning the metabolic engineering of C. glutamicum, and the results of this study provide a good starting point for further metabolic engineering to achieve industrial-scale production of GlcNAc.
Collapse
Affiliation(s)
- Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Lu
- Shandong Runde Biotechnology CO., LTD, Taian, 271200, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
42
|
Xu L, Sun C, Huang M, Wu YH, Yuan CQ, Dai WH, Ye K, Han B, Xu XW. Complete genome sequence of Euzebya sp. DY32-46, a marine Actinobacteria isolated from the Pacific Ocean. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Lai JYH, Zhang H, Chiang MHY, Lun CHI, Zhang R, Lau SCK. The putative functions of lysogeny in mediating the survivorship of Escherichia coli in seawater and marine sediment. FEMS Microbiol Ecol 2019; 94:4780272. [PMID: 29293955 DOI: 10.1093/femsec/fix187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/25/2017] [Indexed: 01/07/2023] Open
Abstract
Escherichia coli colonizes various body parts of animal hosts as a commensal and a pathogen. It can also persist in the external environment in the absence of fecal pollution. It remains unclear how this species has evolved to adapt to such contrasting habitats. Lysogeny plays pivotal roles in the diversification of the phenotypic and ecologic characters of E. coli as a symbiont. We hypothesized that lysogeny could also confer fitness to survival in the external environment. To test this hypothesis, we used the induced phages of an E. coli strain originating from marine sediment to infect a fecal E. coli strain to obtain an isogenic lysogen of the latter. The three strains were tested for survivorship in microcosms of seawater, marine sediment and sediment interstitial water as well as swimming motility, glycogen accumulation, biofilm formation, substrate utilization and stress resistance. The results indicate that lysogenic infection led to tractable changes in many of the ecophysiological attributes tested. Particularly, the lysogen had better survivorship in the microcosms and had a substrate utilization profile resembling the sediment strain more than the wild type fecal strain. Our findings provide new insights into the understanding of how E. coli survives in the natural environment.
Collapse
Affiliation(s)
- Jennifer Yuet Ha Lai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hao Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Miranda Hei Yin Chiang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Clare Hau In Lun
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Rui Zhang
- Institute of Marine Microbes and Ecospheres, and State Key Laboratory of Marine Environmental Science, Xiamen University, People's Republic of China
| | - Stanley Chun Kwan Lau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
44
|
Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis. Molecules 2019; 24:molecules24030474. [PMID: 30699955 PMCID: PMC6385120 DOI: 10.3390/molecules24030474] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/17/2023] Open
Abstract
Kaempferia galanga and Kaempferia elegans, which belong to the genus Kaempferia family Zingiberaceae, are used as valuable herbal medicine and ornamental plants, respectively. The chloroplast genomes have been used for molecular markers, species identification and phylogenetic studies. In this study, the complete chloroplast genome sequences of K. galanga and K. elegans are reported. Results show that the complete chloroplast genome of K. galanga is 163,811 bp long, having a quadripartite structure with large single copy (LSC) of 88,405 bp and a small single copy (SSC) of 15,812 bp separated by inverted repeats (IRs) of 29,797 bp. Similarly, the complete chloroplast genome of K. elegans is 163,555 bp long, having a quadripartite structure in which IRs of 29,773 bp length separates 88,020 bp of LSC and 15,989 bp of SSC. A total of 111 genes in K. galanga and 113 genes in K. elegans comprised 79 protein-coding genes and 4 ribosomal RNA (rRNA) genes, as well as 28 and 30 transfer RNA (tRNA) genes in K. galanga and K. elegans, respectively. The gene order, GC content and orientation of the two Kaempferia chloroplast genomes exhibited high similarity. The location and distribution of simple sequence repeats (SSRs) and long repeat sequences were determined. Eight highly variable regions between the two Kaempferia species were identified and 643 mutation events, including 536 single-nucleotide polymorphisms (SNPs) and 107 insertion/deletions (indels), were accurately located. Sequence divergences of the whole chloroplast genomes were calculated among related Zingiberaceae species. The phylogenetic analysis based on SNPs among eleven species strongly supported that K. galanga and K. elegans formed a cluster within Zingiberaceae. This study identified the unique characteristics of the entire K. galanga and K. elegans chloroplast genomes that contribute to our understanding of the chloroplast DNA evolution within Zingiberaceae species. It provides valuable information for phylogenetic analysis and species identification within genus Kaempferia.
Collapse
|
45
|
Li DM, Wu W, Liu XF, Zhao CY. Characterization and phylogenetic analysis of the complete chloroplast genome sequence of Costus viridis (Costaceae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1586477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Dong-Mei Li
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Wu
- Department of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiao-Fei Liu
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chao-Yi Zhao
- Guangdong Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
46
|
Complete Genome Sequence of Saccharospirillum mangrovi HK-33 T Sheds Light on the Ecological Role of a Bacterium in Mangrove Sediment Environment. Curr Microbiol 2018; 76:231-236. [PMID: 30564885 DOI: 10.1007/s00284-018-1600-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
We present the genome sequence of Saccharospirillum mangrovi HK-33T, isolated from a mangrove sediment sample in Haikou, China. The complete genome of S. mangrovi HK-33T consisted of a single-circular chromosome with the size of 3,686,911 bp as well as an average G + C content of 57.37%, and contained 3,383 protein-coding genes, 4 operons of 16S-23S-5S rRNA genes, and 52 tRNA genes. Genomic annotation indicated that the genome of S. mangrovi HK-33T had many genes related to oligosaccharide and polysaccharide degradation and utilization of polyhydroxyalkanoate. For nitrogen cycle, genes encoding nitrate and nitrite reductase, glutamate dehydrogenase, glutamate synthase, and glutamine synthetase could be found. For phosphorus cycle, genes related to polyphosphate kinases (ppk1 and ppk2), the high-affinity phosphate-specific transport (Pst) system, and the low-affinity inorganic phosphate transporter (pitA) were predicted. For sulfur cycle, cysteine synthase and type III acyl coenzyme A transferase (dddD) coding genes were searched out. This study provides evidence about carbon, nitrogen, phosphorus, and sulfur metabolic patterns of S. mangrovi HK-33T and broadens our understandings about ecological roles of this bacterium in the mangrove sediment environment.
Collapse
|
47
|
Kaisers W, Schwender H, Schaal H. Hierarchical Clustering of DNA k-mer Counts in RNAseq Fastq Files Identifies Sample Heterogeneities. Int J Mol Sci 2018; 19:E3687. [PMID: 30469355 PMCID: PMC6274891 DOI: 10.3390/ijms19113687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/14/2023] Open
Abstract
We apply hierarchical clustering (HC) of DNA k-mer counts on multiple Fastq files. The tree structures produced by HC may reflect experimental groups and thereby indicate experimental effects, but clustering of preparation groups indicates the presence of batch effects. Hence, HC of DNA k-mer counts may serve as a diagnostic device. In order to provide a simple applicable tool we implemented sequential analysis of Fastq reads with low memory usage in an R package (seqTools) available on Bioconductor. The approach is validated by analysis of Fastq file batches containing RNAseq data. Analysis of three Fastq batches downloaded from ArrayExpress indicated experimental effects. Analysis of RNAseq data from two cell types (dermal fibroblasts and Jurkat cells) sequenced in our facility indicate presence of batch effects. The observed batch effects were also present in reads mapped to the human genome and also in reads filtered for high quality (Phred > 30). We propose, that hierarchical clustering of DNA k-mer counts provides an unspecific diagnostic tool for RNAseq experiments. Further exploration is required once samples are identified as outliers in HC derived trees.
Collapse
Affiliation(s)
- Wolfgang Kaisers
- Department of Anaesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstr. 40, 42283 Wuppertal, Germany.
- Institut fur Virologie, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Holger Schwender
- Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Heiner Schaal
- Institut fur Virologie, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
48
|
Wang A, Pang L, Wang N, Ai P, Yin D, Li S, Deng Q, Zhu J, Liang Y, Zhu J, Li P, Zheng A. The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics. Sci Rep 2018; 8:15413. [PMID: 30337609 PMCID: PMC6194002 DOI: 10.1038/s41598-018-33752-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tilletia horrida is a soil-borne, mononucleate basidiomycete fungus with a biotrophic lifestyle that causes rice kernel smut, a disease that is distributed throughout hybrid rice growing areas worldwide. Here we report on the high-quality genome sequence of T. horrida; it is composed of 23.2 Mb that encode 7,729 predicted genes and 6,973 genes supported by RNA-seq. The genome contains few repetitive elements that account for 8.45% of the total. Evolutionarily, T. horrida lies close to the Ustilago fungi, suggesting grass species as potential hosts, but co-linearity was not observed between T. horrida and the barley smut Ustilago hordei. Genes and functions relevant to pathogenicity were presumed. T. horrida possesses a smaller set of carbohydrate-active enzymes and secondary metabolites, which probably reflect the specific characteristics of its infection and biotrophic lifestyle. Genes that encode secreted proteins and enzymes of secondary metabolism, and genes that are represented in the pathogen-host interaction gene database genes, are highly expressed during early infection; this is consistent with their potential roles in pathogenicity. Furthermore, among the 131 candidate pathogen effectors identified according to their expression patterns and functionality, we validated two that trigger leaf cell death in Nicotiana benthamiana. In summary, we have revealed new molecular mechanisms involved in the evolution, biotrophy, and pathogenesis of T. horrida.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Linxiu Pang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Na Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agricultural Science, Wuhan, Hubei, 611130, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China.
| |
Collapse
|
49
|
Xiong W, Peng W, Liang R. Identification and genome analysis of Deinococcus actinosclerus SJTR1, a novel 17β-estradiol degradation bacterium. 3 Biotech 2018; 8:433. [PMID: 30306002 DOI: 10.1007/s13205-018-1466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Biodegradation with microorganisms is considered as an efficient strategy to remove the environmental pollutants. In this work, Deinococcus actinosclerus SJTR1 isolated from the wastewater was confirmed with great degradation capability to 17β-estradiol, one typical estrogen chemical. It could degrade nearly 90% of 17β-estradiol (10 mg/L) in 5 days and transform it into estrone; its degradation kinetics fitted for the first-order kinetic equation. The whole genome sequence of D. actinosclerus SJTR1 was obtained and annotated, containing one chromosome (3,315,586 bp) and four plasmids (ranging from 17,267 bp to 460,244 bp). A total of 3913 CDSs and 73 RNA genes (including 12 rRNA genes, 50 tRNA genes, and 11 ncRNA genes) were identified in its whole genome sequence. On this basis, a series of potential genes involved in steroid metabolism and stress responses of D. actinosclerus SJTR1 were predicted. It is the first report of Deinococcus strain with the degradation capability to estrogens. This work could enrich the genome sources of the estrogen-degrading strains and promote the degradation mechanism study of 17β-estradiol in bacteria.
Collapse
Affiliation(s)
- Weiliang Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
50
|
Li C, Lin F, An D, Wang W, Huang R. Genome Sequencing and Assembly by Long Reads in Plants. Genes (Basel) 2017; 9:E6. [PMID: 29283420 PMCID: PMC5793159 DOI: 10.3390/genes9010006] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 11/17/2022] Open
Abstract
Plant genomes generated by Sanger and Next Generation Sequencing (NGS) have provided insight into species diversity and evolution. However, Sanger sequencing is limited in its applications due to high cost, labor intensity, and low throughput, while NGS reads are too short to resolve abundant repeats and polyploidy, leading to incomplete or ambiguous assemblies. The advent and improvement of long-read sequencing by Third Generation Sequencing (TGS) methods such as PacBio and Nanopore have shown promise in producing high-quality assemblies for complex genomes. Here, we review the development of sequencing, introducing the application as well as considerations of experimental design in TGS of plant genomes. We also introduce recent revolutionary scaffolding technologies including BioNano, Hi-C, and 10× Genomics. We expect that the informative guidance for genome sequencing and assembly by long reads will benefit the initiation of scientists' projects.
Collapse
Affiliation(s)
- Changsheng Li
- College of Agronomy, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| | - Feng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| | - Ruidong Huang
- College of Agronomy, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|