1
|
Marmisolle FE, Borniego MB, Cambiagno DA, Gonzalo L, García ML, Manavella PA, Hernández C, Reyes CA. Citrus psorosis virus 24K protein inhibits the processing of miRNA precursors by interacting with components of the biogenesis machinery. Microbiol Spectr 2024; 12:e0351323. [PMID: 38785434 PMCID: PMC11218507 DOI: 10.1128/spectrum.03513-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.
Collapse
Affiliation(s)
- Facundo E. Marmisolle
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - María B. Borniego
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Damián A. Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L. García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Pablo A. Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - Carina A. Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| |
Collapse
|
2
|
Lotos L, Katsiani A, Katis NI, Maliogka VI. Evaluation of the RNA Silencing Suppression Activity of Three Cherry Virus F-Encoded Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:264. [PMID: 38256817 PMCID: PMC10819124 DOI: 10.3390/plants13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Cherry virus F (CVF) is a newly emerged sweet cherry virus. CVF has been identified in a small number of countries and it has not been associated with discrete symptomatology. RNA silencing is a natural defense mechanism of plants against invaders that degrades viral RNA in a sequence-specific manner. As a counter-defense, plant viruses encode one or more RNA silencing suppressors (RSSs) interfering with the silencing pathway via several mechanisms. To identify putative RSSs, the three proteins (MP, CPL, CPS) encoded by the RNA2 of CVF were selected and separately cloned into the binary vector pART27. The clones were used for transient expression experiments in Nicotiana benthamiana leaves, using co-agroinfiltration with a GFP-expressing vector. In both CPL and CPS, a rapid decrease in fluorescence was recorded, comparable to the negative control, whereas the MP of CVF retained the GFP's fluorescence for a few days longer even though this was observed in a small number of infiltrated leaves. Further experiments have shown that the protein was not able to inhibit the cell-to-cell spread of the silencing signal; however, a putative interference with systemic silencing was recorded especially when the induction was carried out with double-stranded GFP RNA. Overall, our results indicate that the MP of CVF is putatively implicated in the suppression of RNA silencing, though further experimentation is needed to unveil the exact mode of action.
Collapse
Affiliation(s)
| | | | | | - Varvara I. Maliogka
- Plant Pathology Laboratory, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.L.); (A.K.); (N.I.K.)
| |
Collapse
|
3
|
Wu C, Kannan S, Verma CS, Swaminathan K, Wong SM. Molecular modeling and interaction between Arabidopsis sulfite oxidase and the GW motif of Turnip crinkle virus coat protein. Virology 2020; 551:64-74. [PMID: 33038689 DOI: 10.1016/j.virol.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Previous study has shown that Hibiscus sulfite oxidase (SO) interacts with Hibiscus chlorotic ringspot virus (HCRSV) coat protein (CP) and triggers sulfur enhanced defense (SED). In this study, we show the interaction of Arabidopsis SO (AtSO) and Turnip crinkle virus (TCV) CP in Arabidopsis thaliana plants. We identified the binding sites of TCV CP (W274) and AtSO (D223) using bioinformatics and confirmed it experimentally. Mutation of binding site W274 to A274 in TCV CP resulted in failure of TCV infection. TCV accumulation in SO over-expression (SO_OE) plants was lower than that in wild-type (WT) and SO knock-out (SO_KO) plants at 7 dpi but reached a level similar to that of WT and SO_KO plants at 10 dpi. AtSO competed with Argonaute 1 (AGO1) for TCV CP binding in vitro. AtSO may serve as an anti-viral factor through sequestering TCV CP for binding with AGO1 and confers virus resistance.
Collapse
Affiliation(s)
- Chao Wu
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | | | - Chandra S Verma
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis St, 07-01 Matrix, 138671, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Kunchithapadam Swaminathan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Temasek Life Sciences Laboratory, 1 Research Link Road, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, 215123, PR China.
| |
Collapse
|
4
|
Pollari M, De S, Wang A, Mäkinen K. The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog 2020; 16:e1008965. [PMID: 33031436 PMCID: PMC7575100 DOI: 10.1371/journal.ppat.1008965] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022] Open
Abstract
In this study, we demonstrate a novel pro-viral role for the Nicotiana benthamiana ARGONAUTE 1 (AGO1) in potyvirus infection. AGO1 strongly enhanced potato virus A (PVA) particle production and benefited the infection when supplied in excess. We subsequently identified the potyviral silencing suppressor, helper-component protease (HCPro), as the recruiter of host AGO1. After the identification of a conserved AGO1-binding GW/WG motif in potyviral HCPros, we used site-directed mutagenesis to introduce a tryptophan-to-alanine change into the HCPro (HCProAG) of PVA (PVAAG) and turnip mosaic virus (TuMVAG). AGO1 co-localization and co-immunoprecipitation with PVA HCPro was significantly reduced by the mutation suggesting the interaction was compromised. Although the mutation did not interfere with HCPro's complementation or silencing suppression capacity, it nevertheless impaired virus particle accumulation and the systemic spread of both PVA and TuMV. Furthermore, we found that the HCPro-AGO1 interaction was important for AGO1's association with the PVA coat protein. The coat protein was also more stable in wild type PVA infection than in PVAAG infection. Based on these findings we suggest that potyviral HCPro recruits host AGO1 through its WG motif and engages AGO1 in the production of stable virus particles, which are required for an efficient systemic infection.
Collapse
Affiliation(s)
- Maija Pollari
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Swarnalok De
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology, Viikki Plant Science Center, Helsinki, Finland
| |
Collapse
|
5
|
Zielezinski A, Karlowski WM. Identification and Analysis of WG/GW ARGONAUTE-Binding Domains. Methods Mol Biol 2017; 1640:241-256. [PMID: 28608348 DOI: 10.1007/978-1-4939-7165-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
WG/GW domains recruit ARGONAUTE (AGO) proteins to distinct silencing effector complexes using combinations of just two amino acids: tryptophan (W) and glycine (G), forming a wide arsenal of highly simplified interaction surfaces. These unstructured domains exhibit very low sequence identity and excessive length polymorphism, which makes identification of new AGO-binding proteins a challenging task as they escape detection with standard sequence comparison-based methods (e.g., BLAST, HMMER).In this chapter, we explain the use of tools for prediction of AGO-binding WG/GW domains in protein sequences. We also show how to computationally explore an up-to-date information about AGO-interacting proteins and discover new properties of WG/GW domains. Finally, we encourage readers to explore the game-like web application for in silico designing/modifying AGO-binding sequences as well as modeling mutagenesis experiments and predicting their potential effect on AGO-binding activity.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
6
|
Tiong HK, Hartson SD, Muriana PM. Comparison of Surface Proteomes of Adherence Variants of Listeria Monocytogenes Using LC-MS/MS for Identification of Potential Surface Adhesins. Pathogens 2016; 5:E40. [PMID: 27196934 PMCID: PMC4931391 DOI: 10.3390/pathogens5020040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of Listeria monocytogenes to adhere and form biofilms leads to persistence in food processing plants and food-associated listeriosis. The role of specific surface proteins as adhesins to attach Listeria cells to various contact surfaces has not been well characterized to date. In prior research comparing different methods for surface protein extraction, the Ghost urea method revealed cleaner protein content as verified by the least cytoplasmic protein detected in surface extracts using LC-MS/MS. The same technique was utilized to extract and detect surface proteins among two surface-adherent phenotypic strains of L. monocytogenes (i.e., strongly and weakly adherent). Of 640 total proteins detected among planktonic and sessile cells, 21 protein members were exclusively detected in the sessile cells. Relative LC-MS/MS detection and quantification of surface-extracted proteins from the planktonic weakly adherent (CW35) and strongly adherent strains (99-38) were examined by protein mass normalization of proteins. We found that L. monocytogenes 99-38 exhibited a total of 22 surface proteins that were over-expressed: 11 proteins were detected in surface extracts of both sessile and planktonic 99-38 that were ≥5-fold over-expressed while another 11 proteins were detected only in planktonic 99-38 cells that were ≥10-fold over-expressed. Our results suggest that these protein members are worthy of further investigation for their involvement as surface adhesins.
Collapse
Affiliation(s)
- Hung King Tiong
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Peter M Muriana
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
- Robert M. Kerr Food & Agricultural Products Centre, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
7
|
Zielezinski A, Karlowski WM. Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs. ACTA ACUST UNITED AC 2014; 31:332-9. [PMID: 25304778 DOI: 10.1093/bioinformatics/btu666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MOTIVATION Argonaute-interacting WG/GW proteins are characterized by the presence of repeated sequence motifs containing glycine (G) and tryptophan (W). The motifs seem to be remarkably adaptive to amino acid substitutions and their sequences show non-contiguity. Our previous approach to the detection of GW domains, based on scoring their gross amino acid composition, allowed annotation of several novel proteins involved in gene silencing. The accumulation of new experimental data and more advanced applications revealed some deficiency of the algorithm in prediction selectivity. Additionally, W-motifs, though critical in gene regulation, have not yet been annotated in any available online resources. RESULTS We present an improved set of computational tools allowing efficient management and annotation of W-based motifs involved in gene silencing. The new prediction algorithms provide novel functionalities by annotation of the W-containing domains at the local sequence motif level rather than by overall compositional properties. This approach represents a significant improvement over the previous method in terms of prediction sensitivity and selectivity. Application of the algorithm allowed annotation of a comprehensive list of putative Argonaute-interacting proteins across eukaryotes. An in-depth characterization of the domains' properties indicates its intrinsic disordered character. In addition, we created a knowledge-based portal (whub) that provides access to tools and information on RNAi-related tryptophan-containing motifs. AVAILABILITY AND IMPLEMENTATION The web portal and tools are freely available at http://www.comgen.pl/whub. CONTACT wmk@amu.edu.pl SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Wojciech M Karlowski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
8
|
Karran RA, Sanfaçon H. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:933-43. [PMID: 24804809 DOI: 10.1094/mpmi-04-14-0099-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA silencing regulates plant gene expression and antiviral defenses and functions by cleaving target RNAs or repressing translation. As a counter defense, many plant viruses encode suppressor proteins that sequester small RNAs or inactivate Argonaute (AGO) proteins. All known plant virus silencing suppressor activities eventually inhibit the degradation of target mRNAs. Using a transiently expressed green fluorescent protein (GFP) reporter gene, we show that Tomato ringspot virus (ToRSV) coat protein (CP) is a suppressor of RNA silencing that enhances GFP expression but does not prevent the degradation of the GFP mRNA or the accumulation of GFP small interfering RNAs (siRNAs). Coexpression of the CP with GFP resulted in increased association of residual GFP mRNAs with polysome fractions and reduced association of GFP siRNAs with monosome fractions. AGO1 was co-immunoprecipitated with the CP and CP expression destabilized AGO1. A WG motif within the CP was critical for the enhanced GFP expression, AGO1 interaction, and AGO1 destabilization, suggesting that the ToRSV CP acts as an AGO-hook protein and competes for AGO binding with a plant cellular GW/WG protein involved in translation repression.
Collapse
|
9
|
Abstract
Argonaute proteins interact with small RNAs and facilitate small RNA-guided gene-silencing processes. Small RNAs guide Argonaute proteins to distinct target sites on mRNAs where Argonaute proteins interact with members of the GW182 protein family (also known as GW proteins). In subsequent steps, GW182 proteins mediate the downstream steps of gene silencing. The present mini-review summarizes and discusses our current knowledge of the molecular basis of Argonaute-GW182 protein interactions.
Collapse
|