1
|
Mitani Y, Al-Maghrabi H, Karpinets TV, Relator RT, Hilder L, Chen IY, Goepfert RP, Bell D, Zhang J, Ferrarotto R, El-Naggar AK. Comparative transcriptomics of salivary basal cell adenoma and adenocarcinoma sustain linear neoplastic evolution and intertumor heterogeneity: classification and biological implications. J Pathol 2025. [PMID: 40272378 DOI: 10.1002/path.6424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025]
Abstract
It remains uncertain whether basal cell adenoma (BCA) and basal cell adenocarcinoma (BCAC) of the salivary gland represent two distinct neoplasms or temporal stages of a single entity. The issue is central to reconciling their shared phenotypic resemblance and protracted behavior with current pathologic classification. We conducted a transcriptomic analysis on a cohort of both pathologic forms and correlated the findings with the clinicopathologic features using RNA extracted from fresh frozen samples of 25 salivary basal tumors (five BCAs and 20 BCACs) and eight instances of metastatic basal cell carcinomas (BCCs) to parotid glands. Unsupervised analysis revealed shared and intertumoral transcriptome differences within and between BCA and BCAC and distinct segregation from metastatic dermal BCC. Transcriptomic profiling delineated two intermixed subgroups of salivary basal cell neoplasms (SBNs); SBN-I group enriched with adverse pathologic features and SBN-II that lacked any of these features except for a single case. The category with the most instances of adverse pathologic features (SBN-I) manifested upregulations of transcriptional factors linked to cell proliferation pathways (HOXB13, SOX21, MYB, and EN1 genes), while those lacking adverse pathologic features (SBN-II) demonstrated a high expression of the TFAP2B transcription- and differentiation-related pathways. Our transcriptomic findings support common neoplastic evolution and intertumoral heterogeneity of both pathologic forms of basal cell neoplasms and identify molecular pathways of potential biological and clinical significance. We therefore propose a nondeterministic designation of 'basal cell salivary neoplasms, noninvasive (adenoma)/invasive (adenocarcinoma)' as a platform that integrates conventional phenotypic classification and transcriptomic characteristics pending a classification consensus. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Haneen Al-Maghrabi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Raissa T Relator
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Lauren Hilder
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Irene Y Chen
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ryan P Goepfert
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Diana Bell
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Trecourt A, Bataillon G, Le Loarer F, Donzel M, Alix E, Descotes F, Lopez J, Thamphya B, Pissaloux D, Treilleux I, Croce S, Devouassoux-Shisheboran M. The MEF2D::NCOA2 Fusion Defines a Distinct Emerging Vulvovaginal Myxoid Epithelioid Tumor With Smooth Muscle Differentiation. Mod Pathol 2025; 38:100750. [PMID: 40057039 DOI: 10.1016/j.modpat.2025.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Myocyte-specific enhancer factor 2D gene and nuclear receptor coactivator 2 gene fusion (MEF2D::NCOA2) was recently reported in 2 vulvovaginal myxoid epithelioid smooth muscle tumors. We aimed to perform an integrated approach combining clinical, morphologic, immunohistochemical, and molecular profiling analyses, including targeted RNA sequencing, targeted gene expression analysis profiling with clustering, DNA mutational analysis, and array comparative genomic hybridization in a series of 3 MEF2D::NCOA2 fusion-associated vulvovaginal tumors, to better describe this entity. The median age at diagnosis was 45 years. Tumors were well circumscribed and located deeply within the vulva, vaginal wall, or between the bladder and the vagina (1/3, 33.3% each). The median size of tumors was 2.5 cm. All tumors had a similar morphology, reminiscent of smooth muscle tumor with prominent myxoid stromal changes (3/3, 100%). Tumor cells were haphazardly arranged in short fascicles and were mostly spindle cells. Microcystic spaces lined by epithelioid cells and/or sheets of epithelioid cells were observed in all tumors (3/3, 100%), associated with a myxoid background. Cytologic atypia was none to mild, and the mitotic counts were always low (≤1 mitosis/high-power fields). Immunohistochemistry found smooth muscle actin, desmin, h-caldesmon, estrogen receptors, and CD34 to be intensely and diffusely expressed in all tumors (3/3, 100%). A MEF2D::NCOA2 transcript was observed in all tumors (3/3, 100%), which was the driver of molecular alteration. No pathogenic variants were found, and array comparative genomic hybridization found simple genomic profiles for all tumors (3/3, 100%). On targeted gene expression analysis, MEF2D::NCOA2 fusion-associated tumors clustered distinctly from other gynecologic mimickers and neoplasms with myxoid stromal changes (vulvovaginal leiomyomas, myxoid vulvovaginal leiomyomas, deep angiomyxomas, myxoid leiomyosarcomas, myxoid endometrial stromal sarcomas, and inflammatory myofibroblastic tumors). The signaling pathways involved in this entity included the expression of genes encoding smooth muscle phenotype proteins, favoring a smooth muscle (myoid) differentiation. All patients were alive and free of disease at the last follow-up. To conclude, vulvovaginal MEF2D::NCOA2 fusion-associated tumors are distinct and emerging entities, with a rather indolent behavior.
Collapse
Affiliation(s)
- Alexis Trecourt
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Pathologie Multi-Site, Pierre-Bénite, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Sud, Centre pour l'innovation en cancérologie de Lyon (CICLY), Lyon, France
| | - Guillaume Bataillon
- Institut Universitaire du Cancer Toulouse Oncopole, Service de Pathologie, Toulouse, France
| | - François Le Loarer
- Institut Bergonié, Service de Pathologie, Bordeaux, France; Université de Bordeaux, BRIC, Bordeaux, France
| | - Marie Donzel
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Pathologie Multi-Site, Pierre-Bénite, France; Université Claude Bernard Lyon-1, Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), Ecole Normale Supérieure de Lyon, Lyon, France
| | - Eudeline Alix
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Pathologie Multi-Site, Pierre-Bénite, France
| | - Françoise Descotes
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Biochimie et de Biologie Moléculaire, Pierre-Bénite, France
| | - Jonathan Lopez
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Biochimie et de Biologie Moléculaire, Pierre-Bénite, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Est, Lyon, France
| | - Brice Thamphya
- Centre Léon Bérard, Service de Bio-Pathologie, Lyon, France
| | | | | | - Sabrina Croce
- Institut Bergonié, Service de Pathologie, Bordeaux, France; Université de Bordeaux, BRIC, Bordeaux, France
| | - Mojgan Devouassoux-Shisheboran
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de Pathologie Multi-Site, Pierre-Bénite, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Sud, Centre pour l'innovation en cancérologie de Lyon (CICLY), Lyon, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Est, Lyon, France.
| |
Collapse
|
3
|
Trecourt A, Treilleux I, Pissaloux D, Donzel M, Thamphya B, Thirode F, Houlier A, Paindavoine S, Franceschi T, Baltrès A, Gertych W, Bolze PA, Chaix PA, Roux-Terrier C, Descotes F, Ray-Coquard I, Lopez J, Devouassoux-Shisheboran M. Primary Vulvar and Vaginal Adenocarcinomas of Intestinal Type Are Closer To Colorectal Adenocarcinomas Than To Carcinomas of Müllerian Origin. Mod Pathol 2025; 38:100649. [PMID: 39522642 DOI: 10.1016/j.modpat.2024.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Primary vulvar and vaginal adenocarcinomas of intestinal type (VVAIts) are very rare tumors, displaying morphologic and immunohistochemical overlap with colorectal adenocarcinomas. However, their immunoprofile and genomics are poorly studied, and their origin is still debated. Here, we studied a series of 8 VVAIts (4 vulvar and 4 vaginal) using a large panel of immunohistochemistry and DNA and RNA sequencing with clustering analyses. All tumors shared a similar morphology with colorectal adenocarcinomas and diffuse CK20 and CDX2 expression. SATB2 diffuse positivity was observed in 62.5% of tumors and CK7 in 82.5%, whereas PAX8, SOX17, p16, and estrogen and progesterone receptors were always negative. A p53 mutated-type expression was observed in 75% of tumors. All tumors were mismatch repair proficient. Neither human papillomavirus DNA nor pathogenic transcript fusions were detected. The most frequent molecular alterations were TP53 and KRAS variants in 71.4% and 42.9%, respectively. The transcriptomic analysis highlighted a robust VVAIts cluster distinct from endocervical, ovarian, lung, thyroid, salivary glands, breast, and renal carcinomas but failed to differentiate vulvar from vaginal intestinal-type tumors. On 2 different clustering analyses, VVAIts clustered altogether, very close to colorectal adenocarcinomas. Compared with endocervical adenocarcinomas of intestinal type, VVAIts had a significantly lower expression of SOX17 and epithelial-mesenchymal transition genes and a higher mitogen-activated protein kinase pathway gene expression. These results suggest that Müllerian structures leading to cervical adenocarcinomas may undergo intestinal-type transdifferentiation via an epithelial-mesenchymal transition phenomenon. Conversely, mitogen-activated protein kinase pathway activation in VVAIts, which plays a major role in colorectal adenocarcinomas, may indicate a close relationship in the carcinogenesis of these tumors. Our results indicate that adenocarcinomas of intestinal type, in the distal vagina or vestibular vulva, might be a unique and single entity, probably originating from cloacogenic embryonic remnants and/or ectopic colorectal mucosae inclusions. An open question would be to explore the efficacy of systemic drugs prescribed in colorectal cancers, in VVAIts.
Collapse
Affiliation(s)
- Alexis Trecourt
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Pathologie Multi-Site, Pierre Benite, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Sud, Centre pour l'Innovation en Cancérologie de Lyon (CICLY), UR 3738, Lyon, France
| | - Isabelle Treilleux
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Daniel Pissaloux
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Marie Donzel
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Pathologie Multi-Site, Pierre Benite, France; Université Claude Bernard Lyon-1, Centre International de Recherche en Infectiologie (CIRI), Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Brice Thamphya
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Franck Thirode
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Aurélie Houlier
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Sandrine Paindavoine
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Tatiana Franceschi
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Aline Baltrès
- Centre Léon Bérard, Service de Bio-Pathologie, INSERM 1052, CNRS 5286, Lyon, France
| | - Witold Gertych
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Gynécologie-Obstétrique, Pierre Benite, France
| | - Pierre-Adrien Bolze
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Gynécologie-Obstétrique, Pierre Benite, France
| | | | | | - Françoise Descotes
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Biochimie et de Biologie Moléculaire, Pierre Benite, France
| | - Isabelle Ray-Coquard
- Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Est, Lyon, France; Centre Léon Bérard, Service de Cancérologie Médicale, Lyon, France
| | - Jonathan Lopez
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Biochimie et de Biologie Moléculaire, Pierre Benite, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Est, Lyon, France
| | - Mojgan Devouassoux-Shisheboran
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service de Pathologie Multi-Site, Pierre Benite, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Sud, Centre pour l'Innovation en Cancérologie de Lyon (CICLY), UR 3738, Lyon, France; Université Claude Bernard Lyon-1, Faculté de Médecine Lyon Est, Lyon, France.
| |
Collapse
|
4
|
Fougner V, Urup T, Poulsen HS, Grunnet K, Westmose CY, Melchior LC, Larsen KB, Højgaard M, Spanggaard I, Belcaid L, Rohrberg KS, Lassen U, Hasselbalch B, Nørøxe DS. Actionable alterations in glioblastoma: Insights from the implementation of genomic profiling as the standard of care from 2016 to 2023. Neurooncol Pract 2025; 12:34-44. [PMID: 39917766 PMCID: PMC11798607 DOI: 10.1093/nop/npae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Background In 2016, genomic profiling was implemented for patients with grade 4 primary brain tumors at Rigshospitalet, Denmark. The aim of this study was to discover actionable alterations and to match these with targeted therapies. Methods Between January 2016 and December 2023, 483 brain tumor patients were profiled. We retrieved clinical data and molecular data. Whole exome, whole genome, or panel sequencing, along with SNP array analyses, and RNA-seq were performed on resected primary tumor tissue. Alterations were classified according to the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) following the European Association of Neuro-Oncology (EANO) guideline on rational molecular testing. Results A total of 200 (41.4%) patients' tumors harbored an alteration of interest according to the EANO guideline. Twenty (4.1%) patients had an ESCAT high-tier alteration (tier I or II), while 155 patients (32.1%) had an alteration corresponding to ESCAT IIIA. Thirty-five patients (7.2%) had an actionable alteration, and 15 (3.1%) received targeted therapy. The treated targets were BRAFV600E mutations, FGFR alterations, NTRK fusions, PDGFRA fusions, PTPRZ1-MET fusions, and TMB-high. The overall response rate was 20%, with a median duration of response of 12 months, and 47% achieved stable disease as the best response. Conclusions Genomic profiling uncovers alterations of interest in a substantial number of patients, but only a minority are considered by the Danish National Molecular Tumor Board to have actionable alterations, and even fewer receive targeted therapy. Nevertheless, factors, such as promising targets and the increasing availability of trials, may contribute to a future increase in the number of patients benefiting from targeted therapies based on genomic profiling.
Collapse
Affiliation(s)
- Vincent Fougner
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Thomas Urup
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Kirsten Grunnet
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Christina Yde Westmose
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linea Cecilie Melchior
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Karen Bonde Larsen
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Højgaard
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Iben Spanggaard
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Laila Belcaid
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kristoffer Staal Rohrberg
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- Phase 1 Unit, Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Benedikte Hasselbalch
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| | - Dorte Schou Nørøxe
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Danish Comprehensive Cancer Center - Brain Tumor Center (DCCC-BTC), Copenhagen, Denmark
| |
Collapse
|
5
|
Unger M, Loeffler CML, Žigutytė L, Sainath S, Lenz T, Vibert J, Mock A, Fröhling S, Graham TA, Carrero ZI, Kather JN. Deep Learning for Biomarker Discovery in Cancer Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631471. [PMID: 39829845 PMCID: PMC11741323 DOI: 10.1101/2025.01.06.631471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Genomic data is essential for clinical decision-making in precision oncology. Bioinformatic algorithms are widely used to analyze next-generation sequencing (NGS) data, but they face two major challenges. First, these pipelines are highly complex, involving multiple steps and the integration of various tools. Second, they generate features that are human-interpretable but often result in information loss by focusing only on predefined genetic properties. This limitation restricts the full potential of NGS data in biomarker extraction and slows the discovery of new biomarkers in precision oncology. Methods We propose an end-to-end deep learning (DL) approach for analyzing NGS data. Specifically, we developed a multiple instance learning DL framework that integrates somatic mutation sequences to predict two compound biomarkers: microsatellite instability (MSI) and homologous recombination deficiency (HRD). To achieve this, we utilized data from 3,184 cancer patients obtained from two public databases: The Cancer Genome Atlas (TCGA) and the Clinical Proteome Tumor Analysis Consortium (CPTAC). Results Our proposed deep learning method demonstrated high accuracy in identifying clinically relevant biomarkers. For predicting MSI status, the model achieved an accuracy of 0.98, a sensitivity of 0.95, and a specificity of 1.00 on an external validation cohort. For predicting HRD status, the model achieved an accuracy of 0.80, a sensitivity of 0.75, and a specificity of 0.86. Furthermore, the deep learning approach significantly outperformed traditional machine learning methods in both tasks (MSI accuracy, p-value = 5.11×10-18; HRD accuracy, p-value = 1.07×10-10). Using explainability techniques, we demonstrated that the model's predictions are based on biologically meaningful features, aligning with key DNA damage repair mutation signatures. Conclusion We demonstrate that deep learning can identify patterns in unfiltered somatic mutations without the need for manual feature extraction. This approach enhances the detection of actionable targets and paves the way for developing NGS-based biomarkers using minimally processed data.
Collapse
Affiliation(s)
- Michaela Unger
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
- Medical Department 1, University Hospital and Faculty of Medicine Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Laura Žigutytė
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Srividhya Sainath
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Tim Lenz
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Julien Vibert
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Andreas Mock
- Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Division of Translational Precision Medicine, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Trevor A Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
- Medical Department 1, University Hospital and Faculty of Medicine Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Kebede AM, Garfinkle EAR, Mathew MT, Varga E, Colace SI, Wheeler G, Kelly BJ, Schieffer KM, Miller KE, Mardis ER, Cottrell CE, Potter SL. Comprehensive genomic characterization of hematologic malignancies at a pediatric tertiary care center. Front Oncol 2024; 14:1498409. [PMID: 39687881 PMCID: PMC11647012 DOI: 10.3389/fonc.2024.1498409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
Despite the increasing availability of comprehensive next generation sequencing (NGS), its role in characterizing pediatric hematologic malignancies remains undefined. We describe findings from comprehensive genomic profiling of hematologic malignancies at a pediatric tertiary care center. Patients enrolled on a translational research protocol to aid in cancer diagnosis, prognostication, treatment, and detection of cancer predisposition. Disease-involved samples underwent exome and RNA sequencing and analysis for single nucleotide variation, insertion/deletions, copy number alteration, structural variation, fusions, and gene expression. Twenty-eight patients with hematologic malignancies were nominated between 2018-2021. Eighteen individuals received both germline and somatic sequencing; two received germline sequencing only. Germline testing identified patients with cancer predisposition syndromes and non-cancer carrier states. Fifteen patients (15/18, 83%) had cancer-relevant somatic findings. Potential therapeutic targets were identified in seven patients (7/18, 38.9%); three (3/7, 42.9%) received targeted therapies and remain in remission an average of 47 months later.
Collapse
Affiliation(s)
- Ann M. Kebede
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elizabeth A. R. Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Susan I. Colace
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Samara L. Potter
- Division of Pediatric Heme/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Wang X, Yi H, Liu Q, Guo T, Li A, Ouyang B, Li Y, Zhang Y, Xu H, Dong L, Wang X, Wang C. ALK-positive large B-cell lymphoma: a clinicopathological and molecular characteristics analysis of seven cases. Pathology 2024; 56:961-968. [PMID: 39237383 DOI: 10.1016/j.pathol.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/07/2024]
Abstract
Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK+ LBCL) is a rare and highly aggressive lymphoma with characteristic ALK rearrangements. Various fusion genes involving ALK have been demonstrated, but the influence of the ALK fusion partners on ALK protein expression and the genetic characteristics of ALK+ LBCL remain relatively unknown. In this study, we conducted an extensive clinicopathological and molecular analysis on seven cases of ALK+ LBCL to explore the correlation between ALK fusion genes and ALK protein expression, thereby enriching the genetic characteristics of this tumour. We integrated the findings from clinical, histopathological/immunophenotypic, and molecular studies, including three samples subjected to next-generation sequencing, and six cases underwent RNA-based ALK fusion gene detection. We identified five distinct types of ALK fusion genes, including CLTC, NPM1, PABPC1, SEC31A, and TFG. Notably, only the NPM1::ALK fusion showed nuclear and cytoplasmic ALK staining, and the remaining four fusion genes resulted in cytoplasmic ALK staining. Our analysis revealed that the CLTC::ALK fusion resulted in a unique cytoplasmic perinuclear Golgi zone focal granular heterogeneous staining pattern of ALK. Additionally, we identified six potentially clinically significant gene mutations, including TET2, CHD2, DTX1, KMT2D, LRP1B, and XPO1. Furthermore, in all cases, the absence of 5-hydroxymethylcytosine (5hmC) was observed. We present seven cases of ALK+ LBCL, discussing the correlation between fusion genes and ALK protein expression, and enhancing our understanding of the genetic attributes of this tumour. This study also shows the loss of 5hmC in nearly all seven ALK+ LBCL cases, independently of TET2 mutations.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiao Liu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuanjie Guo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binshen Ouyang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiu Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Kou FR, Li J, Wang ZH, Xu T, Qian JJ, Zhang EL, Zhang LJ, Shen L, Wang XC. Analysis of actionable gene fusions in a large cohort of Chinese patients with colorectal cancer. Gastroenterol Rep (Oxf) 2024; 12:goae092. [PMID: 39391592 PMCID: PMC11464618 DOI: 10.1093/gastro/goae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Background The prevalence of gene fusion is extremely low in unselected patients with colorectal cancer (CRC). Published data on gene fusions are limited by relatively small sample sizes, with a primary focus on Western populations. This study aimed to analyse actionable gene fusions in a large consecutive Chinese CRC population. Methods This study included 5,534 consecutive CRC patients from the Genecast database. Genomic profiling was performed using a panel of 769 cancer-related genes. Data for 34 CRC patients with actionable gene fusions were also collected from cBioPortal and ChimerSeq. Results Among 5,534 CRC patients, 54 (0.98%) had actionable gene fusions, with NTRK1/2/3 being the most common fusion (0.38%), accounting for 38.9% (21/54) of those with fusions. Actionable gene fusion enrichment was higher in patients with microsatellite instability-high (MSI-H) (6.7% vs. 0.5%, P < 0.001), RAS/BRAF wildtype (2.0% vs. 0.2%, P < 0.001) and RNF43 mutation (7.7% vs. 0.4%, P < 0.001) than in patients with microsatellite stability/MSI-low, RAS/BRAF mutation and RNF43 wildtype, respectively. When these markers were combined, the fusion detection rate increased. Among patients with RAS/BRAF wildtype and MSI-H, fusions were detected in 20.3% of patients. The fusion detection rate further increased to 37.5% when RNF43 mutation was added. The fusion detection rate was also higher in colon cancer than in rectal cancer. No significant differences in clinical or molecular features were found in patients with actionable gene fusions between the Genecast, cBioPortal, and ChimerSeq databases. Conclusions Approximately 1% of the unselected Chinese CRC population carries actionable gene fusions, mostly involving NTRK. Actionable gene fusions are more prevalent in MSI-H, RAS/BRAF wildtype, or RNF43-mutated CRC, as well as in colon cancer. Mapping of these molecular markers can markedly increase the fusion detection rate, which can help clinicians select candidates for fusion testing and targeted therapy.
Collapse
Affiliation(s)
- Fu-Rong Kou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Comprehensive Clinical Trial Ward, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Jian Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Zheng-Hang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Ting Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Juan-Juan Qian
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - En-Li Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Li-Jun Zhang
- Department of Medicine, Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, P. R. China
| | - Lin Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xi-Cheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, P. R. China
| |
Collapse
|
9
|
Kervarrec T, Westphal D, Pissaloux D, Legrand M, Tirode F, Neuhart A, Drouot F, Becker JC, Macagno N, Seris A, Jouary T, Beltzung F, Jullie ML, Harms PW, Cribier B, Mourah S, Jouenne F, Fromont G, Louveau B, Mancini M, Kazakov DV, de la Fouchardière A, Battistella M. Porocarcinomas with PAK1/2/3 fusions: a series of 12 cases. Histopathology 2024; 85:566-578. [PMID: 38785043 DOI: 10.1111/his.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
AIMS Porocarcinoma is a malignant sweat gland tumour differentiated toward the upper part of the sweat duct and may arise from the transformation of a preexisting benign poroma. In 2019, Sekine et al. demonstrated the presence of YAP1::MAML2 and YAP1::NUTM1 fusions in most poromas and porocarcinomas. Recently, our group identified PAK2-fusions in a subset of benign poromas. Herein we report a series of 12 porocarcinoma cases harbouring PAK1/2/3 fusions. METHODS AND RESULTS Five patients were male and the median age was 79 years (ranges: 59-95). Tumours were located on the trunk (n = 7), on the thigh (n = 3), neck (n = 1), or groin area (n = 1). Four patients developed distant metastases. Microscopically, seven cases harboured a benign poroma component and a malignant invasive part. Ductal formations were observed in all, while infundibular/horn cysts and cells with vacuolated cytoplasm were detected in seven and six tumours, respectively. In three cases, the invasive component consisted of a proliferation of elongated cells, some of which formed pseudovascular spaces, whereas the others harboured a predominant solid or trabecular growth pattern. Immunohistochemical staining for CEA and EMA confirmed the presence of ducts. Focal androgen receptor expression was detected in three specimens. Whole RNA sequencing evidenced LAMTOR1::PAK1 (n = 2), ZDHHC5::PAK1 (n = 2), DLG1::PAK2, CTDSP1::PAK1, CTNND1::PAK1, SSR1::PAK3, CTNNA1::PAK2, RNF13::PAK2, ROBO1::PAK2, and CD47::PAK2. Activating mutation of HRAS (G13V, n = 3, G13R, n = 1, Q61L, n = 2) was present in six cases. CONCLUSION Our study suggests that PAK1/2/3 fusions is the oncogenic driver of a subset of porocarcinomas lacking YAP1 rearrangement.
Collapse
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Université de Tours, Tours, France
- "Biologie des infections à polyomavirus" Team, UMR INRA ISP 1282, Université de Tours, Tours, France
- CARADERM Network
| | - Danna Westphal
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Daniel Pissaloux
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Mélanie Legrand
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Université de Tours, Tours, France
| | - Franck Tirode
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | - Anne Neuhart
- Department of Biopathology, Center Léon Bérard, Lyon, France
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue contre le Cancer, Lyon, France
| | | | - Jürgen C Becker
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Pa German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicolas Macagno
- CARADERM Network
- Department of Pathology, Timone University Hospital, Marseille, France
| | - Alice Seris
- CARADERM Network
- Service de Dermatologie, Centre hospitalier de Pau, Pau, France
| | - Thomas Jouary
- CARADERM Network
- Service de Dermatologie, Centre hospitalier de Pau, Pau, France
| | - Fanny Beltzung
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Marie-Laure Jullie
- CARADERM Network
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Paul W Harms
- Department of Pathology, Michigan Medicine/University of Michigan, Ann Arbor, MI, USA
- Department of Dermatology, Michigan Medicine/University of Michigan, Ann Arbor, MI, USA
| | - Bernard Cribier
- Dermatology Clinic, Hopitaux Universitaires & Université de Strasbourg, Hopital Civil, Strasbourg, France
| | - Samia Mourah
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Gaelle Fromont
- Department of Pathology, Centre Hospitalier Universitaire de Tours, Université de Tours, Tours, France
| | - Baptiste Louveau
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Maxence Mancini
- Department of Pharmacology and Solid Tumor Genomics, Saint Louis Hospital, Paris University, AP-HP, Paris, France
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie Institut, Pathologie Institut Enge, Zurich, Switzerland
| | - Arnaud de la Fouchardière
- CARADERM Network
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Maxime Battistella
- CARADERM Network
- Department of Pathology, APHP Hôpital Saint Louis, INSERM U976, Université Paris Cité7, Paris, France
| |
Collapse
|
10
|
Tabaro F, Boulard M. 3t-seq: automatic gene expression analysis of single-copy genes, transposable elements, and tRNAs from RNA-seq data. Brief Bioinform 2024; 25:bbae467. [PMID: 39322626 PMCID: PMC11424182 DOI: 10.1093/bib/bbae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
RNA sequencing is the gold-standard method to quantify transcriptomic changes between two conditions. The overwhelming majority of data analysis methods available are focused on polyadenylated RNA transcribed from single-copy genes and overlook transcripts from repeated sequences such as transposable elements (TEs). These self-autonomous genetic elements are increasingly studied, and specialized tools designed to handle multimapping sequencing reads are available. Transfer RNAs are transcribed by RNA polymerase III and are essential for protein translation. There is a need for integrated software that is able to analyze multiple types of RNA. Here, we present 3t-seq, a Snakemake pipeline for integrated differential expression analysis of transcripts from single-copy genes, TEs, and tRNA. 3t-seq produces an accessible report and easy-to-use results for downstream analysis starting from raw sequencing data and performing quality control, genome mapping, gene expression quantification, and statistical testing. It implements three methods to quantify TEs expression and one for tRNA genes. It provides an easy-to-configure method to manage software dependencies that lets the user focus on results. 3t-seq is released under MIT license and is available at https://github.com/boulardlab/3t-seq.
Collapse
Affiliation(s)
- Francesco Tabaro
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ercole Ramarini 32, Monterotondo 00015, Italy
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ercole Ramarini 32, Monterotondo 00015, Italy
| |
Collapse
|
11
|
Shatara M, Schieffer KM, Melas M, Varga EA, Thomas D, Bucknor BA, Costello HM, Wheeler G, Kelly BJ, Miller KE, Rodriguez DP, Mathew MT, Lee K, Crotty E, Leary S, Paulson VA, Cole B, Abdelbaki MS, Finlay JL, Lazow MA, Salloum R, Fouladi M, Boué DR, Mardis ER, Cottrell CE. Molecular characterization of gliomas and glioneuronal tumors amid Noonan syndrome: cancer predisposition examined. Front Oncol 2024; 14:1453309. [PMID: 39309743 PMCID: PMC11412961 DOI: 10.3389/fonc.2024.1453309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction In the setting of pediatric and adolescent young adult cancer, increased access to genomic profiling has enhanced the detection of genetic variation associated with cancer predisposition, including germline syndromic conditions. Noonan syndrome (NS) is associated with the germline RAS pathway activating alterations and increased risk of cancer. Herein, we describe our comprehensive molecular profiling approach, the association of NS with glioma and glioneuronal tumors, and the clinical and histopathologic characteristics associated with the disease. Methods Within an institutional pediatric cancer cohort (n = 314), molecular profiling comprised of paired somatic disease-germline comparator exome analysis, RNA sequencing, and tumor classification by DNA methylation analysis was performed. Results Through the implementation of paired analysis, this study identified 4 of 314 (1.3%) individuals who harbored a germline PTPN11 variant associated with NS, of which 3 individuals were diagnosed with a glioma or glioneuronal tumor. Furthermore, we extend this study through collaboration with a peer institution to identify two additional individuals with NS and a glioma or glioneuronal tumor. Notably, in three of five (60%) individuals, paired genomic profiling led to a previously unrecognized diagnosis of Noonan syndrome despite an average age of cancer diagnosis of 16.8 years. The study of the disease-involved tissue identified signaling pathway dysregulation through somatic alteration of genes involved in cellular proliferation, survival, and differentiation. Discussion Comparative pathologic findings are presented to enable an in-depth examination of disease characteristics. This comprehensive analysis highlights the association of gliomas and glioneuronal tumors with RASopathies and the potential therapeutic challenges and importantly demonstrates the utility of genomic profiling for the identification of germline cancer predisposition.
Collapse
Affiliation(s)
- Margaret Shatara
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elizabeth A. Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Diana Thomas
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brianna A. Bucknor
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Heather M. Costello
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Diana P. Rodriguez
- The Department of Radiology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mariam T. Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Erin Crotty
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Sarah Leary
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Vera A. Paulson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Mohamed S. Abdelbaki
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Jonathan L. Finlay
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Margot A. Lazow
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Ralph Salloum
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Maryam Fouladi
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- The Division of Hematology/Oncology, and Bone Marrow Transplantation, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, United States
| | - Daniel R. Boué
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pathology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Feng J, Ma T, Wang C, Wang B, Liu Q, Liu Z, Tao H, Ye Z. Clinical relevance and druggability of sole reciprocal kinase fusions: A large-scale study. Cancer Med 2024; 13:e70191. [PMID: 39254060 PMCID: PMC11386300 DOI: 10.1002/cam4.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Building on our prior work that RNA alternative splicing modulates the druggability of kinase fusions, this study probes the clinical significance of sole reciprocal fusions. These rare genomic arrangements, despite lacking kinase domains at the DNA level, demonstrated potential RNA-level druggability in sporadic cases from our prior research. METHODS Utilizing the large-scale multicenter approach, we performed RNA sequencing and clinical follow-up to evaluate a broad spectrum of kinase fusions, including ALK, ROS1, RET, BRAF, NTRK, MET, NRG1, and EGFR, in 1943 patients. RESULTS Our findings revealed 51 instances (2.57%) of sole reciprocal fusions, predominantly in lung (57%), colorectal (14%), and glioma (10%) cancers. Comparative analysis with an MSKCC cohort confirmed the prevalence in diverse cancer types and identified unique fusion partners and chromosomal locales. Cross-validation through RNA-NGS and FISH authenticated the existence of functional kinase domains in subsets including ALK, ROS1, RET, and BRAF, which correlated with positive clinical responses to targeted kinase inhibitors (KIs). Conversely, fusions involving EGFR, NRG1, and NTRK1/2/3 generated nonfunctional transcripts, suggesting the need for alternative therapeutic interventions. CONCLUSION This inaugural multicenter study introduces a novel algorithm for detecting and treating sole reciprocal fusions in advanced cancers, expanding the patient population potentially amenable to KIs.
Collapse
Affiliation(s)
- Jiao Feng
- General Surgery, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangChina
- School of Pharmacy, Hangzhou Normal UniversityZhejiangChina
| | - Tonghui Ma
- Jichenjunchuang Clinical LaboratoryZhejiangChina
- Genecn‐Biotech Co.LtdZhejiangChina
| | - Chunyang Wang
- Jichenjunchuang Clinical LaboratoryZhejiangChina
- Genecn‐Biotech Co.LtdZhejiangChina
| | - Baoming Wang
- Jichenjunchuang Clinical LaboratoryZhejiangChina
- Genecn‐Biotech Co.LtdZhejiangChina
| | - Qian Liu
- College of Medicine, Zhejiang UniversityZhejiangChina
| | - Zhengchuang Liu
- General Surgery, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangChina
| | - Houquan Tao
- General Surgery, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangChina
| | - Zaiyuan Ye
- General Surgery, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeZhejiangChina
| |
Collapse
|
13
|
Qin Z, Yue M, Tang S, Wu F, Sun H, Li Y, Zhang Y, Izumi H, Huang H, Wang W, Xue Y, Tong X, Mori S, Taki T, Goto K, Jin Y, Li F, Li FM, Gao Y, Fang Z, Fang Y, Hu L, Yan X, Xu G, Chen H, Kobayashi SS, Ventura A, Wong KK, Zhu X, Chen L, Ren S, Chen LN, Ji H. EML4-ALK fusions drive lung adeno-to-squamous transition through JAK-STAT activation. J Exp Med 2024; 221:e20232028. [PMID: 38284990 PMCID: PMC10824105 DOI: 10.1084/jem.20232028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, exhibits strong cancer plasticity. We find that ALK rearrangement is detectable in 5.1-7.5% of human LUAS, and transgenic expression of EML4-ALK drives lung adenocarcinoma (LUAD) formation initially and squamous transition at late stage. We identify club cells as the main cell-of-origin for squamous transition. Through recapitulating lineage transition in organoid system, we identify JAK-STAT signaling, activated by EML4-ALK phase separation, significantly promotes squamous transition. Integrative study with scRNA-seq and immunostaining identify a plastic cell subpopulation in ALK-rearranged human LUAD showing squamous biomarker expression. Moreover, those relapsed ALK-rearranged LUAD show notable upregulation of squamous biomarkers. Consistently, mouse squamous tumors or LUAD with squamous signature display certain resistance to ALK inhibitor, which can be overcome by combined JAK1/2 inhibitor treatment. This study uncovers strong plasticity of ALK-rearranged tumors in orchestrating phenotypic transition and drug resistance and proposes a potentially effective therapeutic strategy.
Collapse
Affiliation(s)
- Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongchang Zhang
- Department of Medical Oncology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hsinyi Huang
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shunta Mori
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Taki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fei Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu-Ming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhaoyuan Fang
- University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Susumu S. Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Liang Chen
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luo-Nan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
14
|
Zhang X, Li L, Gao F, Liu B, Li J, Ren S, Peng S, Qiu W, Pu X, Ye Q. Fluorescent in situ hybridization has limitations in screening NRG1 gene rearrangements. Diagn Pathol 2024; 19:1. [PMID: 38173003 PMCID: PMC10762970 DOI: 10.1186/s13000-023-01424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND NRG1 fusion is a promising therapeutic target for various tumors but its prevalence is extremely low, and there are no standardized testing algorithms for genetic assessment. MOTHODS In this study, we analyzed 3008 tumors using Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) to screen for NRG1 translocation and p-HER3 expression. RESULTS Our results demonstrated no cases with p-HER3 positivity through IHC. Nonetheless, 29 cases (0.96%) were identified positive for NRG1 translocation through FISH, with three different signal types. FISH-positive cases were subsequently subjected to next-generation sequencing (NGS) testing. However, only eight of these cases were confirmed with NRG1 fusion through NGS. Notably, we divided FISH into three types and FISH type C group was consistent with NGS results. All NGS NRG1 fusion tumors were adenocarcinomas, with a higher prevalence in females. Our findings indicate that although FISH has limitations in screening NRG1 gene rearrangements, NRG1 fusions can be reliably detected with signals exhibiting low copy numbers of the 5'-end of the gene and no fusion signals. CONCLUSION Considering the high cost of NGS, FISH remains a useful method for screening NRG1 fusions in various types of tumors. This study provides valuable insights into the molecular mechanisms of NRG1 fusion and identifies potential treatment targets for patients suffering from this disease.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing, 211100, Jiangsu Province, China
| | - Lin Li
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Fuping Gao
- Department of Pathology, Nanjing Gaochun People's Hospital, Nanjing, 210008, Jiangsu Province, China
| | - Binbin Liu
- Department of Pathology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu Province, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210008, Jiangsu Province, China
| | - Jing Li
- Berry Oncology Corporation, Beijing, 100102, China
| | - Shuang Ren
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Shuangshuang Peng
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China
| | - Wei Qiu
- Department of Pathology, Nanjing Jiangning Hospital, Nanjing, 211100, Jiangsu Province, China.
| | - Xiaohong Pu
- Department of Pathology, The Affiliated Drum Tower Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu Province, China.
| | - Qing Ye
- Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230036, Anhui Province, China.
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui Province, China.
| |
Collapse
|
15
|
Rose AJ, Fleming MM, Francis JC, Ning J, Patrikeev A, Chauhan R, Harrington KJ, Swain A. Cell-type-specific tumour sensitivity identified with a bromodomain targeting PROTAC in adenoid cystic carcinoma. J Pathol 2024; 262:37-49. [PMID: 37792636 DOI: 10.1002/path.6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy with limited treatment options. The development of novel therapies is hindered by a lack of preclinical models. We have generated ACC patient-derived xenograft (PDX) lines that retain the physical and genetic properties of the original tumours, including the presence of the common MYB::NFIB or MYBL1::NFIB translocations. We have developed the conditions for the generation of both 2D and 3D tumour organoid patient-derived ACC models that retain MYB expression and can be used for drug studies. Using these models, we show in vitro and in vivo sensitivity of ACC cells to the bromodomain degrader, dBET6. Molecular studies show a decrease in BRD4 and MYB protein levels and target gene expression with treatment. The most prominent effect of dBET6 on tumours in vivo was a change in the relative composition of ACC cell types expressing either myoepithelial or ductal markers. We show that dBET6 inhibits the progenitor function of ACC cells, particularly in the myoepithelial marker-expressing population, revealing a cell-type-specific sensitivity. These studies uncover a novel mechanistic effect of bromodomain inhibitors on tumours and highlight the need to impact both cell-type populations for more effective treatments in ACC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alexandra J Rose
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Jian Ning
- Tumour Modelling Facility, Institute of Cancer Research, London, UK
| | | | - Ritika Chauhan
- Genomics Facility, Institute of Cancer Research, London, UK
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| |
Collapse
|
16
|
Apostolides M, Li M, Arnoldo A, Ku M, Husić M, Ramani AK, Brudno M, Turinsky A, Hawkins C, Siddaway R. Clinical Implementation of MetaFusion for Accurate Cancer-Driving Fusion Detection from RNA Sequencing. J Mol Diagn 2023; 25:921-931. [PMID: 37748705 DOI: 10.1016/j.jmoldx.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023] Open
Abstract
Oncogenic fusion genes may be identified from next-generation sequencing data, typically RNA-sequencing. However, in a clinical setting, identifying these alterations is challenging against a background of nonrelevant fusion calls that reduce workflow precision and specificity. Furthermore, although numerous algorithms have been developed to detect fusions in RNA-sequencing, there are variations in their individual sensitivities. Here this problem was addressed by introducing MetaFusion into clinical use. Its utility was illustrated when applied to both whole-transcriptome and targeted sequencing data sets. MetaFusion combines ensemble fusion calls from eight individual fusion-calling algorithms with practice-informed identification of gene fusions that are known to be clinically relevant. In doing so, it allows oncogenic fusions to be identified with near-perfect sensitivity and high precision and specificity, significantly outperforming the individual fusion callers it uses as well as existing clinical-grade software. MetaFusion enhances clinical yield over existing methods and is able to identify fusions that have patient relevance for the purposes of diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Michael Apostolides
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Li
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anthony Arnoldo
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Ku
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mia Husić
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Brudno
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Andrei Turinsky
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Robert Siddaway
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Zhou S, Zhang F, Xu M, Zhang L, Liu Z, Yang Q, Wang C, Wang B, Ma T, Feng J. Novel insights into molecular patterns of ROS1 fusions in a large Chinese NSCLC cohort: a multicenter study. Mol Oncol 2023; 17:2200-2212. [PMID: 37584407 PMCID: PMC10552890 DOI: 10.1002/1878-0261.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/17/2023] Open
Abstract
ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) rearrangements are a crucial therapeutic target in non-small cell lung cancer (NSCLC). However, there is limited comprehensive analysis of the molecular patterns of ROS1 fusions. This study aimed to address this gap by analysing 135 ROS1 fusions from 134 Chinese NSCLC patients using next-generation sequencing (NGS). The fusions were categorized into common and uncommon based on their incidence. Our study revealed, for the first time, a unique distribution preference of breakpoints within ROS1, with common fusions occurring in introns 31-33 and uncommon fusions occurring in introns 34 and 35. Additionally, we identified previously unknown breakpoints within intron 28 of ROS1. Furthermore, we identified a close association between the distribution patterns of fusion partners and breakpoints on ROS1, providing important insights into the molecular landscape of ROS1 fusions. We also confirmed the presence of inconsistent breakpoints in ROS1 fusions between DNA-based NGS and RNA-based NGS through rigorous validation methods. These inconsistencies were attributed to alternative splicing resulting in out-of-frame or exonic ROS1 fusions. These findings significantly contribute to our understanding of the molecular characteristics of ROS1 fusions, which have implications for panel design and the treatment of NSCLC patients with ROS1 rearrangements.
Collapse
Affiliation(s)
- Shengyu Zhou
- Clinical Nursing Department, School of Nursing and Rehabilitation, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of Respiratory and Critical Care Medicine, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Fayan Zhang
- College of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Mengxiang Xu
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Lei Zhang
- Cancer Center, Daping HospitalArmy Medical UniversityChongqingChina
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeChina
| | - Qiong Yang
- General Surgery, Cancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)China
| | - Chunyang Wang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Baoming Wang
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
| | - Tonghui Ma
- Jichenjunchuang Clinical LaboratoryHangzhouChina
- Genecn‐Biotech Co.LtdHangzhouChina
- Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical CollegeChina
| | - Jiao Feng
- Cancer Center, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang ProvinceZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeChina
- General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer CenterZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeChina
- School of PharmacyHangzhou Normal UniversityChina
| |
Collapse
|
18
|
Luo M, Miao YR, Ke YJ, Guo AY, Zhang Q. A comprehensive landscape of transcription profiles and data resources for human leukemia. Blood Adv 2023; 7:3435-3449. [PMID: 36595475 PMCID: PMC10362280 DOI: 10.1182/bloodadvances.2022008410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
As a heterogeneous group of hematologic malignancies, leukemia has been widely studied at the transcriptome level. However, a comprehensive transcriptomic landscape and resources for different leukemia subtypes are lacking. Thus, in this study, we integrated the RNA sequencing data sets of >3000 samples from 14 leukemia subtypes and 53 related cell lines via a unified analysis pipeline. We depicted the corresponding transcriptomic landscape and developed a user-friendly data portal LeukemiaDB. LeukemiaDB was designed with 5 main modules: protein-coding gene, long noncoding RNA (lncRNA), circular RNA, alternative splicing, and fusion gene modules. In LeukemiaDB, users can search and browse the expression level, regulatory modules, and molecular information across leukemia subtypes or cell lines. In addition, a comprehensive analysis of data in LeukemiaDB demonstrates that (1) different leukemia subtypes or cell lines have similar expression distribution of the protein-coding gene and lncRNA; (2) some alternative splicing events are shared among nearly all leukemia subtypes, for example, MYL6 in A3SS, MYB in A5SS, HMBS in retained intron, GTPBP10 in mutually exclusive exons, and POLL in skipped exon; (3) some leukemia-specific protein-coding genes, for example, ABCA6, ARHGAP44, WNT3, and BLACE, and fusion genes, for example, BCR-ABL1 and KMT2A-AFF1 are involved in leukemogenesis; (4) some highly correlated regulatory modules were also identified in different leukemia subtypes, for example, the HOXA9 module in acute myeloid leukemia and the NOTCH1 module in T-cell acute lymphoblastic leukemia. In summary, the developed LeukemiaDB provides valuable insights into oncogenesis and progression of leukemia and, to the best of our knowledge, is the most comprehensive transcriptome resource of human leukemia available to the research community.
Collapse
Affiliation(s)
- Mei Luo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ya-Ru Miao
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Juan Ke
- Dian Diagnostics Group Co, Ltd, Hangzhou, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - An-Yuan Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Center for Artificial Intelligence Biology, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Dong D, Zhang S, Jiang B, Wei W, Wang C, Yang Q, Yan T, Chen M, Zheng L, Shao W, Xiong G. Correlation analysis of MRD positivity in patients with completely resected stage I-IIIA non-small cell lung cancer: a cohort study. Front Oncol 2023; 13:1222716. [PMID: 37546402 PMCID: PMC10401588 DOI: 10.3389/fonc.2023.1222716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background The primary objective of this study is to thoroughly investigate the intricate correlation between postoperative molecular residual disease (MRD) status in individuals diagnosed with stage I-IIIA non-small cell lung cancer (NSCLC) and clinicopathological features, gene mutations, the tumour immune microenvironment and treatment effects. Methods The retrospective collection and analysis were carried out on the clinical data of ninety individuals diagnosed with stage I-IIIA NSCLC who underwent radical resection of lung cancer at our medical facility between January 2021 and March 2022. The comprehensive investigation encompassed an evaluation of multiple aspects including the MRD status, demographic information, clinicopathological characteristics, results from genetic testing, the tumor immune microenvironment, and treatment effects. Results No significant associations were observed between postoperative MRD status and variables such as gender, age, smoking history, pathological type, and gene mutations. However, a statistically significant correlation was found between MRD positivity and T (tumor diameter > 3 cm) as well as N (lymph node metastasis) stages (p values of 0.004 and 0.003, respectively). It was observed that higher proportions of micropapillary and solid pathological subtypes within lung adenocarcinoma were associated with increased rates of MRD-positivity after surgery (p = 0.007;0.005). MRD positivity demonstrated a correlation with the presence of vascular invasion (p = 0.0002). For the expression of programmed cell death ligand 1 (PD-L1), tumour positive score (TPS) ≥ 1% and combined positive score (CPS) ≥ 5 were correlated with postoperative MRD status (p value distribution was 0.0391 and 0.0153). In terms of ctDNA elimination, among patients identified as having postoperative MRD and lacking gene mutations, postoperative adjuvant targeted therapy demonstrated superiority over chemotherapy (p = 0.027). Conclusion Postoperative ctDNA-MRD status in NSCLC patients exhibits correlations with the size of the primary tumor, lymph node metastasis, pathological subtype of lung adenocarcinoma, presence of vascular invasion, as well as TPS and CPS values for PD-L1 expression; in postoperative patients with MRD, the effectiveness of adjuvant EGFR-TKI targeted therapy exceeds that of chemotherapy, as evidenced by the elimination of ctDNA.
Collapse
Affiliation(s)
- Daling Dong
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Shixin Zhang
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Bin Jiang
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Chao Wang
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Qian Yang
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Tingzhi Yan
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Min Chen
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
| | - Liken Zheng
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | | | - Gang Xiong
- Department of Cardiothoracic Surgery, Guiqian International Hospital, Guiyang, China
- Genecast Biotechnology Co., Ltd., Wuxi, China
| |
Collapse
|
20
|
Ju S, Cui Z, Hong Y, Wang X, Mu W, Xie Z, Zeng X, Su L, Lin X, Zhang Z, Zhang Q, Song X, You S, Chen R, Chen W, Xu C, Zhao J. Detection of multiple types of cancer driver mutations using targeted RNA sequencing in nonsmall cell lung cancer. Cancer 2023. [PMID: 37096747 DOI: 10.1002/cncr.34804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 04/26/2023]
Abstract
BACKGROUND DNA-based next-generation sequencing has been widely used in the selection of target therapies for patients with nonsmall cell lung cancer (NSCLC). RNA-based next-generation sequencing has been proven to be valuable in detecting fusion and exon-skipping mutations and is recommended by National Comprehensive Cancer Network guidelines for these mutation types. METHODS The authors developed an RNA-based hybridization panel targeting actionable driver oncogenes in solid tumors. Experimental and bioinformatics pipelines were optimized for the detection of fusions, single-nucleotide variants (SNVs), and insertion/deletion (indels). In total, 1253 formalin-fixed, paraffin-embedded samples from patients with NSCLC were analyzed by DNA and RNA panel sequencing in parallel to assess the performance of the RNA panel in detecting multiple types of mutations. RESULTS In analytical validation, the RNA panel achieved a limit of detection of 1.45-3.15 copies per nanogram for SNVs and 0.21-6.48 copies per nanogram for fusions. In 1253 formalin-fixed, paraffin-embedded NSCLC samples, the RNA panel identified a total of 124 fusion events and 26 MET exon 14-skipping events, in which 14 fusions and six MET exon 14-skipping mutations were missed by DNA panel sequencing. By using the DNA panel as the reference, the positive percent agreement and the positive predictive value of the RNA panel were 98.08% and 98.62%, respectively, for detecting targetable SNVs and 98.15% and 99.38%, respectively, for detecting targetable indels. CONCLUSIONS Parallel DNA and RNA sequencing analyses demonstrated the accuracy and robustness of the RNA sequencing panel in detecting multiple types of clinically actionable mutations. The simplified experimental workflow and low sample consumption will make RNA panel sequencing a potentially effective method in clinical testing.
Collapse
Affiliation(s)
- Sheng Ju
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihan Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Hong
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Xiaoqing Wang
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Weina Mu
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Zhuolin Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuexia Zeng
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Lin Su
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Xiaojing Lin
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Zhuo Zhang
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Qi Zhang
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Xiaofeng Song
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Songxia You
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Ruixin Chen
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Weizhi Chen
- GeneCast Biotechnology Research Institute, Beijing, China
| | - Chun Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Lipplaa A, Meijer D, van de Sande MAJ, Gelderblom H, Bovée JVMG, Mei H, Szuhai K. A novel colony-stimulating factor 1 (CSF1) translocation involving human endogenous retroviral element in a tenosynovial giant cell tumor. Genes Chromosomes Cancer 2023; 62:223-230. [PMID: 36504457 PMCID: PMC10108088 DOI: 10.1002/gcc.23116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 12/14/2022] Open
Abstract
Tenosynovial giant cell tumors (TSGCTs) are rare tumors arising in tendons or the synoviae of joints and bursae. The localized type is benign while the diffuse type shows expansive growth leading to greater morbidity and is therefore considered locally aggressive. Typical recurrent chromosomal aberrations are found in the majority of TSCGT and the CSF1 gene is frequently involved. In this article, we describe a newly identified gene fusion mediated by an inversion in a case of diffuse TSGCT. Multicolor-fluorescence in situ hybridization (FISH) molecular karyotyping identified a pericentric inversion of chromosome 1 in 7 out of 17 analyzed cells 46,XX,inv(1)(p13.3q24.3) [7]/46,XX [10], and with interphase FISH the involvement the CSF1 locus was detected. After performing transcriptome sequencing analysis for fusion detection, only one out of five fusion gene algorithms detected a fusion involving the CSF1 gene product. The resulting chimera fuses a sequence from a human endogenous retrovirus (HERV) gene to CSF1 Exon 6 on chromosome 1, abrogating the regulatory element of the 3' untranslated region of the CSF1 gene. This new translocation involving Exon 6 of the CSF1 gene fused to 1q24.1, supports the hypothesis that a mutated CSF1 protein is likely to play a vital role in the pathogenesis of TSGCT. The role of the HERV partner identified as a translocation partner, however, remains unclear. Our data add to the complexity of involved translocation partners in TSGCT and point to the potential difficulty of identifying fusion partners in tumor diagnostics using transcriptome sequencing when HERV or other repeat elements are involved.
Collapse
Affiliation(s)
- Astrid Lipplaa
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Debora Meijer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Center for Computational Oncology, Leiden, The Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Full-Length RNA Sequencing Provides Insights into Goldfish Evolution under Artificial Selection. Int J Mol Sci 2023; 24:ijms24032735. [PMID: 36769054 PMCID: PMC9916754 DOI: 10.3390/ijms24032735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Goldfish Carassius auratus is an ideal model for exploring fish morphology evolution. Although genes underlying several ornamental traits have been identified, little is known about the effects of artificial selection on embryo gene expression. In the present study, hybrid transcriptome sequencing was conducted to reveal gene expression profiles of Celestial-Eye (CE) and Ryukin (RK) goldfish embryos. Full-length transcriptome sequencing on the PacBio platform identified 54,218 and 54,106 transcript isoforms in CE and RK goldfish, respectively. Of particular note was that thousands of alternative splicing (AS) and alternative polyadenylation (APA) events were identified in both goldfish breeds, and most of them were inter-breed specific. RT-PCR and Sanger sequencing showed that most of the predicted AS and APA were correct. Moreover, abundant long non-coding RNA and fusion genes were detected, and again most of them were inter-breed specific. Through RNA-seq, we detected thousands of differentially expressed genes (DEGs) in each embryonic stage between the two goldfish breeds. KEGG enrichment analysis on DEGs showed extensive differences between CE and RK goldfish in gene expression. Taken together, our results demonstrated that artificial selection has led to far-reaching influences on goldfish gene expression, which probably laid the genetic basis for hundreds of goldfish variations.
Collapse
|
23
|
Yuan Y, Gao F, Chang Y, Zhao Q, He X. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res 2023; 11:6. [PMID: 36650562 PMCID: PMC9845107 DOI: 10.1186/s40364-023-00449-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
High-frequency mutations in tumor genomes could be exploited as an asset for developing tumor vaccines. In recent years, with the tremendous breakthrough in genomics, intelligence algorithm, and in-depth insight of tumor immunology, it has become possible to rapidly target genomic alterations in tumor cell and rationally select vaccine targets. Among a variety of candidate vaccine platforms, the early application of mRNA was limited by instability low efficiency and excessive immunogenicity until the successful development of mRNA vaccines against SARS-COV-2 broken of technical bottleneck in vaccine preparation, allowing tumor mRNA vaccines to be prepared rapidly in an economical way with good performance of stability and efficiency. In this review, we systematically summarized the classification and characteristics of tumor antigens, the general process and methods for screening neoantigens, the strategies of vaccine preparations and advances in clinical trials, as well as presented the main challenges in the current mRNA tumor vaccine development.
Collapse
Affiliation(s)
- Yuan Yuan
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Gao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xingxing He
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
24
|
Wang Z, Han Y, Tao H, Xu M, Liu Z, Zhu J, Li W, Ma J, Liu Z, Wang W, Ma T. Molecular characterization of genomic breakpoints of ALK rearrangements in non-small cell lung cancer. Mol Oncol 2022; 17:765-778. [PMID: 36423218 PMCID: PMC10158786 DOI: 10.1002/1878-0261.13348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
ALK rearrangement is called the 'diamond mutation' in non-small cell lung cancer (NSCLC). Accurately identifying patients who are candidates for ALK inhibitors is a key step in making clinical treatment decisions. In this study, a total of 783 ALK rearrangement-positive NSCLC cases were identified by DNA-based next-generation sequencing (NGS), including 731 patients with EML4-ALK and 52 patients with other ALK rearrangements. Diverse genomic breakpoints of ALK rearrangements were identified. Approximately 94.4% (739/783) of the cases carried ALK rearrangements with genomic breakpoints in the introns of ALK and its partner genes, and 2.8% (21/739) of these cases resulted in frameshift transcripts of ALK. Meanwhile, 5.6% (44/783) of the ALK rearrangement-positive cases had breakpoints in the exons that would be expected to result in abnormal transcripts. RNA-based NGS was performed to analyse the aberrant fusions at the transcript level. Some of these rearranged DNAs were not transcribed, and the others were fixed by some mechanisms so that the fusion kinase proteins could be expressed. Altogether, these findings emphasize that, when using DNA-based NGS, functional RNA fusions should be confirmed in cases with uncommon/frameshift rearrangement by RNA-based assays.
Collapse
Affiliation(s)
- Zizong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, China
| | - Yushuai Han
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Mengxiang Xu
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Jianhua Zhu
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Wei Li
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Zhifang Liu
- Department of Clinical Pharmacology, Cheeloo College of Medicine, The Second Hospital, Shandong University, Jinan, China
| | - Weiran Wang
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China
| | - Tonghui Ma
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd., China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| |
Collapse
|
25
|
Kuo YJ, Lewis JS, Truong T, Yeh YC, Chernock RD, Zhai C, Chen YA, Hongo T, Lee CK, Shi Q, Velez Torres JM, Geromes AB, Chu YH, Hsieh MS, Yamamoto H, Weinreb I, Hang JF. Nuclear expression of AFF2 C-terminus is a sensitive and specific ancillary marker for DEK::AFF2 carcinoma of the sinonasal tract. Mod Pathol 2022; 35:1587-1595. [PMID: 35701667 DOI: 10.1038/s41379-022-01117-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022]
Abstract
DEK::AFF2 carcinoma of the sinonasal tract is an emerging entity. The tumor is typically characterized by papillary proliferation of non-keratinizing squamous epithelial cells with monotonous cytologic features, which may mimic other sinonasal tumors. The confirmation of this gene fusion has thus far relied solely on next-generation sequencing, fluorescence in situ hybridization (FISH), or reverse transcription polymerase chain reaction (RT-PCR). This current study aimed to validate an immunohistochemical assay for AFF2 C-terminus as an ancillary marker. We first analyzed publicly available RNA sequencing data of sinonasal tumors from the national center for biotechnology information (NCBI) sequence read archive and identified 3 DEK::AFF2 carcinomas out of 28 sinonasal tumors. The gene expression of AFF2 was significantly higher in the fusion-positive cases compared to the wild-type tumors (p < 0.001), while DEK was not. We then optimized an immunohistochemical assay with an anti-AFF2 C-terminus antibody for ancillary diagnosis. Seventeen DEK::AFF2 carcinomas, including 11 cases with predominantly low-grade morphology and one showing glandular differentiation, as well as 78 DEK FISH-negative sinonasal tumors were evaluated by AFF2 immunohistochemistry (IHC). Sixteen of the 17 DEK::AFF2 carcinomas showed nuclear AFF2 expression in ≥30% of tumor cells, including one decalcified case that failed FISH and RT-PCR confirmation. The one case that was negative for AFF2 IHC in the tumor cells also lacked expression in the internal positive control. It was thus considered a failure of the IHC rather than a truly negative case and was excluded from the statistical analysis. All DEK FISH-negative sinonasal tumors were negative for nuclear AFF2 expression. The nuclear expression of AFF2 IHC showed 100% sensitivity and specificity for DEK::AFF2 carcinoma. Accordingly, AFF2 IHC is a highly sensitive and specific ancillary marker that distinguishes DEK-AFF2 carcinoma from the other sinonasal tumors with overlapping morphological features and may be an especially useful alternative for decalcified specimens.
Collapse
Affiliation(s)
- Ying-Ju Kuo
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - James S Lewis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tra Truong
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Rebecca D Chernock
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Changwen Zhai
- Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yun-An Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Takahiro Hongo
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chien-Kuan Lee
- Department of Pathology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Qiuying Shi
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Jaylou M Velez Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ariana B Geromes
- Anatomic and Clinical Laboratory Associates, P.C, Nashville, TN, USA
| | - Ying-Hsia Chu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ilan Weinreb
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
26
|
Zhang L, Wang D, Han X, Guo X, Cao Y, Xia Y, Gao D. Novel read-through fusion transcript Bcl2l2-Pabpn1 in glioblastoma cells. J Cell Mol Med 2022; 26:4686-4697. [PMID: 35894779 PMCID: PMC9443946 DOI: 10.1111/jcmm.17481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/11/2022] [Accepted: 06/19/2022] [Indexed: 11/29/2022] Open
Abstract
Read‐through fusion transcripts have recently been identified as chimeric RNAs and have since been linked to tumour growth in some cases. Many fusion genes generated by chromosomal rearrangements have been described in glioblastoma. However, read‐through fusion transcripts between neighbouring genes in glioblastoma remain unexplored. We performed paired‐end RNA‐seq of rat C6 glioma cells and normal cells and discovered a read‐through fusion transcript Bcl2l2‐Pabpn1 in which exon 3 of Bcl‐2‐like protein 2 (Bcl2l2) fused to exon 2 of Polyadenylate‐binding protein 1 (Pabpn1). This fusion transcript was found in both human glioblastoma and normal cells. Unlike other fusions reported in glioblastoma, Bcl2l2‐Pabpn1 appeared to result from RNA processing rather than genomic rearrangement. Bcl2l2‐Pabpn1 fusion transcript encoded a fusion protein with BH4, BCL and RRM domains. Functionally, Bcl2l2‐Pabpn1 knockdown by targeting its fusion junction decreased its expression, and suppressed cell proliferation, migration and invasion in vitro. Mechanistically, Bcl2l2‐Pabpn1 blocked Bax activity and activated PI3K/AKT pathway to promote glioblastoma progression. Together, our work characterized a glioblastoma‐associated Bcl2l2‐Pabpn1 fusion transcript shared by humans and rats.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China.,School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Dan Wang
- School of Medical Information and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Xiao Han
- Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Yuanyuan Cao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
27
|
Severgnini M, D’Angiò M, Bungaro S, Cazzaniga G, Cifola I, Fazio G. Conjoined Genes as Common Events in Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2022; 14:cancers14143523. [PMID: 35884588 PMCID: PMC9315513 DOI: 10.3390/cancers14143523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Acute lymphoblastic leukemia (ALL) is the most frequent childhood cancer. In recent years, broad application of NGS technologies enabled the discovery of novel genomically defined ALL. In this study, as a proof-of-principle, we applied RNA-seq technology to comprehensively profile the transcriptional landscape of a collection of 10 childhood BCP-ALL cases, and performed a deep bioinformatics analysis including several publicly available datasets, in order to characterize their full spectrum of transcriptional events. The paired-end RNA sequencing of our BCP-ALL pediatric cohort revealed a total of 9001 raw fusion events, which, after filtering, resulted in 245 candidate fusions. Overall, 235 out of 245 events were intra-chromosomal fusions, among which 229 involved two contiguous or overlapping genes, also known as conjoined genes (CGs). Among them, we identified a subset of 14 CGs (6.1%) exclusively expressed in leukemic cases but neither in solid cancers nor in normal samples. These events could be suggestive of a novel mechanism of transcriptional regulation in childhood leukemia and may represent novel potential leukemia-specific biomarkers. Abstract Acute lymphoblastic leukemia (ALL) is the most frequent childhood cancer. For the last three decades, conventional cytogenetic and molecular approaches allowed the identification of genetic abnormalities having prognostic and therapeutic relevance. Although the current cure rate in pediatric B cell acute leukemia is approximately 90%, it remains one of the leading causes of mortality in childhood. Furthermore, in the contemporary protocols, chemotherapy intensity was raised to the maximal levels of tolerability, and further improvements in the outcome will depend on the characterization and reclassification of the disease, as well as on the development of new targeted drugs. The recent technological advances in genome-wide profiling techniques have allowed the exploration of the molecular heterogeneity of this disease, even though some potentially interesting biomarkers such as conjoined genes have not been deeply investigated yet. In the present study, we performed the transcriptome sequencing (RNA-seq) of 10 pediatric B cell precursor (BCP)-ALL cases with different risk (four standard- and six high-risk patients) enrolled in the Italian AIEOP-BFM ALL2000 protocol, in order to characterize the full spectrum of transcriptional events and to identify novel potential genetic mechanisms sustaining their different early response to therapy. Total RNA was extracted from primary leukemic blasts and RNA-seq was performed by Illumina technology. Bioinformatics analysis focused on fusion transcripts, originated from either inter- or intra-chromosomal structural rearrangements. Starting from a raw list of 9001 candidate events, by employing a custom-made bioinformatics pipeline, we obtained a short list of 245 candidate fusions. Among them, 10 events were compatible with chromosomal translocations. Strikingly, 235/245 events were intra-chromosomal fusions, 229 of which involved two contiguous or overlapping genes, resulting in the so-called conjoined genes (CGs). To explore the specificity of these events in leukemia, we performed an extensive bioinformatics meta-analysis and evaluated the presence of the fusions identified in our 10 BCP-ALL cohort in several other publicly available RNA-seq datasets, including leukemic, solid tumor and normal sample collections. Overall, 14/229 (6.1%) CGs were found to be exclusively expressed in leukemic cases, suggesting an association between CGs and leukemia. Moreover, CGs were found to be common events both in standard- and high-risk BCP-ALL patients and it might be suggestive of a novel potential transcriptional regulation mechanism active in leukemic cells.
Collapse
Affiliation(s)
- Marco Severgnini
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 20054 Milano, Italy; (M.S.); (I.C.)
| | - Mariella D’Angiò
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, 20126 Milano, Italy;
- Tettamanti Research Center, University of Milan Bicocca, 20900 Monza, Italy;
| | - Silvia Bungaro
- Ospedale San Gerardo, Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), 20900 Monza, Italy;
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, Università degli Studi di Milano Bicocca, 20126 Milano, Italy;
- Tettamanti Research Center, University of Milan Bicocca, 20900 Monza, Italy;
- Correspondence: ; Tel.: +39-039-233-3661
| | - Ingrid Cifola
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 20054 Milano, Italy; (M.S.); (I.C.)
| | - Grazia Fazio
- Tettamanti Research Center, University of Milan Bicocca, 20900 Monza, Italy;
| |
Collapse
|
28
|
Yuan L, Chen S, Wang Y, Ma Y. The molecular characteristics of gastric cancer patients living in Qinghai-Tibetan Plateau. BMC Gastroenterol 2022; 22:244. [PMID: 35568828 PMCID: PMC9107197 DOI: 10.1186/s12876-022-02324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Gastric cancer, or stomach cancer, that originates in the inner lining of the stomach, was the fifth most common cancer and the fourth mortality globally, with over one million new cases in 2020 and an estimated 769,000 deaths. The molecular characteristics of gastric cancer has been complicated by histological and intratumor heterogeneity. The incidence of gastric cancer shows wide geographical variation. As the largest and highest region in China, Qinghai-Tibetan Plateau is one of the important global biodiversity hotspots. Here, we collect tumour and paired normal bio-samples from 31 primary gastric cancer patients from Qinghai Provincial People's Hospital, and discuss the molecular characteristics for gastric cancer patients living in plateau. They have more single nucleotide polymorphisms (SNP) located in chromosome 7 with C → T and G → A as the most common alteration types, barely share the cancer driver genes with western patients, and have no significant differences in various Chinese nation. These characteristics offers a great opportunity to further understanding the divergent mechanism of gastric cancer, increase the efficacy for diagnosis and prognosis, finally lead the optimal targeted therapeutics.
Collapse
Affiliation(s)
- Ling Yuan
- Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, 810008, China
| | - Yongcui Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Yingcai Ma
- Department of Gastroenterology, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China.
| |
Collapse
|
29
|
He J, Hu X, Chen L, Liu Q, Jiang Y. Characteristics of Genomic Alterations in Pericardial Effusion of Advanced Non-small Cell Lung Cancer. Front Genet 2022; 13:850290. [PMID: 35646096 PMCID: PMC9133843 DOI: 10.3389/fgene.2022.850290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The feasibility and value of pericardial effusion as a liquid biopsy sample for actionable alteration detection in patients with non-small cell lung cancer (NSCLC) has not been adequately investigated. Here, we aim to reveal genomic alterations between pericardial effusion and paired tumor tissue, plasma (plasma cfDNA), and pleural effusion supernatant (PE-cfDNA) based on second-generation sequencing technology. Material and methods: A total of 26 advanced NSCLC patients were retrospectively studied. The following samples were collected and sequenced using two targeted next-generation sequencing panels: pericardial effusion (n = 26), matched tumor tissue (n = 6), plasma (n = 16), and pleural effusion supernatant (n = 5). Results: A total of 10 actionable alterations were identified in pericardial effusion of the NSCLC patients, including MET amplification, EGFR L858R, EGFR T790M, EGFR exon 19 deletion, EGFR L861Q, KRAS G12C, EML4-ALK (exon 18: exon 20) fusion, EML4-ALK (exon 20: exon 20) fusion, EML4-ALK (exon 6: exon 20) fusion, and ERBB2 exon 20 insertion. All these actionable alterations harbored multiple drug-sensitive targets as well as several drug-resistant targets, such as EGFR T790M. Compared to plasma cfDNA of 16 patients, paired pericardial effusion had higher number of actionable alterations (p = 0.08) as well as higher percentage of the population with actionable alterations (p = 0.16). Moreover, 8 out of 10 actionable alterations with single nucleotide variations (SNVs) or insertions/deletions (indels) had a higher variant allele frequency (VAF) in pericardial effusion than plasma cfDNA. In addition, we identified two actionable alterations in paired pericardial effusion, which were absence in PE-cfDNA. Clearly, 2 out of 3 actionable alterations with SNVs/indels in pericardial effusion had a higher VAF than those in PE-cfDNA. Our finding suggested the importance of pericardial effusion in the optimal selection of patients for targeted therapy. Conclusion: Among liquid biopsy specimens from the advanced NSCLC patients, pericardial effusion may be a better candidate for genomic profiling than plasma cfDNA, while it could serve as a supplement to PE-cfDNA in detecting actionable alterations. Therefore, pericardial effusion might provide a new alternative for selection of patients for better treatment management.
Collapse
Affiliation(s)
- Jiaxue He
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Liguo Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Qiaoliang Liu
- College of Communication Engineering, Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yanfang Jiang,
| |
Collapse
|
30
|
Macagno N, Pissaloux D, de la Fouchardière A, Karanian M, Lantuejoul S, Galateau Salle F, Meurgey A, Chassagne-Clement C, Treilleux I, Renard C, Roussel J, Gervasoni J, Cockenpot V, Crozes C, Baltres A, Houlier A, Paindavoine S, Alberti L, Duc A, Loarer FL, Dufresne A, Brahmi M, Corradini N, Blay JY, Tirode F. Wholistic approach - transcriptomic analysis and beyond using archival material for molecular diagnosis. Genes Chromosomes Cancer 2022; 61:382-393. [PMID: 35080790 DOI: 10.1002/gcc.23026] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/07/2022] Open
Abstract
Many neoplasms remain unclassified after histopathological examination, which requires further molecular analysis. To this regard, mesenchymal neoplasms are particularly challenging due to the combination of their rarity and the large number of subtypes, and many entities still lack robust diagnostic hallmarks. RNA transcriptomic profiles have proven to be a reliable basis for the classification of previously unclassified tumors and notably for mesenchymal neoplasms. Using exome-based RNA capture sequencing on more than 5000 samples of archival material (FFPE), the combination of expression profiles analyzes (including several clustering methods), fusion genes, and small nucleotide variations has been developed at the Centre Léon Bérard (CLB) in Lyon for the molecular diagnosis of challenging neoplasms and the discovery of new entities. The molecular basis of the technique, the protocol, and the bioinformatics algorithms used are described herein, as well as its advantages and limitations.
Collapse
Affiliation(s)
- Nicolas Macagno
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,Aix-Marseille University, Marmara institute, INSERM, U1251, MMG, DOD-CET, Marseille, France.,NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,CARADERM, French network of rare skin cancers, France
| | - Daniel Pissaloux
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Arnaud de la Fouchardière
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Marie Karanian
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Biopathology, UNICANCER, Bergonié Institute, Bordeaux, France
| | - Sylvie Lantuejoul
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Grenoble Alpes University, Grenoble, France.,MESOPATH, MESOBANK, French network of mesothelioma, France
| | - Françoise Galateau Salle
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,MESOPATH, MESOBANK, French network of mesothelioma, France
| | - Alexandra Meurgey
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France.,NETSARC+, French Sarcoma Group (GSF-GETO) network, France
| | | | | | - Caroline Renard
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Juliette Roussel
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Julie Gervasoni
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Vincent Cockenpot
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Carole Crozes
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Aline Baltres
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Aurélie Houlier
- Department of Biopathology, UNICANCER, Centre Léon Bérard, Lyon, France
| | | | - Laurent Alberti
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Adeline Duc
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Francois Le Loarer
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,Department of Biopathology, UNICANCER, Bergonié Institute, Bordeaux, France
| | - Armelle Dufresne
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Oncology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Mehdi Brahmi
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Oncology, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Nadège Corradini
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Institute of pediatric oncology, IHOPe, UNICANCER, Centre Léon Bérard, Lyon, France
| | - Jean-Yves Blay
- NETSARC+, French Sarcoma Group (GSF-GETO) network, France.,Department of Oncology, UNICANCER, Centre Léon Bérard, Lyon, France.,Univ Lyon, Université Claude Bernard Lyon I, Lyon, France.,Headquarters, UNICANCER, Paris, France
| | - Franck Tirode
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon, France.,Department of Biopathology, UNICANCER, Bergonié Institute, Bordeaux, France.,Univ Lyon, Université Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
31
|
Kervarrec T, Pissaloux D, Poilane J, Tirode F, Tallet A, Collin C, Tallegas M, Berthon P, Gaboriaud P, Sohier P, Calonje E, Luzar B, Goto K, Cokelaere K, Lamant L, Balme B, Wild R, Neuville A, Deschamps L, Auberger E, Paumier V, Bonte H, Moulonguet I, Plantier F, Cales V, Pinsolle V, Roblet D, Dupuy F, Dallot A, Seris A, Jouary T, Houben R, Schrama D, Hesbacher S, Macagno N, Battistella M, Cribier B, Vergier B, Fouchardière A, Jullie M. Recurrent
FOXK1
::
GRHL
and
GPS2
::
GRHL
fusions in trichogerminoma. J Pathol 2022; 257:96-108. [DOI: 10.1002/path.5872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Thibault Kervarrec
- Department of Pathology Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- “Biologie des infections à polyomavirus” team, UMR INRA ISP 1282 Université de Tours Tours France
- CARADERM Network
| | - Daniel Pissaloux
- Department of Biopathology Center Léon Bérard Lyon France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer Lyon France
| | - Jeremie Poilane
- Department of Pathology Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- Department of Pathology Centre Hospitalier Universitaire de Angers Angers France
| | - Franck Tirode
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer Lyon France
| | - Anne Tallet
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
| | - Christine Collin
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
| | - Matthias Tallegas
- Department of Pathology Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
- Platform of Somatic Tumor Molecular Genetics Université de Tours, Centre Hospitalier Universitaire de Tours Tours France
| | - Patricia Berthon
- “Biologie des infections à polyomavirus” team, UMR INRA ISP 1282 Université de Tours Tours France
| | - Pauline Gaboriaud
- “Biologie des infections à polyomavirus” team, UMR INRA ISP 1282 Université de Tours Tours France
| | - Pierre Sohier
- CARADERM Network
- Faculté de Médecine Paris Centre Santé University of Paris Paris France
- Department of Pathology Hôpital Cochin, AP‐HP Centre‐Université de Paris Paris France
| | - Eduardo Calonje
- Department of Dermatopathology St John's Institute of Dermatology, St Thomas's Hospital London UK
| | - Boštjan Luzar
- Institute of Pathology Medical Faculty University of Ljubljana Ljubljana Slovenia
| | - Keisuke Goto
- Department of Pathology Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital Tokyo Japan
- Department of Diagnostic Pathology Shizuoka Cancer Center Hospital, Sunto Japan
- Department of Diagnostic Pathology and Cytology Osaka International Cancer Institute Osaka Japan
- Department of Dermatology Hyogo Cancer Center Akashi Japan
| | | | - Laurence Lamant
- CARADERM Network
- Department of Pathology, CHU Toulouse, Institut Universitaire du Cancer Toulouse Oncopole Université Toulouse III Paul Sabatier Toulouse France
| | - Brigitte Balme
- CARADERM Network
- Department of Pathology Centre Hospitalier Universitaire de Lyon Lyon France
| | | | - Agnes Neuville
- Contades Office of Pathological Anatomy and Cytology Strasbourg France
| | - Lydia Deschamps
- CARADERM Network
- Department of Pathology, APHP Bichat Hospital Paris France
| | - Elisabeth Auberger
- Service d'anatomie et cytologie pathologiques Hopital Simone Veil Eaubonne France
| | | | | | | | - Françoise Plantier
- Department of Pathology Hôpital Cochin, AP‐HP Centre‐Université de Paris Paris France
- Cabinet Mathurin Moreau Paris France
| | - Valérie Cales
- Department of Pathology Centre hospitalier de Pau Pau France
| | - Vincent Pinsolle
- Department of plastic and reconstructive surgery Hôpital Haut‐Lévêque, Centre hospitalier universitaire de Bordeaux Pessac France
| | - Denis Roblet
- Department of Pathology Centre hospitalier d'Angouleme Saint Michel France
| | - Frantz Dupuy
- Laboratoire de cytologie et d'anatomie pathologiques», le Bouscat France
| | - Alexiane Dallot
- Centre national de Dermatopathologie‐La Roquette Paris France
| | | | - Thomas Jouary
- CARADERM Network
- Department of Dermatology Centre Hospitalier de Pau Pau France
| | - Roland Houben
- Department of Dermatology, Venereology and Allergology University Hospital Würzburg, Josef‐Schneider‐Straße 2 Würzburg Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology University Hospital Würzburg, Josef‐Schneider‐Straße 2 Würzburg Germany
| | - Sonja Hesbacher
- Department of Dermatology, Venereology and Allergology University Hospital Würzburg, Josef‐Schneider‐Straße 2 Würzburg Germany
| | - Nicolas Macagno
- CARADERM Network
- Department of Biopathology Center Léon Bérard Lyon France
- Department of Pathology Timone University Hospital Marseille France
| | - Maxime Battistella
- CARADERM Network
- Department of Pathology, APHP Hôpital Saint Louis Université Paris 7 Paris France
| | - Bernard Cribier
- CARADERM Network
- Dermatology Clinic, Hôpitaux Universitaires & Université de Strasbourg, Hôpital Civil Strasbourg France
| | - Beatrice Vergier
- Department of Pathology, Hôpital Haut‐Lévêque, CHU de Bordeaux Pessac France
| | - Arnaud Fouchardière
- CARADERM Network
- Department of Biopathology Center Léon Bérard Lyon France
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer Lyon France
| | - Marie‐Laure Jullie
- CARADERM Network
- Department of Pathology, Hôpital Haut‐Lévêque, CHU de Bordeaux Pessac France
| |
Collapse
|
32
|
Hoogstrate Y, Komor MA, Böttcher R, van Riet J, van de Werken HJG, van Lieshout S, Hoffmann R, van den Broek E, Bolijn AS, Dits N, Sie D, van der Meer D, Pepers F, Bangma CH, van Leenders GJLH, Smid M, French PJ, Martens JWM, van Workum W, van der Spek PJ, Janssen B, Caldenhoven E, Rausch C, de Jong M, Stubbs AP, Meijer GA, Fijneman RJA, Jenster GW. Fusion transcripts and their genomic breakpoints in polyadenylated and ribosomal RNA-minus RNA sequencing data. Gigascience 2021; 10:giab080. [PMID: 34891161 PMCID: PMC8673554 DOI: 10.1093/gigascience/giab080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fusion genes are typically identified by RNA sequencing (RNA-seq) without elucidating the causal genomic breakpoints. However, non-poly(A)-enriched RNA-seq contains large proportions of intronic reads that also span genomic breakpoints. RESULTS We have developed an algorithm, Dr. Disco, that searches for fusion transcripts by taking an entire reference genome into account as search space. This includes exons but also introns, intergenic regions, and sequences that do not meet splice junction motifs. Using 1,275 RNA-seq samples, we investigated to what extent genomic breakpoints can be extracted from RNA-seq data and their implications regarding poly(A)-enriched and ribosomal RNA-minus RNA-seq data. Comparison with whole-genome sequencing data revealed that most genomic breakpoints are not, or minimally, transcribed while, in contrast, the genomic breakpoints of all 32 TMPRSS2-ERG-positive tumours were present at RNA level. We also revealed tumours in which the ERG breakpoint was located before ERG, which co-existed with additional deletions and messenger RNA that incorporated intergenic cryptic exons. In breast cancer we identified rearrangement hot spots near CCND1 and in glioma near CDK4 and MDM2 and could directly associate this with increased expression. Furthermore, in all datasets we find fusions to intergenic regions, often spanning multiple cryptic exons that potentially encode neo-antigens. Thus, fusion transcripts other than classical gene-to-gene fusions are prominently present and can be identified using RNA-seq. CONCLUSION By using the full potential of non-poly(A)-enriched RNA-seq data, sophisticated analysis can reliably identify expressed genomic breakpoints and their transcriptional effects.
Collapse
Affiliation(s)
- Youri Hoogstrate
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
- Department of Neurology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | - Malgorzata A Komor
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - René Böttcher
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona 08034, Spain
| | - Job van Riet
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Harmen J G van de Werken
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
- Cancer Computational Biology Center, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | | | | | - Evert van den Broek
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen 9713GZ, The Netherlands
| | - Anne S Bolijn
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - Natasja Dits
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | - Daoud Sie
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | | | | | - Chris H Bangma
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | | | - Marcel Smid
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Pim J French
- Department of Neurology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | | | - Peter J van der Spek
- Department of Pathology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | | | | | | | | | - Andrew P Stubbs
- Department of Pathology, Erasmus Medical Center, Rotterdam 3015GD, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 3015GD, The Netherlands
| | - Guido W Jenster
- Department of Urology, Erasmus Medical Center Cancer Institute, Wytemaweg 80, Rotterdam 3015GD, The Netherlands
| |
Collapse
|
33
|
Di Napoli A, Vacca D, Bertolazzi G, Lopez G, Piane M, Germani A, Rogges E, Pepe G, Santanelli Di Pompeo F, Salgarello M, Jobanputra V, Hsiao S, Wrzeszczynski KO, Berti E, Bhagat G. RNA Sequencing of Primary Cutaneous and Breast-Implant Associated Anaplastic Large Cell Lymphomas Reveals Infrequent Fusion Transcripts and Upregulation of PI3K/AKT Signaling via Neurotrophin Pathway Genes. Cancers (Basel) 2021; 13:cancers13246174. [PMID: 34944796 PMCID: PMC8699465 DOI: 10.3390/cancers13246174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cutaneous and breast implant-associated anaplastic large-cell lymphomas are usually localized neoplasms with an indolent clinical course compared to systemic ALCL. However comparative analyses of the molecular features of these two entities have not yet been reported. We performed targeted RNA sequencing, which revealed that fusion transcripts, although infrequent, might represent additional pathogenetic events in both diseases. We also found that these entities display upregulation of the PI3K/Akt pathway and show enrichment in genes of the neurotrophin signaling pathway. These findings advance our knowledge regarding the pathobiology of cALCL and BI-ALCL and point to additional therapeutic targets. Abstract Cutaneous and breast implant-associated anaplastic large-cell lymphomas (cALCLs and BI-ALCLs) are two localized forms of peripheral T-cell lymphomas (PTCLs) that are recognized as distinct entities within the family of ALCL. JAK-STAT signaling is a common feature of all ALCL subtypes, whereas DUSP22/IRF4, TP63 and TYK gene rearrangements have been reported in a proportion of ALK-negative sALCLs and cALCLs. Both cALCLs and BI-ALCLs differ in their gene expression profiles compared to PTCLs; however, a direct comparison of the genomic alterations and transcriptomes of these two entities is lacking. By performing RNA sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in 12 cALCLs, 10 BI-ALCLs and two anaplastic lymphoma kinase (ALK)-positive sALCLs, we identified the previously reported TYK2-NPM1 fusion in 1 cALCL (1/12, 8%), and four new intrachromosomal gene fusions in 2 BI-ALCLs (2/10, 20%) involving genes on chromosome 1 (EPS15-GNG12 and ARNT-GOLPH3L) and on chromosome 17 (MYO18A-GIT1 and NF1-GOSR1). One of the two BI-ALCL samples showed a complex karyotype, raising the possibility that genomic instability may be responsible for intra-chromosomal fusions in BI-ALCL. Moreover, transcriptional analysis revealed similar upregulation of the PI3K/Akt pathway, associated with enrichment in the expression of neurotrophin signaling genes, which was more conspicuous in BI-ALCL, as well as differences, i.e., over-expression of genes involved in the RNA polymerase II transcription program in BI-ALCL and of the RNA splicing/processing program in cALCL.
Collapse
Affiliation(s)
- Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
- Correspondence:
| | - Davide Vacca
- Department of Surgical, Oncological and Oral Sciences, Palermo University, 90134 Palermo, Italy;
| | - Giorgio Bertolazzi
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University, 90134 Palermo, Italy;
| | - Gianluca Lopez
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Maria Piane
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Aldo Germani
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Evelina Rogges
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | - Giuseppina Pepe
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy; (G.L.); (M.P.); (A.G.); (E.R.); (G.P.)
| | | | - Marzia Salgarello
- Department of Plastic Surgery, Catholic University of Sacred Heart, University Hospital Agostino Gemelli, 00168 Roma, Italy;
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
- New York Genome Center, New York, NY 10013, USA;
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| | | | - Emilio Berti
- Department of Dermatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY 10032, USA; (V.J.); (S.H.); (G.B.)
| |
Collapse
|
34
|
Molecular Characterization of Metanephric Adenoma, Epithelial Wilms Tumor, and Overlap Lesions. Appl Immunohistochem Mol Morphol 2021; 30:257-263. [DOI: 10.1097/pai.0000000000000996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
|
35
|
Detroja R, Gorohovski A, Giwa O, Baum G, Frenkel-Morgenstern M. ChiTaH: a fast and accurate tool for identifying known human chimeric sequences from high-throughput sequencing data. NAR Genom Bioinform 2021; 3:lqab112. [PMID: 34859212 PMCID: PMC8633610 DOI: 10.1093/nargab/lqab112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Fusion genes or chimeras typically comprise sequences from two different genes. The chimeric RNAs of such joined sequences often serve as cancer drivers. Identifying such driver fusions in a given cancer or complex disease is important for diagnosis and treatment. The advent of next-generation sequencing technologies, such as DNA-Seq or RNA-Seq, together with the development of suitable computational tools, has made the global identification of chimeras in tumors possible. However, the testing of over 20 computational methods showed these to be limited in terms of chimera prediction sensitivity, specificity, and accurate quantification of junction reads. These shortcomings motivated us to develop the first ‘reference-based’ approach termed ChiTaH (Chimeric Transcripts from High–throughput sequencing data). ChiTaH uses 43,466 non–redundant known human chimeras as a reference database to map sequencing reads and to accurately identify chimeric reads. We benchmarked ChiTaH and four other methods to identify human chimeras, leveraging both simulated and real sequencing datasets. ChiTaH was found to be the most accurate and fastest method for identifying known human chimeras from simulated and sequencing datasets. Moreover, especially ChiTaH uncovered heterogeneity of the BCR-ABL1 chimera in both bulk and single-cells of the K-562 cell line, which was confirmed experimentally.
Collapse
Affiliation(s)
- Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Alessandro Gorohovski
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Olawumi Giwa
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Gideon Baum
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
36
|
LaHaye S, Fitch JR, Voytovich KJ, Herman AC, Kelly BJ, Lammi GE, Arbesfeld JA, Wijeratne S, Franklin SJ, Schieffer KM, Bir N, McGrath SD, Miller AR, Wetzel A, Miller KE, Bedrosian TA, Leraas K, Varga EA, Lee K, Gupta A, Setty B, Boué DR, Leonard JR, Finlay JL, Abdelbaki MS, Osorio DS, Koo SC, Koboldt DC, Wagner AH, Eisfeld AK, Mrózek K, Magrini V, Cottrell CE, Mardis ER, Wilson RK, White P. Discovery of clinically relevant fusions in pediatric cancer. BMC Genomics 2021; 22:872. [PMID: 34863095 PMCID: PMC8642973 DOI: 10.1186/s12864-021-08094-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. Results Our Ensemble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a “known fusion list” prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient’s medical record, both known and novel fusions provided medically meaningful information. Conclusions The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08094-z.
Collapse
Affiliation(s)
- Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - James R Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kyle J Voytovich
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Adam C Herman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Grant E Lammi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeremy A Arbesfeld
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Samuel J Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Natalie Bir
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Wetzel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ajay Gupta
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA
| | - Bhuvana Setty
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Daniel R Boué
- Department of Pathology, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Section of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mohamed S Abdelbaki
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Diana S Osorio
- Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Selene C Koo
- Department of Pathology, The Ohio State University, Columbus, OH, USA.,Department of Pathology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Alex H Wagner
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ann-Kathrin Eisfeld
- Division of Hematology, The Ohio State University, Columbus, OH, USA.,Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,The Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes Research, The Ohio State University, Columbus, OH, USA.,The Ohio State Comprehensive Cancer Center, Columbus, OH, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.,Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Xia L, Mei J, Kang R, Deng S, Chen Y, Yang Y, Feng G, Deng Y, Gan F, Lin Y, Pu Q, Ma L, Lin F, Yuan Y, Hu Y, Guo C, Liao H, Liu C, Zhu Y, Wang W, Liu Z, Xu Y, Li K, Li C, Li Q, He J, Chen W, Zhang X, Kou Y, Wang Y, Wu Z, Che G, Chen L, Liu L. Perioperative ctDNA-based Molecular Residual Disease Detection for Non-Small Cell Lung Cancer: A Prospective Multicenter Cohort Study (LUNGCA-1). Clin Cancer Res 2021; 28:3308-3317. [PMID: 34844976 DOI: 10.1158/1078-0432.ccr-21-3044] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/02/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE We assessed whether perioperative circulating tumor DNA (ctDNA) could be a biomarker for early detection of molecular residual disease (MRD) and prediction of postoperative relapse in resected non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Based on our prospective, multicenter cohort on dynamic monitoring of ctDNA in lung cancer surgery patients (LUNGCA), we enrolled 950 plasma samples obtained at three perioperative time points (before surgery, 3-day and 1-month after surgery) of 330 stage I-III NSCLC patients (LUNGCA-1), as a part of LUNGCA cohort. Using a customized 769-gene panel, somatic mutations in tumor tissues and plasma samples were identified with next-generation sequencing and utilized for ctDNA-based MRD analysis. RESULTS Preoperative ctDNA positivity was associated with lower recurrence-free survival (RFS) (HR=4.2; P<0.001). The presence of MRD (ctDNA positivity at postoperative 3-day and/or 1-month) was a strong predictor for disease relapse (HR=11.1; P<0.001). ctDNA-based MRD had a higher relative contribution to RFS prediction than all clinicopathological variables such as the TNM stage. Furthermore, MRD-positive patients who received adjuvant therapies had improved RFS over those not receiving adjuvant therapy (HR=0.3; P=0.008), whereas MRD-negative patients receiving adjuvant therapies had lower RFS than their counterparts without adjuvant therapy (HR=3.1; P<0.001). After adjusting for clinicopathological variables, whether receiving adjuvant therapies remained an independent factor for RFS in the MRD-positive population (P=0.002) but not in the MRD-negative population (P=0.283). CONCLUSIONS Perioperative ctDNA analysis is effective in early detection of MRD and relapse risk stratification of NSCLC, and hence could benefit NSCLC patient management.
Collapse
Affiliation(s)
- Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Jiandong Mei
- Department of Thoracic Surgery / Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Ran Kang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Yaohui Chen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Ying Yang
- Genecast Precision Medicine Technology Institute, Beijing 100191
| | - Gang Feng
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital
| | - Yulan Deng
- The institute of thoracic cancer, Sichuan University
| | - Fanyi Gan
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Yidan Lin
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Qiang Pu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Lin Ma
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Feng Lin
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Yong Yuan
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Yang Hu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | | | - Hu Liao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Chengwu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Yunke Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Wenping Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Zheng Liu
- Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Yuyang Xu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Kaidi Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Chuan Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | | | - Ji He
- Bioinformatics, Genecast Biotechnology Co. Ltd
| | | | - Xiaolong Zhang
- Department of Thoracic Surgery, Chengdu Shangjinnanfu Hospital
| | - Yingli Kou
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Yun Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Zhu Wu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | - Guowei Che
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| | | | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University
| |
Collapse
|
38
|
Liu D, Xia J, Yang Z, Zhao X, Li J, Hao W, Yang X. Identification of Chimeric RNAs in Pig Skeletal Muscle and Transcriptomic Analysis of Chimeric RNA TNNI2-ACTA1 V1. Front Vet Sci 2021; 8:742593. [PMID: 34778431 PMCID: PMC8578878 DOI: 10.3389/fvets.2021.742593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Chimeric RNA was considered a special marker of cancer. However, recent studies have demonstrated that chimeric RNAs also exist in non-cancerous cells and tissues. Here, we analyzed and predicted jointly 49 chimeric RNAs by Star-Fusion and FusionMap. One chimeric RNA, we named TNNI2-ACTA1, and its eight transcript variants were identified by reverse transcriptase–polymerase chain reaction. The overexpression of TNNI2-ACTA1 V1 inhibited the proliferation of porcine skeletal muscle satellite cells through down-regulating the mRNA expression levels of cell cycle–related genes cyclinD1. However, as parental genes, there is no such effect in the TNNI2 and ACTA1. To explore the underlying mechanism for this phenomenon, we used RNA-seq to profile the transcriptomes of PSCs with overexpression. Compared with the negative control group, 1,592 differentially expressed genes (DEGs) were upregulated and 1,077 DEGs downregulated in TNNI2 group; 1,226 DEGs were upregulated and 902 DEGs downregulated in ACTA1 group; and 13 DEGs were upregulated and 16 DEGs downregulated in TNNI2-ACTA1 V1 group, respectively. Compared with the parental gene groups, three specific genes were enriched in the TNNI2-ACTA1 V1 group (NCOA3, Radixin, and DDR2). These three genes may be the key to TNNI2-ACTA1 V1 regulating cell proliferation. Taken together, our study explores the role of chimeric RNAs in normal tissues. In addition, our study as the first research provides the foundation for the mechanism of chimeric RNAs regulating porcine skeletal muscle growth.
Collapse
Affiliation(s)
- Dongyu Liu
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| | - Jiqiao Xia
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| | - Zewei Yang
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| | - Xuelian Zhao
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| | - Jiaxin Li
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| | - Wanjun Hao
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| | - Xiuqin Yang
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
39
|
Shi M, Wang W, Zhang J, Li B, Lv D, Wang D, Wang S, Cheng D, Ma T. Identification of RET fusions in a Chinese multicancer retrospective analysis by next-generation sequencing. Cancer Sci 2021; 113:308-318. [PMID: 34710947 PMCID: PMC8748217 DOI: 10.1111/cas.15181] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fusion of RET with different partner genes has been detected in papillary thyroid, lung, colorectal, pancreatic, and breast cancer. Approval of selpercatinib for treatment of lung and thyroid cancer with RET gene mutations or fusions calls for studies to explore RET fusion partners and their eligibility for RET‐based targeted therapy. In this study, RET fusion patterns in a large group of Chinese cancer patients covering several cancer types were identified using next‑generation sequencing. A total of 44 fusion patterns were identified in the study cohort with KIF5B, CCDC6, and ERC1 being the most common RET fusion partners. Notably, 17 novel fusions were first reported in this study. Prevalence of functional RET fusions was 1.05% in lung cancer, 6.03% in thyroid cancer, 0.39% in colorectal cancer, and less than 0.1% in gastric cancer and hepatocellular carcinoma. Analysis showed a preference for fusion partners in different tumor types, with KIF5B being the common type in lung cancer, CCDC6 in thyroid cancer, and NCOA4 in colorectal cancer. Co‐occurrence of EGFR mutations and RET fusions with rare partner genes (rather than KIF5B) in lung cancer patients was correlated with epidermal growth factor receptor‐tyrosine kinase inhibitor resistance and could predict response to targeted therapies. Findings from this study provide a guide to clinicians in determining tumors with specific fusion patterns as candidates for RET targeted therapies.
Collapse
Affiliation(s)
- Minke Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiran Wang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Jinku Zhang
- Department of Pathology, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, The First Centre Hospital of Baoding, Baoding, China
| | - Bobo Li
- Department of Thoracic Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Dongxiao Lv
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Danhua Wang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Sizhen Wang
- Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Dezhi Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tonghui Ma
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| |
Collapse
|
40
|
Lee J, Cho S, Hong SE, Kang D, Choi H, Lee JM, Yoon JH, Cho BS, Lee S, Kim HJ, Kim M, Kim Y. Integrative Analysis of Gene Expression Data by RNA Sequencing for Differential Diagnosis of Acute Leukemia: Potential Application of Machine Learning. Front Oncol 2021; 11:717616. [PMID: 34497767 PMCID: PMC8419339 DOI: 10.3389/fonc.2021.717616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
BCR-ABL1–positive acute leukemia can be classified into three disease categories: B-lymphoblastic leukemia (B-ALL), acute myeloid leukemia (AML), and mixed-phenotype acute leukemia (MPAL). We conducted an integrative analysis of RNA sequencing (RNA-seq) data obtained from 12 BCR-ABL1–positive B-ALL, AML, and MPAL samples to evaluate its diagnostic utility. RNA-seq facilitated the identification of all p190 BCR-ABL1 with accurate splicing sites and a new gene fusion involving MAP2K2. Most of the clinically significant mutations were also identified including single-nucleotide variations, insertions, and deletions. In addition, RNA-seq yielded differential gene expression profile according to the disease category. Therefore, we selected 368 genes differentially expressed between AML and B-ALL and developed two differential diagnosis models based on the gene expression data using 1) scoring algorithm and 2) machine learning. Both models showed an excellent diagnostic accuracy not only for our 12 BCR-ABL1–positive cases but also for 427 public gene expression datasets from acute leukemias regardless of specific genetic aberration. This is the first trial to develop models of differential diagnosis using RNA-seq, especially to evaluate the potential role of machine learning in identifying the disease category of acute leukemia. The integrative analysis of gene expression data by RNA-seq facilitates the accurate differential diagnosis of acute leukemia with successful detection of significant gene fusion and/or mutations, which warrants further investigation.
Collapse
Affiliation(s)
- Jaewoong Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Seong-Eui Hong
- Next Generation Sequencing (NGS) Division, Theragen Bio Co. Ltd., Seongnam-si, South Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hayoung Choi
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
41
|
Vasella M, Wagner U, Fritz C, Seidl K, Giudici L, Exner GU, Moch H, Wild PJ, Bode-Lesniewska B. Novel RGAG1-BCOR gene fusion revealed in a somatic soft tissue sarcoma with a long follow-up. Virchows Arch 2021; 480:1107-1114. [PMID: 34331570 PMCID: PMC9033707 DOI: 10.1007/s00428-021-03160-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
BCOR-rearranged sarcomas are rare and belong to the Ewing-like sarcomas (ELS). Their morphology and histopathological features make the diagnosis challenging. We present a case, initially diagnosed as an unusual extraskeletal myxoid chondrosarcoma (EMC). A 54-year-old male patient developed an asymptomatic swelling of the lower leg. Imaging showed a 9.5-cm large intramuscular soft tissue mass. Due to its morphological and immunohistochemical profile on biopsy, it was initially diagnosed as an EMC. The patient was treated by complete resection and adjuvant radiotherapy and remained free of tumor at 7 years follow-up. Using next-generation sequencing (NGS), we retrospectively identified RGAG1-BCOR gene fusion (confirmed by RT-PCR), which has not been described in somatic soft tissue tumors so far. This finding broadens the spectrum of partner genes in the BCOR-rearranged sarcomas in a tumor with a well-documented, long clinical follow-up.
Collapse
Affiliation(s)
- Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Ulrich Wagner
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Christine Fritz
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Kati Seidl
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Luca Giudici
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Johannes Wild
- Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt, Germany
| | - Beata Bode-Lesniewska
- Present Address: Pathology Institute Enge and University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Xia P, Zhang L, Li P, Liu E, Li W, Zhang J, Li H, Su X, Jiang G. Molecular characteristics and clinical outcomes of complex ALK rearrangements identified by next-generation sequencing in non-small cell lung cancers. J Transl Med 2021; 19:308. [PMID: 34271921 PMCID: PMC8283930 DOI: 10.1186/s12967-021-02982-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Complex kinase rearrangement, a mutational process involving one or two chromosomes with clustered rearrangement breakpoints, interferes with the accurate detection of kinase fusions by DNA-based next-generation sequencing (NGS). We investigated the characteristics of complex ALK rearrangements in non-small cell lung cancers using multiple molecular tests. Methods Samples of non-small cell lung cancer patients were analyzed by targeted-capture DNA-based NGS with probes tilling the selected intronic regions of fusion partner genes, RNA-based NGS, RT-PCR, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Results In a large cohort of 6576 non-small cell lung cancer patients, 343 (5.2%) cases harboring ALK rearrangements were identified. Fourteen cases with complex ALK rearrangements were identified by DNA-based NGS and classified into three types by integrating various genomic features, including intergenic (n = 3), intragenic (n = 5) and “bridge joint” rearrangements (n = 6). All thirteen cases with sufficient samples actually expressed canonical EML4-ALK fusion transcripts confirmed by RNA-based NGS. Besides, positive ALK IHC was detected in 13 of 13 cases, and 9 of 11 cases were positive in FISH testing. Patients with complex ALK rearrangements who received ALK inhibitors treatment (n = 6), showed no difference in progression-free survival (PFS) compared with patients with canonical ALK fusions n = 36, P = 0.9291). Conclusions This study firstly reveals the molecular characteristics and clinical outcomes of complex ALK rearrangements in NSCLC, sensitive to ALK inhibitors treatment, and highlights the importance of utilizing probes tilling the selected intronic regions of fusion partner genes in DNA-based NGS for accurate fusion detection. RNA and protein level assay may be critical in validating the function of complex ALK rearrangements in clinical practice for optimal treatment decision. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02982-4.
Collapse
Affiliation(s)
- Peiyi Xia
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Pan Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China
| | - Jianying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui Li
- Clinical Research Division, Berry Oncology Corporation, Fuzhou, 350200, China
| | - Xiaoxing Su
- Clinical Research Division, Berry Oncology Corporation, Fuzhou, 350200, China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Jian She Dong Road 1, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
43
|
Singh S, Li H. Comparative study of bioinformatic tools for the identification of chimeric RNAs from RNA Sequencing. RNA Biol 2021; 18:254-267. [PMID: 34142643 DOI: 10.1080/15476286.2021.1940047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chimeric RNAs are gaining more and more attention as they have broad implications in both cancer and normal physiology. To date, over 40 chimeric RNA prediction methods have been developed to facilitate their identification from RNA sequencing data. However, a limited number of studies have been conducted to compare the performance of these tools; additionally, previous studies have become outdated as more software tools have been developed within the last three years. In this study, we benchmarked 16 chimeric RNA prediction software, including seven top performers in previous benchmarking studies, and nine that were recently developed. We used two simulated and two real RNA-Seq datasets, compared the 16 tools for their sensitivity, positive prediction value (PPV), F-measure, and also documented the computational requirements (time and memory). We noticed that none of the tools are inclusive, and their performance varies depending on the dataset and objects. To increase the detection of true positive events, we also evaluated the pair-wise combination of these methods to suggest the best combination for sensitivity and F-measure. In addition, we compared the performance of the tools for the identification of three classes (read-through, inter-chromosomal and intra-others) of chimeric RNAs. Finally, we performed TOPSIS analyses and ranked the weighted performance of the 16 tools.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, USA.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
44
|
Apostolides M, Jiang Y, Husić M, Siddaway R, Hawkins C, Turinsky AL, Brudno M, Ramani AK. MetaFusion: A high-confidence metacaller for filtering and prioritizing RNA-seq gene fusion candidates. Bioinformatics 2021; 37:3144-3151. [PMID: 33944895 DOI: 10.1093/bioinformatics/btab249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Current fusion detection tools use diverse calling approaches and provide varying results, making selection of the appropriate tool challenging. Ensemble fusion calling techniques appear promising; however, current options have limited accessibility and function. RESULTS MetaFusion is a flexible meta-calling tool that amalgamates outputs from any number of fusion callers. Individual caller results are standardized by conversion into the new file type Common Fusion Format (CFF). Calls are annotated, merged using graph clustering, filtered, and ranked to provide a final output of high confidence candidates. MetaFusion consistently achieves higher precision and recall than individual callers on real and simulated datasets, and reaches up to 100% precision, indicating that ensemble calling is imperative for high confidence results. MetaFusion uses FusionAnnotator to annotate calls with information from cancer fusion databases, and is provided with a benchmarking toolkit to calibrate new callers. AVAILABILITY MetaFusion is freely available at https://github.com/ccmbioinfo/MetaFusion. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael Apostolides
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Yue Jiang
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Mia Husić
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Robert Siddaway
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| | - Michael Brudno
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, Toronto, ON, Canada.,University Health Network, Toronto, ON, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, The Hospital For Sick Children, Toronto, ON, Canada
| |
Collapse
|
45
|
Logan SJ, Schieffer KM, Conces MR, Stonerock E, Miller AR, Fitch J, LaHaye S, Voytovich K, McGrath S, Magrini V, White P, Wilson RK, Mardis ER, Cottrell CE, Koo SC. Novel morphologic findings in PLAG1-rearranged soft tissue tumors. Genes Chromosomes Cancer 2021; 60:577-585. [PMID: 33893698 DOI: 10.1002/gcc.22953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Oncogenesis in PLAG1-rearranged tumors often results from PLAG1 transcription factor overexpression driven by promoter-swapping between constitutively expressed fusion partners. PLAG1-rearranged tumors demonstrate diverse morphologies. This study adds to this morphologic heterogeneity by introducing two tumors with PLAG1 rearrangements that display distinct histologic features. The first arose in the inguinal region of a 3-year-old, appeared well-circumscribed with a multinodular pattern, and harbored two fusions: ZFHX4-PLAG1 and CHCHD7-PLAG1. The second arose in the pelvic cavity of a 15-year-old girl, was extensively infiltrative and vascularized with an adipocytic component, and demonstrated a COL3A1-PLAG1 fusion. Both showed low-grade cytomorphology, scarce mitoses, no necrosis, and expression of CD34 and desmin. The ZFHX4-/CHCHD7-PLAG1-rearranged tumor showed no evidence of recurrence after 5 months. By contrast, the COL3A1-PLAG1-rearranged tumor quickly recurred following primary excision with positive margins; subsequent re-excision with adjuvant chemotherapy resulted in no evidence of recurrence after 2 years. While both tumors show overlap with benign and malignant fibroblastic and fibrovascular neoplasms, they also display divergent features. These cases highlight the importance of appropriate characterization in soft tissue tumors with unusual clinical and histologic characteristics.
Collapse
Affiliation(s)
- Suzanna J Logan
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Miriam R Conces
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Eileen Stonerock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kyle Voytovich
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sean McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Selene C Koo
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
46
|
Schieffer KM, Agarwal V, LaHaye S, Miller KE, Koboldt DC, Lichtenberg T, Leraas K, Brennan P, Kelly BJ, Crist E, Rusin J, Finlay JL, Osorio DS, Sribnick EA, Leonard JR, Feldman A, Orr BA, Serrano J, Vasudevaraja V, Snuderl M, White P, Magrini V, Wilson RK, Mardis ER, Boué DR, Cottrell CE. YAP1-FAM118B Fusion Defines a Rare Subset of Childhood and Young Adulthood Meningiomas. Am J Surg Pathol 2021; 45:329-340. [PMID: 33074854 DOI: 10.1097/pas.0000000000001597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Meningiomas are a central nervous system tumor primarily afflicting adults, with <1% of cases diagnosed during childhood or adolescence. Somatic variation in NF2 may be found in ∼50% of meningiomas, with other genetic drivers (eg, SMO, AKT1, TRAF7) contributing to NF2 wild-type tumors. NF2 is an upstream negative regulator of YAP signaling and loss of the NF2 protein product, Merlin, results in YAP overexpression and target gene transcription. This mechanism of dysregulation is described in NF2-driven meningiomas, but further work is necessary to understand the NF2-independent mechanism of tumorigenesis. Amid our institutional patient-centric comprehensive molecular profiling study, we identified an individual with meningioma harboring a YAP1-FAM118B fusion, previously reported only in supratentorial ependymoma. The tumor histopathology was remarkable, characterized by prominent islands of calcifying fibrous nodules within an overall collagen-rich matrix. To gain insight into this finding, we subsequently evaluated the genetic landscape of 11 additional pediatric and adolescent/young adulthood meningioma patients within the Children's Brain Tumor Tissue Consortium. A second individual harboring a YAP1-FAM118B gene fusion was identified within this database. Transcriptomic profiling suggested that YAP1-fusion meningiomas are biologically distinct from NF2-driven meningiomas. Similar to other meningiomas, however, YAP1-fusion meningiomas demonstrated overexpression of EGFR and MET. DNA methylation profiling further distinguished YAP1-fusion meningiomas from those observed in ependymomas. In summary, we expand the genetic spectrum of somatic alteration associated with NF2 wild-type meningioma to include the YAP1-FAM118B fusion and provide support for aberrant signaling pathways potentially targetable by therapeutic intervention.
Collapse
Affiliation(s)
| | - Vibhuti Agarwal
- Division of Hematology, Oncology, and Bone Marrow Transplant
| | | | | | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine.,Departments of Pediatrics
| | | | - Kristen Leraas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine
| | - Patrick Brennan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine
| | | | - Erin Crist
- The Steve and Cindy Rasmussen Institute for Genomic Medicine
| | | | - Jonathan L Finlay
- Division of Hematology, Oncology, and Bone Marrow Transplant.,Departments of Pediatrics.,Division of Hematology and Oncology, The Ohio State University College of Medicine, Columbus, OH
| | - Diana S Osorio
- Division of Hematology, Oncology, and Bone Marrow Transplant.,Departments of Pediatrics.,Division of Hematology and Oncology, The Ohio State University College of Medicine, Columbus, OH
| | | | | | | | - Brent A Orr
- St. Jude Children's Research Hospital, Memphis, TN
| | - Jonathan Serrano
- Department of Pathology, New York University Langone Health, New York City, NY
| | | | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, NY
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine.,Departments of Pediatrics
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine.,Departments of Pediatrics
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine.,Departments of Pediatrics
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine.,Departments of Pediatrics
| | - Daniel R Boué
- Pathology and Laboratory Medicine, Nationwide Children's Hospital.,Pathology
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine.,Departments of Pediatrics.,Pathology
| |
Collapse
|
47
|
SRF Fusions Other Than With RELA Expand the Molecular Definition of SRF-fused Perivascular Tumors. Am J Surg Pathol 2021; 44:1725-1735. [PMID: 33021523 DOI: 10.1097/pas.0000000000001546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pericytic tumors encompass several entities sharing morphologic and immunohistochemical features. A subset of perivascular myoid tumors associated with the SRF-RELA fusion gene was previously described. Herein, we report a series of 13 tumors belonging to this group, in which we have identified new fusion genes by RNA-sequencing, thus expanding the molecular spectrum of this entity. All patients except 1 were children and infants. The tumors, frequently located in the head (n=8), had a mean size of 38 mm (range 10 to 150 mm) and were mostly (n=9) well-circumscribed. Exploration of the follow-up data (ranging from 3 to 68 mo) confirmed the benign behavior of these tumors. These neoplasms presented a spectrum of morphologies, ranging from perivascular patterns to myoid appearance. Tumor cells presented mitotic figures but without marked atypia. Some of these tumors could mimic sarcoma. The immunohistochemical profiles confirmed a pericytic differentiation with the expression of the smooth muscle actin and the h-caldesmon, as well as the frequent positivity for pan-cytokeratin. The molecular analysis identified the expected SRF-RELA fusion gene, in addition to other genetic alterations, all involving SRF fused to CITED1, CITED2, NFKBIE, or NCOA2. The detection of SRF-NCOA2 fusions in spindle cell rhabdomyosarcoma of the infant has previously been described, representing a risk of misdiagnosis, although the cases reported herein did not express MyoD1. Finally, clustering analyses confirmed that this group of SRF-fused perivascular myoid tumors forms a distinct entity, different from other perivascular tumors, spindle cell rhabdomyosarcomas of the infant, and smooth muscle tumors.
Collapse
|
48
|
Zeng T, Fedeli MA, Tanda F, Wang Y, Yang D, Xue B, Jia L, Palmieri G, Sechi LA, Kelvin DJ. Whole-exome Sequencing of Prostate Cancer in Sardinian Identify Recurrent UDP-glucuronosyltransferase Amplifications. J Cancer 2021; 12:438-450. [PMID: 33391440 PMCID: PMC7738997 DOI: 10.7150/jca.48433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/25/2020] [Indexed: 02/05/2023] Open
Abstract
Globally, prostate cancer is the third most common cancer in the world, and the second most common cancer in men. However, rates for incidence and mortality vary considerably with race, ethnicity, and geography. Over 97 significantly mutated genes that have been identified in prostate cancer; however, a lack of genomic prostate cancer studies focusing on different racial and ethnic groups and racial mixing pose a serious challenge to universalize these findings. The Sardinian population is an isolated Mediterranean population that has a high frequency of centenarians and a much lower incidence of prostate cancer than found in males in mainland Europe. Here, we conducted a genomic prostate cancer study on a Sardinian cohort diagnosed with local prostate cancer. Our data reveals a low rate of ERG fusion in Sardinian prostate cancer. Interestingly, we identified a novel BTBD7-SLC2A5 fusion that occurred in 13% of the patients. We also found that the UGT2B4 on 4q13.2 was amplified in 20% of the Sardinian patients but rarely amplified in patients of other population. These observations underscore the importance of the inter-population molecular heterogeneity of prostate cancer. In addition, we examined the expression of UGT2B4 in 497 prostate cancer patients derived from The Cancer Genome Atlas database. We found that high expression of UGT2B4 was associated with low-grade prostate cancer and upregulation of UGT2B4 in tumors was associated with upregulation of metabolism pathways such as 'de novo' IMP biosynthetic process, glutamine and monocarboxylic acid metabolism. These data provide insight into clinical relevance and functional mechanism of UGT2B4. Further understanding functional mechanism of UGT2B4 amplification and BTBD7-SLC2A5 fusion will aid in developing drugs to benefit the prostate cancer patients.
Collapse
Affiliation(s)
- Tiansheng Zeng
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maria Antonietta Fedeli
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
| | - Francesco Tanda
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
| | - Yuyong Wang
- Department of Urology, affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, China
| | - Dongsheng Yang
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Bei Xue
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Lisha Jia
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
| | - Giuseppe Palmieri
- Institute of Genetic and Biomedical Research (IRGB), Head, National Research Council (CNR), 07100 Sassari, Italy
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- ✉ Corresponding authors: J. Kelvin, E-mail: ; and Leonardo A. Sechi, E-mail: . Co-corresponding authors equally contributed to this work
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou Guangdong, China
- Department of Scienze Mediche Chirurgiche e Sperimentali, first affiliated Hospital of 33445Sassari University
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
- Canadian Center for Vaccinology, IWK, Halifax, Nova Scotia, Canada
- ✉ Corresponding authors: J. Kelvin, E-mail: ; and Leonardo A. Sechi, E-mail: . Co-corresponding authors equally contributed to this work
| |
Collapse
|
49
|
Chicaud M, Frassati-Biaggi A, Kaltenbach S, Karanian M, Orbach D, Fraitag S. Dermatofibrosarcoma protuberans, fibrosarcomatous variant: A rare tumor in children. Pediatr Dermatol 2021; 38:217-222. [PMID: 33010051 DOI: 10.1111/pde.14393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibrosarcomatous transformation of dermatofibrosarcoma protuberans is associated with a significantly worse prognosis in adults, but is a very rare feature in the pediatric population. Here, we report a case that occurred in a child. The diagnosis of fibrosarcomatous transformation of dermatofibrosarcoma protuberans was confirmed by a histopathological assessment and fluorescence in situ hybridization. A comparison with eleven other patients reported in the literature revealed that the local recurrence and mortality rates in children are similar to those observed in adults.
Collapse
Affiliation(s)
- Matthieu Chicaud
- Department of Pathology, Necker-Enfants Malades Hospital, Paris, France.,Assistance Publique - Hôpitaux de Paris, Paris, France.,Sorbonne Université, Paris, France
| | - Annonciade Frassati-Biaggi
- Department of Pathology, Necker-Enfants Malades Hospital, Paris, France.,Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Assistance Publique - Hôpitaux de Paris, Paris, France.,Department of Histology, Embryology and Cytogenetics, Necker-Enfants Malades Hospital, Paris, France.,Université de Paris, Paris, France
| | - Marie Karanian
- Department of Biopathology, Centre Léon Bérard, Lyon, France.,Cancer Research Center of Lyon CRCL, Lyon University, Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Paris, France.,Assistance Publique - Hôpitaux de Paris, Paris, France
| |
Collapse
|
50
|
Liu Q, Hu Y, Stucky A, Fang L, Zhong JF, Wang K. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing. BMC Genomics 2020; 21:793. [PMID: 33372596 PMCID: PMC7771079 DOI: 10.1186/s12864-020-07207-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Long-read RNA-Seq techniques can generate reads that encompass a large proportion or the entire mRNA/cDNA molecules, so they are expected to address inherited limitations of short-read RNA-Seq techniques that typically generate < 150 bp reads. However, there is a general lack of software tools for gene fusion detection from long-read RNA-seq data, which takes into account the high basecalling error rates and the presence of alignment errors. RESULTS In this study, we developed a fast computational tool, LongGF, to efficiently detect candidate gene fusions from long-read RNA-seq data, including cDNA sequencing data and direct mRNA sequencing data. We evaluated LongGF on tens of simulated long-read RNA-seq datasets, and demonstrated its superior performance in gene fusion detection. We also tested LongGF on a Nanopore direct mRNA sequencing dataset and a PacBio sequencing dataset generated on a mixture of 10 cancer cell lines, and found that LongGF achieved better performance to detect known gene fusions over existing computational tools. Furthermore, we tested LongGF on a Nanopore cDNA sequencing dataset on acute myeloid leukemia, and pinpointed the exact location of a translocation (previously known in cytogenetic resolution) in base resolution, which was further validated by Sanger sequencing. CONCLUSIONS In summary, LongGF will greatly facilitate the discovery of candidate gene fusion events from long-read RNA-Seq data, especially in cancer samples. LongGF is implemented in C++ and is available at https://github.com/WGLab/LongGF .
Collapse
Affiliation(s)
- Qian Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li Fang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jiang F Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|