1
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025:S1535-6108(25)00107-2. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
2
|
Huang YE, Zhou S, Chen S, Chen J, Zhou X, Hou F, Liu H, Yuan M, Jiang W. Mutational signature-based biomarker to predict the response of immune checkpoint inhibitors therapy in cancers. Int J Biol Macromol 2025:142585. [PMID: 40154701 DOI: 10.1016/j.ijbiomac.2025.142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Patients have a limited response rate to immune checkpoint inhibitors (ICIs) therapy. Although several biomarkers have been proposed, their ability to accurately predict the response to ICIs therapy remains unsatisfactory. In addition, mutational signatures were validated to be associated with ICIs therapy. Therefore, we developed a mutational signature-based biomarker (MS-bio) to predict the response to ICIs therapy. Based on differentially mutated genes, we extracted six mutational signatures (single-base substitution (SBS)-A, SBS-B, SBS-C, SBS-D, double-base substitution (DBS)-A, and DBS-B) as MS-bio, and constructed a random forest (RF) model to predict the response. Internal and external validations consistently demonstrated the excellent predictive capability of MS-bio, with an accuracy reaching up to 0.82. Moreover, MS-bio exhibited superior performance compared to existing biomarkers. To further validate the accuracy of MS-bio, we explored its performance in The Cancer Genome Atlas (TCGA) cohort and found that the predicted responders were immunologically "hot". Finally, we found that SBS-C had the highest importance in prediction and was related to T cell differentiation. Overall, here we introduced MS-bio as a novel biomarker for accurately predicting the response to ICIs therapy, thereby contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Yu-E Huang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Shunheng Zhou
- School of Computer Sciences, University of South China, Hengyang 421001, China
| | - Sina Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiahao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
3
|
Li M, Gao X, Lin X, Zhang Y, Peng W, Sun T, Shu W, Shi Y, Guan Y, Xia X, Yi X, Li Y, Jia J. Analysis of germline-somatic mutational connections in colorectal cancer reveals differential tumorigenic patterns and a novel predictive marker for germline mutation carriers. Cancer Lett 2025:217637. [PMID: 40118241 DOI: 10.1016/j.canlet.2025.217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Colorectal cancer (CRC) genetic testing of regions beyond clinical guidelines has revealed a substantial number of likely pathogenic germline mutations (GMs). It remains largely undetermined whether and how these GMs, typically located in non-mismatch repair (non-MMR) genes, are associated with the tumorigenesis of CRC. This study aimed to identify CRC-predisposing GMs among 93 cancer susceptibility genes and investigate their potential influences on CRC somatic mutational features. We secondarily aimed to investigate whether somatic ERBB2 amplification contributes to identifying GM carriers. This study incorporated a total of 3,240 Chinese CRC patients and 10,588 control individuals. CRC patients were subjected to paired tumor-normal sequencing with a 1,021-gene panel. A case-control analysis was conducted to profile the GM-associated CRC risk. A comprehensive germline-somatic association analysis was performed among 2,405 patients, with key findings subsequently validated in an independent 835-patient cohort and the TCGA CRC cohort. The case-control results supported CRC-predisposing effects of GMs in certain homologous recombination repair (HRR) and DNA damage checkpoint factor (CPF) genes, such as BRCA1/2, RecQ helicase genes, ATM, and CHEK2. HRR GMs were associated with an increased copy number alteration burden, more TP53 clonal mutations, and a higher probability of carrying somatic ERBB2 amplification. CPF GMs were inferred to have synergistic effects with ARID1A and KDM6A somatic mutations in CRC tumorigenesis. Among patients with onset age ≥ 55 years, stable microsatellites, and no cancer family history, ERBB2 amplification was significantly predictive of GM carriers. Our findings elucidate different germline tumorigenic patterns not driven by deficient MMR. Somatic ERBB2 amplification in CRC can serve as an indicator for germline genetic testing when traditional risk features are absent.
Collapse
Affiliation(s)
- Mintao Li
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xuan Gao
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, China
| | - Xiangchun Lin
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Yan Zhang
- Geneplus-Beijing Institute, Beijing, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Tao Sun
- General Surgery Department, Peking University Third Hospital, Beijing, China
| | - Weiyang Shu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | | | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China.
| | - Yuan Li
- Department of Gastroenterology, Peking University International Hospital, Beijing, China; Department of Gastroenterology, Peking University Third Hospital, Beijing, China.
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| |
Collapse
|
4
|
Omer DM, Shah F, Luthra A, Chen CT, Lee CI, Williams H, Walch H, Verheij FS, Rosen R, Alvarez J, Firat C, Karagkounis G, Weiser MR, Widmar M, Wei IH, Pappou EP, Nash GM, Smith JJ, Chatila WK, Romesser PB, Shia J, Paty PB, Garcia-Aguilar J, Sanchez-Vega F. Clinical and Genomic Characterization of Secondary Rectal Cancer After Radiotherapy for Prostate Cancer. JAMA Netw Open 2025; 8:e251039. [PMID: 40100215 PMCID: PMC11920846 DOI: 10.1001/jamanetworkopen.2025.1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Importance Patients treated with radiotherapy (RT) for prostate cancer (PC) have increased risk of secondary rectal cancer (SRC) and more limited treatment options. Objective To assess the tumor molecular profile, clinical characteristics, and oncologic outcomes of SRC after PC and compare them with those of primary rectal cancer (PRC). Design, Setting, and Participants This case-control study included patients with SRC diagnosed 5 or more years after RT for PC and patients with PRC who were treated at Memorial Sloan Kettering Cancer Center in New York between February 1, 1994, and September 31, 2022. Main Outcomes and Measures Clinical information and DNA sequencing data were analyzed. Oncologic outcomes were compared between patients with SRC and clinically matched patients with PRC using log-rank tests and Cox proportional hazards regression models. Numerical and categorical variables were compared using the Wilcoxon rank sum test and Fisher exact test, respectively. Results The analysis included 604 male patients with PRC (71.6%; median age, 55 [IQR, 46-66] years) and 64 male patients with SRC (median age, 78 [IQR, 72-82] years). Patients with SRC had more distal rectum (37 of 63 [58.7%] vs 131 of 581 [22.5%]; P < .001) and anterior rectal wall (20 of 57 [35.1%] vs 67 of 496 [13.5%]; P < .001) tumors, were less likely to receive neoadjuvant treatment (33 of 64 [51.6%] vs 570 of 604 [94.4%]), and had shorter 5-year overall survival (45.7% vs 64.9%; P = .01) and disease-free survival (40.3% vs 71.2%; P = .006) compared with clinically matched patients with PRC. Targeted DNA sequencing data from 31 SRC tumors identified lower mutational burden (median, 4.4 [IQR, 3.2-6.7] per megabase [Mb] vs 5.8 [IQR, 4.4-7.0] per Mb; P = .047), lower frequency of APC alterations (15 [48.4%] vs 432 [79.9%]; P < .001), and higher rates of SMAD4 inactivation (8 [25.8%] vs 54 [10.0%]; P = .01) compared with 541 PRC tumors. Whole-exome sequencing data from 17 SRC tumors identified a higher rate of frameshift deletions compared with 28 PRC tumors (median, 5.0 [IQR, 4.0-9.0] vs 2.5 [IQR, 1.0-4.2] variants; P < .001). Conclusions and Relevance In this case-control study, patients with SRC after RT for PC had worse survival and different molecular profiles than patients with PRC. These findings may help improve the clinical management of SRC.
Collapse
Affiliation(s)
- Dana M Omer
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Farheen Shah
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anisha Luthra
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chin-Tung Chen
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina I Lee
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hannah Williams
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Henry Walch
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Floris S Verheij
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roni Rosen
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Janet Alvarez
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Canan Firat
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Georgios Karagkounis
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin R Weiser
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Widmar
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Iris H Wei
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emmanouil P Pappou
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Garrett M Nash
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - J Joshua Smith
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul B Romesser
- Department of Radiation Oncology, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip B Paty
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julio Garcia-Aguilar
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francisco Sanchez-Vega
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Yoo SK, Fitzgerald CW, Cho BA, Fitzgerald BG, Han C, Koh ES, Pandey A, Sfreddo H, Crowley F, Korostin MR, Debnath N, Leyfman Y, Valero C, Lee M, Vos JL, Lee AS, Zhao K, Lam S, Olumuyide E, Kuo F, Wilson EA, Hamon P, Hennequin C, Saffern M, Vuong L, Hakimi AA, Brown B, Merad M, Gnjatic S, Bhardwaj N, Galsky MD, Schadt EE, Samstein RM, Marron TU, Gönen M, Morris LGT, Chowell D. Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data. Nat Med 2025; 31:869-880. [PMID: 39762425 PMCID: PMC11922749 DOI: 10.1038/s41591-024-03398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/01/2024] [Indexed: 01/25/2025]
Abstract
Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center. In two internal test sets comprising 2,511 patients across 19 cancer types, SCORPIO achieved median time-dependent area under the receiver operating characteristic curve (AUC(t)) values of 0.763 and 0.759 for predicting overall survival at 6, 12, 18, 24 and 30 months, outperforming tumor mutational burden (TMB), which showed median AUC(t) values of 0.503 and 0.543. Additionally, SCORPIO demonstrated superior predictive performance for predicting clinical benefit (tumor response or prolonged stability), with AUC values of 0.714 and 0.641, compared to TMB (AUC = 0.546 and 0.573). External validation was performed using 10 global phase 3 trials (4,447 patients across 6 cancer types) and a real-world cohort from the Mount Sinai Health System (1,159 patients across 18 cancer types). In these external cohorts, SCORPIO maintained robust performance in predicting ICI outcomes, surpassing programmed death-ligand 1 immunostaining. These findings underscore SCORPIO's reliability and adaptability, highlighting its potential to predict patient outcomes with ICI therapy across diverse cancer types and healthcare settings.
Collapse
Affiliation(s)
- Seong-Keun Yoo
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Conall W Fitzgerald
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Byuri Angela Cho
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bailey G Fitzgerald
- Department of Medicine, Thoracic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Catherine Han
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth S Koh
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abhinav Pandey
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Sfreddo
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fionnuala Crowley
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Neha Debnath
- Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Yan Leyfman
- Internal Medicine, Icahn School of Medicine at Mount Sinai South Nassau, Rockville Centre, NY, USA
| | - Cristina Valero
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Lee
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joris L Vos
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Sangho Lee
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karena Zhao
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stanley Lam
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ezekiel Olumuyide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fengshen Kuo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric A Wilson
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Hennequin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Saffern
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lynda Vuong
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Robert M Samstein
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Early Phase Trials Unit, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G T Morris
- Head and Neck Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Laboratory of Experimental Cancer Immunogenomics, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Diego Chowell
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Venetis K, Frascarelli C, Bielo LB, Cursano G, Adorisio R, Ivanova M, Mane E, Peruzzo V, Concardi A, Negrelli M, D'Ercole M, Porta FM, Zhan Y, Marra A, Trapani D, Criscitiello C, Curigliano G, Guerini-Rocco E, Fusco N. Mismatch repair (MMR) and microsatellite instability (MSI) phenotypes across solid tumors: A comprehensive cBioPortal study on prevalence and prognostic impact. Eur J Cancer 2025; 217:115233. [PMID: 39827722 DOI: 10.1016/j.ejca.2025.115233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Mismatch repair deficiency (MMR-d) and microsatellite instability (MSI) are prognostic and predictive biomarkers in oncology. Current testing for MMR/MSI relies on immunohistochemistry (IHC) for MMR proteins and molecular assays for MSI detection. This combined diagnostic strategy, however, lacks tumor specificity and does not account for gene variants. This study provides an in-depth analysis of MMR mutations frequency, spectrum, and distribution in solid tumors. Data from 23,893 patients across 11 tumor types, using 66 publicly available studies, were analyzed. MMR-mutated (MMR-m) status was defined by alterations in MLH1, PMS2, MSH2, and/or MSH6; MSI was assessed by MSIsensor. Cases with indeterminate labelling were excluded. Survival was analyzed using the Kaplan-Meier method. Among 19,353 tumors, 949 MMR variants were identified, comprising 432 pathogenic and 517 variants of unknown significance (VUS), as defined by OncoKB. MSH6 mutations were the most frequent (n = 279, 29.4 %), followed by MSH2 (n = 198, 20.9 %), MLH1 (n = 187, 19.7 %), and PMS2 (n = 161, 16.9 %). MMR-m cases were more frequent in endometrial (EC, 20.5 %), colorectal (CRC, 8.2 %), bladder (BLCA, 8.7 %), and gastroesophageal cancers (GEC, 5.4 %). Pathogenic mutations were more common than non-pathogenic in EC, CRC, and GEC (p < 0.001, p = 0.01, p = 0.32, respectively). MMR-m status was not associated with MSI in 247 (48.9 %) cases, including 67 (13.2 %) with pathogenic mutations. The highest concordance between MMR-m and MSI was observed in CRC (65.7 %), EC (91.2 %), and GEC (69.6 %), while the lowest in pancreatic (0.2 %) and lung cancers (0.1 %). MMR-m GECs showed improved overall survival compared to MMR-wt (p = 0.009), a relationship not observed in other tumor types. This study demonstrates that the MMR spectrum is extremely hetoerogeneous in solid tumors, highliting the need for comprehensive and tumor-specific testing strategies.
Collapse
Affiliation(s)
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Riccardo Adorisio
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Virginia Peruzzo
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Concardi
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Marianna D'Ercole
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Schoenfeld JD, Azad NS, Gross J, Chen L, Overman MJ, Kao K, Jackson L, Brunnquell D, Bu X, Coppola C, Guan P, Lee J, Sims D, Fuchs R, Weirather JL, Pfaff KL, Gunasti L, Ranasinghe S, Hamilton SR, Wang V, O’Dwyer PJ, Wu CJ, Rodig SJ, Patton DR, Harris L. Next-Generation Sequencing-Based MSI Scoring Predicts Benefit in Mismatch Repair-Deficient Tumors Treated with Nivolumab: Follow-up on NCI-MATCH Arm Z1D. Clin Cancer Res 2025; 31:667-677. [PMID: 39670863 PMCID: PMC11831103 DOI: 10.1158/1078-0432.ccr-24-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE Mismatch repair-deficient (dMMR) tumors have demonstrated favorable responses to immune checkpoint inhibition targeting PD-1. However, more in-depth identification of predictors of response could further refine patient selection for immunotherapy treatment. PATIENTS AND METHODS We undertook integrated evaluation performed on samples collected from 28 of 42 patients enrolled on the NCI-Molecular Analysis for Therapy Choice arm Z1D trial that evaluated PD-1 inhibition treatment with nivolumab in patients with noncolorectal dMMR tumors. Genomic analyses were performed using next-generation sequencing (NGS), whole-exome sequencing, and RNA sequencing and supplemented by multiplex immunofluorescence performed on tissue samples. RESULTS In this dMMR population, more extensive alterations of microsatellites as assessed by measures of NGS were associated with clinical benefit and tumor mutational burden. RNA sequencing further revealed associations between clinical benefit and immune infiltration index. Gene sets enriched in patients with clinical benefit included IFN signaling, antigen processing, and PI3K-AKT-mTOR signaling, whereas hedgehog signaling was found to be enriched in subjects lacking clinical benefit. CONCLUSIONS These genomic data highlight the importance of immune infiltration and antigen presentation in dMMR tumors that respond to immune checkpoint blockade. In addition, they suggest that, even within a dMMR population, NGS-based measures of microsatellite instability could serve as biomarkers of immunotherapy response.
Collapse
Affiliation(s)
- Jonathan D. Schoenfeld
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nilofer S. Azad
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Jacob Gross
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Li Chen
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katrina Kao
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Latifa Jackson
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Donna Brunnquell
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xiangning Bu
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Coppola
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Guan
- Cancer Diagnosis Program, National Cancer Institute, Bethesda, Maryland
| | - Jennifer Lee
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Sims
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rebecca Fuchs
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jason L. Weirather
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lauren Gunasti
- Department of Radiation Oncology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Srin Ranasinghe
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Victoria Wang
- Dana-Farber Cancer Institute–ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Peter J. O’Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Catherine J. Wu
- Center for Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David R. Patton
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lyndsay Harris
- Cancer Diagnosis Program, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
8
|
Zucker M, Perry MA, Gould SI, Elkrief A, Safonov A, Thummalapalli R, Mehine M, Chakravarty D, Brannon AR, Ladanyi M, Razavi P, Donoghue MTA, Murciano-Goroff YR, Grigoriadis K, McGranahan N, Jamal-Hanjani M, Swanton C, Chen Y, Shen R, Chandarlapaty S, Solit DB, Schultz N, Berger MF, Chang J, Schoenfeld AJ, Sánchez-Rivera FJ, Reznik E, Bandlamudi C. Pan-cancer analysis of biallelic inactivation in tumor suppressor genes identifies KEAP1 zygosity as a predictive biomarker in lung cancer. Cell 2025; 188:851-867.e17. [PMID: 39701102 PMCID: PMC11922039 DOI: 10.1016/j.cell.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/14/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024]
Abstract
The canonical model of tumor suppressor gene (TSG)-mediated oncogenesis posits that loss of both alleles is necessary for inactivation. Here, through allele-specific analysis of sequencing data from 48,179 cancer patients, we define the prevalence, selective pressure for, and functional consequences of biallelic inactivation across TSGs. TSGs largely assort into distinct classes associated with either pan-cancer (Class 1) or lineage-specific (Class 2) patterns of selection for biallelic loss, although some TSGs are predominantly monoallelically inactivated (Class 3/4). We demonstrate that selection for biallelic inactivation can be utilized to identify driver genes in non-canonical contexts, including among variants of unknown significance (VUSs) of several TSGs such as KEAP1. Genomic, functional, and clinical data collectively indicate that KEAP1 VUSs phenocopy established KEAP1 oncogenic alleles and that zygosity, rather than variant classification, is predictive of therapeutic response. TSG zygosity is therefore a fundamental determinant of disease etiology and therapeutic sensitivity.
Collapse
Affiliation(s)
- Mark Zucker
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria A Perry
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton Safonov
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rohit Thummalapalli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kristiana Grigoriadis
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Yuan Chen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Michael F Berger
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Jason Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam J Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco J Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Chaitanya Bandlamudi
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Kravchuk D, Lebedeva A, Kuznetsova O, Kavun A, Taraskina A, Belova E, Grigoreva T, Veselovsky E, Mileyko V, Nikulin V, Nekrasova L, Tryakin A, Fedyanin M, Ivanov M. Dynamics of blood microsatellite instability (bMSI) burden predicts outcome of a patient treated with immune checkpoint inhibitors: a case report of hyperprogressive disease. Front Immunol 2025; 16:1492296. [PMID: 39975556 PMCID: PMC11836019 DOI: 10.3389/fimmu.2025.1492296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Microsatellite instability (MSI) is a widely studied molecular signature, which is associated with long-term benefit in patients treated with immune checkpoint inhibitor therapy. This approach has been proven to be effective in the treatment of patients with MSI-positive colorectal cancer (CRC). Analysis of serial liquid biopsy samples allows to detect changes in the tumor in response to therapy. Typically, somatic mutations are used for tracing the dynamics of the tumor, and the assessment of DNA signatures such as MSI is not currently used for these purposes. Here, we describe a case of a MSI-positive CRC, who received nivolumab monotherapy. Sequential sampling of the patient's plasma demonstrated an increase in MSI burden (bMSI), which was found to correlate with the increase of driver mutation burden one month after starting nivolumab, and hyperprogressive disease. Thus, analysis of bMSI in liquid biopsy via NGS may be a promising method for timely assessment of the treatment effectiveness received by patients with MSI-positive CRC.
Collapse
Affiliation(s)
- Daria Kravchuk
- Moscow Multidisciplinary Clinical Center “Kommunarka” of the Department of Health of the City of Moscow, State Budgetary Institution of Healthcare, Moscow, Russia
| | - Alexandra Lebedeva
- R&D Department, OncoAtlas LLC, Moscow, Russia
- Institute for Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olesya Kuznetsova
- R&D Department, OncoAtlas LLC, Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | | | | | - Ekaterina Belova
- R&D Department, OncoAtlas LLC, Moscow, Russia
- Institute for Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- R&D Department, OncoAtlas LLC, Moscow, Russia
- Institute for Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Vladislav Mileyko
- R&D Department, OncoAtlas LLC, Moscow, Russia
- Institute for Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Lidia Nekrasova
- P. Hertsen Moscow Oncology Research Institute (MORI), Moscow, Russia
| | - Alexey Tryakin
- N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Mikhail Fedyanin
- Moscow Multidisciplinary Clinical Center “Kommunarka” of the Department of Health of the City of Moscow, State Budgetary Institution of Healthcare, Moscow, Russia
- N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
- Federal State Budgetary Institution “National Medical and Surgical Center named after N.I. Pirogov” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maxim Ivanov
- R&D Department, OncoAtlas LLC, Moscow, Russia
- Institute for Personalized Oncology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Zhou B, Wang Y, Ding L, Tian X, Sun W, Zhang W, Liu YH. A novel algorithm for the detection of microsatellite instability in endometrial cancer using next‑generation sequencing data. Oncol Lett 2025; 29:86. [PMID: 39664615 PMCID: PMC11632413 DOI: 10.3892/ol.2024.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
The molecular-based detection of microsatellite instability (MSI) in endometrial cancer is complex, due to the low sensitivity of PCR and a lack of standardization in next-generation sequencing (NGS) methods. In the present study, sequenced data were obtained from an NGS panel following the addition of five commonly used microsatellite loci. Subsequently, a novel algorithm, namely MSIPeak, was developed for data analysis. Results of the present study demonstrated that MSI data obtained using MSIPeak were presented in a peak, using a threshold of 1.10 to distinguish stable and unstable loci. MSIPeak was further validated using synthetic DNA samples and endometrial cancer tissue and the results were compared with the immunohistochemical analysis-determined mismatch repair status. The PCR results demonstrated a 3-base-pair (bp) deletion in synthetic DNA samples, compared with 1- and 2-bp deletion controls. Results obtained using MSIPeak demonstrated notable differences in peak profiles and positive scores in synthetic DNA samples with 1-, 2- and 3-bp deletions, compared with controls. Thus, the results of the present study demonstrated that NGS-based MSI detection exhibited a higher sensitivity compared with PCR. In addition, NGS-based MSI detection exhibited higher levels of repeatability and applicability compared with other MSI-NGS-based methods, such as MSISensor2 and MANTIS. Collectively, the results of the present study highlighted that the combination of MSIPeak and NGS exhibits potential in the detection of cancer.
Collapse
Affiliation(s)
- Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Yu Wang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Lu Ding
- Department of Gynecology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaolei Tian
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wu Sun
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wei Zhang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Yin-Hua Liu
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
11
|
Varghese AM, Perry MA, Chou JF, Nandakumar S, Muldoon D, Erakky A, Zucker A, Fong C, Mehine M, Nguyen B, Basturk O, Balogun F, Kelsen DP, Brannon AR, Mandelker D, Vakiani E, Park W, Yu KH, Stadler ZK, Schattner MA, Jarnagin WR, Wei AC, Chakravarty D, Capanu M, Schultz N, Berger MF, Iacobuzio-Donahue CA, Bandlamudi C, O'Reilly EM. Clinicogenomic landscape of pancreatic adenocarcinoma identifies KRAS mutant dosage as prognostic of overall survival. Nat Med 2025; 31:466-477. [PMID: 39753968 PMCID: PMC11835752 DOI: 10.1038/s41591-024-03362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025]
Abstract
Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify. Herein leveraging a cohort of 2,336 patients spanning all disease stages, we characterize the genomic and clinical correlates of outcomes in PDAC. We show that a genomic subtype of KRAS wild-type tumors is associated with early disease onset, distinct somatic and germline features, and significantly better overall survival. Allelic imbalances at the KRAS locus are widespread. KRAS mutant allele dosage gains, observed in one in five (20%) KRAS-mutated diploid tumors, are correlated with advanced disease and demonstrate prognostic potential across disease stages. With the rapidly expanding landscape of KRAS targeting, our findings have potential implications for clinical practice and for understanding de novo and acquired resistance to RAS therapeutics.
Collapse
Affiliation(s)
- Anna M Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Maria A Perry
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Subhiksha Nandakumar
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Daniel Muldoon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Amanda Erakky
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Amanda Zucker
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Christopher Fong
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Bastien Nguyen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Olca Basturk
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Fiyinfolu Balogun
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - David P Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - A Rose Brannon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Efsevia Vakiani
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Kenneth H Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mark A Schattner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - William R Jarnagin
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alice C Wei
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Debyani Chakravarty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Chaitanya Bandlamudi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| |
Collapse
|
12
|
Madorsky Rowdo FP, Martini R, Ackermann SE, Tang CP, Tranquille M, Irizarry A, Us I, Alawa O, Moyer JE, Sigouros M, Nguyen J, Assaad MA, Cheng E, Ginter PS, Manohar J, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Hoda S, Newman L, Mosquera JM, Sboner A, Elemento O, Dow LE, Davis MB, Martin ML. Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition. Cancer Res 2025; 85:551-566. [PMID: 39891928 PMCID: PMC11790258 DOI: 10.1158/0008-5472.can-24-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/10/2024] [Accepted: 11/20/2024] [Indexed: 02/03/2025]
Abstract
Precision medicine approaches to cancer treatment aim to exploit genomic alterations that are specific to individual patients to tailor therapeutic strategies. Yet, some targetable genes and pathways are essential for tumor cell viability even in the absence of direct genomic alterations. In underrepresented populations, the mutational landscape and determinants of response to existing therapies are poorly characterized because of limited inclusion in clinical trials and studies. One way to reveal tumor essential genes is with genetic screens. Most screens are conducted on cell lines that bear little resemblance to patient tumors, after years of culture under nonphysiologic conditions. To address this problem, we aimed to develop a CRISPR screening pipeline in three-dimensionally grown patient-derived tumor organoid (PDTO) models. A breast cancer PDTO biobank that focused on underrepresented populations, including West African patients, was established and used to conduct a negative-selection kinome-focused CRISPR screen to identify kinases essential for organoid growth and potential targets for combination therapy with EGFR or MEK inhibitors. The screen identified several previously unidentified kinase targets, and the combination of FGFR1 and EGFR inhibitors synergized to block organoid proliferation. Together, these data demonstrate the feasibility of CRISPR-based genetic screens in patient-derived tumor models, including PDTOs from underrepresented patients with cancer, and identify targets for cancer therapy. Significance: Generation of a breast cancer patient-derived tumor organoid biobank focused on underrepresented populations enabled kinome-focused CRISPR screening that identified essential kinases and potential targets for combination therapy with EGFR or MEK inhibitors. See related commentary by Trembath and Spanheimer, p. 407.
Collapse
Affiliation(s)
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - Sarah E. Ackermann
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Colin P. Tang
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Marvel Tranquille
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Adriana Irizarry
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ilkay Us
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Omar Alawa
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna E. Moyer
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paula S. Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | | | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lukas E. Dow
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA
| | - Melissa B. Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Institute of Translational Genomic Medicine, Morehouse School of Medicine, GA, USA
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Borck PC, Boyle I, Jankovic K, Bick N, Foster K, Lau AC, Parker-Burns LI, Lubicki DA, Li T, Borah AA, Lofaso NJ, Das Sharma S, Chan T, Kishen RV, Adeagbo A, Raghavan S, Aquilanti E, Prensner JR, Krill-Burger JM, Golub TR, Campbell CD, Dempster JM, Chan EM, Vazquez F. SKI complex loss renders 9p21.3-deleted or MSI-H cancers dependent on PELO. Nature 2025; 638:1104-1111. [PMID: 39910293 PMCID: PMC11864980 DOI: 10.1038/s41586-024-08509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Cancer genome alterations often lead to vulnerabilities that can be used to selectively target cancer cells. Various inhibitors of such synthetic lethal targets have been approved by the FDA or are in clinical trials, highlighting the potential of this approach1-3. Here we analysed large-scale CRISPR knockout screening data from the Cancer Dependency Map and identified a new synthetic lethal target, PELO, for two independent molecular subtypes of cancer: biallelic deletion of chromosomal region 9p21.3 or microsatellite instability-high (MSI-H). In 9p21.3-deleted cancers, PELO dependency emerges from biallelic deletion of the 9p21.3 gene FOCAD, a stabilizer of the superkiller complex (SKIc). In MSI-H cancers, PELO is required owing to MSI-H-associated mutations in TTC37 (also known as SKIC3), a critical component of the SKIc. We show that both cancer subtypes converge to destabilize the SKIc, which extracts mRNA from stalled ribosomes. In SKIc-deficient cells, PELO depletion induces the unfolded protein response, a stress response to accumulation of misfolded or unfolded nascent polypeptides. Together, our findings indicate PELO as a promising therapeutic target for a large patient population with cancers characterized as MSI-H with deleterious TTC37 mutations or with biallelic 9p21.3 deletions involving FOCAD.
Collapse
Affiliation(s)
| | | | - Kristina Jankovic
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nolan Bick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyla Foster
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anthony C Lau
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lucy I Parker-Burns
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tianxia Li
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashir A Borah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Lofaso
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sohani Das Sharma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tessla Chan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Riya V Kishen
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisa Aquilanti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics and Biological Chemistry, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Edmond M Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | | |
Collapse
|
14
|
Cowzer D, Soares K, Walch H, Gönen M, Boucher TM, Do RKG, Harding JJ, Varghese AM, Reidy-Lagunes D, Saltz L, Connell LC, Abou-Alfa GK, Wei AC, Schultz N, Kingham TP, D’Angelica MI, Drebin JA, Balachandran V, Sanchez-Vega F, Kemeny NE, Jarnagin WR, Cercek A. Long-term outcomes in patients with advanced intrahepatic cholangiocarcinoma treated with hepatic arterial infusion chemotherapy. J Natl Cancer Inst 2025; 117:279-286. [PMID: 39331613 PMCID: PMC11807433 DOI: 10.1093/jnci/djae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Hepatic artery infusion of chemotherapy has demonstrated disease control and suggested improvement in overall survival in intrahepatic cholangiocarcinoma. We report herein the long-term results and role of molecular alterations of a phase II clinical trial of hepatic artery infusion chemotherapy plus systemic chemotherapy, with a retrospective cohort of patients treated with hepatic artery infusion at Memorial Sloan Kettering Cancer Center. METHODS This is a secondary analysis of a single-institution, phase II trial, and retrospective cohort of unresectable intrahepatic cholangiocarcinoma treated with hepatic artery infusion floxuridine plus systemic gemcitabine and oxaliplatin. The primary aim was to assess long-term oncologic outcomes. A subset underwent tissue-based genomic sequencing, and molecular alterations were correlated with progression-free survival (PFS) and overall survival. RESULTS A total of 38 patients were treated on trial with a median follow-up of 76.9 months. Median PFS was 11.8 months (95% confidence interval [CI] = 11 to 15.1 months). The median overall survival was 26.8 months (95% CI = 20.9 to 40.6 months). The 1-, 2-, and 5-year overall survival rate was 89.5%, 55%, and 21%, respectively. Nine (24%) patients received hepatic artery infusion with mitomycin C post-floxuridine progression with an objective response rate of 44% and a median PFS of 3.93 months (95% CI = 2.33 months to not reached). A total of 170 patients not treated on the clinical trial were included in a retrospective analysis. Median PFS and overall survival were 7.93 months (95% CI = 7.27 to 10.07 months) and 22.5 months (95% CI = 19.5 to 28.3 months), respectively. Alterations in the TP53 and cell-cycle pathway had a worse PFS to hepatic artery infusion-based therapy compared with wild-type disease. CONCLUSION In locally advanced intrahepatic cholangiocarcinoma, hepatic artery infusion with floxuridine in combination with systemic therapy can offer long-term durable disease control. Molecular alterations may predict for response.
Collapse
Affiliation(s)
- Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry Walch
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taryn M Boucher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna M Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diane Reidy-Lagunes
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leonard Saltz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Louise C Connell
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alice C Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - T Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael I D’Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Drebin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vinod Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco Sanchez-Vega
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy E Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Chikaishi Y, Matsuoka H, Sugihara E, Takeda M, Sumitomo M, Yamada S, Inaguma G, Omura Y, Cheong Y, Kobayashi Y, Nakauchi M, Hiro J, Masumori K, Otsuka K, Nishihara H, Suda K, Saya H, Takimoto T. Mutation Analysis of TMB-High Colorectal Cancer: Insights Into Molecular Pathways and Clinical Implications. Cancer Sci 2025. [PMID: 39822019 DOI: 10.1111/cas.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed. We here analyzed targeted sequence data linked to clinical information for CRC, focusing on tumors with a high tumor mutation burden (TMB) in order to identify the characteristics of associated mutations, their relations to clinical features, and the mechanisms of carcinogenesis in tumors lacking the major driver oncogenes. Analysis of overall mutation frequencies confirmed that APC, TP53, and KRAS mutations were the most prevalent in our cohort. Compared with other tumors, TMB-high tumors were more frequent on the right side of the colon, had lower KRAS and higher BRAF mutation frequencies as well as a higher microsatellite instability (MSI) score, and showed a greater contribution of a mutational signature associated with MSI. Ranking of variant allele frequencies to identify genes that play a role early in carcinogenesis suggested that mutations in genes related to the DNA damage response (such as ATM and POLE) and to MSI (such as MSH2 and MSH6) may precede BRAF mutations associated with activation of the serrated pathway in TMB-high tumors. Our results thus indicate that TMB-high tumors suggest that mutations of genes related to mismatch repair and the DNA damage response may contribute to activation of the serrated pathway in CRC.
Collapse
Affiliation(s)
- Yuko Chikaishi
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroshi Matsuoka
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Eiji Sugihara
- Research Promotion Headquarters, Open Facility Center, Fujita Health University, Toyoake, Japan
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Mayu Takeda
- Faculty of Health and Medical Sciences, Aichi Syukutoku University, Nagakute, Aichi, Japan
| | - Makoto Sumitomo
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Seiji Yamada
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Gaku Inaguma
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Yusuke Omura
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Yeongcheol Cheong
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Yosuke Kobayashi
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Masaya Nakauchi
- Department of Advanced Robotic and Endoscopic Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Hiro
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Koji Masumori
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Koki Otsuka
- Department of Advanced Robotic and Endoscopic Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroshi Nishihara
- Center for Cancer Genomics, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Suda
- Department of Surgery, Fujita Health University, Toyoake, Aichi, Japan
- Collaborative Laboratory for Research and Development in Advanced Surgical Intelligence, Fujita Health University, Toyoake, Aichi, Japan
| | - Hideyuki Saya
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan
| | - Tetsuya Takimoto
- Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
16
|
Xu X, Fa L, Sun X, Yang F, Liu Y, Song J, Zhao Y, Dong J. Integrative analysis of ferroptosis in the hypoxic microenvironment of gastric cancer unveils the immune landscape and personalized therapeutic strategies. Front Oncol 2025; 14:1499580. [PMID: 39871942 PMCID: PMC11769819 DOI: 10.3389/fonc.2024.1499580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/06/2024] [Indexed: 01/29/2025] Open
Abstract
Background Ferroptosis is a cell death mode caused by excessive accumulation of lipid peroxides caused by disturbance of intracellular metabolic pathway, which is closely related to iron and cholesterol metabolism homeostasis. Its regulation within the hypoxic metabolic tumor microenvironment (TME) has the potential to improve the effectiveness of tumor immunotherapy. The predictive role of ferroptosis in gastric cancer (GC) hypoxia TME, particularly in relation to TME immune cell infiltration, has not been fully explained. Methods By analyzing the mRNA expression data of ferroptosis and hypoxia-related genes, a prediction model was constructed to evaluate further the predictive value of immune cell infiltration, clinical characteristics, and immunotherapy efficacy of gastric cancer, and the essential genes were validated. Results Two distinct molecular states of ferroptosis-hypoxia were identified in GC. Notably, patients with high ferroptosis-hypoxia risk scores (FHRS) displayed significant levels of hypoxia and epithelial-mesenchymal transition (EMT), which were associated with unfavorable prognosis, increased chemoresistance, and heightened immunosuppression. Conclusions This study demonstrates that ferroptosis under hypoxic conditions significantly affects the modulation of the tumor immune microenvironment. The FHRS can independently predict prognosis in gastric cancer. Assessing the molecular status of ferroptosis-hypoxia in individual patients will help in selecting more suitable immunotherapy regimens by providing a better understanding of TME characteristics and predicting immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Radiation Oncology, Qingdao People’s Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Liangling Fa
- Department of Pathology, Qingdao People’s Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Xiaoxiao Sun
- Department of Radiation Oncology, Qingdao People’s Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Fangfang Yang
- Cancer Precision Medical Center, Qingdao University, Qingdao, China
| | - Yongrui Liu
- Department of Oncology, Linyi Cancer Hospital, Linyi, China
| | - Jifu Song
- Department of Radiation Oncology, Qingdao People’s Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Yongli Zhao
- Department of Radiation Oncology, Qingdao People’s Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Jigang Dong
- Department of Radiation Oncology, Qingdao People’s Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
17
|
Unger M, Loeffler CML, Žigutytė L, Sainath S, Lenz T, Vibert J, Mock A, Fröhling S, Graham TA, Carrero ZI, Kather JN. Deep Learning for Biomarker Discovery in Cancer Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631471. [PMID: 39829845 PMCID: PMC11741323 DOI: 10.1101/2025.01.06.631471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Genomic data is essential for clinical decision-making in precision oncology. Bioinformatic algorithms are widely used to analyze next-generation sequencing (NGS) data, but they face two major challenges. First, these pipelines are highly complex, involving multiple steps and the integration of various tools. Second, they generate features that are human-interpretable but often result in information loss by focusing only on predefined genetic properties. This limitation restricts the full potential of NGS data in biomarker extraction and slows the discovery of new biomarkers in precision oncology. Methods We propose an end-to-end deep learning (DL) approach for analyzing NGS data. Specifically, we developed a multiple instance learning DL framework that integrates somatic mutation sequences to predict two compound biomarkers: microsatellite instability (MSI) and homologous recombination deficiency (HRD). To achieve this, we utilized data from 3,184 cancer patients obtained from two public databases: The Cancer Genome Atlas (TCGA) and the Clinical Proteome Tumor Analysis Consortium (CPTAC). Results Our proposed deep learning method demonstrated high accuracy in identifying clinically relevant biomarkers. For predicting MSI status, the model achieved an accuracy of 0.98, a sensitivity of 0.95, and a specificity of 1.00 on an external validation cohort. For predicting HRD status, the model achieved an accuracy of 0.80, a sensitivity of 0.75, and a specificity of 0.86. Furthermore, the deep learning approach significantly outperformed traditional machine learning methods in both tasks (MSI accuracy, p-value = 5.11×10-18; HRD accuracy, p-value = 1.07×10-10). Using explainability techniques, we demonstrated that the model's predictions are based on biologically meaningful features, aligning with key DNA damage repair mutation signatures. Conclusion We demonstrate that deep learning can identify patterns in unfiltered somatic mutations without the need for manual feature extraction. This approach enhances the detection of actionable targets and paves the way for developing NGS-based biomarkers using minimally processed data.
Collapse
Affiliation(s)
- Michaela Unger
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
- Medical Department 1, University Hospital and Faculty of Medicine Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Laura Žigutytė
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Srividhya Sainath
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Tim Lenz
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Julien Vibert
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Andreas Mock
- Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- Division of Translational Precision Medicine, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Trevor A Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, University of Technology Dresden, Dresden, Germany
- Medical Department 1, University Hospital and Faculty of Medicine Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Saoud C, Gundem G, Domenico D, Arango-Ossa JE, Reed D, Vaynrub M, Papaemmanouil E, Bale TA, Linos K. Rhabdomyosarcoma With EWSR1::NF2 Gene Fusion: A Case Report Potentially Expanding Its Genetic Spectrum. Genes Chromosomes Cancer 2025; 64:e70025. [PMID: 39873201 DOI: 10.1002/gcc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, presenting with heterogeneous clinical and molecular subtypes. While gene fusions are predominantly associated with alveolar RMS, spindle cell RMS, especially congenital and intraosseous variants, are also linked to specific gene fusions. Furthermore, recently, FGFR1 kinase-driven RMSs were published. Here, we describe a case of RMS harboring an EWSR1::NF2 gene fusion, a deletion-driven genetic alteration that has not been previously documented in RMS or other soft tissue tumors. The patient was a 29-year-old female who presented with a lobulated ankle mass. Histologic examination revealed a malignant round cell tumor extensively infiltrating large nerve bundles. Immunohistochemical analysis demonstrated rhabdomyoblastic differentiation, consistent with rhabdomyosarcoma. While some areas showed features resembling the sclerosing and others the embryonal subtypes, the overall findings were considered unclassifiable. Targeted RNA sequencing revealed EWSR1(exon 9):: NF2(exon 7) gene fusion, which was confirmed on whole genome and targeted DNA sequencing. The latter did not yield specific diagnostic insights but revealed mutations in TSC2 (p.T1330M), ZFHX3 (p.A301T), and a NOTCH3 rearrangement, all of unknown oncogenic significance. MYC gene amplification was detected, but there was no evidence of chromosome 8 amplification or chromosome 11p15 loss of heterozygosity. Whole genome sequencing revealed a low tumor mutation burden (2.69/Mb) and showed no other significant potentially oncogenic events. DNA methylation studies using dimensionality reduction and unsupervised clustering placed the case within the embryonal RMS subtype. Although the absence of other oncogenic driver alterations suggests that the fusion may have played a pivotal role in pathogenesis, we cannot exclude the possibility that it represents a passenger alteration rather than a true driver mutation. If the former is true, further studies will be required to determine whether this fusion represents a novel RMS subtype or a rare driver in existing subtypes of RMS.
Collapse
Affiliation(s)
- Carla Saoud
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gunes Gundem
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dylan Domenico
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Juan E Arango-Ossa
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Damon Reed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Max Vaynrub
- Department of Surgery, Orthopedic Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elli Papaemmanouil
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
19
|
Huang F, Zhao L, Xie H, Han T, Huang J, Wang X, Yang J, Hong Y, Shu J, Yu J, Li Q, He J, Chen W, Huang YS, Li W. A Systematic Method to Detect Next-Generation Sequencing-Based Microsatellite Instability in Plasma Cell-Free DNA: plasmaMSI. J Mol Diagn 2025; 27:62-73. [PMID: 39722286 DOI: 10.1016/j.jmoldx.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 12/28/2024] Open
Abstract
Microsatellite instability (MSI) detection using tumor tissue is a well-established prognostic and predictive biomarker for certain types of cancers. However, tumor tissue samples are less convenient to obtain than blood plasma samples. The main challenge facing next-generation sequencing-based MSI detection in blood plasma samples is the ultralow signal/noise ratio in plasma cell-free DNA (cfDNA). To address the challenge, plasmaMSI, a highly accurate cfDNA MSI detection method, is introduced with three novel performance-improving features: i) a set of stringent locus selection criteria to select loci with high robustness and compatibility across sequencing platforms; ii) a new deduplication strategy that greatly improves the signal/noise ratio for MSI detection; and iii) an MSI calling algorithm that customizes the baseline for each test sample based on its duplication rate. Through analytical validation in diluted cell line samples, the limit of detection of plasmaMSI was determined to be 0.15%. Furthermore, in analyzing 95 evaluable cfDNA samples from patients with gastrointestinal cancers, plasmaMSI exhibited a positive percentage agreement of 92.9% (39/42) and a negative percentage agreement of 100% (53/53) with tissue MSI-PCR. plasmaMSI provides novel solutions to key challenges in cfDNA MSI detection that have not been addressed by existing methods. It has also been systematically validated and is already used in clinical testing for patients with cancer.
Collapse
Affiliation(s)
- Fengchang Huang
- Kunming Medical University, Kunming, China; Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lili Zhao
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Hongyu Xie
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | | | - Jian Huang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | | | - Jianing Yu
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Qingyun Li
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Ji He
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Weizhi Chen
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Yu S Huang
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Wenliang Li
- Kunming Medical University, Kunming, China; Department of Colorectal Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.
| |
Collapse
|
20
|
Samueli B, Al-Ahmadie H, Chen YB, Gopalan A, Sarungbam J, Tickoo SK, Reuter VE, Fine SW, Chen JF. Histopathologic and Molecular Characterization of IDH-Mutant Prostatic Adenocarcinoma. Mod Pathol 2025; 38:100616. [PMID: 39326497 DOI: 10.1016/j.modpat.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Gain-of-function isocitrate dehydrogenase (IDH) mutations are pathogenically significant in many tumor types and are actionable in cholangiocarcinoma, low-grade glioma, and acute myeloid leukemia. Rare IDH mutations have been described in prostatic adenocarcinoma (PCa). Recent publications have suggested that psammomatous calcifications in PCa are associated with IDH1 mutations. In this retrospective study, we queried our institutional clinical sequencing database (cohort 1), and previously published PCa data sets in cBioPortal (cohort 2). Samples were stratified based on oncogenic hotspot IDH mutations at IDH1 R132 and IDH2 R140/R172, and other nonhotspot IDH mutations. Seventeen (0.4%) cases were identified from 4033 PCa cases in cohort 1 harboring mutually exclusive oncogenic hotspot IDH1 (N = 15, 1 of which was subclonal) or IDH2 (N = 2) mutations, and 20 (0.5%) cases had nonhotspot IDH1/2 mutations. A histologic review of 13 cases with IDH1 hotspot mutations and available material showed grade group 3 or higher disease. Immunohistochemistry was performed on cases with IDH1 hotspot mutations when possible and showed AR, PSA, PSMA, and NKX3.1 positive in all the 4 cases stained. In cohort 2, 9 cases (0.3%) harboring IDH1 hotspot mutations were identified from 2749 patients, and 9 cases carried nonhotspot IDH1/2 mutations. The combined cohorts of 23 PCa cases with clonal IDH1 hotspot mutations had no ETS fusions, SPOP hotspot mutations, and somatic or germline alterations in BRCA1/2, ATM, RB1, or AR; 19 cases with successful microsatellite instability testing were all microsatellite stable. Conversely, among 29 cases with nonhotspot IDH mutations, there were 4 with TMPRSS2::ERG fusions, 6 with SPOP hotspot mutations, and 10 with AR amplifications/hotspot mutations; 8 were microsatellite instability high. Notably, two cases with IDH1 hotspot mutations had psammomatous calcifications. Our findings provide evidence that IDH1 hotspot mutations serve as driver alterations in this rare yet distinct molecular subset of PCa. Further studies are warranted to correlate response to androgen deprivation and IDH inhibitors.
Collapse
Affiliation(s)
- Benzion Samueli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hikmat Al-Ahmadie
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victor E Reuter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jie-Fu Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
21
|
Rodriguez Almaraz E, Guerra GA, Al-Adli NN, Young JS, Dada A, Quintana D, Taylor JW, Oberheim Bush NA, Clarke JL, Butowski NA, de Groot J, Pekmezci M, Perry A, Bollen AW, Scheffler AW, Glidden DV, Phillips JJ, Costello JF, Chang EF, Hervey-Jumper S, Berger MS, Francis SS, Chang SM, Solomon DA. Longitudinal profiling of IDH-mutant astrocytomas reveals acquired RAS-MAPK pathway mutations associated with inferior survival. Neurooncol Adv 2025; 7:vdaf024. [PMID: 40051658 PMCID: PMC11883348 DOI: 10.1093/noajnl/vdaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background Isocitrate dehydrogenase (IDH)-mutant astrocytomas represent the most frequent primary intraparenchymal brain tumor in young adults, which typically arise as low-grade neoplasms that often progress and transform to higher grade despite current therapeutic approaches. However, the genetic alterations underlying high-grade transformation and disease progression of IDH-mutant astrocytomas remain inadequately defined. Methods Genomic profiling was performed on 205 IDH-mutant astrocytomas from 172 patients from both initial treatment-naive and recurrent post-treatment tumor specimens. Molecular findings were integrated with clinical outcomes and pathologic features to define the associations of novel genetic alterations in the RAS-MAPK signaling pathway. Results Likely oncogenic alterations within the RAS-MAPK mitogenic signaling pathway were identified in 13% of IDH-mutant astrocytomas, which involved the KRAS, NRAS, BRAF, NF1, SPRED1, and LZTR1 genes. These included focal amplifications and known activating mutations in oncogenic components (e.g. KRAS, BRAF), as well as deletions and truncating mutations in negative regulatory components (e.g. NF1, SPRED1). These RAS-MAPK pathway alterations were enriched in recurrent tumors and occurred nearly always in high-grade tumors, often co-occurring with CDKN2A homozygous deletion. Patients whose IDH-mutant astrocytomas harbored these oncogenic RAS-MAPK pathway alterations had inferior survival compared to those with RAS-MAPK wild-type tumors. Conclusions These findings highlight novel genetic perturbations in the RAS-MAPK pathway as a likely mechanism contributing to the high-grade transformation and treatment resistance of IDH-mutant astrocytomas that may be a potential therapeutic target for affected patients and used for future risk stratification.
Collapse
Affiliation(s)
- Eduardo Rodriguez Almaraz
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Geno A Guerra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nadeem N Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Abraham Dada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Daniel Quintana
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennie W Taylor
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - John de Groot
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Andrew W Bollen
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Aaron W Scheffler
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - David V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, California, USA
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
Ingale K, Hong SH, Hu Q, Zhang R, Osinski BL, Khoshdeli M, Och J, Nagpal K, Stumpe MC, Joshi RP. Efficient and Generalizable Prediction of Molecular Alterations in Multiple-Cancer Cohorts Using Hematoxylin and Eosin Whole Slide Images. Mod Pathol 2024; 38:100691. [PMID: 39706295 DOI: 10.1016/j.modpat.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Molecular testing of tumor samples for targetable biomarkers is restricted by a lack of standardization, turnaround time, cost, and tissue availability across cancer types. Additionally, targetable alterations of low prevalence may not be tested in routine workflows. Algorithms that predict DNA alterations from routinely generated hematoxylin and eosin-stained images could prioritize samples for confirmatory molecular testing. Costs and the necessity of a large number of samples containing mutations limit approaches that train individual algorithms for each alteration. In this work, models were trained for simultaneous prediction of multiple DNA alterations from hematoxylin and eosin images using a multitask approach. Compared with biomarker-specific models, this approach performed better on average, with pronounced gains for rare mutations. The models reasonably generalized to independent temporal holdout, externally stained, and multisite The Cancer Genome Atlas test sets. Additionally, whole slide image embeddings derived using multitask models demonstrated strong performance in downstream tasks that were not a part of training. Overall, this is a promising approach to develop clinically useful algorithms that provide multiple actionable predictions from a single slide.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josh Och
- Tempus AI, Inc. Chicago, Illinois; Now with
| | | | | | | |
Collapse
|
23
|
Zhang Y, Zou Q, Zhao B, Su N, Li Z, Wang X, Liu P, Tian X, Fang X, Cai J, Li L, Liu Y, Xia Y, Cai Q. Toripalimab plus anlotinib in patients with recurrent or metastatic nasopharyngeal carcinoma: A multicenter, single-arm phase 2 trial (TORAL). Cell Rep Med 2024; 5:101833. [PMID: 39615484 PMCID: PMC11722102 DOI: 10.1016/j.xcrm.2024.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Treatment options for patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC) after failure of platinum-based therapy are limited. In this phase 2 trial, 40 patients with RM-NPC who failed platinum-based chemotherapy receive toripalimab plus anlotinib regimen. The objective response rate is 37.5%, and the disease control rate is 85.0%. With a median follow-up of 17.4 months, the median progression-free survival (PFS) is 9.5 months and 1-year overall survival rate is 73.3%. The most common treatment-related grade 3-4 adverse events are hand-foot syndrome (22.5%) and oral mucositis (17.5%). Analyses of plasma circulating tumor DNA (ctDNA) demonstrate that the blood tumor mutation burden at cycle 1/2 is associated with response and PFS, and disease progression indicated by ctDNA precedes radiological progression by a median of 2.3 months. In conclusion, toripalimab plus anlotinib is well tolerated and shows promising efficacy in patients with RM-NPC, and ctDNA could be a potential predictive biomarker. The trial is registered at ClinicalTrials.gov (NCT04996758).
Collapse
Affiliation(s)
- Yuchen Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qihua Zou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Baitian Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ning Su
- Department of Oncology, Guangzhou Chest Hospital, Guangzhou 510095, P.R. China
| | - Zhihua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou 510062, P.R. China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaopeng Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiaojie Fang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Lirong Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yingxian Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yi Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
24
|
van der Werf't Lam AS, Helderman NC, Boot A, Terlouw D, Morreau H, Mei H, Esveldt-van Lange REE, Lakeman IMM, van Asperen CJ, Aten E, Hofland N, de Koning Gans PAM, Rayner E, Tops C, de Wind N, van Wezel T, Nielsen M. Assessing pathogenicity of mismatch repair variants of uncertain significance by molecular tumor analysis. Exp Mol Pathol 2024; 140:104940. [PMID: 39437510 DOI: 10.1016/j.yexmp.2024.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Functional analyses are the main method to classify mismatch repair (MMR) gene variants of uncertain significance (VUSs). However, the pathogenicity remains unclear for many variants because of conflicting results between clinical, molecular, and functional data. In this study, we evaluated whether whole exome sequencing (WES) could add another layer of evidence to elucidate the pathogenicity of MMR variants with conflicting interpretations. WES was performed on formalin-fixed paraffin-embedded tumor tissue of eight patients with a constitutional MMR VUS (seven families), including eight colorectal and two endometrial carcinomas and one ovarian carcinoma. Cell-free CIMRA assays were performed to assign Odds of Pathogenicity to these VUSs. In four families, seven tumors showed MMR deficiency-associated mutational signatures, supporting the pathogenicity of the VUS. Moreover, somatic (second) MMR hits identified in the WES data were found to explain MMR staining patterns when the MMR staining was discordant with the reported germline MMR gene variant. In conclusion, WES did not significantly reclassify VUS in these cases but clarified some phenotypic aspects such as age of onset and explanations in case of discordant MMR stainings.
Collapse
Affiliation(s)
| | - Noah C Helderman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud Boot
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Diantha Terlouw
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailian Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Inge M M Lakeman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nandy Hofland
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Pia A M de Koning Gans
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Emily Rayner
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Carli Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
25
|
Evaristo G, Harmath C, Segal JP, Shergill A, Setia N. Diagnostic Challenges due to a Germline Missense MSH2 Variant in a Patient With Immunotherapy-Responsive Locally Advanced Rectal Adenocarcinoma. Cancer Rep (Hoboken) 2024; 7:e70037. [PMID: 39696980 DOI: 10.1002/cnr2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Rapid and accurate identification of mismatch repair (MMR) deficiency and Lynch syndrome is critical in the prognostication and clinical management of patients with colorectal carcinoma. CASE DESCRIPTION We describe here a young woman who developed a locally aggressive rectal adenocarcinoma with intact MMR protein expression by immunohistochemistry and absence of histologic evidence of MMR deficiency-associated increased tumoral immune response. Germline DNA-targeted sequencing identified MSH2 variant p.R711P, initially classified as a variant of undetermined significance. Somatic tumoral DNA analysis revealed the identical MSH2 variant, high tumor mutational burden, and microsatellite instability, in addition to superimposed alterations in β2-microglobulin gene, possibly explaining the altered intratumoral immunity. Consequently, the patient was started on immunotherapy, leading to successful disease control (33 month follow-up). CONCLUSION The findings emphasize the utility of an integrative approach in the assessment of MMR status for determining candidacy for immunotherapy, especially in the setting of missense variants in MMR genes.
Collapse
Affiliation(s)
- Gertruda Evaristo
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Carla Harmath
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Jeremy P Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | - Ardaman Shergill
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Namrata Setia
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Liu Y, Chen Y, Wu H, Zhang X, Wang Y, Yi X, Liang Z, Wang J. scMSI: Accurately inferring the sub-clonal Micro-Satellite status by an integrated deconvolution model on length spectrum. PLoS Comput Biol 2024; 20:e1012608. [PMID: 39621788 PMCID: PMC11637434 DOI: 10.1371/journal.pcbi.1012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/12/2024] [Accepted: 11/02/2024] [Indexed: 12/14/2024] Open
Abstract
Microsatellite instability (MSI) is an important genomic biomarker for cancer diagnosis and treatment, and sequencing-based approaches are often applied to identify MSI because of its fastness and efficiency. These approaches, however, may fail to identify MSI on one or more sub-clones for certain cancers with a high degree of heterogeneity, leading to erroneous diagnoses and unsuitable treatments. Besides, the computational cost of identifying sub-clonal MSI can be exponentially increased when multiple sub-clones with different length distributions share MSI status. Herein, this paper proposes "scMSI", an accurate and efficient estimation of sub-clonal MSI to identify the microsatellite status. scMSI is an integrative Bayesian method to deconvolute the mixed-length distribution of sub-clones by a novel alternating iterative optimization procedure based on a subtle generative model. During the process of deconvolution, the optimized division of each sub-clone is attained by a heuristic algorithm, aligning with clone proportions that adhere optimally to the sample's clonal structure. To evaluate the performance, 16 patients diagnosed with endometrial cancer, exhibiting positive responses to the treatment despite having negative MSI status based on sequencing-based approaches, were considered. Excitingly, scMSI reported MSI on sub-clones successfully, and the findings matched the conclusions on immunohistochemistry. In addition, testing results on a series of experiments with simulation datasets concerning a variety of impact factors demonstrated the effectiveness and superiority of scMSI in detecting MSI on sub-clones over existing approaches. scMSI provides a new way of detecting MSI for cancers with a high degree of heterogeneity.
Collapse
Affiliation(s)
- Yuqian Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yan Chen
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Huanwen Wu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yuqi Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Geneplus Beijing Institute, Beijing, China
| | - Xin Yi
- Geneplus Beijing Institute, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
27
|
Backman S, Botling J, Nord H, Ghosal S, Stålberg P, Juhlin CC, Almlöf J, Sundin A, Zhang L, Moens L, Eriksson B, Welin S, Hellman P, Skogseid B, Pacak K, Mollazadegan K, Åkerström T, Crona J. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation. J Pathol 2024; 264:357-370. [PMID: 39360347 DOI: 10.1002/path.6348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Tumour evolution with acquisition of more aggressive disease characteristics is a hallmark of disseminated cancer. Metastatic pancreatic neuroendocrine tumours (PanNETs) in particular may progress from a low/intermediate to a high-grade disease. The aim of this work was to understand the molecular mechanisms underlying metastatic progression as well as PanNET transformation from a low/intermediate to a high-grade disease. We performed multi-omics analysis (genome/exome sequencing, total RNA-sequencing and methylation array) of 32 longitudinal samples from six patients with metastatic low/intermediate grade PanNET. The clonal composition of tumour lesions and underlying phylogeny of each patient were determined with bioinformatics analyses. Findings were validated in post-alkylating chemotherapy samples from 24 patients with PanNET using targeted next generation sequencing. We validate the current PanNET evolutionary model with MEN1 inactivation that occurs very early in tumourigenesis. This was followed by pronounced genetic diversity on both spatial and temporal levels, with parallel and convergent tumour evolution involving the ATRX/DAXX and mechanistic target of the rapamycin (mTOR) pathways. Following alkylating chemotherapy treatment, some PanNETs developed mismatch repair deficiency and acquired a hypermutational phenotype. This was validated among 16 patients with PanNET who had high-grade progression after alkylating chemotherapy, of whom eight had a tumour mutational burden >50 (50%). In comparison, among the eight patients who did not show high-grade progression, 0 had a tumour mutational burden >50 (0%; odds ratio 'infinite', 95% confidence interval 1.8 to 'infinite', p = 0.02). Our findings contribute to broaden the understanding of metastatic/high-grade PanNETs and suggests that therapy driven disease evolution is an important hallmark of this disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Helena Nord
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - C Christofer Juhlin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Almlöf
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Sundin
- Section of Radiology, Molecular Imaging, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Liang Zhang
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lotte Moens
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Barbro Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Staffan Welin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Britt Skogseid
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
28
|
Zhu YC, Wei ZG, Wang JJ, Pei YY, Jin J, Li D, Li ZH, Liu ZR, Min Y, Li RD, Yang L, Liu JY, Wei Q, Peng XC. Camrelizumab plus apatinib for previously treated advanced adrenocortical carcinoma: a single-arm phase 2 trial. Nat Commun 2024; 15:10371. [PMID: 39609453 PMCID: PMC11604670 DOI: 10.1038/s41467-024-54661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive malignancy with a poor prognosis. Therapeutic options for patients with advanced ACC who have failed standard treatments are limited. Single-agent immunotherapy as a second-line treatment has shown unsatisfactory clinical outcomes. This phase II trial (NCT04318730) evaluated the efficacy and safety of the PD-1 inhibitor camrelizumab combined with the VEGFR inhibitor apatinib in previously treated advanced ACC. The primary endpoint was objective response rate (ORR). The secondary endpoints included progression-free survival (PFS), overall survival (OS), and safety. A total of 21 patients with advanced ACC received at least one dose of camrelizumab and apatinib. The ORR was 52% (95% CI, 30-74%), meeting the primary endpoint, and the disease control rate (DCR) was 95% (95% CI, 76-100%). The median PFS was 13.3 months (95% CI, 8.4-NE), and the median OS was 20.9 months (95% CI, 11.0-NE). The most common grade 3-4 treatment-related adverse events were alanine aminotransferase elevation, aspartate aminotransferase elevation, and lymphopenia. Predefined exploratory analyses indicated that patients with higher peripheral blood CXCR3 + CD8 + T cell abundance, lower immunosuppressive CD4 + T cell abundance, and higher overlap of clonotypes between tumor-infiltrating T cells and circulating T cells, were more likely to respond favorably to the combined therapy.
Collapse
Affiliation(s)
- Yu-Chun Zhu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gong Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Jing Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Yan Pei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Jin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhi-Hui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhe-Ran Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Min
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui-Dan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Chen Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Xu S, Zhai ZY, Zhou P, Xue XF, Huang ZY, Li XX, Yang GH, Bao CJ, You LJ, Cui XB, Xia GL, Ou Yang MP, Li LF, Lu L, Gong W, Pei XJ, Hu W. Whole-exome sequencing reveals novel genomic signatures and potential therapeutic targets during the progression of rectal neuroendocrine neoplasm. Cell Death Dis 2024; 15:833. [PMID: 39548061 PMCID: PMC11568169 DOI: 10.1038/s41419-024-07232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Rectal neuroendocrine neoplasms (rNENs) are among the most frequent gastrointestinal neuroendocrine neoplasms and pose a serious challenge for clinical management. The size of the primary neoplasm is considered to be the most important predictor of disease progression, but the genetic alterations that occur during the progression of rNENs remain unknown. Here, we performed a comprehensive whole-exome sequencing study on 54 tumor-normal paired, formalin-fixed paraffin-embedded specimens from patients locally diagnosed with rNENs. Of these, 81.5% (n = 44) were classified as small-sized (≤2 cm) rNENs, while the remainder (18.5%, n = 10) were classified as large-sized (>2 cm) rNEN samples. Comparative analysis revealed marked disparities in the mutational landscape between small- and large-sized rNEN samples, and between large-sized rNEN samples with or without lymph node metastases. The high-confidence driver genes RHPN2, MUC16, and MUC4 were significantly mutated in both small- and large-sized rNEN specimens, whereas mutations in MAN2A1, and BAG2 were only identified in large-sized specimens diagnosed with lymph node metastases. Correspondingly, we observed that the mTOR and MAPK pathways were preferentially enriched in the large-sized rNEN specimens. Signature-based analysis revealed that mutational processes associated with defective DNA base excision repair (SBS30) significantly accumulated in large-sized rNEN samples with lymph node metastases, highlighting the important role of this mutagenic process in promoting rNEN progression. We further found that most rNEN subjects, regardless of tumor size, harbored at least one alteration with targeted therapeutic implications. Taken together, these results elucidate the genetic features associated with tumor size and lymphatic metastasis in rNEN patients, which will deepen our understanding of the genetic changes during rNEN progression and potentially directing improvements in rNEN treatment strategies.
Collapse
Affiliation(s)
- Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiu Fen Xue
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Long Fei Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| | - Xiao Juan Pei
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
30
|
O'Neill K, Pleasance E, Fan J, Akbari V, Chang G, Dixon K, Csizmok V, MacLennan S, Porter V, Galbraith A, Grisdale CJ, Culibrk L, Dupuis JH, Corbett R, Hopkins J, Bowlby R, Pandoh P, Smailus DE, Cheng D, Wong T, Frey C, Shen Y, Lewis E, Paulin LF, Sedlazeck FJ, Nelson JMT, Chuah E, Mungall KL, Moore RA, Coope R, Mungall AJ, McConechy MK, Williamson LM, Schrader KA, Yip S, Marra MA, Laskin J, Jones SJM. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. CELL GENOMICS 2024; 4:100674. [PMID: 39406235 PMCID: PMC11605692 DOI: 10.1016/j.xgen.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
The Long-Read Personalized OncoGenomics (POG) dataset comprises a cohort of 189 patient tumors and 41 matched normal samples sequenced using the Oxford Nanopore Technologies PromethION platform. This dataset from the POG program and the Marathon of Hope Cancer Centres Network includes DNA and RNA short-read sequence data, analytics, and clinical information. We show the potential of long-read sequencing for resolving complex cancer-related structural variants, viral integrations, and extrachromosomal circular DNA. Long-range phasing facilitates the discovery of allelically differentially methylated regions (aDMRs) and allele-specific expression, including recurrent aDMRs in the cancer genes RET and CDKN2A. Germline promoter methylation in MLH1 can be directly observed in Lynch syndrome. Promoter methylation in BRCA1 and RAD51C is a likely driver behind homologous recombination deficiency where no coding driver mutation was found. This dataset demonstrates applications for long-read sequencing in precision medicine and is available as a resource for developing analytical approaches using this technology.
Collapse
Affiliation(s)
- Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Jeremy Fan
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Vahid Akbari
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Glenn Chang
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Katherine Dixon
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Signe MacLennan
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Porter
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Galbraith
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Cameron J Grisdale
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - John H Dupuis
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard Corbett
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - James Hopkins
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Reanne Bowlby
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Duane E Smailus
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Dean Cheng
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Tina Wong
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Connor Frey
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eleanor Lewis
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jessica M T Nelson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Robin Coope
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Melissa K McConechy
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Kasmintan A Schrader
- Hereditary Cancer Program, BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
31
|
Su A, Lee H, Tran M, Cruz RD, Sathe A, Bai X, Wichmann I, Pflieger L, Moulton B, Barker T, Haslem D, Jones D, Nadauld L, Nguyen Q, Ji HP, Rhodes T. The single-cell spatial landscape of stage III colorectal cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622577. [PMID: 39605367 PMCID: PMC11601238 DOI: 10.1101/2024.11.07.622577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We conducted a spatial analysis using imaging mass cytometry applied to stage III colorectal adenocarcinomas. This study used multiplexed markers to distinguish individual cells and their spatial organization from 52 colorectal cancers. We determined the landscape features of cellular spatial features in the CRC tumor microenvironment. This spatial single-cell analysis identified 10 unique cell phenotypes in the tumor microenvironment that included stromal and immune cells with a subset which had a proliferative phenotype. These special features included spatial neighborhood interactions between single cells as well as different tissue niches, especially the tumor infiltrating lymphocyte regions. We applied a robust statistical analysis to identify significant correlations of cell features with phenotypes such as microsatellite instability or recurrence. We determined that microsatellite stable (MSS) colorectal cancers had an increased risk of recurrence if they had the following features: 1) a low level of stromal tumor-infiltrating lymphocytes, and 2) low interactions between CD4+ T cells and stromal cells. Our results point to the utility of spatial single-cell interaction analysis in defining novel features of the tumor immune microenvironments and providing useful clinical cell-related spatial biomarkers.
Collapse
Affiliation(s)
- Andrew Su
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia
| | - Richard D. Cruz
- Intermountain Healthcare, Saint George, UT, 84770, United States
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Ignacio Wichmann
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
- Division of Obstetrics and Gynecology, Department of Obstetrics, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Lance Pflieger
- Intermountain Healthcare, Saint George, UT, 84770, United States
| | - Bryce Moulton
- Intermountain Healthcare, Saint George, UT, 84770, United States
| | - Tyler Barker
- Intermountain Healthcare, Saint George, UT, 84770, United States
| | - Derrick Haslem
- Intermountain Healthcare, Saint George, UT, 84770, United States
| | - David Jones
- Intermountain Healthcare, Saint George, UT, 84770, United States
| | - Lincoln Nadauld
- Intermountain Healthcare, Saint George, UT, 84770, United States
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Terence Rhodes
- Intermountain Healthcare, Saint George, UT, 84770, United States
| |
Collapse
|
32
|
Johannet P, Abdelfattah S, Wilde C, Patel S, Walch H, Rousseau B, Argiles G, Artz O, Patel M, Arfe A, Cercek A, Yaeger R, Ganesh K, Schultz N, Diaz LA, Foote MB. Molecular and Clinicopathologic Impact of GNAS Variants Across Solid Tumors. J Clin Oncol 2024; 42:3847-3857. [PMID: 39121438 PMCID: PMC11540749 DOI: 10.1200/jco.24.00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 08/11/2024] Open
Abstract
PURPOSE The molecular drivers underlying mucinous tumor pathogenicity are poorly understood. GNAS mutations predict metastatic burden and treatment resistance in mucinous appendiceal adenocarcinoma. We investigated the pan-cancer clinicopathologic relevance of GNAS variants. METHODS We assessed 58,043 patients with Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (IMPACT)-sequenced solid tumors to identify oncogenic variants, including GNAS, associated with mucinous tumor phenotype. We then performed comprehensive molecular analyses to compare GNAS-mutant (mut) and wild-type tumors across cancers. Gene expression patterns associated with GNAS-mut tumors were assessed in a The Cancer Genome Atlas cohort. Associations between GNAS variant status and peritoneal metastasis, first-line systemic therapy response, progression-free survival (PFS), and overall survival (OS) were determined using a propensity-matched subcohort of patients with metastatic disease. RESULTS Mucinous tumors were enriched for oncogenic GNAS variants. GNAS was mutated in >1% of small bowel, cervical, colorectal, pancreatic, esophagogastric, hepatobiliary, and GI neuroendocrine cancers. Across these cancers, GNAS-mut tumors exhibited a generally conserved C-to-T mutation-high, aneuploidy-low molecular profile with co-occurring prevalent KRAS variants (65% of GNAS-mut tumors) and fewer TP53 alterations. GNAS-mut tumors exhibited recurrently comutated alternative tumor suppressors (RBM10, INPPL1) and upregulation of MAPK and cell surface modulators. GNAS-mut tumors demonstrate an increased prevalence of peritoneal metastases (odds ratio [OR], 1.7 [95% CI, 1.1 to 2.5]; P = .006), worse response to first-line systemic therapy (OR, 2.2 [95% CI, 1.3 to 3.8]; P = .003), and shorter PFS (median, 5.6 v 7.0 months; P = .047). In a multivariable analysis, GNAS mutated status was independently prognostic of worse OS (hazard ratio, 1.25 [95% CI, 1.01 to 1.56]; adjusted P = .04). CONCLUSION Across the assessed cancers, GNAS-mut tumors exhibit a conserved molecular and clinical phenotype defined by mucinous tumor status, increased peritoneal metastasis, poor response to first-line systemic therapy, and worse survival.
Collapse
Affiliation(s)
- Paul Johannet
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Somer Abdelfattah
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Callahan Wilde
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Shrey Patel
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benoit Rousseau
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Guillem Argiles
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Oliver Artz
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Miteshkumar Patel
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Andrea Arfe
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Cercek
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Rona Yaeger
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Karuna Ganesh
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Luis A. Diaz
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| | - Michael B. Foote
- Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering, New York, NY
| |
Collapse
|
33
|
O’Connor CA, Harrold E, Lin D, Walch H, Gazzo A, Ranganathan M, Kane S, Keane F, Schoenfeld J, Moss D, Thurtle-Schmidt DM, Suehnholz SP, Chakravarty D, Balogun F, Varghese A, Yu K, Kelsen D, Latham A, Weigelt B, Park W, Stadler Z, O’Reilly EM. Lynch Syndrome and Somatic Mismatch Repair Variants in Pancreas Cancer. JAMA Oncol 2024; 10:1511-1518. [PMID: 39235819 PMCID: PMC11378065 DOI: 10.1001/jamaoncol.2024.3651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 09/06/2024]
Abstract
Importance Microsatellite (MS) instability (MSI-H) occurs frequently in Lynch syndrome (LS)-associated tumors and is associated with response to immune checkpoint blockade (ICB) therapy. MSI-H is conferred by germline or somatic variants in mismatch repair genes. The contribution of somatic oncogenesis to MSI-H in pancreatic cancer (PC) is unknown. Objective To evaluate an LS-related PC cohort to define clinicogenomic features, describe somatic MSI-H cases (germline negative), characterize response to ICB, and guide preferred MS testing methods. Design, Setting, and Participants This single-institution, retrospective analysis was conducted from March 2012 to July 2023 at Memorial Sloan Kettering Cancer Center and included 55 patients with PC and either an LS germline pathogenic variant (gPV) or somatic mismatch repair (MMR) variant. Main Outcomes and Measures Composite MMR and MS status determined using orthogonal methods. An artificial intelligence classifier was used to account for low-cellularity specimens. Demographic and clinical data were abstracted from medical record. Zygosity status and somatic comutation landscape analyzed. Results Fifty-five patients (23 women [42%]) had PC and an MMR variant: 32 (58%) had LS (LS cohort) and 23 (42%) had a somatic MMR variant (no germline pathogenic variant, somatic MMR cohort). In the LS cohort, 10 (31%) had gMSH2, 9 (28%) gMSH6, 8 (25%) gPMS2, 4 (13%) gMLH1, 1 (3%) gEPCAM. The median age at diagnosis was 68 years (range, 45-88 years). For composite MS status, 17 (59%) were MSI-H, 12 (41%) MS stable, and 3 MS unknown. Five cases were reclassified as MSI-H by the artificial intelligence classifier. In the somatic MMR cohort, 11 (48%) had MSH6, 7 (30%) MLH1, 3 (13%) MSH2, and 2 (9%) PMS2. The median age at diagnosis was 72 years (range, 66-85 years). For composite MS status, 10 (43%) were MSI-H, 11 (48%) MS stable, and 2 (9%) MS indeterminate. Six cases were reclassified as MSI-H by the artificial intelligence classifier. For the LS and somatic MMR cohorts, 20 received ICB (n = 17 MSI-H). The median ICB duration was 27.7 months (95% CI, 11.5 to not reached); the disease control rate was 80%. Conclusion The results of this cross-sectional study suggest that MSI-H occurs due to LS or somatic oncogenesis in PC. Orthogonal MS testing is key in PC; the artificial intelligence classifier reclassified approximately 20% of cases, most of which were low cellularity. ICB for patients with LS or somatic MSI-H PC provided significant benefit.
Collapse
Affiliation(s)
- Catherine A. O’Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biology, Davidson College, Davidson, North Carolina
| | - Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - David Lin
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, New York
| | - Henry Walch
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, New York
| | - Andrea Gazzo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Kane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Drew Moss
- Mount Sinai Morningside West, New York, New York
| | | | - Sarah P. Suehnholz
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Debyani Chakravarty
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Fiyinfolu Balogun
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Anna Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kenneth Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
| | - Britta Weigelt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Eileen M. O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
34
|
Gabriel PE, Cancel-Tassin G, Audenet F, Masson-Lecomte A, Allory Y, Roumiguié M, Pradère B, Loriot Y, Léon P, Traxer O, Xylinas E, Rouprêt M, Neuzillet Y, Seisen T. A collaborative review of the microsatellite instability/deficient mismatch repair phenotype in patients with upper tract urothelial carcinoma. BJU Int 2024; 134:723-735. [PMID: 38813615 DOI: 10.1111/bju.16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
OBJECTIVE To perform a collaborative review of the literature exploring the microsatellite instability/deficient mismatch repair (MSI/dMMR) phenotype in patients with upper tract urothelial carcinoma (UTUC). METHOD A collaborative review of the literature available on Medline was conducted by the Cancer Committee of the French Association of Urology to report studies describing the genetic mechanisms, investigation, prevalence and impact of the MSI/dMMR phenotype in UTUC patients. RESULTS The predominant genetic mechanism leading to the MSI/dMMR phenotype in UTUC patients is related to the constitutional mutation of one allele of the MMR genes MLH1, MSH2, MSH6 and PMS2 within Lynch syndrome. Indications for its investigation currently remain limited to patients with a clinical suspicion for sporadic UTUC to refer only those with a positive testing for germline DNA sequencing to screen for this syndrome. With regard to technical aspects, despite the interest of MSIsensor, only PCR and immunohistochemistry are routinely used to somatically investigate the MSI and dMMR phenotypes, respectively. The prevalence of the MSI/dMMR phenotype in UTUC patients ranges from 1.7% to 57%, depending on the study population, investigation method and definition of a positive test. Younger age and a more balanced male to female ratio at initial diagnosis are the main specific clinical characteristics of UTUC patients with an MSI/dMMR phenotype. Despite the conflicting results available in the literature, these patients may have a better prognosis, potentially related to more favourable pathological features. Finally, they may also have lower sensitivity to chemotherapy but greater sensitivity to immunotherapy. CONCLUSION Our collaborative review summarises the available data from published studies exploring the MSI/dMMR phenotype in UTUC patients, the majority of which are limited by a low level of evidence.
Collapse
Affiliation(s)
- Pierre-Etienne Gabriel
- GRC 5 Predictive Onco-Uro, Sorbonne University, AP-HP, Urology, Pitie-Salpetriere Hospital, Paris, France
| | | | - François Audenet
- Department of urology, Georges Pompidou European Hospital, APHP, Centre, Université Paris Cité, Paris, France
| | | | - Yves Allory
- Department of Pathology, Institut Curie, Saint-Cloud, Paris, France
| | | | - Benjamin Pradère
- Department of Urology, La Croix Du Sud Hospital, Quint Fonsegrives, France
| | - Yohann Loriot
- Department of Oncology, Gustave Roussy, Villejuif, France
| | | | - Olivier Traxer
- Department of Urology, Tenon Hospital, AP-HP, Paris, France
| | - Evanguelos Xylinas
- Department of Urology, Bichat-Claude Bernard Hospital, AP-HP, Université de Paris, Paris, France
| | - Morgan Rouprêt
- GRC 5 Predictive Onco-Uro, Sorbonne University, AP-HP, Urology, Pitie-Salpetriere Hospital, Paris, France
| | - Yann Neuzillet
- Department of Urology, Foch Hospital, University of Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Suresnes, France
| | - Thomas Seisen
- GRC 5 Predictive Onco-Uro, Sorbonne University, AP-HP, Urology, Pitie-Salpetriere Hospital, Paris, France
| |
Collapse
|
35
|
Takamatsu S, Hillman RT, Yoshihara K, Baba T, Shimada M, Yoshida H, Kajiyama H, Oda K, Mandai M, Okamoto A, Enomoto T, Matsumura N. Molecular classification of ovarian high-grade serous/endometrioid carcinomas through multi-omics analysis: JGOG3025-TR2 study. Br J Cancer 2024; 131:1340-1349. [PMID: 39215190 PMCID: PMC11473812 DOI: 10.1038/s41416-024-02837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Considerable interobserver variability exists in diagnosis of ovarian high-grade endometrioid carcinoma (HGEC) and high-grade serous carcinoma (HGSC) due to histopathological similarities. While homologous recombination deficiency (HRD) correlates with drug sensitivity in HGSC, the molecular features of HGEC are unclear. METHODS Fresh-frozen samples from 15 ovarian HGECs and 274 ovarian HGSCs in the JGOG-TR2 cohort were submitted to targeted DNA sequencing, RNA sequencing, DNA methylation array, and SNP array. We additionally analyzed 555 ovarian HGSCs from TCGA-OV and 287 endometrial high-grade carcinomas from TCGA-UCEC. RESULTS Unsupervised clustering using copy number signatures identified four distinct tumor groups (C1, C2, C3 and C4). C1 (n = 41) showed CCNE1 amplification and poor survival. C2 (n = 160) and C3 (n = 59) showed high BRCA1/2 alteration frequency with low and moderate ploidy, respectively. C4 (n = 22) was characterized by favorable outcome, higher HGEC proportion, no BRCA1/2 alteration or CCNE1 amplification, and low levels of HRD score, ploidy, intra-tumoral heterogeneity, cell proliferation rate, and WT1 gene expression. Notably, C4 exhibited a normal endometrium-like DNA methylation profile, thus, defined as "HGEC-type" tumors, which were also identified in TCGA-OV and TCGA-UCEC. CONCLUSIONS Ovarian "HGEC-type" tumors present a non-HRD status, favorable prognosis, and endometrial differentiation, possibly constituting a subset of clinically diagnosed HGSCs.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Tyler Hillman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- CPRIT Scholar in Cancer Research, Houston, TX, USA
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University, Morioka, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Yoshida
- Department of Obstetrics and Gynecology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, The University of Tokyo, Tokyo, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
| |
Collapse
|
36
|
Frydendahl A, Nors J, Rasmussen MH, Henriksen TV, Nesic M, Reinert T, Afterman D, Lauterman T, Kuzman M, Gonzalez S, Glavas D, Smadback J, Maloney D, Levativ J, Yahalom M, Ptashkin R, Tavassoly I, Donenhirsh Z, White E, Kandasamy R, Alon U, Nordentoft I, Lindskrog SV, Dyrskjøt L, Jaensch C, Løve US, Andersen PV, Thorlacius-Ussing O, Iversen LH, Gotschalck KA, Zviran A, Oklander B, Andersen CL. Detection of circulating tumor DNA by tumor-informed whole-genome sequencing enables prediction of recurrence in stage III colorectal cancer patients. Eur J Cancer 2024; 211:114314. [PMID: 39316995 DOI: 10.1016/j.ejca.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Circulating tumor (ctDNA) can be used to detect residual disease after cancer treatment. Detecting low-level ctDNA is challenging, due to the limited number of recoverable ctDNA fragments at any target loci. In response, we applied tumor-informed whole-genome sequencing (WGS), leveraging thousands of mutations for ctDNA detection. METHODS Performance was evaluated in serial plasma samples (n = 1283) from 144 stage III colorectal cancer patients. Tumor/normal WGS was used to establish a patient-specific mutational fingerprint, which was searched for in 20x WGS plasma profiles. For reproducibility, paired aliquots of 172 plasma samples were analyzed in two independent laboratories. De novo variant calling was performed for serial plasma samples with a ctDNA level > 10 % (n = 17) to explore genomic evolution. RESULTS WGS-based ctDNA detection was prognostic of recurrence: post-operation (Hazard ratio [HR] 6.75, 95 %CI 3.18-14.3, p < 0.001), post-adjuvant chemotherapy (HR 28.9, 95 %CI 10.1-82.8; p < 0.001), and during surveillance (HR 22.8, 95 %CI 13.7-37.9, p < 0.0001). The 3-year cumulative incidence of ctDNA detection in recurrence patients was 95 %. ctDNA was detected a median of 8.7 months before radiological recurrence. The independently analyzed plasma aliquots showed excellent agreement (Cohens Kappa=0.9, r = 0.99). Genomic characterization of serial plasma revealed significant evolution in mutations and copy number alterations, and the timing of mutational processes, such as 5-fluorouracil-induced mutations. CONCLUSION Our study supports the use of WGS for sensitive ctDNA detection and demonstrates that post-treatment ctDNA detection is highly prognostic of recurrence. Furthermore, plasma WGS can identify genomic differences distinguishing the primary tumor and relapsing metastasis, and monitor treatment-induced genomic changes.
Collapse
Affiliation(s)
- Amanda Frydendahl
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Jesper Nors
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Mads H Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Tenna V Henriksen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Marijana Nesic
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | - Eric White
- C2i Genomics Inc., New York, NY 10014, USA
| | | | - Ury Alon
- C2i Genomics, Ltd., Haifa, Israel
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Uffe S Løve
- Department of Surgery, Viborg Regional Hospital, Denmark
| | - Per V Andersen
- Department of Surgery, Odense University Hospital, Denmark
| | | | - Lene H Iversen
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Surgery, Aarhus University Hospital, Denmark
| | - Kåre A Gotschalck
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Surgery, Randers Regional Hospital, Denmark
| | | | | | - Claus L Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
37
|
Mouren A, Chansavang A, Hamzaoui N, Srikaran A, Laurent-Puig P, Marisa L, De Percin S, Lupo A, Larousserie F, Blons H, L'Haridon A, Burnichon N, Pasmant E, Tlemsani C. A de novo germline pathogenic BRCA1 variant identified following an osteosarcoma pangenomic molecular analysis. Fam Cancer 2024; 23:627-634. [PMID: 38763984 DOI: 10.1007/s10689-024-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
De novo germline pathogenic variants (gPV) of the BReast CAncer 1 (BRCA1) gene are very rare. Only a few have been described up to date, usually in patients with a history of ovarian or breast cancer. Here, we report the first case of an incidental de novo BRCA1 germline pathogenic variant which was identified within the framework of the Plan France Médecine Génomique (PFMG) 2025 French national tumor sequencing program. The proband was a 29-year-old man diagnosed with metastatic osteosarcoma. Tumor whole exome sequencing identified a BRCA1 c.3756_3759del p.(Ser1253Argfs*10) pathogenic variant without loss-of-heterozygosity. A low genomic instability score and the absence of single base substitution signatures of homologous recombination deficiency suggested that the BRCA1 variant was not driver in the osteosarcoma tumorigenesis. Germline whole genome sequencing asserted the germline nature of this variant, with a 36% allele frequency, suggesting a mosaicism caused by a post-zygotic mutational event. The proband's family (parents and siblings) were not carriers of this variant confirming the de novo occurrence. Tumor sequencing programs like the French PFMG 2025 have been implemented worldwide and may help identify new gPV, including de novo variants.
Collapse
Affiliation(s)
- Adrien Mouren
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Albain Chansavang
- Department of Molecular Genetics, Fédération de Génétique et Médecine Génomique, Cochin Hospital, Université Paris Cité, APHP.Centre, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Nadim Hamzaoui
- Department of Molecular Genetics, Fédération de Génétique et Médecine Génomique, Cochin Hospital, Université Paris Cité, APHP.Centre, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Arunya Srikaran
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Pierre Laurent-Puig
- Institut du Cancer Paris Carpem, AP-HP, Genomic Medicine of Tumors and Cancers Department, Fédération de Génétique et Médecine Génomique, Université Paris Cité, APHP.Centre, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Université Paris Cité, Paris, France
| | | | - Sixtine De Percin
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Audrey Lupo
- Department of Pathology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Frédérique Larousserie
- Department of Pathology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Hélène Blons
- Institut du Cancer Paris Carpem, AP-HP, Genomic Medicine of Tumors and Cancers Department, Fédération de Génétique et Médecine Génomique, Université Paris Cité, APHP.Centre, Paris, France
- Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Université Paris Cité, Paris, France
| | | | - Nelly Burnichon
- Institut du Cancer Paris Carpem, AP-HP, Genomic Medicine of Tumors and Cancers Department, Fédération de Génétique et Médecine Génomique, Université Paris Cité, APHP.Centre, Paris, France
| | - Eric Pasmant
- Department of Molecular Genetics, Fédération de Génétique et Médecine Génomique, Cochin Hospital, Université Paris Cité, APHP.Centre, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Camille Tlemsani
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France.
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France.
| |
Collapse
|
38
|
Zhou K, Zhang M, Zhai D, Wang Z, Liu T, Xie Y, Shi Y, Shi H, Chen Q, Li X, Xu J, Cai Z, Zhang Y, Shao N, Lin Y. Genomic and transcriptomic profiling of inflammatory breast cancer reveals distinct molecular characteristics to non-inflammatory breast cancers. Breast Cancer Res Treat 2024; 208:441-459. [PMID: 39030466 DOI: 10.1007/s10549-024-07437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE Inflammatory breast cancer (IBC), a rare and highly aggressive form of breast cancer, accounts for 10% of breast cancer-related deaths. Previous omics studies of IBC have focused solely on one of genomics or transcriptomics and did not discover common differences that could distinguish IBC from non-IBC. METHODS Seventeen IBC patients and five non-IBC patients as well as additional thirty-three Asian breast cancer samples from TCGA-BRCA were included for the study. We performed whole-exon sequencing (WES) to investigate different somatic genomic alterations, copy number variants, and large structural variants between IBC and non-IBC. Bulk RNA sequencing (RNA-seq) was performed to examine the differentially expressed genes, pathway enrichment, and gene fusions. WES and RNA-seq data were further investigated in combination to discover genes that were dysregulated in both genomics and transcriptomics. RESULTS Copy number variation analysis identified 10 cytobands that showed higher frequency in IBC. Structural variation analysis showed more frequent deletions in IBC. Pathway enrichment and immune infiltration analysis indicated increased immune activation in IBC samples. Gene fusions including CTSC-RAB38 were found to be more common in IBC. We demonstrated more commonly dysregulated RAS pathway in IBC according to both WES and RNA-seq. Inhibitors targeting RAS signaling and its downstream pathways were predicted to possess promising effects in IBC treatment. CONCLUSION We discovered differences unique in Asian women that could potentially explain IBC etiology and presented RAS signaling pathway as a potential therapeutic target in IBC treatment.
Collapse
Affiliation(s)
- Kaiwen Zhou
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengmeng Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Duanyang Zhai
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zilin Wang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ting Liu
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianjun Chen
- Department of Breast Oncology, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiaoping Li
- Department of Breast Oncology, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Juan Xu
- Department of Breast Oncology, Maternal and Child Health Care Hospital of Guangdong Province, Guangzhou, China
| | - Zhenhai Cai
- Department of Breast Oncology, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Yunjian Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
39
|
Holla VR, Kahle MP, Kim SH, Ronaghy A, Yang RK, Patel KP, Routbort MJ, Overman MJ, Dumbrava EE, Shaw KRM, Karp DD, Meric-Bernstam F. Genomic Alterations in DNA Mismatch Repair Genes Across Different Cancer Types. JCO Precis Oncol 2024; 8:e2400419. [PMID: 39576951 PMCID: PMC11825140 DOI: 10.1200/po-24-00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
PURPOSE PD-1 inhibition is effective in patients with mismatch repair deficient (dMMR) solid tumors in a tumor-agnostic fashion. However, dMMR testing by immunohistochemistry (IHC) is not routinely performed across tumor types. By contrast, next-generation sequencing (NGS) for somatic genomic alterations is frequently performed across tumor types. We hypothesized that NGS would identify patients with alterations in mismatch repair (MMR) genes and that these patients would have higher rates of MMR protein loss by IHC. This would support the utility of IHC reflex testing after NGS and potential matching to approved therapeutic options. METHODS From January 2016 to December 2021, 15,701 patients with solid tumors received NGS covering the MMR genes, and 4,994 patients had both IHC and NGS. Sequencing results were analyzed for mutations in MMR genes, tumor type distribution, and concordance with IHC results when available. RESULTS Six hundred and ninety-eight (4.4%) of 15,701 patients had mutations in one of the MMR genes. Mutations were found across tumor types. Three hundred and seventeen (6.3%) of 4,994 patients displayed IHC loss for at least one MMR protein. 33.8% patients (110/325) patients with MMR mutations had dMMR, compared with just 4.4% (207/4,669) patients without mutations (P < .001); dMMR rate varied by mutation type. CONCLUSION Mutations in MMR genes are found in multiple tumor types where IHC testing is not routine. Reflex IHC testing of patients carrying MMR gene mutations, especially those known or inferred to be inactivating, may identify more patients with dMMR and matched treatment options. However, dedicated IHC screening is needed to capture majority of the patients.
Collapse
Affiliation(s)
- Vijaykumar R. Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy
| | - Michael P Kahle
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy
| | - Sun-Hee Kim
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy
| | - Arash Ronaghy
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Richard K Yang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Keyur P Patel
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Mark J Routbort
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Ecaterina E Dumbrava
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Kenna R Mills Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| |
Collapse
|
40
|
Veselovsky E, Lebedeva A, Kuznetsova O, Kravchuk D, Belova E, Taraskina A, Grigoreva T, Kavun A, Yudina V, Belyaeva L, Nikulin V, Mileyko V, Tryakin A, Fedyanin M, Ivanov M. Evaluation of blood MSI burden dynamics to trace immune checkpoint inhibitor therapy efficacy through the course of treatment. Sci Rep 2024; 14:23454. [PMID: 39379462 PMCID: PMC11461614 DOI: 10.1038/s41598-024-73952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Analysis of serial liquid biopsy (LB) samples has been found to be a promising approach for the monitoring of tumor dynamics in the course of therapy for patients with colorectal cancer (CRC). Currently, somatic mutations are used for tracing the dynamics of the tumor via LB. However, the analysis of the dynamic changes in the molecular signatures such as microsatellite instability (MSI) is not currently used. We hypothesized that changes in blood MSI burden (bMSI) could be registered using serial LB sampling in the course of immune checkpoint inhibitors (ICI), and that its changes could potentially correlate with treatment outcomes. We report the preliminary findings of the observational trial launched to study (NCT06414304) the dynamics of bMSI in 9 MSI-positive CRC patients receiving ICI. NGS-based MSI testing was performed on both pre-treatment FFPE and serial LB samples. For patients who had detectable bMSI burden in any of the LB samples (n = 8, 89%), median bMSI was 1.4% (range, 0.01-40%). Among patients with detectable MSI in available FFPE samples, median MSI burden was 29.3% (range, 10-40%). bMSI detected in baseline LB and FFPE samples were positively correlated (Pearson's R 0.47). Maximal variant allele frequencies of driver mutations observed in LB were also positively correlated with bMSI burden (Pearson's R 0.7). Patients who had clinical benefit had undetectable bMSI burden at follow-up. Our results provide the rationale for further validation of bMSI as a predictive biomarker of ICI in MSI-positive patients.
Collapse
Affiliation(s)
- Egor Veselovsky
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexandra Lebedeva
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Olesya Kuznetsova
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Daria Kravchuk
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Tatiana Grigoreva
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexandra Kavun
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
| | - Victoria Yudina
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Laima Belyaeva
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Vladislav Nikulin
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Vladislav Mileyko
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexey Tryakin
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Mikhail Fedyanin
- Federal State Budgetary Institution N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
- State Budgetary Institution of Health Care of the City of Moscow "Moscow Multidisciplinary Clinical Center" "Kommunarka" of the Department of Health of the City of Moscow, Moscow, Russian Federation
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Maxim Ivanov
- OncoAtlas LLC, 4/1A, Leninskiy Prospect, Moscow, Russian Federation, 119049.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
41
|
Cowzer D, Chou JF, Walch H, Keane F, Khalil D, Shia J, Do RKG, Yarmohammadi H, Erinjeri JP, El Dika I, Yaqubie A, Azhari H, Gambarin M, Hajj C, Crane C, Wei AC, Jarnagin W, Solit DB, Berger MF, O'Reilly EM, Schultz N, Chatila W, Capanu M, Abou-Alfa GK, Harding JJ. Clinicogenomic predictors of outcomes in patients with hepatocellular carcinoma treated with immunotherapy. Oncologist 2024; 29:894-903. [PMID: 38937977 PMCID: PMC11448888 DOI: 10.1093/oncolo/oyae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) combinations extend overall survival (OS) while anti-PD-1/L1 monotherapy is non-inferior to sorafenib in treatment-naïve, patients with advanced hepatocellular carcinoma (HCC). Clinicogenomic features are posited to influence patient outcomes. METHODS The primary objective of this retrospective study was to define the clinical, pathologic, and genomic factors associated with outcomes to ICI therapy in patients with HCC. Patients with histologically confirmed advanced HCC treated with ICI at Memorial Sloan Kettering Cancer Center from 2012 to 2022 were included. Association between clinical, pathological, and genomic characteristics were assessed with univariable and multivariable Cox regression model for progression-free survival (PFS) and OS. RESULTS Two-hundred and forty-two patients were treated with ICI-based therapy. Patients were predominantly male (82%) with virally mediated HCC (53%) and Child Pugh A score (70%). Median follow-up was 28 months (0.5-78.4). Median PFS for those treated in 1st line, 2nd line and ≥ 3rd line was 4.9 (range: 2.9-6.2), 3.1 (2.3-4.0), and 2.5 (2.1-4.0) months, respectively. Median OS for those treated in 1st line, 2nd line, and ≥ 3rd line was 16 (11-22), 7.5 (6.4-11), and 6.4 (4.6-26) months, respectively. Poor liver function and performance status associated with worse PFS and OS, while viral hepatitis C was associated with favorable outcome. Genetic alterations were not associated with outcomes. CONCLUSION Clinicopathologic factors were the major determinates of outcomes for patients with advanced HCC treated with ICI. Molecular profiling did not aid in stratification of ICI outcomes. Future studies should explore alternative biomarkers such as the level of immune activation or the pretreatment composition of the immune tumor microenvironment.
Collapse
Affiliation(s)
- Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Henry Walch
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Danny Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Jinru Shia
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard K G Do
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hooman Yarmohammadi
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph P Erinjeri
- Weill Medical College of Cornell University, New York, NY, United States
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Amin Yaqubie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hassan Azhari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Maya Gambarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Carla Hajj
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christopher Crane
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alice C Wei
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - William Jarnagin
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Michael F Berger
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Nikolaus Schultz
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Walid Chatila
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
42
|
He Y, Ren T, Ji C, Zhao L, Wang X. The baseline hemoglobin level is a positive biomarker for immunotherapy response and can improve the predictability of tumor mutation burden for immunotherapy response in cancer. Front Pharmacol 2024; 15:1456833. [PMID: 39415833 PMCID: PMC11480016 DOI: 10.3389/fphar.2024.1456833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose Because only a subset of cancer patients can benefit from immunotherapy, identifying predictive biomarkers of ICI therapy response is of utmost importance. Methods We analyzed the association between hemoglobin (HGB) levels and clinical outcomes in 1,479 ICIs-treated patients across 16 cancer types. We explored the dose-dependent associations between HGB levels and survival and immunotherapy response using the spline-based cox regression analysis. Furthermore, we investigated the associations across subgroups of patients with different clinicopathological characteristics, treatment programs and cancer types using the bootstrap resampling method. Results HGB levels correlated positively with clinical outcomes in cancer patients receiving immunotherapy but not in those without immunotherapy. Moreover, this association was independent of other clinicopathological characteristics (such as sex, age, tumor stage and tumor mutation burden (TMB)), treatment program and cancer type. Also, this association was independent of the established biomarkers of immunotherapy response, including TMB, PD-L1 expression and microsatellite instability. The combination of TMB and HGB level are more powerful in predicting immunotherapy response than TMB alone. Multi-omics analysis showed that HGB levels correlated positively with antitumor immune signatures and negatively with tumor properties directing antitumor immunosuppression, such as homologous recombination defect, stemness and intratumor heterogeneity. Conclusion The HGB measure has the potential clinical value as a novel biomarker of immunotherapy response that is easily accessible from clinically routine examination. The combination of TMB and HGB measures have better predictive performance for immunotherapy response than TMB.
Collapse
Affiliation(s)
- Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Tong Ren
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, China
| | - Chengfei Ji
- Beijing Highthink Pharmaceutical Technology Service Co., Ltd., Beijing, China
| | - Li Zhao
- Public Experimental Platform, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Hu M, Luo R, Yang K, Yu Y, Pan Q, Yuan M, Chen R, Wang H, Qin Q, Ma T, Wang H. Genomic landscape defines peritoneal metastatic pattern and related target of peritoneal metastasis in colorectal cancer. Int J Cancer 2024; 155:1327-1339. [PMID: 38738976 DOI: 10.1002/ijc.35005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
The primary objective of this study is to develop a prediction model for peritoneal metastasis (PM) in colorectal cancer by integrating the genomic features of primary colorectal cancer, along with clinicopathological features. Concurrently, we aim to identify potential target implicated in the peritoneal dissemination of colorectal cancer through bioinformatics exploration and experimental validation. By analyzing the genomic landscape of primary colorectal cancer and clinicopathological features from 363 metastatic colorectal cancer patients, we identified 22 differently distributed variables, which were used for subsequent LASSO regression to construct a PM prediction model. The integrated model established by LASSO regression, which incorporated two clinicopathological variables and seven genomic variables, precisely discriminated PM cases (AUC 0.899; 95% CI 0.860-0.937) with good calibration (Hosmer-Lemeshow test p = .147). Model validation yielded AUCs of 0.898 (95% CI 0.896-0.899) and 0.704 (95% CI 0.622-0.787) internally and externally, respectively. Additionally, the peritoneal metastasis-related genomic signature (PGS), which was composed of the seven genes in the integrated model, has prognostic stratification capability for colorectal cancer. The divergent genomic landscape drives the driver genes of PM. Bioinformatic analysis concerning these driver genes indicated SERINC1 may be associated with PM. Subsequent experiments indicate that knocking down of SERINC1 functionally suppresses peritoneal dissemination, emphasizing its importance in CRCPM. In summary, the genomic landscape of primary cancer in colorectal cancer defines peritoneal metastatic pattern and reveals the potential target of SERINC1 for PM in colorectal cancer.
Collapse
Affiliation(s)
- Minhui Hu
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Luo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Keli Yang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiwen Pan
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mingming Yuan
- Geneplus-Beijing, Medical Park Road, Zhongguancun Life Science Park, Beijing, China
| | - Rongrong Chen
- Geneplus-Beijing, Medical Park Road, Zhongguancun Life Science Park, Beijing, China
| | - Hui Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyuan Qin
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tenghui Ma
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiming Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Kawaguchi K, Endo M, Shimada E, Kohashi K, Hirose T, Nabeshima A, Fujiwara T, Kawai A, Oda Y, Nakashima Y. Translocation in bone and soft tissue sarcomas: a comprehensive epidemiological investigation. ESMO Open 2024; 9:103726. [PMID: 39305544 PMCID: PMC11440303 DOI: 10.1016/j.esmoop.2024.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Limited epidemiological research has focused on translocations in soft tissue sarcomas, with no studies on bone sarcomas. This study aimed to clarify the epidemiology, prognosis, and genetic information of translocation-related sarcoma (TRS) and non-TRS patients. MATERIALS AND METHODS This retrospective cohort study used data from the Bone and Soft Tissue Tumor Registry in Japan (BSTTRJ) (2001-2019), the Kyushu University Hospital (KUH) repository (2001-2021), and a publicly available online dataset (MSK). The patients were categorized into TRS and non-TRS groups, and epidemiological, prognostic, and mutational diversity were compared. RESULTS This study included 25 383 participants, of whom 4864 (19.2%) were TRS and 20 519 (80.8%) were non-TRS patients. TRS patients had significantly younger onset ages (median: 43 years, interquartile range: 29-59 years) than non-TRS patients (median: 63 years, interquartile range: 46-73 years). In the MSK cohort, microsatellite instability and tumor mutation burden scores in non-TRS were higher than in TRS, although they were rather low compared with the pan-cancer analysis. In the BSTTRJ cohort, survival analyses with the propensity score matching revealed that patients with TRS had better overall [hazard ratio (HR): 0.71, 95% confidence interval (CI) 0.63-0.81], metastasis-free (HR: 0.75, 95% CI 0.67-0.84), and recurrence-free (HR: 0.47, 95% CI 0.39-0.57) survival. CONCLUSIONS This study highlights differences in the epidemiology and genetic rearrangements of sarcoma.
Collapse
Affiliation(s)
- K Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - M Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - E Shimada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Duke University, Durham, USA
| | - K Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - T Hirose
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - A Nabeshima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - T Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - A Kawai
- Division of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, Tokyo, Japan
| | - Y Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Y Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
45
|
Mondaca S, Walch H, Sepúlveda S, Schultz N, Muñoz G, Yaqubie A, Macanas P, Pareja C, Garcia P, Chatila W, Nervi B, Li B, Harding JJ, Viviani P, Roa JC, Abou-Alfa GK. Clinical and Genomic Characterization of ERBB2-Altered Gallbladder Cancer: Exploring Differences Between an American and a Chilean Cohort. JCO Glob Oncol 2024; 10:e2400090. [PMID: 39388662 PMCID: PMC11487998 DOI: 10.1200/go.24.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024] Open
Abstract
PURPOSE Gallbladder cancer (GBC) is a biliary tract malignancy characterized by its high lethality. Although the incidence of GBC is low in most countries, specific areas such as Chile display a high incidence. Our collaborative study sought to compare clinical and molecular features of GBC cohorts from Chile and the United States with a focus on ERBB2 alterations. METHODS Patients were accrued at Memorial Sloan Kettering Cancer Center (MSK) or the Pontificia Universidad Católica de Chile (PUC). Clinical information was retrieved from medical records. Genomic analysis was performed by the next-generation sequencing platform MSK-Integrated Mutation Profiling of Actionable Cancer Targets. RESULTS A total of 260 patients with GBC were included, 237 from MSK and 23 from PUC. There were no significant differences in the clinical characteristics between the patients identified at MSK and at PUC except in terms of lithiasis prevalence which was significantly higher in the PUC cohort (85% v 44%; P = .0003). The prevalence of ERBB2 alterations was comparable between the two cohorts (15% v 9%; P = .42). Overall, ERBB2 alterations were present in 14% of patients (8% with ERBB2 amplification, 4% ERBB2 mutation, 1.5% concurrent amplification and mutation, and 0.4% ERBB2 fusion). Notably, patients with GBC that harbored ERBB2 alterations had better overall survival (OS) versus their ERBB2-wild type counterparts (22.3 months v 11.8 months; P = .024). CONCLUSION The prevalence of lithiasis seems to be higher in Chilean versus US patients with GBC. A similar prevalence of ERBB2 alterations of overall 14% and better OS suggests that a proportion of them could benefit from human epidermal growth factor receptor type 2-targeted therapies. The smaller cohort of Chile, where the disease prevalence is higher, is a reminder and invitation for the need of more robust next-generation sequencing analyses globally.
Collapse
Affiliation(s)
- Sebastián Mondaca
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Santiago Sepúlveda
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gonzalo Muñoz
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Amin Yaqubie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Patricia Macanas
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Cancer Prevention and Control, CECAN, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Pareja
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Garcia
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Cancer Prevention and Control, CECAN, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Walid Chatila
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Bruno Nervi
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Cancer Prevention and Control, CECAN, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bob Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College at Cornell University, Cancer Center, New York, NY
| | - James J. Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College at Cornell University, Cancer Center, New York, NY
| | - Paola Viviani
- Department of Public Health, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Cancer Prevention and Control, CECAN, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ghassan K. Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College at Cornell University, Cancer Center, New York, NY
- Trinity College, Dublin Medical School, Dublin, Ireland
| |
Collapse
|
46
|
Seligson ND, Chen JL, Goodrich AC, Van Tine BA, Campbell JD, Richards AL, Antonescu CR, Liebner DA, Milhem MM, Streicher H, Tap WD, Schwartz GK, George S, D'Angelo SP. A multicenter, randomized, non-comparative, phase II study of nivolumab ± ipilimumab for patients with metastatic sarcoma (Alliance A091401): expansion cohorts and correlative analyses. J Immunother Cancer 2024; 12:e009472. [PMID: 39343511 PMCID: PMC11440204 DOI: 10.1136/jitc-2024-009472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND In this open-label, randomized, non-comparative, multicenter phase II study (Alliance A091401) we report on three expansion cohorts treated with nivolumab (N) with and without ipilimumab (N+I) and provide a multi-omic correlative analysis of actionable biomarkers. METHODS Patients were randomized (non-comparative) to receive either N or N+I. The primary endpoint was a 6-month confirmed response rate (CRR) defined by Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints included treatment-related adverse events (TRAEs), progression-free survival, and overall survival. Multi-omic correlative analyses were conducted using samples from both the primary and expansion cohorts. RESULTS A total of 66 patients were evaluated for the primary endpoint with disease including gastrointestinal stromal tumor (GIST, n=18), undifferentiated pleomorphic sarcoma (UPS, n=24), and dedifferentiated liposarcoma (DDLPS, n=24). Neither N nor N+I achieved a complete or partial response in the GIST expansion cohort. In DDLPS and UPS, the primary response endpoint of CRR was met with N+I (both 16.6%, 2/12) but not with N alone (both 8.3%, 1/12). In the GIST cohort, TRAE was higher with N+I treatment, halting enrollment as required per protocol. In a correlative analysis of patients for the expansion cohort and the original cohort (n=86), traditional biomarkers of immunotherapy response were not correlated with response in any histological subtype. Markers of genomic instability including the presence of gene fusions and increased subclonal mutations correlated with improved clinical outcomes. CONCLUSIONS This expansion cohort reaffirms the outcomes of A091401. There remains a pressing need to determine the role of and predictive biomarkers for immunotherapy in sarcoma. TRIAL REGISTRATION NUMBER NCT02500797.
Collapse
Affiliation(s)
| | | | | | - Brian A Van Tine
- Washington University in Saint Louis, Saint Louis, Missouri, USA
| | | | | | - Cristina R Antonescu
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | | | | | | | - William D Tap
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | | | - Suzanne George
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
47
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
48
|
Feng H, Bi S, Sun S, Yang H, Zhou H, Mao J, Li N, Yang F. Complete response to disitamab vedotin in HER2-low metastatic endometrial carcinoma: a case report and review of the literature. Front Oncol 2024; 14:1367140. [PMID: 39351350 PMCID: PMC11439626 DOI: 10.3389/fonc.2024.1367140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies with increasing morbidity. The prognosis for patients diagnosed with early-stage EC remains favorable; however, for patients with recurrent or metastatic EC, the prognosis is poor and treatment options, until recently, are limited. Antibody drug conjugates (ADCs) represent innovative strategies in cancer treatment; however, there are less investigations regarding their efficacy in EC. This report describes an EC case with low human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) expression score (IHC 2+) that experienced recurrent metastasis in the abdominal and peritoneal following post-surgical chemotherapy and radiotherapy. Subsequently, the commencement of HER2-targeted ADC, disitamab vedotin (RC48; 2.5 mg/kg), administered intravenously every two weeks, was initiated. The tumor lesions shrunk markedly after three cycles of treatment and disappeared by the completion of ten cycles of therapy. The patient is still in remission at present. The current findings imply the potential efficacy of HER2-targeted ADCs for patients with HER2-low metastatic EC.
Collapse
Affiliation(s)
- Hu Feng
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Shasha Bi
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Shanshan Sun
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hongbo Yang
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Haoxing Zhou
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jingjing Mao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, China
| | - Fujun Yang
- Department of Oncology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
49
|
Jia P, Yang X, Yang X, Wang T, Xu Y, Ye K. MSIsensor-RNA: Microsatellite Instability Detection for Bulk and Single-cell Gene Expression Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae004. [PMID: 39341794 DOI: 10.1093/gpbjnl/qzae004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 10/01/2024]
Abstract
Microsatellite instability (MSI) is an indispensable biomarker in cancer immunotherapy. Currently, MSI scoring methods by high-throughput omics methods have gained popularity and demonstrated better performance than the gold standard method for MSI detection. However, the MSI detection method on expression data, especially single-cell expression data, is still lacking, limiting the scope of clinical application and prohibiting the investigation of MSI at a single-cell level. Herein, we developed MSIsensor-RNA, an accurate, robust, adaptable, and standalone software to detect MSI status based on expression values of MSI-associated genes. We demonstrated the favorable performance and promise of MSIsensor-RNA in both bulk and single-cell gene expression data in multiplatform technologies including RNA sequencing (RNA-seq), microarray, and single-cell RNA-seq. MSIsensor-RNA is a versatile, efficient, and robust method for MSI status detection from both bulk and single-cell gene expression data in clinical studies and applications. MSIsensor-RNA is available at https://github.com/xjtu-omics/msisensor-rna.
Collapse
Affiliation(s)
- Peng Jia
- Department of Gynecology and Obstetrics, Center for Mathematical Medical, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuanhao Yang
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaofei Yang
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tingjie Wang
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Ye
- Department of Gynecology and Obstetrics, Center for Mathematical Medical, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Genome Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
50
|
Peroz M, Mananet H, Roussot N, Kaderbhai CG, Derangère V, Truntzer C, Ghiringhelli F. Clinical Interest in Exome-Based Analysis of Somatic Mutational Signatures for Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3115. [PMID: 39272973 PMCID: PMC11393922 DOI: 10.3390/cancers16173115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related mortality. This study investigates the clinical interest of whole exome sequencing (WES) for analyzing somatic mutational signatures in patients with advanced or metastatic NSCLC treated with the current standard of care. METHODS Exome sequencing data and clinical characteristics from 132 patients with advanced or metastatic NSCLC were analyzed. Somatic mutational signatures including single base substitutions (SBSs), double base substitutions (DBSs), and copy number signatures were evaluated. Structural variations including tumor mutational burden (TMB), the number of neoantigens, TCR clonality, homologous recombination deficiency (HRD), copy number alterations (CNAs), and microsatellite instability (MSI) score were determined. The association between these genomic features, NSCLC subtypes, and patient outcomes (progression-free and overall survival) was evaluated. CONCLUSIONS Exome sequencing offers valuable insights into somatic mutational signatures in NSCLC. This study identified specific signatures associated with a poor response to immune checkpoint inhibitor (ICI) therapy and chemotherapy, potentially aiding treatment selection and identifying patients unlikely to benefit from these approaches.
Collapse
Affiliation(s)
- Morgane Peroz
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Unité de Formation et de Recherche des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Unité Mixte de Recherche de l'Institut National de la Santé Et de la Recherche Médicale (INSERM) 1231, 21000 Dijon, France
| | - Hugo Mananet
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Unité de Formation et de Recherche des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Unité Mixte de Recherche de l'Institut National de la Santé Et de la Recherche Médicale (INSERM) 1231, 21000 Dijon, France
| | - Nicolas Roussot
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| | | | - Valentin Derangère
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Unité de Formation et de Recherche des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Unité Mixte de Recherche de l'Institut National de la Santé Et de la Recherche Médicale (INSERM) 1231, 21000 Dijon, France
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Unité de Formation et de Recherche des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Unité Mixte de Recherche de l'Institut National de la Santé Et de la Recherche Médicale (INSERM) 1231, 21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges-Francois Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
- Unité de Formation et de Recherche des Sciences de Santé, University of Burgundy-Franche-Comté, 21000 Dijon, France
- Unité Mixte de Recherche de l'Institut National de la Santé Et de la Recherche Médicale (INSERM) 1231, 21000 Dijon, France
- Department of Medical Oncology, Georges François Leclerc Cancer Center-UNICANCER, 21000 Dijon, France
| |
Collapse
|