1
|
Román L, Melis-Arcos F, Pröschle T, Saa PA, Garrido D. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by Bifidobacterium longum subsp. infantis. mSystems 2024; 9:e0071523. [PMID: 38363147 PMCID: PMC10949479 DOI: 10.1128/msystems.00715-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.
Collapse
Affiliation(s)
- Loreto Román
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melis-Arcos
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás Pröschle
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Saa PA, Zapararte S, Drovandi CC, Nielsen LK. LooplessFluxSampler: an efficient toolbox for sampling the loopless flux solution space of metabolic models. BMC Bioinformatics 2024; 25:3. [PMID: 38166586 PMCID: PMC10763395 DOI: 10.1186/s12859-023-05616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Uniform random sampling of mass-balanced flux solutions offers an unbiased appraisal of the capabilities of metabolic networks. Unfortunately, it is impossible to avoid thermodynamically infeasible loops in flux samples when using convex samplers on large metabolic models. Current strategies for randomly sampling the non-convex loopless flux space display limited efficiency and lack theoretical guarantees. RESULTS Here, we present LooplessFluxSampler, an efficient algorithm for exploring the loopless mass-balanced flux solution space of metabolic models, based on an Adaptive Directions Sampling on a Box (ADSB) algorithm. ADSB is rooted in the general Adaptive Direction Sampling (ADS) framework, specifically the Parallel ADS, for which theoretical convergence and irreducibility results are available for sampling from arbitrary distributions. By sampling directions that adapt to the target distribution, ADSB traverses more efficiently the sample space achieving faster mixing than other methods. Importantly, the presented algorithm is guaranteed to target the uniform distribution over convex regions, and it provably converges on the latter distribution over more general (non-convex) regions provided the sample can have full support. CONCLUSIONS LooplessFluxSampler enables scalable statistical inference of the loopless mass-balanced solution space of large metabolic models. Grounded in a theoretically sound framework, this toolbox provides not only efficient but also reliable results for exploring the properties of the almost surely non-convex loopless flux space. Finally, LooplessFluxSampler includes a Markov Chain diagnostics suite for assessing the quality of the final sample and the performance of the algorithm.
Collapse
Affiliation(s)
- Pedro A Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Sebastian Zapararte
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontifical Catholic University of Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Christopher C Drovandi
- School of Mathematical Sciences and Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Cnr College Rd and Cooper Rd, Brisbane, Australia.
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building, Kemitorvet 220, 2800, Kongens Lyngby, Copenhagen, Denmark.
| |
Collapse
|
3
|
Li G, Liu L, Du W, Cao H. Local flux coordination and global gene expression regulation in metabolic modeling. Nat Commun 2023; 14:5700. [PMID: 37709734 PMCID: PMC10502109 DOI: 10.1038/s41467-023-41392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Genome-scale metabolic networks (GSMs) are fundamental systems biology representations of a cell's entire set of stoichiometrically balanced reactions. However, such static GSMs do not incorporate the functional organization of metabolic genes and their dynamic regulation (e.g., operons and regulons). Specifically, there are numerous topologically coupled local reactions through which fluxes are coordinated; the global growth state often dynamically regulates many gene expression of metabolic reactions via global transcription factor regulators. Here, we develop a GSM reconstruction method, Decrem, by integrating locally coupled reactions and global transcriptional regulation of metabolism by cell state. Decrem produces predictions of flux and growth rates, which are highly correlated with those experimentally measured in both wild-type and mutants of three model microorganisms Escherichia coli, Saccharomyces cerevisiae, and Bacillus subtilis under various conditions. More importantly, Decrem can also explain the observed growth rates by capturing the experimentally measured flux changes between wild-types and mutants. Overall, by identifying and incorporating locally organized and regulated functional modules into GSMs, Decrem achieves accurate predictions of phenotypes and has broad applications in bioengineering, synthetic biology, and microbial pathology.
Collapse
Affiliation(s)
- Gaoyang Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li Liu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China
| | - Wei Du
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
| | - Huansheng Cao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, China.
| |
Collapse
|
4
|
Mendoza SN, Saa PA, Teusink B, Agosin E. Metabolic Modeling of Wine Fermentation at Genome Scale. Methods Mol Biol 2022; 2399:395-454. [PMID: 35604565 DOI: 10.1007/978-1-0716-1831-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wine fermentation is an ancient biotechnological process mediated by different microorganisms such as yeast and bacteria. Understanding of the metabolic and physiological phenomena taking place during this process can be now attained at a genome scale with the help of metabolic models. In this chapter, we present a detailed protocol for modeling wine fermentation using genome-scale metabolic models. In particular, we illustrate how metabolic fluxes can be computed, optimized and interpreted, for both yeast and bacteria under winemaking conditions. We also show how nutritional requirements can be determined and simulated using these models in relevant test cases. This chapter introduces fundamental concepts and practical steps for applying flux balance analysis in wine fermentation, and as such, it is intended for a broad microbiology audience as well as for practitioners in the metabolic modeling field.
Collapse
Affiliation(s)
| | - Pedro A Saa
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bas Teusink
- Systems Biology Lab, AIMMS, Vrije Universiteit, Amsterdam, The Netherlands
| | - Eduardo Agosin
- Laboratory of Biotechnology, Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Martyushenko N, Almaas E. ErrorTracer: an algorithm for identifying the origins of inconsistencies in genome-scale metabolic models. Bioinformatics 2020; 36:1644-1646. [PMID: 31598631 PMCID: PMC7703767 DOI: 10.1093/bioinformatics/btz761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 01/24/2023] Open
Abstract
MOTIVATION The number and complexity of genome-scale metabolic models is steadily increasing, empowered by automated model-generation algorithms. The quality control of the models, however, has always remained a significant challenge, the most fundamental being reactions incapable of carrying flux. Numerous automated gap-filling algorithms try to address this problem, but can rarely resolve all of a model's inconsistencies. The need for fast inconsistency checking algorithms has also been emphasized with the recent community push for automated model-validation before model publication. Previously, we wrote a graphical software to allow the modeller to solve the remaining errors manually. Nevertheless, model size and complexity remained a hindrance to efficiently tracking origins of inconsistency. RESULTS We developed the ErrorTracer algorithm in order to address the shortcomings of existing approaches: ErrorTracer searches for inconsistencies, classifies them and identifies their origins. The algorithm is ∼2 orders of magnitude faster than current community standard methods, using only seconds even for large-scale models. This allows for interactive exploration in direct combination with model visualization, markedly simplifying the whole error-identification and correction work flow. AVAILABILITY AND IMPLEMENTATION Windows and Linux executables and source code are available under the EPL 2.0 Licence at https://github.com/TheAngryFox/ModelExplorer and https://www.ntnu.edu/almaaslab/downloads. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Eivind Almaas
- Department of Biotechnology.,Department of Public Health and General Practice, K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
6
|
Blanco-Míguez A, Fdez-Riverola F, Sánchez B, Lourenço A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Brief Bioinform 2020; 20:1032-1056. [PMID: 29186315 DOI: 10.1093/bib/bbx156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
The human gut microbiome impacts several aspects of human health and disease, including digestion, drug metabolism and the propensity to develop various inflammatory, autoimmune and metabolic diseases. Many of the molecular processes that play a role in the activity and dynamics of the microbiota go beyond species and genic composition and thus, their understanding requires advanced bioinformatics support. This article aims to provide an up-to-date view of the resources and software tools that are being developed and used in human gut microbiome research, in particular data integration and systems-level analysis efforts. These efforts demonstrate the power of standardized and reproducible computational workflows for integrating and analysing varied omics data and gaining deeper insights into microbe community structure and function as well as host-microbe interactions.
Collapse
Affiliation(s)
| | | | | | - Anália Lourenço
- Dpto. de Informática - Universidade de Vigo, ESEI - Escuela Superior de Ingeniería Informática, Edificio politécnico, Campus Universitario As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
7
|
Schroeder WL, Saha R. OptFill: A Tool for Infeasible Cycle-Free Gapfilling of Stoichiometric Metabolic Models. iScience 2019; 23:100783. [PMID: 31954977 PMCID: PMC6970165 DOI: 10.1016/j.isci.2019.100783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Stoichiometric metabolic modeling, particularly genome-scale models (GSMs), is now an indispensable tool for systems biology. The model reconstruction process typically involves collecting information from public databases; however, incomplete systems knowledge leaves gaps in any reconstruction. Current tools for addressing gaps use databases of biochemical functionalities to address gaps on a per-metabolite basis and can provide multiple solutions but cannot avoid thermodynamically infeasible cycles (TICs), invariably requiring lengthy manual curation. To address these limitations, this work introduces an optimization-based multi-step method named OptFill, which performs TIC-avoiding whole-model gapfilling. We applied OptFill to three fictional prokaryotic models of increasing sizes and to a published GSM of Escherichia coli, iJR904. This application resulted in holistic and infeasible cycle-free gapfilling solutions. In addition, OptFill can be adapted to automate inherent TICs identification in any GSM. Overall, OptFill can address critical issues in automated development of high-quality GSMs. This work presents an alternative to state-of-the-art methods for gapfilling Unlike current methods, this method is holistic and infeasible cycle free This method is applied to three tests and one published model This method might also be used to address infeasible cycling
Collapse
Affiliation(s)
- Wheaton L Schroeder
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
8
|
Torres P, Saa PA, Albiol J, Ferrer P, Agosin E. Contextualized genome-scale model unveils high-order metabolic effects of the specific growth rate and oxygenation level in recombinant Pichia pastoris. Metab Eng Commun 2019; 9:e00103. [PMID: 31720218 PMCID: PMC6838487 DOI: 10.1016/j.mec.2019.e00103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022] Open
Abstract
Pichia pastoris is recognized as a biotechnological workhorse for recombinant protein expression. The metabolic performance of this microorganism depends on genetic makeup and culture conditions, amongst which the specific growth rate and oxygenation level are critical. Despite their importance, only their individual effects have been assessed so far, and thus their combined effects and metabolic consequences still remain to be elucidated. In this work, we present a comprehensive framework for revealing high-order (i.e., individual and combined) metabolic effects of the above parameters in glucose-limited continuous cultures of P. pastoris, using thaumatin production as a case study. Specifically, we employed a rational experimental design to calculate statistically significant metabolic effects from multiple chemostat data, which were later contextualized using a refined and highly predictive genome-scale metabolic model of this yeast under the simulated conditions. Our results revealed a negative effect of the oxygenation on the specific product formation rate (thaumatin), and a positive effect on the biomass yield. Notably, we identified a novel positive combined effect of both the specific growth rate and oxygenation level on the specific product formation rate. Finally, model predictions indicated an opposite relationship between the oxygenation level and the growth-associated maintenance energy (GAME) requirement, suggesting a linear GAME decrease of 0.56 mmol ATP/gDCW per each 1% increase in oxygenation level, which translated into a 44% higher metabolic cost under low oxygenation compared to high oxygenation. Overall, this work provides a systematic framework for mapping high-order metabolic effects of different culture parameters on the performance of a microbial cell factory. Particularly in this case, it provided valuable insights about optimal operational conditions for protein production in P. pastoris.
Collapse
Affiliation(s)
- Paulina Torres
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Pedro A Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Joan Albiol
- Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Pau Ferrer
- Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| |
Collapse
|
9
|
Koduru L, Lakshmanan M, Lee DY. In silico model-guided identification of transcriptional regulator targets for efficient strain design. Microb Cell Fact 2018; 17:167. [PMID: 30359263 PMCID: PMC6201637 DOI: 10.1186/s12934-018-1015-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/20/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cellular metabolism is tightly regulated by hard-wired multiple layers of biological processes to achieve robust and homeostatic states given the limited resources. As a result, even the most intuitive enzyme-centric metabolic engineering endeavours through the up-/down-regulation of multiple genes in biochemical pathways often deliver insignificant improvements in the product yield. In this regard, targeted engineering of transcriptional regulators (TRs) that control several metabolic functions in modular patterns is an interesting strategy. However, only a handful of in silico model-added techniques are available for identifying the TR manipulation candidates, thus limiting its strain design application. RESULTS We developed hierarchical-Beneficial Regulatory Targeting (h-BeReTa) which employs a genome-scale metabolic model and transcriptional regulatory network (TRN) to identify the relevant TR targets suitable for strain improvement. We then applied this method to industrially relevant metabolites and cell factory hosts, Escherichia coli and Corynebacterium glutamicum. h-BeReTa suggested several promising TR targets, many of which have been validated through literature evidences. h-BeReTa considers the hierarchy of TRs in the TRN and also accounts for alternative metabolic pathways which may divert flux away from the product while identifying suitable metabolic fluxes, thereby performing superior in terms of global TR target identification. CONCLUSIONS In silico model-guided strain design framework, h-BeReTa, was presented for identifying transcriptional regulator targets. Its efficacy and applicability to microbial cell factories were successfully demonstrated via case studies involving two cell factory hosts, as such suggesting several intuitive targets for overproducing various value-added compounds.
Collapse
Affiliation(s)
- Lokanand Koduru
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore.
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
10
|
Gomes de Oliveira Dal'Molin C, Quek LE, Saa PA, Palfreyman R, Nielsen LK. From reconstruction to C 4 metabolic engineering: A case study for overproduction of polyhydroxybutyrate in bioenergy grasses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:50-60. [PMID: 29907309 DOI: 10.1016/j.plantsci.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
The compartmentalization of C4 plants increases photosynthetic efficiency, while constraining how material and energy must flow in leaf tissues. To capture this metabolic phenomenon, a generic plant metabolic reconstruction was replicated into four connected spatiotemporal compartments, namely bundle sheath (B) and mesophyll (M) across the day and night cycle. The C4 leaf model was used to explore how amenable polyhydroxybutyrate (PHB) production is with these four compartments working cooperatively. A strategic pattern of metabolite conversion and exchange emerged from a systems-level network that has very few constraints imposed; mainly the sequential two-step carbon capture in mesophyll, then bundle sheath and photosynthesis during the day only. The building of starch reserves during the day and their mobilization during the night connects day and night metabolism. Flux simulations revealed that PHB production did not require rerouting of metabolic pathways beyond what is already utilised for growth. PHB yield was sensitive to photoassimilation capacity, availability of carbon reserves, ATP maintenance, relative photosynthetic activity of B and M, and type of metabolites exchanged in the plasmodesmata, but not sensitive towards compartmentalization. Hence, the compartmentalization issues currently encountered are likely to be kinetic or thermodynamic limitations rather than stoichiometric.
Collapse
Affiliation(s)
- Cristiana Gomes de Oliveira Dal'Molin
- Australian Institute for Bioengineering and Nanotechnology, School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, New South Wales 2006, Australia
| | - Pedro A Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Casilla 306, Correo 22, Chile; Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
| | - Robin Palfreyman
- Australian Institute for Bioengineering and Nanotechnology, School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology, School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, Australia; Novo Nordisk Foundation Center for Biosustainability, The Technical University of Denmark, Lyngby, DK-2800, Denmark
| |
Collapse
|
11
|
Labena AA, Gao YZ, Dong C, Hua HL, Guo FB. Metabolic pathway databases and model repositories. QUANTITATIVE BIOLOGY 2017. [DOI: 10.1007/s40484-017-0108-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|