1
|
Liu D, Billington CJ, Raja N, Wong ZC, Levin MD, Resch W, Alba C, Hupalo DN, Biamino E, Bedeschi MF, Digilio MC, Squeo GM, Villa R, Parrish PCR, Knutsen RH, Osgood S, Freeman JA, Dalgard CL, Merla G, Pober BR, Mervis CB, Roberts AE, Morris CA, Osborne LR, Kozel BA. Matrisome and Immune Pathways Contribute to Extreme Vascular Outcomes in Williams-Beuren Syndrome. J Am Heart Assoc 2024; 13:e031377. [PMID: 38293922 PMCID: PMC11056152 DOI: 10.1161/jaha.123.031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.
Collapse
Affiliation(s)
- Delong Liu
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Charles J. Billington
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of PediatricsUniversity of MinnesotaMinneapolisMN
| | - Neelam Raja
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Zoe C. Wong
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Mark D. Levin
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Wulfgang Resch
- The High Performance Computing FacilityCenter for Information Technology, National Institutes of HealthBethesdaMD
| | - Camille Alba
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | - Daniel N. Hupalo
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | | | | | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
| | - Roberta Villa
- Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Medical Genetic UnitMilanItaly
| | - Pheobe C. R. Parrish
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of Genome SciencesUniversity of WashingtonSeattleWA
| | - Russell H. Knutsen
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Sharon Osgood
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Joy A. Freeman
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, School of Medicinethe Uniformed Services University of the Health SciencesBethesdaMD
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Barbara R. Pober
- Section of Genetics, Department of PediatricsMassachusetts General HospitalBostonMA
| | - Carolyn B. Mervis
- Department of Psychological and Brain SciencesUniversity of LouisvilleLouisvilleKY
| | - Amy E. Roberts
- Department of Cardiology and Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMA
| | - Colleen A. Morris
- Department of PediatricsKirk Kerkorian School of Medicine at UNLVLas VegasNV
| | - Lucy R. Osborne
- Departments of Medicine and Molecular GeneticsUniversity of TorontoCanada
| | - Beth A. Kozel
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| |
Collapse
|
2
|
Menk JJ, Matuhara YE, Sebestyen-França H, Henrique-Silva F, Ferro M, Rodrigues RS, Santos-Júnior CD. Antimicrobial Peptide Arsenal Predicted from the Venom Gland Transcriptome of the Tropical Trap-Jaw Ant Odontomachus chelifer. Toxins (Basel) 2023; 15:toxins15050345. [PMID: 37235379 DOI: 10.3390/toxins15050345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
With about 13,000 known species, ants are the most abundant venomous insects. Their venom consists of polypeptides, enzymes, alkaloids, biogenic amines, formic acid, and hydrocarbons. In this study, we investigated, using in silico techniques, the peptides composing a putative antimicrobial arsenal from the venom gland of the neotropical trap-jaw ant Odontomachus chelifer. Focusing on transcripts from the body and venom gland of this insect, it was possible to determine the gland secretome, which contained about 1022 peptides with putative signal peptides. The majority of these peptides (75.5%) were unknown, not matching any reference database, motivating us to extract functional insights via machine learning-based techniques. With several complementary methodologies, we investigated the existence of antimicrobial peptides (AMPs) in the venom gland of O. chelifer, finding 112 non-redundant candidates. Candidate AMPs were predicted to be more globular and hemolytic than the remaining peptides in the secretome. There is evidence of transcription for 97% of AMP candidates across the same ant genus, with one of them also verified as translated, thus supporting our findings. Most of these potential antimicrobial sequences (94.8%) matched transcripts from the ant's body, indicating their role not solely as venom toxins.
Collapse
Affiliation(s)
- Josilene J Menk
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Yan E Matuhara
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Henrique Sebestyen-França
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 01049-010, SP, Brazil
| | - Renata S Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uber-lândia (UFU), Uberlândia 38400-902, MG, Brazil
| | - Célio D Santos-Júnior
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
- Big Data Biology Laboratory, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Guimarães DO, Ferro M, Santos TS, Costa TR, Yoneyama KAG, Rodrigues VDM, Henrique-Silva F, Rodrigues RS. Transcriptomic and biochemical analysis from the venom gland of the neotropical ant Odontomachus chelifer. Toxicon 2023; 223:107006. [PMID: 36572114 DOI: 10.1016/j.toxicon.2022.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
The genus Odontomachus is widely distributed in neotropical areas throughout Central and South America. It is a stinging ant that subdues its prey (insects) by injecting them a cocktail of toxic molecules (venom). Ant venoms are generally composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Odontomachus chelifer is an ant that inhabits neotropical regions from Mexico to Argentina. Unlike the venom of other animals such as scorpions, spiders and snakes, this ant venom has seldom been analyzed comprehensively, and their compositions are not yet completely known. In the present study, we performed a partial investigation of enzymatic and functional activities of O. chelifer ant venom, and we provide a global insight on the transcripts expressed in the venom gland to better understand their properties. The crude venom showed phospholipase A2 and antiparasitic activities. RNA sequencing (Illumina platform) of the venom gland of O. chelifer generated 61, 422, 898 reads and de novo assembly Trinity generated 50,220 contigs. BUSCO analysis against Arthropoda_db10 showed that 92.89% of the BUSCO groups have complete gene representation (single-copy or duplicated), while 4.05% are only partially recovered, and 3.06% are missing. The 30 most expressed genes in O. chelifer venom gland transcriptome included important transcripts involved in venom function such as U-poneritoxin (01)-Om1a-like (pilosulin), chitinase 2, venom allergen 3, chymotrypsin 1 and 2 and glutathione S-transferase. Analysis of the molecular function revealed that the largest number of transcripts were related to catalytic activity, including phospholipases. These data emphasize the potential of O. chelifer venom for prospection of molecules with biotechnological application.
Collapse
Affiliation(s)
- Denise Oliveira Guimarães
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Thamires Silva Santos
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Tassia Rafaela Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luis, Km 235, São Carlos, 13565-905, SP, Brazil.
| | - Renata Santos Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
4
|
Defo J, Awany D, Ramesar R. From SNP to pathway-based GWAS meta-analysis: do current meta-analysis approaches resolve power and replication in genetic association studies? Brief Bioinform 2023; 24:6972298. [PMID: 36611240 DOI: 10.1093/bib/bbac600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association studies (GWAS) have benefited greatly from enhanced high-throughput technology in recent decades. GWAS meta-analysis has become increasingly popular to highlight the genetic architecture of complex traits, informing about the replicability and variability of effect estimations across human ancestries. A wealth of GWAS meta-analysis methodologies have been developed depending on the input data and the outcome information of interest. We present a survey of current approaches from SNP to pathway-based meta-analysis by acknowledging the range of resources and methodologies in the field, and we provide a comprehensive review of different categories of Genome-Wide Meta-analysis methods employed. These methods highlight different levels at which GWAS meta-analysis may be done, including Single Nucleotide Polymorphisms, Genes and Pathways, for which we describe their framework outline. We also discuss the strengths and pitfalls of each approach and make suggestions regarding each of them.
Collapse
Affiliation(s)
- Joel Defo
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 7925, Observatory, South Africa.,South African Medical Research Council Genomic and Personalized Medicine Research Unit
| | - Denis Awany
- South African Tuberculosis Vaccine Initiative (SATVI), University of Cape Town, 7925, South Africa
| | - Raj Ramesar
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 7925, Observatory, South Africa.,South African Medical Research Council Genomic and Personalized Medicine Research Unit
| |
Collapse
|
5
|
Chimusa ER, Defo J. Dissecting Meta-Analysis in GWAS Era: Bayesian Framework for Gene/Subnetwork-Specific Meta-Analysis. Front Genet 2022; 13:838518. [PMID: 35664319 PMCID: PMC9159898 DOI: 10.3389/fgene.2022.838518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, advanced high-throughput technologies have continuously contributed to genome-wide association studies (GWASs). GWAS meta-analysis has been increasingly adopted, has cross-ancestry replicability, and has power to illuminate the genetic architecture of complex traits, informing about the reliability of estimation effects and their variability across human ancestries. However, detecting genetic variants that have low disease risk still poses a challenge. Designing a meta-analysis approach that combines the effect of various SNPs within genes or genes within pathways from multiple independent population GWASs may be helpful in identifying associations with small effect sizes and increasing the association power. Here, we proposed ancMETA, a Bayesian graph-based framework, to perform the gene/pathway-specific meta-analysis by combining the effect size of multiple SNPs within genes, and genes within subnetwork/pathways across multiple independent population GWASs to deconvolute the interactions between genes underlying the pathogenesis of complex diseases across human populations. We assessed the proposed framework on simulated datasets, and the results show that the proposed model holds promise for increasing statistical power for meta-analysis of genetic variants underlying the pathogenesis of complex diseases. To illustrate the proposed meta-analysis framework, we leverage seven different European bipolar disorder (BD) cohorts, and we identify variants in the angiotensinogen (AGT) gene to be significantly associated with BD across all 7 studies. We detect a commonly significant BD-specific subnetwork with the ESR1 gene as the main hub of a subnetwork, associated with neurotrophin signaling (p = 4e−14) and myometrial relaxation and contraction (p = 3e−08) pathways. ancMETA provides a new contribution to post-GWAS methodologies and holds promise for comprehensively examining interactions between genes underlying the pathogenesis of genetic diseases and also underlying ethnic differences.
Collapse
|
6
|
Parrish PCR, Liu D, Knutsen RH, Billington CJ, Mecham RP, Fu YP, Kozel BA. Whole exome sequencing in patients with Williams-Beuren syndrome followed by disease modeling in mice points to four novel pathways that may modify stenosis risk. Hum Mol Genet 2021; 29:2035-2050. [PMID: 32412588 DOI: 10.1093/hmg/ddaa093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Supravalvular aortic stenosis (SVAS) is a narrowing of the aorta caused by elastin (ELN) haploinsufficiency. SVAS severity varies among patients with Williams-Beuren syndrome (WBS), a rare disorder that removes one copy of ELN and 25-27 other genes. Twenty percent of children with WBS require one or more invasive and often risky procedures to correct the defect while 30% have no appreciable stenosis, despite sharing the same basic genetic lesion. There is no known medical therapy. Consequently, identifying genes that modify SVAS offers the potential for novel modifier-based therapeutics. To improve statistical power in our rare-disease cohort (N = 104 exomes), we utilized extreme-phenotype cohorting, functional variant filtration and pathway-based analysis. Gene set enrichment analysis of exome-wide association data identified increased adaptive immune system variant burden among genes associated with SVAS severity. Additional enrichment, using only potentially pathogenic variants known to differ in frequency between the extreme phenotype subsets, identified significant association of SVAS severity with not only immune pathway genes, but also genes involved with the extracellular matrix, G protein-coupled receptor signaling and lipid metabolism using both SKAT-O and RQTest. Complementary studies in Eln+/-; Rag1-/- mice, which lack a functional adaptive immune system, showed improvement in cardiovascular features of ELN insufficiency. Similarly, studies in mixed background Eln+/- mice confirmed that variations in genes that increase elastic fiber deposition also had positive impact on aortic caliber. By using tools to improve statistical power in combination with orthogonal analyses in mice, we detected four main pathways that contribute to SVAS risk.
Collapse
Affiliation(s)
- Phoebe C R Parrish
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Delong Liu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell H Knutsen
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles J Billington
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yi-Ping Fu
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Romano GDS, Ibelli AMG, Lorenzetti WR, Weber T, Peixoto JDO, Cantão ME, Mores MAZ, Morés N, Pedrosa VB, Coutinho LL, Ledur MC. Inguinal Ring RNA Sequencing Reveals Downregulation of Muscular Genes Related to Scrotal Hernia in Pigs. Genes (Basel) 2020; 11:genes11020117. [PMID: 31973088 PMCID: PMC7073996 DOI: 10.3390/genes11020117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
Scrotal hernias (SH) are common congenital defects in commercial pigs, characterized by the presence of abdominal contents in the scrotal sac, leading to considerable production and animal welfare losses. Since the etiology of SH remains obscure, we aimed to identify the biological and genetic mechanisms involved in its occurrence through the whole transcriptome analysis of SH affected and unaffected pigs’ inguinal rings. From the 22,452 genes annotated in the pig reference genome, 13,498 were expressed in the inguinal canal tissue. Of those, 703 genes were differentially expressed (DE, FDR < 0.05) between the two groups analyzed being, respectively, 209 genes upregulated and 494 downregulated in the SH-affected group. Thirty-seven significantly overrepresented GO terms related to SH were enriched, and the most relevant biological processes were muscular system, cell differentiation, sarcome reorganization, and myofibril assembly. The calcium signaling, hypertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac muscle contraction were the major pathways possibly involved in the occurrence of the scrotal hernias. The expression profile of the DE genes was associated with the reduction of smooth muscle differentiation, followed by low calcium content in the cell, which could lead to a decreased apoptosis ratio and diminished muscle contraction of the inguinal canal region. We have demonstrated that genes involved with musculature are closely linked to the physiological imbalance predisposing to scrotal hernia. According to our study, the genes MYBPC1, BOK, SLC25A4, SLC8A3, DES, TPM2, MAP1CL3C, and FGF1 were considered strong candidates for future evaluation.
Collapse
Affiliation(s)
- Gabrieli de Souza Romano
- Programa de Pós-Graduação em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, 500-Ondina, Salvador 40170-110, Bahia, Brazil;
| | - Adriana Mercia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838-Vila Carli, Guarapuava 85040-167, Paraná, Brazil
| | - William Raphael Lorenzetti
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Rua Beloni Trombeta Zanin 680E-Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil;
| | - Tomás Weber
- BRF SA, Curitiba, PR. Present address: Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Rodovia RS-135, KM 25-Distrito Eng. Luiz, Sertão 99170-000, RS, Brazil;
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838-Vila Carli, Guarapuava 85040-167, Paraná, Brazil
| | - Mauricio Egídio Cantão
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
| | - Nelson Morés
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
| | - Victor Breno Pedrosa
- Departamento de Zootecnia, Setor de Ciências Agrárias e Tecnologia, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748-Uvaranas, Ponta Grossa 84030-900, Paraná, Brazil;
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, ESALQ/USP, Av. Pádua Dias, 11, Piracicaba 13418-900, São Paulo, Brazil;
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Rodovia BR-153, Km 110, Distrito de Tamanduá, 321, Santa Catarina 89715-899, Brazil; (A.M.G.I.); (J.d.O.P.); (M.E.C.); (M.A.Z.M.); (N.M.)
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Rua Beloni Trombeta Zanin 680E-Bairro Santo Antônio, Chapecó 89815-630, SC, Brazil;
- Correspondence: or ; Tel.: +55-49-3441-0411
| |
Collapse
|
8
|
de Oliveira Peixoto J, Savoldi IR, Ibelli AMG, Cantão ME, Jaenisch FRF, Giachetto PF, Settles ML, Zanella R, Marchesi JAP, Pandolfi JR, Coutinho LL, Ledur MC. Proximal femoral head transcriptome reveals novel candidate genes related to epiphysiolysis in broiler chickens. BMC Genomics 2019; 20:1031. [PMID: 31888477 PMCID: PMC6937697 DOI: 10.1186/s12864-019-6411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers. Sequencing was performed using an Illumina paired-end protocol. Differentially expressed genes were obtained using the edgeR package based on the False Discovery Rate (FDR < 0.05). RESULTS Approximately 16 million reads/sample were generated with 2 × 100 bp paired-end reads. After data quality control, approximately 12 million reads/sample were mapped to the reference chicken genome (Galgal5). A total of 12,645 genes were expressed in the femur GP. Out of those, 314 were DE between groups, being 154 upregulated and 160 downregulated in FHS-affected broilers. In the functional analyses, several biological processes (BP) were overrepresented. Among them, those related to cell adhesion, extracellular matrix (ECM), bone development, blood circulation and lipid metabolism, which are more related to chicken growth, are possibly involved with the onset of FHS. On the other hand, BP associated to apoptosis or cell death and immune response, which were also found in our study, could be related to the consequence of the FHS. CONCLUSIONS Genes with potential role in the epiphysiolysis were identified through the femur head transcriptome analysis, providing a better understanding of the mechanisms that regulate bone development in fast-growing chickens. In this study, we highlighted the importance of cell adhesion and extracellular matrix related genes in triggering FHS. Furthermore, we have shown new insights on the involvement of lipidemia and immune response/inflammation with FHS in broilers. Understanding the changes in the GP transcriptome might support breeding strategies to address poultry robustness and to obtain more resilient broilers.
Collapse
Affiliation(s)
- Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
| | - Igor Ricardo Savoldi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
- Universidade do Contestado, Concórdia, Santa Catarina Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | - Fátima Regina Ferreira Jaenisch
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | | | - Ricardo Zanella
- Universidade de Passo Fundo, Passo Fundo, RS Brazil
- Programa de Mestrado em BioExperimentação, UPF, Passo Fundo, RS Brazil
| | - Jorge Augusto Petroli Marchesi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José Rodrigo Pandolfi
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
| | | | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina 89715-899 Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, SC Brazil
| |
Collapse
|