1
|
Yu H, Xiao G, Gu M, Zhang L, Xia M, Mo S, Zhao Y, Wei C. pERK transition-induced directional mode switching promotes epithelial tumor cell migration. Proc Natl Acad Sci U S A 2024; 121:e2318871121. [PMID: 39671185 DOI: 10.1073/pnas.2318871121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Increasing evidence suggests that tumor cells exhibit extreme plasticity in migration modes in order to adapt to microenvironments. However, the underlying mechanism for governing the migration mode switching is still unclear. Here, we revealed that epithelial tumor cells could develop a stable directional mode driven by hyperactivated ERK activity. This highly activated and dynamically changing ERK activity, called pERK transition, is crucial for inducing the switch from pauses state to directional movement and is also necessary for maintaining epithelial tumor cells in the directional mode. PERK transition integrated pERK surf, the dynamic and localized ERK activity at the leading edge. The sequential activation of RhoA and Rac1 by pERK transition played critical roles in generation of pERK surf activity through a movement feedback mechanism. PERK transition activity converted the orderly collective migration into the disordered dispersal movement, enhanced the invasiveness of epithelial tumor cells, and promoted their metastasis in immune-deficient mice. These findings revealed that the exquisite spatiotemporal organization of ERK activity orchestrates migration and invasion of tumor cells and provide evidence for the mechanism underlying migration mode switching in epithelial tumor cells.
Collapse
Affiliation(s)
- Huijing Yu
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, China
| | - Guanli Xiao
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Mingyao Gu
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Liting Zhang
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Xia
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shimin Mo
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yuying Zhao
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Chaoliang Wei
- Shenzhen Key Laboratory of Metabolism and Cardiovascular Homeostasis, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
- PKU- Nanjing Institute of Translational Medicine, Nanjing Raygen Health, Nanjing, Jiangsu 210031, China
| |
Collapse
|
2
|
Görlitz S, Brauer E, Günther R, Duda GN, Knaus P, Petersen A. Temporal regulation of BMP2 growth factor signaling in response to mechanical loading is linked to cytoskeletal and focal adhesion remodeling. Commun Biol 2024; 7:1064. [PMID: 39215206 PMCID: PMC11364689 DOI: 10.1038/s42003-024-06753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Biophysical cues have the ability to enhance cellular signaling response to Bone Morphogenetic Proteins, an essential growth factor during bone development and regeneration. Yet, therapeutic application of Bone Morphogenetic Protein 2 (BMP2) is restricted due to uncontrolled side effects. An understanding of the temporal characteristics of mechanically regulated signaling events and underlying mechanism is lacking. Using a 3D bioreactor system in combination with a soft macroporous biomaterial substrate, we mimic the in vivo environment that BMP2 is acting in. We show that the intensity and duration of BMP2 signaling increases with increasing loading frequency in synchrony with the number and size of focal adhesions. Long-term mechanical stimulation increases the expression of BMP receptor type 1B, specific integrin subtypes and integrin clustering. Together, this triggered a short-lived mechanical echo that enhanced BMP2 signaling even when BMP2 is administered directly after mechanical stimulation, but not when it is applied after a resting period of ≥30 min. Interfering with cytoskeletal remodeling hinders focal adhesion remodeling verifying its critical role in shifting cells into a state of high BMP2 responsiveness. The design of biomaterials that exploit this potential locally at the site of injury will help to overcome current limitations of clinical growth factor treatment.
Collapse
Affiliation(s)
- Sophie Görlitz
- Julius Wolff Institute, Berlin Institute of Health at Charité, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Berlin, Germany
| | - Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Berlin, Germany
| | - Rebecca Günther
- Julius Wolff Institute, Berlin Institute of Health at Charité, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Knaus
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Berlin, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité, Berlin, Germany.
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Fujimori T, Hashimura H, Sawai S. Imaging-Based Analysis of Cell-Cell Contact-Dependent Migration in Dictyostelium. Methods Mol Biol 2024; 2828:23-36. [PMID: 39147967 DOI: 10.1007/978-1-0716-4023-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cell-cell interaction mediated by secreted and adhesive signaling molecules forms the basis of the coordinated cell movements (i.e., collective cell migration) observed in developing embryos, regenerating tissues, immune cells, and metastatic cancer. Decoding the underlying input/output rules at the single-cell level, however, remains a challenge due to the vast complexity in the extracellular environments that support such cellular behaviors. The amoebozoa Dictyostelium discoideum uses GPCR-mediated chemotaxis and cell-cell contact signals mediated by adhesion proteins with immunoglobulin-like folds to form a collectively migrating slug. Coordinated migration and repositioning of the cells in this relatively simple morphogenetic system are driven strictly by regulation of actin cytoskeleton by these signaling factors. Its unique position in the eukaryotic tree of life outside metazoa points to basic logics of tissue self-organization that are common across taxa. Here, we describe a method to reconstitute intercellular contact signals and the resulting cell polarization using purified adhesion proteins. In addition, a protocol using a microfluidic chamber is laid out where one can study how the cell-cell contact signal and chemoattractant signals, when simultaneously presented, are interpreted. Quantitative image analysis for obtaining cell morphology features is also provided. A similar approach should be applicable to study other collectively migrating cells.
Collapse
Affiliation(s)
- Taihei Fujimori
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hidenori Hashimura
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Shiota T, Nagata R, Kikuchi S, Nanaura H, Matsubayashi M, Nakanishi M, Kobashigawa S, Isozumi N, Kiriyama T, Nagayama K, Sugie K, Yamashiro Y, Mori E. C9orf72-Derived Proline:Arginine Poly-Dipeptides Modulate Cytoskeleton and Mechanical Stress Response. Front Cell Dev Biol 2022; 10:750829. [PMID: 35399536 PMCID: PMC8983821 DOI: 10.3389/fcell.2022.750829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Proline:arginine (PR) poly-dipeptides from the GGGGCC repeat expansion in C9orf72 have cytotoxicity and bind intermediate filaments (IFs). However, it remains unknown how PR poly-dipeptides affect cytoskeletal organization and focal adhesion (FA) formation. Here, we show that changes to the cytoskeleton and FA by PR poly-dipeptides result in the alteration of cell stiffness and mechanical stress response. PR poly-dipeptides increased the junctions and branches of the IF network and increased cell stiffness. They also changed the distribution of actin filaments and increased the size of FA and intracellular calcium concentration. PR poly-dipeptides or an inhibitor of IF organization prevented cell detachment. Furthermore, PR poly-dipeptides induced upregulation of mechanical stress response factors and led to a maladaptive response to cyclic stretch. These results suggest that the effects of PR poly-dipeptides on mechanical properties and mechanical stress response may serve as a pathogenesis of C9orf72-related neurodegeneration.
Collapse
Affiliation(s)
- Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Sotaro Kikuchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Noriyoshi Isozumi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Hitachi, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, Tsukuba, Japan
- *Correspondence: Yoshito Yamashiro, ; Eiichiro Mori,
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
- V-iCliniX Laboratory, Nara Medical University, Kashihara, Japan
- *Correspondence: Yoshito Yamashiro, ; Eiichiro Mori,
| |
Collapse
|
5
|
Yoshikawa M, Yoshii T, Ikuta M, Tsukiji S. Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells. J Am Chem Soc 2021; 143:6434-6446. [PMID: 33890764 DOI: 10.1021/jacs.0c12375] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Compartmentation of proteins into biomolecular condensates or membraneless organelles formed by phase separation is an emerging principle for the regulation of cellular processes. Creating synthetic condensates that accommodate specific intracellular proteins on demand would have various applications in chemical biology, cell engineering, and synthetic biology. Here, we report the construction of synthetic protein condensates capable of recruiting and/or releasing proteins of interest in living mammalian cells in response to a small molecule or light. By a modular combination of a tandem fusion of two oligomeric proteins, which forms phase-separated synthetic protein condensates in cells, with a chemically induced dimerization tool, we first created a chemogenetic protein condensate system that can rapidly recruit target proteins from the cytoplasm to the condensates by addition of a small-molecule dimerizer. We next coupled the protein-recruiting condensate system with an engineered proximity-dependent protease, which gave a second protein condensate system wherein target proteins previously expressed inside the condensates are released into the cytoplasm by small-molecule-triggered protease recruitment. Furthermore, an optogenetic condensate system that allows reversible release and sequestration of protein activity in a repeatable manner using light was constructed successfully. These condensate systems were applicable to control protein activity and cellular processes such as membrane ruffling and ERK signaling in a time scale of minutes. This proof-of-principle work provides a new platform for chemogenetic and optogenetic control of protein activity in mammalian cells and represents a step toward tailor-made engineering of synthetic protein condensate-based soft materials with various functionalities for biological and biomedical applications.
Collapse
Affiliation(s)
- Masaru Yoshikawa
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Ikuta
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Tsukiji
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.,Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Pal D, Ellis A, Sepúlveda-Ramírez SP, Salgado T, Terrazas I, Reyes G, De La Rosa R, Henson JH, Shuster CB. Rac and Arp2/3-Nucleated Actin Networks Antagonize Rho During Mitotic and Meiotic Cleavages. Front Cell Dev Biol 2020; 8:591141. [PMID: 33282870 PMCID: PMC7705106 DOI: 10.3389/fcell.2020.591141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
In motile cells, the activities of the different Rho family GTPases are spatially segregated within the cell, and during cytokinesis there is evidence that this may also be the case. But while Rho’s role as the central organizer for contractile ring assembly is well established, the role of Rac and the branched actin networks it promotes is less well understood. To characterize the contributions of these proteins during cytokinesis, we manipulated Rac and Arp2/3 activity during mitosis and meiosis in sea urchin embryos and sea star oocytes. While neither Rac nor Arp2/3 were essential for early embryonic divisions, loss of either Rac or Arp2/3 activity resulted in polar body defects. Expression of activated Rac resulted in cytokinesis failure as early as the first division, and in oocytes, activated Rac suppressed both the Rho wave that traverses the oocyte prior to polar body extrusion as well as polar body formation itself. However, the inhibitory effect of Rac on cytokinesis, polar body formation and the Rho wave could be suppressed by effector-binding mutations or direct inhibition of Arp2/3. Together, these results suggest that Rac- and Arp2/3 mediated actin networks may directly antagonize Rho signaling, thus providing a potential mechanism to explain why Arp2/3-nucleated branched actin networks must be suppressed at the cell equator for successful cytokinesis.
Collapse
Affiliation(s)
- Debadrita Pal
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Andrea Ellis
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | | | - Torey Salgado
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Isabella Terrazas
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Gabriela Reyes
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Richard De La Rosa
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - John H Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
7
|
Topographical curvature is sufficient to control epithelium elongation. Sci Rep 2020; 10:14784. [PMID: 32901063 PMCID: PMC7479112 DOI: 10.1038/s41598-020-70907-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
How biophysical cues can control tissue morphogenesis is a central question in biology and for the development of efficient tissue engineering strategies. Recent data suggest that specific topographies such as grooves and ridges can trigger anisotropic tissue growth. However, the specific contribution of biologically relevant topographical features such as cell-scale curvature is still unclear. Here we engineer a series of grooves and ridges model topographies exhibiting specific curvature at the ridge/groove junctions and monitored the growth of epithelial colonies on these surfaces. We observe a striking proportionality between the maximum convex curvature of the ridges and the elongation of the epithelium. This is accompanied by the anisotropic distribution of F-actin and nuclei with partial exclusion of both in convex regions as well as the curvature-dependent reorientation of pluricellular protrusions and mitotic spindles. This demonstrates that curvature itself is sufficient to trigger and modulate the oriented growth of epithelia through the formation of convex “topographical barriers” and establishes curvature as a powerful tuning parameter for tissue engineering and biomimetic biomaterial design.
Collapse
|
8
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
9
|
Quantitative Phase Imaging of Spreading Fibroblasts Identifies the Role of Focal Adhesion Kinase in the Stabilization of the Cell Rear. Biomolecules 2020; 10:biom10081089. [PMID: 32707896 PMCID: PMC7463699 DOI: 10.3390/biom10081089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cells attaching to the extracellular matrix spontaneously acquire front-rear polarity. This self-organization process comprises spatial activation of polarity signaling networks and the establishment of a protruding cell front and a non-protruding cell rear. Cell polarization also involves the reorganization of cell mass, notably the nucleus that is positioned at the cell rear. It remains unclear, however, how these processes are regulated. Here, using coherence-controlled holographic microscopy (CCHM) for non-invasive live-cell quantitative phase imaging (QPI), we examined the role of the focal adhesion kinase (FAK) and its interacting partner Rack1 in dry mass distribution in spreading Rat2 fibroblasts. We found that FAK-depleted cells adopt an elongated, bipolar phenotype with a high central body mass that gradually decreases toward the ends of the elongated processes. Further characterization of spreading cells showed that FAK-depleted cells are incapable of forming a stable rear; rather, they form two distally positioned protruding regions. Continuous protrusions at opposite sides results in an elongated cell shape. In contrast, Rack1-depleted cells are round and large with the cell mass sharply dropping from the nuclear area towards the basal side. We propose that FAK and Rack1 act differently yet coordinately to establish front-rear polarity in spreading cells.
Collapse
|
10
|
Atherton P, Lausecker F, Carisey A, Gilmore A, Critchley D, Barsukov I, Ballestrem C. Relief of talin autoinhibition triggers a force-independent association with vinculin. J Cell Biol 2020; 219:e201903134. [PMID: 31816055 PMCID: PMC7039207 DOI: 10.1083/jcb.201903134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023] Open
Abstract
Talin, vinculin, and paxillin are core components of the dynamic link between integrins and actomyosin. Here, we study the mechanisms that mediate their activation and association using a mitochondrial-targeting assay, structure-based mutants, and advanced microscopy. As expected, full-length vinculin and talin are autoinhibited and do not interact with each other. However, contrary to previous models that propose a critical role for forces driving talin-vinculin association, our data show that force-independent relief of autoinhibition is sufficient to mediate their tight interaction. We also found that paxillin can bind to both talin and vinculin when either is inactive. Further experiments demonstrated that adhesions containing paxillin and vinculin can form without talin following integrin activation. However, these are largely deficient in exerting traction forces to the matrix. Our observations lead to a model whereby paxillin contributes to talin and vinculin recruitment into nascent adhesions. Activation of the talin-vinculin axis subsequently leads to the engagement with the traction force machinery and focal adhesion maturation.
Collapse
Affiliation(s)
- Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Franziska Lausecker
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Alexandre Carisey
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Andrew Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - David Critchley
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Baniukiewicz P, Lutton EJ, Collier S, Bretschneider T. Generative Adversarial Networks for Augmenting Training Data of Microscopic Cell Images. FRONTIERS IN COMPUTER SCIENCE 2019. [DOI: 10.3389/fcomp.2019.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci 2019; 132:jcs.233387. [PMID: 31076515 DOI: 10.1242/jcs.233387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
β1-integrins mediate cell-matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jaroslav Icha
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Antti Arjonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku FIN-20520, Finland
| |
Collapse
|