1
|
Foo B, Amedei H, Kaur S, Jaawan S, Boshnakovska A, Gall T, de Boer RA, Silljé HHW, Urlaub H, Rehling P, Lenz C, Lehnart SE. Unbiased complexome profiling and global proteomics analysis reveals mitochondrial impairment and potential changes at the intercalated disk in presymptomatic R14Δ/+ mice hearts. PLoS One 2024; 19:e0311203. [PMID: 39446877 PMCID: PMC11501035 DOI: 10.1371/journal.pone.0311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024] Open
Abstract
Phospholamban (PLN) is a sarco-endoplasmic reticulum (SER) membrane protein that regulates cardiac contraction/relaxation by reversibly inhibiting the SERCA2a Ca2+-reuptake pump. The R14Δ-PLN mutation causes severe cardiomyopathy that is resistant to conventional treatment. Protein complexes and higher-order supercomplexes such as intercalated disk components and Ca+2-cycling domains underlie many critical cardiac functions, a subset of which may be disrupted by R14Δ-PLN. Complexome profiling (CP) is a proteomics workflow for systematic analysis of high molecular weight (MW) protein complexes and supercomplexes. We hypothesize that R14Δ-PLN may alter a subset of these assemblies, and apply CP workflows to explore these changes in presymptomatic R14Δ/+ mice hearts. Ventricular tissues from presymptomatic 28wk-old WT and R14Δ/+ mice were homogenized under non-denaturing conditions, fractionated by size-exclusion chromatography (SEC) with a linear MW-range exceeding 5 MDa, and subjected to quantitative data-independent acquisition mass spectrometry (DIA-MS) analysis. Unfortunately, current workflows for the systematic analysis of CP data proved ill-suited for use in cardiac samples. Most rely upon curated protein complex databases to provide ground-truth for analysis; however, these are derived primarily from cancerous or immortalized cell lines and, consequently, cell-type specific complexes (including cardiac-specific machinery potentially affected in R14Δ-PLN hearts) are poorly covered. We thus developed PERCOM: a novel CP data-analysis strategy that does not rely upon these databases and can, furthermore, be implemented on widely available spreadsheet software. Applying PERCOM to our CP dataset resulted in the identification of 296 proteins with disrupted elution profiles. Hits were significantly enriched for mitochondrial and intercalated disk (ICD) supercomplex components. Changes to mitochondrial supercomplexes were associated with reduced expression of mitochondrial proteins and maximal oxygen consumption rate. The observed alterations to mitochondrial and ICD supercomplexes were replicated in a second cohort of "juvenile" 9wk-old mice. These early-stage changes to key cardiac machinery may contribute to R14Δ-PLN pathogenesis.
Collapse
Affiliation(s)
- Brian Foo
- Department of Cardiology and Pneumology, Heart Research Center Göttingen, Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Hugo Amedei
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Surmeet Kaur
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Samir Jaawan
- Department of Cardiology and Pneumology, Heart Research Center Göttingen, Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tanja Gall
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Cardiology, Erasmus MC, Thorax Center, Cardiovascular Institute, Rotterdam, the Netherlands
| | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henning Urlaub
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stephan E. Lehnart
- Department of Cardiology and Pneumology, Heart Research Center Göttingen, Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Qi SY, Zhang SJ, Lin LL, Li YR, Chen JG, Ni YC, Du X, Zhang J, Ge P, Liu GH, Wu JY, Lin S, Gong M, Lin JW, Chen LF, He LL, Lin D. Quantifying attention in children with intellectual and developmental disabilities through multicenter electrooculogram signal analysis. Sci Rep 2024; 14:22186. [PMID: 39333619 PMCID: PMC11437286 DOI: 10.1038/s41598-024-70304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 09/29/2024] Open
Abstract
In a multicenter case-control investigation, we assessed the efficacy of the Electrooculogram Signal Analysis (EOG-SA) method, which integrates attention-related visual evocation, electrooculography, and nonlinear analysis, for distinguishing between intellectual and developmental disabilities (IDD) and typical development (TD) in children. Analyzing 127 participants (63 IDD, 64 TD), we applied nonlinear dynamics for feature extraction. Results indicated EOG-SA's capability to distinguish IDD, with higher template thresholds and Correlation Dimension values correlating with clinical severity. The template threshold proved a robust indicator, with higher values denoting severe IDD. Discriminative metrics showed areas under the curve of 0.91 (template threshold) and 0.85/0.91 (D2), with sensitivities and specificities of 77.6%/95.9% and 93.5%/71.0%, respectively. EOG-SA emerges as a promising tool, offering interpretable neural biomarkers for early and nuanced diagnosis of IDD.
Collapse
Affiliation(s)
- Shi-Yi Qi
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Si-Jia Zhang
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Tongxiang Hospital of Traditional Chinese Medicine, Tongxiang, Zhejiang Province, China
| | - Li-Li Lin
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Institute of Acupuncture and Meridian, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, China
| | - Yu-Rong Li
- Department of Electrical Engineering and Automation, Fuzhou University, Fuzhou, Fujian Province, China
| | - Jian-Guo Chen
- Department of Electrical Engineering and Automation, Fuzhou University, Fuzhou, Fujian Province, China
| | - You-Cong Ni
- School of Computer and Cyberspace Security, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Xin Du
- School of Computer and Cyberspace Security, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Jie Zhang
- Department of Rehabilitation, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Pin Ge
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| | - Gui-Hua Liu
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| | - Jiang-Yun Wu
- Department of Rehabilitation, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Shen Lin
- Fujian Maternity and Child Health Hospital, Fuzhou, Fujian Province, China
| | - Meng Gong
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jin-Wen Lin
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Lan-Fang Chen
- Department of Rehabilitation, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Ling-Ling He
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Dong Lin
- Department of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China.
- Department of Rehabilitation, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China.
| |
Collapse
|
3
|
Decker ST, Funai K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab 2024; 36:1963-1978. [PMID: 39178855 PMCID: PMC11374467 DOI: 10.1016/j.cmet.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Oxidative phosphorylation (OXPHOS) occurs through and across the inner mitochondrial membrane (IMM). Mitochondrial membranes contain a distinct lipid composition, aided by lipid biosynthetic machinery localized in the IMM and class-specific lipid transporters that limit lipid traffic in and out of mitochondria. This unique lipid composition appears to be essential for functions of mitochondria, particularly OXPHOS, by its effects on direct lipid-to-protein interactions, membrane properties, and cristae ultrastructure. This review highlights the biological significance of mitochondrial lipids, with a particular spotlight on the role of lipids in mitochondrial bioenergetics. We describe pathways for the biosynthesis of mitochondrial lipids and provide evidence for their roles in physiology, their implications in human disease, and the mechanisms by which they regulate mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Stephen Thomas Decker
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
5
|
Potter A, Cabrera-Orefice A, Spelbrink JN. Let's make it clear: systematic exploration of mitochondrial DNA- and RNA-protein complexes by complexome profiling. Nucleic Acids Res 2023; 51:10619-10641. [PMID: 37615582 PMCID: PMC10602928 DOI: 10.1093/nar/gkad697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimized this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multiprotein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically induced mitochondrial DNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.
Collapse
Affiliation(s)
- Alisa Potter
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Johannes N Spelbrink
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Potter A, Hangas A, Goffart S, Huynen MA, Cabrera-Orefice A, Spelbrink JN. Uncharacterized protein C17orf80 - a novel interactor of human mitochondrial nucleoids. J Cell Sci 2023; 136:jcs260822. [PMID: 37401363 PMCID: PMC10445727 DOI: 10.1242/jcs.260822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Molecular functions of many human proteins remain unstudied, despite the demonstrated association with diseases or pivotal molecular structures, such as mitochondrial DNA (mtDNA). This small genome is crucial for the proper functioning of mitochondria, the energy-converting organelles. In mammals, mtDNA is arranged into macromolecular complexes called nucleoids that serve as functional stations for its maintenance and expression. Here, we aimed to explore an uncharacterized protein C17orf80, which was previously detected close to the nucleoid components by proximity labelling mass spectrometry. To investigate the subcellular localization and function of C17orf80, we took advantage of immunofluorescence microscopy, interaction proteomics and several biochemical assays. We demonstrate that C17orf80 is a mitochondrial membrane-associated protein that interacts with nucleoids even when mtDNA replication is inhibited. In addition, we show that C17orf80 is not essential for mtDNA maintenance and mitochondrial gene expression in cultured human cells. These results provide a basis for uncovering the molecular function of C17orf80 and the nature of its association with nucleoids, possibly leading to new insights about mtDNA and its expression.
Collapse
Affiliation(s)
- Alisa Potter
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, 80101, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, 80101, Finland
| | - Martijn A. Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Johannes N. Spelbrink
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| |
Collapse
|
7
|
van Strien J, Evers F, Lutikurti M, Berendsen SL, Garanto A, van Gemert GJ, Cabrera-Orefice A, Rodenburg RJ, Brandt U, Kooij TWA, Huynen MA. Comparative Clustering (CompaCt) of eukaryote complexomes identifies novel interactions and sheds light on protein complex evolution. PLoS Comput Biol 2023; 19:e1011090. [PMID: 37549177 PMCID: PMC10434966 DOI: 10.1371/journal.pcbi.1011090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Complexome profiling allows large-scale, untargeted, and comprehensive characterization of protein complexes in a biological sample using a combined approach of separating intact protein complexes e.g., by native gel electrophoresis, followed by mass spectrometric analysis of the proteins in the resulting fractions. Over the last decade, its application has resulted in a large collection of complexome profiling datasets. While computational methods have been developed for the analysis of individual datasets, methods for large-scale comparative analysis of complexomes from multiple species are lacking. Here, we present Comparative Clustering (CompaCt), that performs fully automated integrative analysis of complexome profiling data from multiple species, enabling systematic characterization and comparison of complexomes. CompaCt implements a novel method for leveraging orthology in comparative analysis to allow systematic identification of conserved as well as taxon-specific elements of the analyzed complexomes. We applied this method to a collection of 53 complexome profiles spanning the major branches of the eukaryotes. We demonstrate the ability of CompaCt to robustly identify the composition of protein complexes, and show that integrated analysis of multiple datasets improves characterization of complexes from specific complexome profiles when compared to separate analyses. We identified novel candidate interactors and complexes in a number of species from previously analyzed datasets, like the emp24, the V-ATPase and mitochondrial ATP synthase complexes. Lastly, we demonstrate the utility of CompaCt for the automated large-scale characterization of the complexome of the mosquito Anopheles stephensi shedding light on the evolution of metazoan protein complexes. CompaCt is available from https://github.com/cmbi/compact-bio.
Collapse
Affiliation(s)
- Joeri van Strien
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Felix Evers
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madhurya Lutikurti
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stijn L. Berendsen
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Geert-Jan van Gemert
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, the Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Taco W. A. Kooij
- Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Flores-Mireles D, Camacho-Villasana Y, Lutikurti M, García-Guerrero AE, Lozano-Rosas G, Chagoya V, Gutiérrez-Cirlos EB, Brandt U, Cabrera-Orefice A, Pérez-Martínez X. The cytochrome b carboxyl terminal region is necessary for mitochondrial complex III assembly. Life Sci Alliance 2023; 6:e202201858. [PMID: 37094942 PMCID: PMC10132202 DOI: 10.26508/lsa.202201858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
Mitochondrial bc 1 complex from yeast has 10 subunits, but only cytochrome b (Cytb) subunit is encoded in the mitochondrial genome. Cytb has eight transmembrane helices containing two hemes b for electron transfer. Cbp3 and Cbp6 assist Cytb synthesis, and together with Cbp4 induce Cytb hemylation. Subunits Qcr7/Qcr8 participate in the first steps of assembly, and lack of Qcr7 reduces Cytb synthesis through an assembly-feedback mechanism involving Cbp3/Cbp6. Because Qcr7 resides near the Cytb carboxyl region, we wondered whether this region is important for Cytb synthesis/assembly. Although deletion of the Cytb C-region did not abrogate Cytb synthesis, the assembly-feedback regulation was lost, so Cytb synthesis was normal even if Qcr7 was missing. Mutants lacking the Cytb C-terminus were non-respiratory because of the absence of fully assembled bc 1 complex. By performing complexome profiling, we showed the existence of aberrant early-stage subassemblies in the mutant. In this work, we demonstrate that the C-terminal region of Cytb is critical for regulation of Cytb synthesis and bc 1 complex assembly.
Collapse
Affiliation(s)
- Daniel Flores-Mireles
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Yolanda Camacho-Villasana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Madhurya Lutikurti
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aldo E García-Guerrero
- Department of Medicine and Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Guadalupe Lozano-Rosas
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Victoria Chagoya
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | | | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
9
|
Scherhag A, Räschle M, Unbehend N, Venn B, Glueck D, Mühlhaus T, Keller S, Pérez Patallo E, Zehner S, Frankenberg-Dinkel N. Characterization of a soluble library of the Pseudomonas aeruginosa PAO1 membrane proteome with emphasis on c-di-GMP turnover enzymes. MICROLIFE 2023; 4:uqad028. [PMID: 37441524 PMCID: PMC10335732 DOI: 10.1093/femsml/uqad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
Studies of protein-protein interactions in membranes are very important to fully understand the biological function of a cell. The extraction of proteins from the native membrane environment is a critical step in the preparation of membrane proteins that might affect the stability of protein complexes. In this work, we used the amphiphilic diisobutylene/maleic acid copolymer to extract the membrane proteome of the opportunistic pathogen Pseudomonas aeruginosa, thereby creating a soluble membrane-protein library within a native-like lipid-bilayer environment. Size fractionation of nanodisc-embedded proteins and subsequent mass spectrometry enabled the identification of 3358 proteins. The native membrane-protein library showed a very good overall coverage compared to previous proteome data. The pattern of size fractionation indicated that protein complexes were preserved in the library. More than 20 previously described complexes, e.g. the SecYEG and Pili complexes, were identified and analyzed for coelution. Although the mass-spectrometric dataset alone did not reveal new protein complexes, combining pulldown assays with mass spectrometry was successful in identifying new protein interactions in the native membrane-protein library. Thus, we identified several candidate proteins for interactions with the membrane phosphodiesterase NbdA, a member of the c-di-GMP network. We confirmed the candidate proteins CzcR, PA4200, SadC, and PilB as novel interaction partners of NbdA using the bacterial adenylate cyclase two-hybrid assay. Taken together, this work demonstrates the usefulness of the native membrane-protein library of P. aeruginosa for the investigation of protein interactions and membrane-protein complexes. Data are available via ProteomeXchange with identifiers PXD039702 and PXD039700.
Collapse
Affiliation(s)
- Anna Scherhag
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Markus Räschle
- Department of Molecular Genetics, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Niklas Unbehend
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Benedikt Venn
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - David Glueck
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Timo Mühlhaus
- Department of Computational Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | - Sandro Keller
- Department of Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Department of Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Eugenio Pérez Patallo
- Department of Microbiology, RPTU Kaiserslautern-Landau, Kaiserslautern 67655, Germany
| | | | - Nicole Frankenberg-Dinkel
- Corresponding author. RPTU Kaiserslautern-Landau, Microbiology, Kaiserslautern 67655, Germany. E-mail:
| |
Collapse
|
10
|
High-Throughput Proteome Profiling of Plasma and Native Plasma Complexes Using Native Chromatography. Methods Mol Biol 2023; 2628:53-79. [PMID: 36781779 DOI: 10.1007/978-1-0716-2978-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We describe a high-throughput method for co-fractionation mass spectrometry (CF-MS) profiling for native plasma protein profiling. CF-MS allows the profiling of endogenous protein complexes between samples. Proteins often interact with other proteins and form macromolecular complexes that are different in disease states as well as cell states and cell types. This protocol describes an example for the sample preparation of 954 individual size exclusion chromatography (SEC) fractions, derived from 18 plasma samples that were separated into 53 fractions. Eighteen plasma samples were chosen based on the TMTpro multiplexing, but this methodology can be adapted for fewer or larger numbers of samples as appropriate. Our automated sample preparation method allows for high-throughput native plasma profiling, and we provide detailed methods for both a label-free and an isobaric labeling approach, discuss the merits of each approach, and detail the advantages of combining these strategies for comprehensive native plasma proteome profiling.
Collapse
|
11
|
Salscheider SL, Gerlich S, Cabrera-Orefice A, Peker E, Rothemann RA, Murschall LM, Finger Y, Szczepanowska K, Ahmadi ZA, Guerrero-Castillo S, Erdogan A, Becker M, Ali M, Habich M, Petrungaro C, Burdina N, Schwarz G, Klußmann M, Neundorf I, Stroud DA, Ryan MT, Trifunovic A, Brandt U, Riemer J. AIFM1 is a component of the mitochondrial disulfide relay that drives complex I assembly through efficient import of NDUFS5. EMBO J 2022; 41:e110784. [PMID: 35859387 PMCID: PMC9434101 DOI: 10.15252/embj.2022110784] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long‐lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates.
Collapse
Affiliation(s)
| | - Sarah Gerlich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esra Peker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | | | - Yannik Finger
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Karolina Szczepanowska
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sergio Guerrero-Castillo
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alican Erdogan
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Mark Becker
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Muna Ali
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus Habich
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | | | - Nele Burdina
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Guenter Schwarz
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Merlin Klußmann
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Aleksandra Trifunovic
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Cabrera-Orefice A, Potter A, Evers F, Hevler JF, Guerrero-Castillo S. Complexome Profiling-Exploring Mitochondrial Protein Complexes in Health and Disease. Front Cell Dev Biol 2022; 9:796128. [PMID: 35096826 PMCID: PMC8790184 DOI: 10.3389/fcell.2021.796128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Complexome profiling (CP) is a state-of-the-art approach that combines separation of native proteins by electrophoresis, size exclusion chromatography or density gradient centrifugation with tandem mass spectrometry identification and quantification. Resulting data are computationally clustered to visualize the inventory, abundance and arrangement of multiprotein complexes in a biological sample. Since its formal introduction a decade ago, this method has been mostly applied to explore not only the composition and abundance of mitochondrial oxidative phosphorylation (OXPHOS) complexes in several species but also to identify novel protein interactors involved in their assembly, maintenance and functions. Besides, complexome profiling has been utilized to study the dynamics of OXPHOS complexes, as well as the impact of an increasing number of mutations leading to mitochondrial disorders or rearrangements of the whole mitochondrial complexome. Here, we summarize the major findings obtained by this approach; emphasize its advantages and current limitations; discuss multiple examples on how this tool could be applied to further investigate pathophysiological mechanisms and comment on the latest advances and opportunity areas to keep developing this methodology.
Collapse
Affiliation(s)
- Alfredo Cabrera-Orefice
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alisa Potter
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Felix Evers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, University of Utrecht, Utrecht, Netherlands.,Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, Netherlands.,Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, Netherlands.,Netherlands Proteomics Center, Utrecht, Netherlands
| | - Sergio Guerrero-Castillo
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, Garcia S, Shiekhattar R, Barrientos A, Moraes CT. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep 2021; 37:110139. [PMID: 34936866 PMCID: PMC8785211 DOI: 10.1016/j.celrep.2021.110139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
The ATPase Family AAA Domain Containing 3A (ATAD3A), is a mitochondrial inner membrane protein conserved in metazoans. ATAD3A has been associated with several mitochondrial functions, including nucleoid organization, cholesterol metabolism, and mitochondrial translation. To address its primary role, we generated a neuronal-specific conditional knockout (Atad3 nKO) mouse model, which developed a severe encephalopathy by 5 months of age. Pre-symptomatic mice showed aberrant mitochondrial cristae morphogenesis in the cortex as early as 2 months. Using a multi-omics approach in the CNS of 2-to-3-month-old mice, we found early alterations in the organelle membrane structure. We also show that human ATAD3A associates with different components of the inner membrane, including OXPHOS complex I, Letm1, and prohibitin complexes. Stochastic Optical Reconstruction Microscopy (STORM) shows that ATAD3A is regularly distributed along the inner mitochondrial membrane, suggesting a critical structural role in inner mitochondrial membrane and its organization, most likely in an ATPase-dependent manner. Arguello et al. show that deletion of the mitochondrial protein ATAD3 in neurons leads to neuronal loss and death. The earliest phenotype is disruption of the mitochondrial inner membrane structure; OXPHOS complexes are affected later. ATAD3 is regularly spaced and has several interactors at the inner membrane, including CI subunits.
Collapse
Affiliation(s)
- Tania Arguello
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Susana Peralta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hana Antonicka
- Department of Human Genetics and Montreal Neurological Institute, McGill University, Montreal, QC H3A 0C7, Canada
| | - Gabriel Gaidosh
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ya-Ting Tu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
14
|
Guerrero‐Castillo S, van Strien J, Brandt U, Arnold S. Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO J 2021; 40:e108648. [PMID: 34542926 PMCID: PMC8561636 DOI: 10.15252/embj.2021108648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
Collapse
Affiliation(s)
- Sergio Guerrero‐Castillo
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Joeri van Strien
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Susanne Arnold
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
15
|
Complexome Profiling: Assembly and Remodeling of Protein Complexes. Int J Mol Sci 2021; 22:ijms22157809. [PMID: 34360575 PMCID: PMC8346016 DOI: 10.3390/ijms22157809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Many proteins have been found to operate in a complex with various biomolecules such as proteins, nucleic acids, carbohydrates, or lipids. Protein complexes can be transient, stable or dynamic and their association is controlled under variable cellular conditions. Complexome profiling is a recently developed mass spectrometry-based method that combines mild separation techniques, native gel electrophoresis, and density gradient centrifugation with quantitative mass spectrometry to generate inventories of protein assemblies within a cell or subcellular fraction. This review summarizes applications of complexome profiling with respect to assembly ranging from single subunits to large macromolecular complexes, as well as their stability, and remodeling in health and disease.
Collapse
|
16
|
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021; 595:1159-1183. [PMID: 33837538 DOI: 10.1002/1873-3468.14089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, Göttingen, Germany
| |
Collapse
|
17
|
Páleníková P, Harbour ME, Prodi F, Minczuk M, Zeviani M, Ghelli A, Fernández-Vizarra E. Duplexing complexome profiling with SILAC to study human respiratory chain assembly defects. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148395. [PMID: 33600785 DOI: 10.1016/j.bbabio.2021.148395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Complexome Profiling (CP) combines size separation, by electrophoresis or other means, of native multimeric complexes with protein identification by mass spectrometry (MS). Peptide MS analysis of the multiple fractions in which the sample is separated, results in the creation of protein abundance profiles in function of molecular size, providing a visual output of the assembly status of a group of proteins of interest. Stable isotope labeling by amino acids in cell culture (SILAC) is an established quantitative proteomics technique that allows duplexing in the MS analysis as well as the comparison of relative protein abundances between the samples, which are processed and analyzed together. Combining SILAC and CP permitted the direct comparison of migration and abundance of the proteins present in the mitochondrial respiratory chain complexes in two different samples. This analysis, however, introduced a level of complexity in data processing for which bioinformatic tools had to be developed in order to generate the normalized protein abundance profiles. The advantages and challenges of using of this type of analysis for the characterization of two cell lines carrying pathological variants in MT-CO3 and MT-CYB is reviewed. An additional unpublished example of SILAC-CP of a cell line with an in-frame 18-bp deletion in MT-CYB is presented. In these cells, in contrast to other MT-CYB deficient models, a small proportion of complex III2 is formed and it is found associated with fully assembled complex I. This analysis also revealed a profuse accumulation of assembly intermediates containing complex III subunits UQCR10 and CYC1, as well as a profound early-stage complex IV assembly defect.
Collapse
Affiliation(s)
- Petra Páleníková
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael E Harbour
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Federica Prodi
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Bologna, Italy
| | - Michal Minczuk
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Massimo Zeviani
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Anna Ghelli
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Bologna, Italy
| | - Erika Fernández-Vizarra
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Multiplexed complexome profiling using tandem mass tags. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148448. [PMID: 34015258 DOI: 10.1016/j.bbabio.2021.148448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022]
Abstract
Complexome profiling is a rapidly spreading, powerful technique to gain insight into the nature of protein complexes. It identifies and quantifies protein complexes separated into multiple fractions of increasing molecular mass using mass spectrometry-based, label-free bottom-up proteomics. Complexome profiling enables a sophisticated and thorough characterization of the composition, molecular mass, assembly, and interactions of protein complexes. However, in practice, its application is limited by the large number of samples it generates and the related time of mass spectrometry analyses. Here, we report an improved process workflow that implements tandem mass tags for multiplexing complexome profiling. This workflow substantially reduces the number of samples and measuring time without compromising protein identification or quantification reliability. In profiles from mitochondrial fractions of cells recovering from chloramphenicol treatment, tandem mass tags-multiplexed complexome profiling exhibited migration patterns of mature ATP synthase (complex V) and assembly intermediates that were consistent in composition and abundance with profiles obtained by the label-free approach. Reporter ion quantifications of proteins and complexes unaffected by the chloramphenicol treatment presented less variation in comparison to the label-free method. Incorporation of tandem mass tags enabled an efficient and robust complexome profiling analysis and may foster broader application for protein complex profiling in biomedical research and diagnostics.
Collapse
|
19
|
Protein interaction patterns in Arabidopsis thaliana leaf mitochondria change in dependence to light. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148443. [PMID: 33965424 DOI: 10.1016/j.bbabio.2021.148443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Mitochondrial biology is underpinned by the presence and activity of large protein assemblies participating in the organelle-located steps of respiration, TCA-cycle, glycine oxidation, and oxidative phosphorylation. While the enzymatic roles of these complexes are undisputed, little is known about the interactions of the subunits beyond their presence in these protein complexes and their functions in regulating mitochondrial metabolism. By applying one of the most important regulatory cues for plant metabolism, the presence or absence of light, we here assess changes in the composition and molecular mass of protein assemblies involved in NADH-production in the mitochondrial matrix and in oxidative phosphorylation by employing a differential complexome profiling strategy. Covering a mass up to 25 MDa, we demonstrate dynamic associations of matrix enzymes and of components involved in oxidative phosphorylation. The data presented here form the basis for future studies aiming to advance our understanding of the role of protein:protein interactions in regulating plant mitochondrial functions.
Collapse
|
20
|
Gonzalez-Franquesa A, Stocks B, Chubanava S, Hattel HB, Moreno-Justicia R, Peijs L, Treebak JT, Zierath JR, Deshmukh AS. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep 2021; 35:109180. [PMID: 34038727 DOI: 10.1016/j.celrep.2021.109180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sabina Chubanava
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Helle B Hattel
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
21
|
Nolte H, Langer T. ComplexFinder: A software package for the analysis of native protein complex fractionation experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148444. [PMID: 33940038 DOI: 10.1016/j.bbabio.2021.148444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022]
Abstract
Identification of protein complexes and quantitative distribution of a single protein across different complexes are fundamental to unravel cellular mechanisms and of biological and clinical relevance. A recently introduced method, complexome profiling, combines fractionation techniques to separate native protein complexes with high-resolution mass spectrometry and allows to identify protein complexes in an unbiased manner. Due to recent advances in mass spectrometry instrumentation, the analysis time can be reduced dramatically while the coverage of thousands of proteins remains constant, which leads to an increased data acquisition rate and reduces the burden to initiate such complex experiments. Therefore, the development of novel computational pipelines for the analysis of such comprehensive complexome profiles is required. Usually, potential complex formations are assembled by correlation analysis. However, a major challenge in such an analysis is, that a protein can occur in multiple complexes of varying composition. Hence, signal profiles of proteins of the same complex might show high local similarities but do correlate poorly over all acquired fractions. Here, we describe ComplexFinder; a python-based computational pipeline that enables machine-learning based prediction of novel protein-protein interactions incorporating numerous measures of distance between signal profiles. Importantly, each signal profile is represented by an ensemble of peak-like models. These models allow the calculation of local similarities, enabling peak-centric comparison between biological conditions and the estimation of the composition of specific complexes. From the predicted protein-protein interactions, a protein connectivity network is constructed, which is used to assemble proteins into macromolecular complexes incorporating peak-centric information. ComplexFinder enables the peak-centric analysis of complexome profiling data utilizing various LC-MS/MS quantification strategies including label-free, SILAC, TMT as well as pulseSILAC. The source code is freely available at https://github.com/hnolcol/ComplexFinder.
Collapse
Affiliation(s)
- Hendrik Nolte
- Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, 50931 Cologne, Germany.
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann Str. 9b, 50931 Cologne, Germany; Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
23
|
Páleníková P, Harbour ME, Ding S, Fearnley IM, Van Haute L, Rorbach J, Scavetta R, Minczuk M, Rebelo-Guiomar P. Quantitative density gradient analysis by mass spectrometry (qDGMS) and complexome profiling analysis (ComPrAn) R package for the study of macromolecular complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148399. [PMID: 33592209 PMCID: PMC8047798 DOI: 10.1016/j.bbabio.2021.148399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/28/2022]
Abstract
Many cellular processes involve the participation of large macromolecular assemblies. Understanding their function requires methods allowing to study their dynamic and mechanistic properties. Here we present a method for quantitative analysis of native protein or ribonucleoprotein complexes by mass spectrometry following their separation by density – qDGMS. Mass spectrometric quantitation is enabled through stable isotope labelling with amino acids in cell culture (SILAC). We provide a complete guide, from experimental design to preparation of publication-ready figures, using a purposely-developed R package – ComPrAn. As specific examples, we present the use of sucrose density gradients to inspect the assembly and dynamics of the human mitochondrial ribosome (mitoribosome), its interacting proteins, the small subunit of the cytoplasmic ribosome, cytoplasmic aminoacyl-tRNA synthetase complex and the mitochondrial PDH complex. ComPrAn provides tools for analysis of peptide-level data as well as normalization and clustering tools for protein-level data, dedicated visualization functions and graphical user interface. Although, it has been developed for the analysis of qDGMS samples, it can also be used for other proteomics experiments that involve 2-state labelled samples separated into fractions. We show that qDGMS and ComPrAn can be used to study macromolecular complexes in their native state, accounting for the dynamics inherent to biological systems and benefiting from its proteome-wide quantitative and qualitative capability. qDGMS is a novel method to study macromolecular complex composition and assembly. Complexes are separated in near-native form by density gradient ultracentrifugation. SILAC enables simultaneous quantitative proteomic analysis of two biological samples. R package ComPrAn allows analysis of SILAC complexome profiling and qDGMS data sets.
Collapse
Affiliation(s)
- Petra Páleníková
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Michael E Harbour
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Ian M Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Joanna Rorbach
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
| | - Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
24
|
González-García P, Hidalgo-Gutiérrez A, Mascaraque C, Barriocanal-Casado E, Bakkali M, Ziosi M, Abdihankyzy UB, Sánchez-Hernández S, Escames G, Prokisch H, Martín F, Quinzii CM, López LC. Coenzyme Q10 modulates sulfide metabolism and links the mitochondrial respiratory chain to pathways associated to one carbon metabolism. Hum Mol Genet 2020; 29:3296-3311. [PMID: 32975579 PMCID: PMC7724311 DOI: 10.1093/hmg/ddaa214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023] Open
Abstract
Abnormalities of one carbon, glutathione and sulfide metabolisms have recently emerged as novel pathomechanisms in diseases with mitochondrial dysfunction. However, the mechanisms underlying these abnormalities are not clear. Also, we recently showed that sulfide oxidation is impaired in Coenzyme Q10 (CoQ10) deficiency. This finding leads us to hypothesize that the therapeutic effects of CoQ10, frequently administered to patients with primary or secondary mitochondrial dysfunction, might be due to its function as cofactor for sulfide:quinone oxidoreductase (SQOR), the first enzyme in the sulfide oxidation pathway. Here, using biased and unbiased approaches, we show that supraphysiological levels of CoQ10 induces an increase in the expression of SQOR in skin fibroblasts from control subjects and patients with mutations in Complex I subunits genes or CoQ biosynthetic genes. This increase of SQOR induces the downregulation of the cystathionine β-synthase and cystathionine γ-lyase, two enzymes of the transsulfuration pathway, the subsequent downregulation of serine biosynthesis and the adaptation of other sulfide linked pathways, such as folate cycle, nucleotides metabolism and glutathione system. These metabolic changes are independent of the presence of sulfur aminoacids, are confirmed in mouse models, and are recapitulated by overexpression of SQOR, further proving that the metabolic effects of CoQ10 supplementation are mediated by the overexpression of SQOR. Our results contribute to a better understanding of how sulfide metabolism is integrated in one carbon metabolism and may explain some of the benefits of CoQ10 supplementation observed in mitochondrial diseases.
Collapse
Affiliation(s)
- Pilar González-García
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada 18016, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Agustín Hidalgo-Gutiérrez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada 18016, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Cristina Mascaraque
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Eliana Barriocanal-Casado
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada 18016, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Marcello Ziosi
- Department of Neurology, Columbia University Medical Center, New York 10032, NY, USA
| | | | | | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada 18016, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München 81675, Germany
| | - Francisco Martín
- Genomic Medicine Department, Centre for Genomics and Oncological Research, Granada 18007, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York 10032, NY, USA
| | - Luis C López
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada 18016, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| |
Collapse
|
25
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
26
|
Kondadi AK, Anand R, Reichert AS. Cristae Membrane Dynamics - A Paradigm Change. Trends Cell Biol 2020; 30:923-936. [PMID: 32978040 DOI: 10.1016/j.tcb.2020.08.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
Mitochondria are dynamic organelles that have essential metabolic and regulatory functions. Earlier studies using electron microscopy (EM) revealed an immense diversity in the architecture of cristae - infoldings of the mitochondrial inner membrane (IM) - in different cells, tissues, bioenergetic and metabolic conditions, and during apoptosis. However, cristae were considered to be largely static entities. Recently, advanced super-resolution techniques have revealed that cristae are independent bioenergetic units that are highly dynamic and remodel on a timescale of seconds. These advances, coupled with mechanistic and structural studies on key molecular players, such as the MICOS (mitochondrial contact site and cristae organizing system) complex and the dynamin-like GTPase OPA1, have changed our view on mitochondria in a fundamental way. We summarize these recent findings and discuss their functional implications.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
27
|
Iacobucci I, Monaco V, Cozzolino F, Monti M. From classical to new generation approaches: An excursus of -omics methods for investigation of protein-protein interaction networks. J Proteomics 2020; 230:103990. [PMID: 32961344 DOI: 10.1016/j.jprot.2020.103990] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Functional Proteomics aims to the identification of in vivo protein-protein interaction (PPI) in order to piece together protein complexes, and therefore, cell pathways involved in biological processes of interest. Over the years, proteomic approaches used for protein-protein interaction investigation have relied on classical biochemical protocols adapted to a global overview of protein-protein interactions, within so-called "interactomics" investigation. In particular, their coupling with advanced mass spectrometry instruments and innovative analytical methods led to make great strides in the PPIs investigation in proteomics. In this review, an overview of protein complexes purification strategies, from affinity purification approaches, including proximity-dependent labeling techniques and cross-linking strategy for the identification of transient interactions, to Blue Native Gel Electrophoresis (BN-PAGE) and Size Exclusion Chromatography (SEC) employed in the "complexome profiling", has been reported, giving a look to their developments, strengths and weakness and providing to readers several recent applications of each strategy. Moreover, a section dedicated to bioinformatic databases and platforms employed for protein networks analyses was also included.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
28
|
Bertero E, Kutschka I, Maack C, Dudek J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165803. [PMID: 32348916 DOI: 10.1016/j.bbadis.2020.165803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/19/2019] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).
Collapse
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Ilona Kutschka
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
29
|
Sánchez-Caballero L, Elurbe DM, Baertling F, Guerrero-Castillo S, van den Brand M, van Strien J, van Dam TJP, Rodenburg R, Brandt U, Huynen MA, Nijtmans LGJ. TMEM70 functions in the assembly of complexes I and V. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148202. [PMID: 32275929 DOI: 10.1016/j.bbabio.2020.148202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.
Collapse
Affiliation(s)
- Laura Sánchez-Caballero
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Fabian Baertling
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Sergio Guerrero-Castillo
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mariel van den Brand
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Joeri van Strien
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Richard Rodenburg
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Leo G J Nijtmans
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
30
|
Eramo MJ, Lisnyak V, Formosa LE, Ryan MT. The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease. J Biochem 2019; 167:243-255. [DOI: 10.1093/jb/mvz111] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
AbstractThe ‘mitochondrial contact site and cristae organising system’ (MICOS) is an essential protein complex that promotes the formation, maintenance and stability of mitochondrial cristae. As such, loss of core MICOS components disrupts cristae structure and impairs mitochondrial function. Aberrant mitochondrial cristae morphology and diminished mitochondrial function is a pathological hallmark observed across many human diseases such as neurodegenerative conditions, obesity and diabetes mellitus, cardiomyopathy, and in muscular dystrophies and myopathies. While mitochondrial abnormalities are often an associated secondary effect to the pathological disease process, a direct role for the MICOS in health and human disease is emerging. This review describes the role of MICOS in the maintenance of mitochondrial architecture and summarizes both the direct and associated roles of the MICOS in human disease.
Collapse
Affiliation(s)
- Matthew J Eramo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Protein Complex Identification and quantitative complexome by CN-PAGE. Sci Rep 2019; 9:11523. [PMID: 31395906 PMCID: PMC6687828 DOI: 10.1038/s41598-019-47829-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
The majority of cellular processes are carried out by protein complexes. Various size fractionation methods have previously been combined with mass spectrometry to identify protein complexes. However, most of these approaches lack the quantitative information which is required to understand how changes of protein complex abundance and composition affect metabolic fluxes. In this paper we present a proof of concept approach to quantitatively study the complexome in the model plant Arabidopsis thaliana at the end of the day (ED) and the end of the night (EN). We show that size-fractionation of native protein complexes by Clear-Native-PAGE (CN-PAGE), coupled with mass spectrometry can be used to establish abundance profiles along the molecular weight gradient. Furthermore, by deconvoluting complex protein abundance profiles, we were able to drastically improve the clustering of protein profiles. To identify putative interaction partners, and ultimately protein complexes, our approach calculates the Euclidian distance between protein profile pairs. Acceptable threshold values are based on a cut-off that is optimized by a receiver-operator characteristic (ROC) curve analysis. Our approach shows low technical variation and can easily be adapted to study in the complexome in any biological system.
Collapse
|