1
|
Ren Z, Zeng X, Lao Y, Zheng H, You Z, Xiang H, Zou Q. A spatial hierarchical network learning framework for drug repositioning allowing interpretation from macro to micro scale. Commun Biol 2024; 7:1413. [PMID: 39478146 PMCID: PMC11525566 DOI: 10.1038/s42003-024-07107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Biomedical network learning offers fresh prospects for expediting drug repositioning. However, traditional network architectures struggle to quantify the relationship between micro-scale drug spatial structures and corresponding macro-scale biomedical networks, limiting their ability to capture key pharmacological properties and complex biomedical information crucial for drug screening and therapeutic discovery. Moreover, challenges such as difficulty in capturing long-range dependencies hinder current network-based approaches. To address these limitations, we introduce the Spatial Hierarchical Network, modeling molecular 3D structures and biological associations into a unified network. We propose an end-to-end framework, SpHN-VDA, integrating spatial hierarchical information through triple attention mechanisms to enhance machine understanding of molecular functionality and improve the accuracy of virus-drug association identification. SpHN-VDA outperforms leading models across three datasets, particularly excelling in out-of-distribution and cold-start scenarios. It also exhibits enhanced robustness against data perturbation, ranging from 20% to 40%. It accurately identifies critical motifs for binding sites, even without protein residue annotations. Leveraging reliability of SpHN-VDA, we have identified 25 potential candidate drugs through gene expression analysis and CMap. Molecular docking experiments with the SARS-CoV-2 spike protein further corroborate the predictions. This research highlights the broad potential of SpHN-VDA to enhance drug repositioning and identify effective treatments for various diseases.
Collapse
Affiliation(s)
- Zhonghao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Yizhen Lao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Heping Zheng
- College of Biology, Department of Molecular Medicine, Hunan University, Changsha, China
| | - Zhuhong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Hongxin Xiang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Dao NA, Le MH, Dang XT. Label Transfer for Drug Disease Association in Three Meta-Paths. Evol Bioinform Online 2024; 20:11769343241272414. [PMID: 39279816 PMCID: PMC11401013 DOI: 10.1177/11769343241272414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 09/18/2024] Open
Abstract
The identification of potential interactions and relationships between diseases and drugs is significant in public health care and drug discovery. As we all know, experimenting to determine the drug-disease interactions is very expensive in both time and money. However, there are still many drug-disease associations that are still undiscovered and potential. Therefore, the development of computational methods to explore the relationship between drugs and diseases is very important and essential. Many computational methods for predicting drug-disease associations have been developed based on known interactions to learn potential interactions of unknown drug-disease pairs. In this paper, we propose 3 new main groups of meta-paths based on the heterogeneous biological network of drug-protein-disease objects. For each meta-path, we design a machine learning model, then an integrated learning method is formed by these models. We evaluated our approach on 3 standard datasets which are DrugBank, OMIM, and Gottlieb's dataset. Experimental results demonstrate that the proposed method is better than some recent methods such as EMP-SVD, LRSSL, MBiRW, MPG-DDA, SCMFDD,. . . in some measures such as AUC, AUPR, and F1-score.
Collapse
|
3
|
Ohnuki Y, Akiyama M, Sakakibara Y. Deep learning of multimodal networks with topological regularization for drug repositioning. J Cheminform 2024; 16:103. [PMID: 39180095 PMCID: PMC11342530 DOI: 10.1186/s13321-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
MOTIVATION Computational techniques for drug-disease prediction are essential in enhancing drug discovery and repositioning. While many methods utilize multimodal networks from various biological databases, few integrate comprehensive multi-omics data, including transcriptomes, proteomes, and metabolomes. We introduce STRGNN, a novel graph deep learning approach that predicts drug-disease relationships using extensive multimodal networks comprising proteins, RNAs, metabolites, and compounds. We have constructed a detailed dataset incorporating multi-omics data and developed a learning algorithm with topological regularization. This algorithm selectively leverages informative modalities while filtering out redundancies. RESULTS STRGNN demonstrates superior accuracy compared to existing methods and has identified several novel drug effects, corroborating existing literature. STRGNN emerges as a powerful tool for drug prediction and discovery. The source code for STRGNN, along with the dataset for performance evaluation, is available at https://github.com/yuto-ohnuki/STRGNN.git .
Collapse
Affiliation(s)
- Yuto Ohnuki
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Manato Akiyama
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
4
|
Li G, Li S, Liang C, Xiao Q, Luo J. Drug repositioning based on residual attention network and free multiscale adversarial training. BMC Bioinformatics 2024; 25:261. [PMID: 39118000 PMCID: PMC11308596 DOI: 10.1186/s12859-024-05893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Conducting traditional wet experiments to guide drug development is an expensive, time-consuming and risky process. Analyzing drug function and repositioning plays a key role in identifying new therapeutic potential of approved drugs and discovering therapeutic approaches for untreated diseases. Exploring drug-disease associations has far-reaching implications for identifying disease pathogenesis and treatment. However, reliable detection of drug-disease relationships via traditional methods is costly and slow. Therefore, investigations into computational methods for predicting drug-disease associations are currently needed. RESULTS This paper presents a novel drug-disease association prediction method, RAFGAE. First, RAFGAE integrates known associations between diseases and drugs into a bipartite network. Second, RAFGAE designs the Re_GAT framework, which includes multilayer graph attention networks (GATs) and two residual networks. The multilayer GATs are utilized for learning the node embeddings, which is achieved by aggregating information from multihop neighbors. The two residual networks are used to alleviate the deep network oversmoothing problem, and an attention mechanism is introduced to combine the node embeddings from different attention layers. Third, two graph autoencoders (GAEs) with collaborative training are constructed to simulate label propagation to predict potential associations. On this basis, free multiscale adversarial training (FMAT) is introduced. FMAT enhances node feature quality through small gradient adversarial perturbation iterations, improving the prediction performance. Finally, tenfold cross-validations on two benchmark datasets show that RAFGAE outperforms current methods. In addition, case studies have confirmed that RAFGAE can detect novel drug-disease associations. CONCLUSIONS The comprehensive experimental results validate the utility and accuracy of RAFGAE. We believe that this method may serve as an excellent predictor for identifying unobserved disease-drug associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China.
| | - Shuwen Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| |
Collapse
|
5
|
Luo Y, Shan W, Peng L, Luo L, Ding P, Liang W. A Computational Framework for Predicting Novel Drug Indications Using Graph Convolutional Network With Contrastive Learning. IEEE J Biomed Health Inform 2024; 28:4503-4511. [PMID: 38607707 DOI: 10.1109/jbhi.2024.3387937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Inferring potential drug indications plays a vital role in the drug discovery process. It can be time-consuming and costly to discover novel drug indications through biological experiments. Recently, graph learning-based methods have gained popularity for this task. These methods typically treat the prediction task as a binary classification problem, focusing on modeling associations between drugs and diseases within a graph. However, labeled data for drug indication prediction is often limited and expensive to acquire. Contrastive learning addresses this challenge by aligning similar drug-disease pairs and separating dissimilar pairs in the embedding space. Thus, we developed a model called DrIGCL for drug indication prediction, which utilizes graph convolutional networks and contrastive learning. DrIGCL incorporates drug structure, disease comorbidities, and known drug indications to extract representations of drugs and diseases. By combining contrastive and classification losses, DrIGCL predicts drug indications effectively. In multiple runs of hold-out validation experiments, DrIGCL consistently outperformed existing computational methods for drug indication prediction, particularly in terms of top-k. Furthermore, our ablation study has demonstrated a significant improvement in the predictive capabilities of our model when utilizing contrastive learning. Finally, we validated the practical usefulness of DrIGCL by examining the predicted novel indications of Aspirin.
Collapse
|
6
|
He H, Xie J, Huang D, Zhang M, Zhao X, Ying Y, Wang J. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network. J Mol Graph Model 2024; 130:108783. [PMID: 38677034 DOI: 10.1016/j.jmgm.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Drug repurposing is an effective method to reduce the time and cost of drug development. Computational drug repurposing can quickly screen out the most likely associations from large biological databases to achieve effective drug repurposing. However, building a comprehensive model that integrates drugs, proteins, and diseases for drug repurposing remains challenging. This study proposes a drug repurposing method based on the ternary heterogeneous graph attention network (DRTerHGAT). DRTerHGAT designs a novel protein feature extraction process consisting of a large-scale protein language model and a multi-task autoencoder, so that protein features can be extracted accurately and efficiently from amino acid sequences. The ternary heterogeneous graph of drug-protein-disease comprehensively considering the relationships among the three types of nodes, including three homogeneous and three heterogeneous relationships. Based on the graph and the extracted protein features, the deep features of the drugs and the diseases are extracted by graph convolutional networks (GCN) and heterogeneous graph node attention networks (HGNA). In the experiments, DRTerHGAT is proven superior to existing advanced methods and DRTerHGAT variants. DRTerHGAT's powerful ability for drug repurposing is also demonstrated in Alzheimer's disease.
Collapse
Affiliation(s)
- Hongjian He
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Jiang Xie
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| | - Dingkai Huang
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Mengfei Zhang
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xuyu Zhao
- School of Life Sciences,Shanghai University, Shanghai, China
| | - Yiwei Ying
- School of Life Sciences,Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences,Shanghai University, Shanghai, China.
| |
Collapse
|
7
|
Gharizadeh A, Abbasi K, Ghareyazi A, Mofrad MRK, Rabiee HR. HGTDR: Advancing drug repurposing with heterogeneous graph transformers. Bioinformatics 2024; 40:btae349. [PMID: 38913860 PMCID: PMC11223801 DOI: 10.1093/bioinformatics/btae349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/20/2024] [Accepted: 06/23/2024] [Indexed: 06/26/2024] Open
Abstract
MOTIVATION Drug repurposing is a viable solution for reducing the time and cost associated with drug development. However, thus far, the proposed drug repurposing approaches still need to meet expectations. Therefore, it is crucial to offer a systematic approach for drug repurposing to achieve cost savings and enhance human lives. In recent years, using biological network-based methods for drug repurposing has generated promising results. Nevertheless, these methods have limitations. Primarily, the scope of these methods is generally limited concerning the size and variety of data they can effectively handle. Another issue arises from the treatment of heterogeneous data, which needs to be addressed or converted into homogeneous data, leading to a loss of information. A significant drawback is that most of these approaches lack end-to-end functionality, necessitating manual implementation and expert knowledge in certain stages. RESULTS We propose a new solution, Heterogeneous Graph Transformer for Drug Repurposing (HGTDR), to address the challenges associated with drug repurposing. HGTDR is a three-step approach for knowledge graph-based drug repurposing: (1) constructing a heterogeneous knowledge graph, (2) utilizing a heterogeneous graph transformer network, and (3) computing relationship scores using a fully connected network. By leveraging HGTDR, users gain the ability to manipulate input graphs, extract information from diverse entities, and obtain their desired output. In the evaluation step, we demonstrate that HGTDR performs comparably to previous methods. Furthermore, we review medical studies to validate our method's top 10 drug repurposing suggestions, which have exhibited promising results. We also demonstrated HGTDR's capability to predict other types of relations through numerical and experimental validation, such as drug-protein and disease-protein inter-relations. AVAILABILITY AND IMPLEMENTATION The source code and data are available at https://github.com/bcb-sut/HGTDR and http://git.dml.ir/BCB/HGTDR.
Collapse
Affiliation(s)
- Ali Gharizadeh
- Department of Computer Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9517, Iran
| | - Karim Abbasi
- Department of Computer Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9517, Iran
| | - Amin Ghareyazi
- Department of Computer Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9517, Iran
| | - Mohammad R K Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, P.O. Box 94720-1740, United States
| | - Hamid R Rabiee
- Department of Computer Engineering, Sharif University of Technology, Tehran, P.O. Box 11155-9517, Iran
| |
Collapse
|
8
|
Cao Y, Tian GG, Hong X, Lu Q, Wei T, Chen HF, Wu J. Reproductive chemical database: a curated database of chemicals that modulate protein targets regulating important reproductive biological processes. Cell Biosci 2024; 14:73. [PMID: 38845051 PMCID: PMC11157792 DOI: 10.1186/s13578-024-01261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Recent studies have shifted the spotlight from adult disease to gametogenesis and embryo developmental events, and these are greatly affected by various environmental chemicals, such as drugs, metabolites, pollutants, and others. Growing research has highlighted the critical importance of identifying and understanding the roles of chemicals in reproductive biology. However, the functions and mechanisms of chemicals in reproductive processes remain incomplete. We developed a comprehensive database called the Reproductive Chemical Database (RCDB) ( https://yu.life.sjtu.edu.cn/ChenLab/RCDB ) to facilitate research on chemicals in reproductive biology. This resource is founded on rigorous manual literature extraction and precise protein target prediction methodologies. This database focuses on the delineation of chemicals associated with phenotypes, diseases, or endpoints intricately associated with four important reproductive processes: female and male gamete generation, fertilization, and embryo development in human and mouse. The RCDB encompasses 93 sub-GO processes, and it revealed 1447 intricate chemical-biological process interactions. To date, the RCDB has meticulously cataloged and annotated 830 distinct chemicals, while also predicting 614 target proteins from a selection of 3800 potential candidates. Additionally, the RCDB offers an online predictive tool that empowers researchers to ascertain whether specific chemicals play discernible functional roles in these reproductive processes. The RCDB is an exhaustive, cross-platform, manually curated database, which provides a user-friendly interface to search, browse, and use reproductive processes modulators and their comprehensive related information. The RCDB will help researchers to understand the whole reproductive process and related diseases and it has the potential to promote reproduction research in the pharmacological and pathophysiological areas.
Collapse
Affiliation(s)
- Yuedi Cao
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Lu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Wei
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Nie Z, Gao M, Jin X, Rao Y, Zhang X. MFPINC: prediction of plant ncRNAs based on multi-source feature fusion. BMC Genomics 2024; 25:531. [PMID: 38816689 PMCID: PMC11137975 DOI: 10.1186/s12864-024-10439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are recognized as pivotal players in the regulation of essential physiological processes such as nutrient homeostasis, development, and stress responses in plants. Common methods for predicting ncRNAs are susceptible to significant effects of experimental conditions and computational methods, resulting in the need for significant investment of time and resources. Therefore, we constructed an ncRNA predictor(MFPINC), to predict potential ncRNA in plants which is based on the PINC tool proposed by our previous studies. Specifically, sequence features were carefully refined using variance thresholding and F-test methods, while deep features were extracted and feature fusion were performed by applying the GRU model. The comprehensive evaluation of multiple standard datasets shows that MFPINC not only achieves more comprehensive and accurate identification of gene sequences, but also significantly improves the expressive and generalization performance of the model, and MFPINC significantly outperforms the existing competing methods in ncRNA identification. In addition, it is worth mentioning that our tool can also be found on Github ( https://github.com/Zhenj-Nie/MFPINC ) the data and source code can also be downloaded for free.
Collapse
Affiliation(s)
- Zhenjun Nie
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Mengqing Gao
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiu Jin
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Yuan Rao
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China
| | - Xiaodan Zhang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei, 230036, China.
| |
Collapse
|
10
|
Satish KS, Saraswathy GR, Ritesh G, Saravanan KS, Krishnan A, Bhargava J, Ushnaa K, Dsouza PL. Exploring cutting-edge strategies for drug repurposing in female cancers - An insight into the tools of the trade. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:355-415. [PMID: 38942544 DOI: 10.1016/bs.pmbts.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Female cancers, which include breast and gynaecological cancers, represent a significant global health burden for women. Despite advancements in research pertinent to unearthing crucial pathological characteristics of these cancers, challenges persist in discovering potential therapeutic strategies. This is further exacerbated by economic burdens associated with de novo drug discovery and clinical intricacies such as development of drug resistance and metastasis. Drug repurposing, an innovative approach leveraging existing FDA-approved drugs for new indications, presents a promising avenue to expedite therapeutic development. Computational techniques, including virtual screening and analysis of drug-target-disease relationships, enable the identification of potential candidate drugs. Integration of diverse data types, such as omics and clinical information, enhances the precision and efficacy of drug repurposing strategies. Experimental approaches, including high-throughput screening assays, in vitro, and in vivo models, complement computational methods, facilitating the validation of repurposed drugs. This review highlights various target mining strategies based on analysis of differential gene expression, weighted gene co-expression, protein-protein interaction network, and host-pathogen interaction, among others. To unearth drug candidates, the technicalities of leveraging information from databases such as DrugBank, STITCH, LINCS, and ChEMBL, among others are discussed. Further in silico validation techniques encompassing molecular docking, pharmacophore modelling, molecular dynamic simulations, and ADMET analysis are elaborated. Overall, this review delves into the exploration of individual case studies to offer a wide perspective of the ever-evolving field of drug repurposing, emphasizing the multifaceted approaches and methodologies employed for the same to confront female cancers.
Collapse
Affiliation(s)
- Kshreeraja S Satish
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ganesan Rajalekshmi Saraswathy
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India.
| | - Giri Ritesh
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kamatchi Sundara Saravanan
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Aarti Krishnan
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Janhavi Bhargava
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kuri Ushnaa
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Prizvan Lawrence Dsouza
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| |
Collapse
|
11
|
Hassanali Aragh A, Givehchian P, Moslemi Amirani R, Masumshah R, Eslahchi C. MiRAGE: mining relationships for advanced generative evaluation in drug repositioning. Brief Bioinform 2024; 25:bbae337. [PMID: 39038932 PMCID: PMC11262809 DOI: 10.1093/bib/bbae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
MOTIVATION Drug repositioning, the identification of new therapeutic uses for existing drugs, is crucial for accelerating drug discovery and reducing development costs. Some methods rely on heterogeneous networks, which may not fully capture the complex relationships between drugs and diseases. However, integrating diverse biological data sources offers promise for discovering new drug-disease associations (DDAs). Previous evidence indicates that the combination of information would be conducive to the discovery of new DDAs. However, the challenge lies in effectively integrating different biological data sources to identify the most effective drugs for a certain disease based on drug-disease coupled mechanisms. RESULTS In response to this challenge, we present MiRAGE, a novel computational method for drug repositioning. MiRAGE leverages a three-step framework, comprising negative sampling using hard negative mining, classification employing random forest models, and feature selection based on feature importance. We evaluate MiRAGE on multiple benchmark datasets, demonstrating its superiority over state-of-the-art algorithms across various metrics. Notably, MiRAGE consistently outperforms other methods in uncovering novel DDAs. Case studies focusing on Parkinson's disease and schizophrenia showcase MiRAGE's ability to identify top candidate drugs supported by previous studies. Overall, our study underscores MiRAGE's efficacy and versatility as a computational tool for drug repositioning, offering valuable insights for therapeutic discoveries and addressing unmet medical needs.
Collapse
Affiliation(s)
- Aria Hassanali Aragh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Pegah Givehchian
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Razieh Moslemi Amirani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Raziyeh Masumshah
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Farmanieh Ave, Tajrish, District 1, Tehran 193955746, Iran
| |
Collapse
|
12
|
Guan K, Xu F, Huang X, Li Y, Guo S, Situ Y, Chen Y, Hu J, Liu Z, Liang H, Zhu X, Wu Y, Qiao Z. Deep learning and big data mining for Metal-Organic frameworks with high performance for simultaneous desulfurization and carbon capture. J Colloid Interface Sci 2024; 662:941-952. [PMID: 38382377 DOI: 10.1016/j.jcis.2024.02.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal-organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
Collapse
Affiliation(s)
- Kexin Guan
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fangyi Xu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoshan Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shuya Guo
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yizhen Situ
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - You Chen
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianming Hu
- College of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
| | - Zili Liu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xin Zhu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; College of Economics and Statistics, Guangzhou University, Guangzhou 510006, China.
| | - Yufang Wu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Xu M, Li W, He J, Wang Y, Lv J, He W, Chen L, Zhi H. DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm. Int J Mol Sci 2024; 25:5267. [PMID: 38791306 PMCID: PMC11121335 DOI: 10.3390/ijms25105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
Collapse
Affiliation(s)
- Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150000, China;
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
14
|
Park JH, Cho YR. Computational drug repositioning with attention walking. Sci Rep 2024; 14:10072. [PMID: 38698208 PMCID: PMC11066070 DOI: 10.1038/s41598-024-60756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Drug repositioning aims to identify new therapeutic indications for approved medications. Recently, the importance of computational drug repositioning has been highlighted because it can reduce the costs, development time, and risks compared to traditional drug discovery. Most approaches in this area use networks for systematic analysis. Inferring drug-disease associations is then defined as a link prediction problem in a heterogeneous network composed of drugs and diseases. In this article, we present a novel method of computational drug repositioning, named drug repositioning with attention walking (DRAW). DRAW proceeds as follows: first, a subgraph enclosing the target link for prediction is extracted. Second, a graph convolutional network captures the structural features of the labeled nodes in the subgraph. Third, the transition probabilities are computed using attention mechanisms and converted into random walk profiles. Finally, a multi-layer perceptron takes random walk profiles and predicts whether a target link exists. As an experiment, we constructed two heterogeneous networks with drug-drug similarities based on chemical structures and anatomical therapeutic chemical classification (ATC) codes. Using 10-fold cross-validation, DRAW achieved an area under the receiver operating characteristic (ROC) curve of 0.903 and outperformed state-of-the-art methods. Moreover, we demonstrated the results of case studies for selected drugs and diseases to further confirm the capability of DRAW to predict drug-disease associations.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
| |
Collapse
|
15
|
Wang Y, Song J, Dai Q, Duan X. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:3146-3157. [PMID: 38294927 DOI: 10.1109/jbhi.2024.3360437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Predicting potential drug-disease associations (RDAs) plays a pivotal role in elucidating therapeutic strategies for diseases and facilitating drug repositioning, making it of paramount importance. However, existing methods are constrained and rely heavily on limited domain-specific knowledge, impeding their ability to effectively predict candidate associations between drugs and diseases. Moreover, the simplistic definition of unknown information pertaining to drug-disease relationships as negative samples presents inherent limitations. To overcome these challenges, we introduce a novel hierarchical negative sampling-based graph contrastive model, termed HSGCLRDA, which aims to forecast latent associations between drugs and diseases. In this study, HSGCLRDA integrates the association information as well as similarity between drugs, diseases and proteins. Meanwhile, the model constructs a drug-disease-protein heterogeneous network. Subsequently, employing a hierarchical structural sampling technique, we establish reliable negative drug-disease samples utilizing PageRank algorithms. Utilizing meta-path aggregation within the heterogeneous network, we derive low-dimensional representations for drugs and diseases, thereby constructing global and local feature graphs that capture their interactions comprehensively. To obtain representation information, we adopt a self-supervised graph contrastive approach that leverages graph convolutional networks (GCNs) and second-order GCNs to extract feature graph information. Furthermore, we integrate a contrastive cost function derived from the cross-entropy cost function, facilitating holistic model optimization. Experimental results obtained from benchmark datasets not only showcase the superior performance of HSGCLRDA compared to various baseline methods in predicting RDAs but also emphasize its practical utility in identifying novel potential diseases associated with existing drugs through meticulous case studies.
Collapse
|
16
|
Gao M, Zhang D, Chen Y, Zhang Y, Wang Z, Wang X, Li S, Guo Y, Webb GI, Nguyen ATN, May L, Song J. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction. Comput Biol Med 2024; 173:108339. [PMID: 38547658 DOI: 10.1016/j.compbiomed.2024.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
The application of Artificial Intelligence (AI) to screen drug molecules with potential therapeutic effects has revolutionized the drug discovery process, with significantly lower economic cost and time consumption than the traditional drug discovery pipeline. With the great power of AI, it is possible to rapidly search the vast chemical space for potential drug-target interactions (DTIs) between candidate drug molecules and disease protein targets. However, only a small proportion of molecules have labelled DTIs, consequently limiting the performance of AI-based drug screening. To solve this problem, a machine learning-based approach with great ability to generalize DTI prediction across molecules is desirable. Many existing machine learning approaches for DTI identification failed to exploit the full information with respect to the topological structures of candidate molecules. To develop a better approach for DTI prediction, we propose GraphormerDTI, which employs the powerful Graph Transformer neural network to model molecular structures. GraphormerDTI embeds molecular graphs into vector-format representations through iterative Transformer-based message passing, which encodes molecules' structural characteristics by node centrality encoding, node spatial encoding and edge encoding. With a strong structural inductive bias, the proposed GraphormerDTI approach can effectively infer informative representations for out-of-sample molecules and as such, it is capable of predicting DTIs across molecules with an exceptional performance. GraphormerDTI integrates the Graph Transformer neural network with a 1-dimensional Convolutional Neural Network (1D-CNN) to extract the drugs' and target proteins' representations and leverages an attention mechanism to model the interactions between them. To examine GraphormerDTI's performance for DTI prediction, we conduct experiments on three benchmark datasets, where GraphormerDTI achieves a superior performance than five state-of-the-art baselines for out-of-molecule DTI prediction, including GNN-CPI, GNN-PT, DeepEmbedding-DTI, MolTrans and HyperAttentionDTI, and is on a par with the best baseline for transductive DTI prediction. The source codes and datasets are publicly accessible at https://github.com/mengmeng34/GraphormerDTI.
Collapse
Affiliation(s)
- Mengmeng Gao
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Daokun Zhang
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Melbourne, Australia.
| | - Yi Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Xiaoyu Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Geoffrey I Webb
- Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Melbourne, Australia
| | - Anh T N Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Lauren May
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.
| |
Collapse
|
17
|
Qiu Y, Cheng F. Artificial intelligence for drug discovery and development in Alzheimer's disease. Curr Opin Struct Biol 2024; 85:102776. [PMID: 38335558 DOI: 10.1016/j.sbi.2024.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
The complex molecular mechanism and pathophysiology of Alzheimer's disease (AD) limits the development of effective therapeutics or prevention strategies. Artificial Intelligence (AI)-guided drug discovery combined with genetics/multi-omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) analysis contributes to the understanding of the pathophysiology and precision medicine of the disease, including AD and AD-related dementia. In this review, we summarize the AI-driven methodologies for AD-agnostic drug discovery and development, including de novo drug design, virtual screening, and prediction of drug-target interactions, all of which have shown potentials. In particular, AI-based drug repurposing emerges as a compelling strategy to identify new indications for existing drugs for AD. We provide several emerging AD targets from human genetics and multi-omics findings and highlight recent AI-based technologies and their applications in drug discovery using AD as a prototypical example. In closing, we discuss future challenges and directions in AI-based drug discovery for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. https://twitter.com/YunguangQiu
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Nandi S, Bhaduri S, Das D, Ghosh P, Mandal M, Mitra P. Deciphering the Lexicon of Protein Targets: A Review on Multifaceted Drug Discovery in the Era of Artificial Intelligence. Mol Pharm 2024; 21:1563-1590. [PMID: 38466810 DOI: 10.1021/acs.molpharmaceut.3c01161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.
Collapse
Affiliation(s)
- Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumyadeep Bhaduri
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debraj Das
- Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Priya Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
19
|
Yang R, Fu Y, Zhang Q, Zhang L. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network. Artif Intell Med 2024; 150:102805. [PMID: 38553169 DOI: 10.1016/j.artmed.2024.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
Predicting drug-disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug-disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug-disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug-disease information, a drug-disease heterogeneous graph structure is constructed based on all known drug-disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug-disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug-disease associations by learning drug-disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug-disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
Collapse
Affiliation(s)
- Runtao Yang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| | - Yao Fu
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| | - Qian Zhang
- Heze Institute of Science and Technology Information, Heze, 274000, China.
| | - Lina Zhang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| |
Collapse
|
20
|
Ouyang D, Liang Y, Wang J, Li L, Ai N, Feng J, Lu S, Liao S, Liu X, Xie S. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations. PLoS Comput Biol 2024; 20:e1011927. [PMID: 38652712 PMCID: PMC11037542 DOI: 10.1371/journal.pcbi.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
Existing studies have shown that the abnormal expression of microRNAs (miRNAs) usually leads to the occurrence and development of human diseases. Identifying disease-related miRNAs contributes to studying the pathogenesis of diseases at the molecular level. As traditional biological experiments are time-consuming and expensive, computational methods have been used as an effective complement to infer the potential associations between miRNAs and diseases. However, most of the existing computational methods still face three main challenges: (i) learning of high-order relations; (ii) insufficient representation learning ability; (iii) importance learning and integration of multi-view embedding representation. To this end, we developed a HyperGraph Contrastive Learning with view-aware Attention Mechanism and Integrated multi-view Representation (HGCLAMIR) model to discover potential miRNA-disease associations. First, hypergraph convolutional network (HGCN) was utilized to capture high-order complex relations from hypergraphs related to miRNAs and diseases. Then, we combined HGCN with contrastive learning to improve and enhance the embedded representation learning ability of HGCN. Moreover, we introduced view-aware attention mechanism to adaptively weight the embedded representations of different views, thereby obtaining the importance of multi-view latent representations. Next, we innovatively proposed integrated representation learning to integrate the embedded representation information of multiple views for obtaining more reasonable embedding information. Finally, the integrated representation information was fed into a neural network-based matrix completion method to perform miRNA-disease association prediction. Experimental results on the cross-validation set and independent test set indicated that HGCLAMIR can achieve better prediction performance than other baseline models. Furthermore, the results of case studies and enrichment analysis further demonstrated the accuracy of HGCLAMIR and unconfirmed potential associations had biological significance.
Collapse
Affiliation(s)
- Dong Ouyang
- Peng Cheng Laboratory, Shenzhen, China
- School of Biomedical Engineering, Guangdong Medical University, Dongguan, China
| | - Yong Liang
- Peng Cheng Laboratory, Shenzhen, China
- Pazhou Laboratory (Huangpu), Guangzhou, China
| | - Jinfeng Wang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Le Li
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Ning Ai
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Junning Feng
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shanghui Lu
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xiaoying Liu
- Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai, China
| | - Shengli Xie
- Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou, China
| |
Collapse
|
21
|
Ghandikota SK, Jegga AG. Application of artificial intelligence and machine learning in drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:171-211. [PMID: 38789178 DOI: 10.1016/bs.pmbts.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The purpose of drug repurposing is to leverage previously approved drugs for a particular disease indication and apply them to another disease. It can be seen as a faster and more cost-effective approach to drug discovery and a powerful tool for achieving precision medicine. In addition, drug repurposing can be used to identify therapeutic candidates for rare diseases and phenotypic conditions with limited information on disease biology. Machine learning and artificial intelligence (AI) methodologies have enabled the construction of effective, data-driven repurposing pipelines by integrating and analyzing large-scale biomedical data. Recent technological advances, especially in heterogeneous network mining and natural language processing, have opened up exciting new opportunities and analytical strategies for drug repurposing. In this review, we first introduce the challenges in repurposing approaches and highlight some success stories, including those during the COVID-19 pandemic. Next, we review some existing computational frameworks in the literature, organized on the basis of the type of biomedical input data analyzed and the computational algorithms involved. In conclusion, we outline some exciting new directions that drug repurposing research may take, as pioneered by the generative AI revolution.
Collapse
Affiliation(s)
- Sudhir K Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
22
|
Li Y, Yang Y, Tong Z, Wang Y, Mi Q, Bai M, Liang G, Li B, Shu K. A comparative benchmarking and evaluation framework for heterogeneous network-based drug repositioning methods. Brief Bioinform 2024; 25:bbae172. [PMID: 38647153 PMCID: PMC11033846 DOI: 10.1093/bib/bbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Computational drug repositioning, which involves identifying new indications for existing drugs, is an increasingly attractive research area due to its advantages in reducing both overall cost and development time. As a result, a growing number of computational drug repositioning methods have emerged. Heterogeneous network-based drug repositioning methods have been shown to outperform other approaches. However, there is a dearth of systematic evaluation studies of these methods, encompassing performance, scalability and usability, as well as a standardized process for evaluating new methods. Additionally, previous studies have only compared several methods, with conflicting results. In this context, we conducted a systematic benchmarking study of 28 heterogeneous network-based drug repositioning methods on 11 existing datasets. We developed a comprehensive framework to evaluate their performance, scalability and usability. Our study revealed that methods such as HGIMC, ITRPCA and BNNR exhibit the best overall performance, as they rely on matrix completion or factorization. HINGRL, MLMC, ITRPCA and HGIMC demonstrate the best performance, while NMFDR, GROBMC and SCPMF display superior scalability. For usability, HGIMC, DRHGCN and BNNR are the top performers. Building on these findings, we developed an online tool called HN-DREP (http://hn-drep.lyhbio.com/) to facilitate researchers in viewing all the detailed evaluation results and selecting the appropriate method. HN-DREP also provides an external drug repositioning prediction service for a specific disease or drug by integrating predictions from all methods. Furthermore, we have released a Snakemake workflow named HN-DRES (https://github.com/lyhbio/HN-DRES) to facilitate benchmarking and support the extension of new methods into the field.
Collapse
Affiliation(s)
- Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Yinqi Yang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Zhuohao Tong
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Yu Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Qin Mi
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Mingze Bai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| |
Collapse
|
23
|
Tayebi J, BabaAli B. EKGDR: An End-to-End Knowledge Graph-Based Method for Computational Drug Repurposing. J Chem Inf Model 2024; 64:1868-1881. [PMID: 38483449 DOI: 10.1021/acs.jcim.3c01925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The lengthy and expensive process of developing new drugs from scratch, coupled with a high failure rate, has prompted the emergence of drug repurposing/repositioning as a more efficient and cost-effective approach. This approach involves identifying new therapeutic applications for existing approved drugs, leveraging the extensive drug-related data already gathered. However, the diversity and heterogeneity of data, along with the limited availability of known drug-disease interactions, pose significant challenges to computational drug design. To address these challenges, this study introduces EKGDR, an end-to-end knowledge graph-based approach for computational drug repurposing. EKGDR utilizes the power of a drug knowledge graph, a comprehensive repository of drug-related information that encompasses known drug interactions and various categorization information, as well as structural molecular descriptors of drugs. EKGDR employs graph neural networks, a cutting-edge graph representation learning technique, to embed the drug knowledge graph (nodes and relations) in an end-to-end manner. By doing so, EKGDR can effectively learn the underlying causes (intents) behind drug-disease interactions and recursively aggregate and combine relational messages between nodes along different multihop neighborhood paths (relational paths). This process generates representations of disease and drug nodes, enabling EKGDR to predict the interaction probability for each drug-disease pair in an end-to-end manner. The obtained results demonstrate that EKGDR outperforms previous models in all three evaluation metrics: area under the receiver operating characteristic curve (AUROC = 0.9475), area under the precision-recall curve (AUPRC = 0.9490), and recall at the top-200 recommendations (Recall@200 = 0.8315). To further validate EKGDR's effectiveness, we evaluated the top-20 candidate drugs suggested for each of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Javad Tayebi
- School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran 141556455, Iran
| | - Bagher BabaAli
- School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran 141556455, Iran
| |
Collapse
|
24
|
Lei S, Lei X, Chen M, Pan Y. Drug Repositioning Based on Deep Sparse Autoencoder and Drug-Disease Similarity. Interdiscip Sci 2024; 16:160-175. [PMID: 38103130 DOI: 10.1007/s12539-023-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Drug repositioning is critical to drug development. Previous drug repositioning methods mainly constructed drug-disease heterogeneous networks to extract drug-disease features. However, these methods faced difficulty when we are using structurally simple models to deal with complex heterogeneous networks. Therefore, in this study, the researchers introduced a drug repositioning method named DRDSA. The method utilizes a deep sparse autoencoder and integrates drug-disease similarities. First, the researchers constructed a drug-disease feature network by incorporating information from drug chemical structure, disease semantic data, and existing known drug-disease associations. Then, we learned the low-dimensional representation of the feature network using a deep sparse autoencoder. Finally, we utilized a deep neural network to make predictions on new drug-disease associations based on the feature representation. The experimental results show that our proposed method has achieved optimal results on all four benchmark datasets, especially on the CTD dataset where AUC and AUPR reached 0.9619 and 0.9676, respectively, outperforming other baseline methods. In the case study, the researchers predicted the top ten antiviral drugs for COVID-19. Remarkably, six out of these predictions were subsequently validated by other literature sources.
Collapse
Affiliation(s)
- Song Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Ming Chen
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Intelligent Bioinformatics, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|
25
|
Liu Z, Chen Q, Lan W, Lu H, Zhang S. SSLDTI: A novel method for drug-target interaction prediction based on self-supervised learning. Artif Intell Med 2024; 149:102778. [PMID: 38462280 DOI: 10.1016/j.artmed.2024.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024]
Abstract
Many computational methods have been proposed to identify potential drug-target interactions (DTIs) to expedite drug development. Graph neural network (GNN) methods are considered to be one of the most effective approaches. However, shallow GNN methods can only aggregate local information from nodes. Also, deep GNN methods may result in over-smoothing while obtaining long-distance neighbourhood information. As a result, existing GNN methods struggle to extract the complete features of the graph. Additionally, the number of known DTIs is insufficient, and there are far more unknown drug-target pairs than known DTIs, leading to class imbalance. This article proposes a model that combines graph autoencoder and self-supervised learning to accurately encode multilevel features of graphs using only a small number of labelled samples. We introduce a positive sample compensation coefficient to the objective function to mitigate the impact of class imbalance. Experiments on two datasets demonstrated that our model outperforms the four baseline methods, and the new DTIs predicted by the SSLDTI model were verified by the DrugBank database.
Collapse
Affiliation(s)
- Zhixian Liu
- School of Electronics and Information Engineering, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Qingfeng Chen
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, China.
| | - Wei Lan
- School of Computer, Electronic and Information, Guangxi University, Nanning, Guangxi, China
| | - Huihui Lu
- School of Electronics and Information Engineering, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Shichao Zhang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
Jin S, Zhang Y, Yu H, Lu M. SADR: Self-Supervised Graph Learning With Adaptive Denoising for Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:265-277. [PMID: 38190661 DOI: 10.1109/tcbb.2024.3351079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Traditional drug development is often high-risk and time-consuming. A promising alternative is to reuse or relocate approved drugs. Recently, some methods based on graph representation learning have started to be used for drug repositioning. These models learn the low dimensional embeddings of drug and disease nodes from the drug-disease interaction network to predict the potential association between drugs and diseases. However, these methods have strict requirements for the dataset, and if the dataset is sparse, the performance of these methods will be severely affected. At the same time, these methods have poor robustness to noise in the dataset. In response to the above challenges, we propose a drug repositioning model based on self-supervised graph learning with adptive denoising, called SADR. SADR uses data augmentation and contrastive learning strategies to learn feature representations of nodes, which can effectively solve the problems caused by sparse datasets. SADR includes an adaptive denoising training (ADT) component that can effectively identify noisy data during the training process and remove the impact of noise on the model. We have conducted comprehensive experiments on three datasets and have achieved better prediction accuracy compared to multiple baseline models. At the same time, we propose the top 10 new predictive approved drugs for treating two diseases. This demonstrates the ability of our model to identify potential drug candidates for disease indications.
Collapse
|
27
|
Wang X, Chen G, Hu H, Zhang M, Rao Y, Yue Z. PDDGCN: A Parasitic Disease-Drug Association Predictor Based on Multi-view Fusion Graph Convolutional Network. Interdiscip Sci 2024; 16:231-242. [PMID: 38294648 DOI: 10.1007/s12539-023-00600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
The precise identification of associations between diseases and drugs is paramount for comprehending the etiology and mechanisms underlying parasitic diseases. Computational approaches are highly effective in discovering and predicting disease-drug associations. However, the majority of these approaches primarily rely on link-based methodologies within distinct biomedical bipartite networks. In this study, we reorganized a fundamental dataset of parasitic disease-drug associations using the latest databases, and proposed a prediction model called PDDGCN, based on a multi-view graph convolutional network. To begin with, we fused similarity networks with binary networks to establish multi-view heterogeneous networks. We utilized neighborhood information aggregation layers to refine node embeddings within each view of the multi-view heterogeneous networks, leveraging inter- and intra-domain message passing to aggregate information from neighboring nodes. Subsequently, we integrated multiple embeddings from each view and fed them into the ultimate discriminator. The experimental results demonstrate that PDDGCN outperforms five state-of-the-art methods and four compared machine learning algorithms. Additionally, case studies have substantiated the effectiveness of PDDGCN in identifying associations between parasitic diseases and drugs. In summary, the PDDGCN model has the potential to facilitate the discovery of potential treatments for parasitic diseases and advance our comprehension of the etiology in this field. The source code is available at https://github.com/AhauBioinformatics/PDDGCN .
Collapse
Affiliation(s)
- Xiaosong Wang
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Guojun Chen
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Hang Hu
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Min Zhang
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Yuan Rao
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
28
|
Cheng F, Wang F, Tang J, Zhou Y, Fu Z, Zhang P, Haines JL, Leverenz JB, Gan L, Hu J, Rosen-Zvi M, Pieper AA, Cummings J. Artificial intelligence and open science in discovery of disease-modifying medicines for Alzheimer's disease. Cell Rep Med 2024; 5:101379. [PMID: 38382465 PMCID: PMC10897520 DOI: 10.1016/j.xcrm.2023.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
The high failure rate of clinical trials in Alzheimer's disease (AD) and AD-related dementia (ADRD) is due to a lack of understanding of the pathophysiology of disease, and this deficit may be addressed by applying artificial intelligence (AI) to "big data" to rapidly and effectively expand therapeutic development efforts. Recent accelerations in computing power and availability of big data, including electronic health records and multi-omics profiles, have converged to provide opportunities for scientific discovery and treatment development. Here, we review the potential utility of applying AI approaches to big data for discovery of disease-modifying medicines for AD/ADRD. We illustrate how AI tools can be applied to the AD/ADRD drug development pipeline through collaborative efforts among neurologists, gerontologists, geneticists, pharmacologists, medicinal chemists, and computational scientists. AI and open data science expedite drug discovery and development of disease-modifying therapeutics for AD/ADRD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Jian Tang
- Mila-Quebec Institute for Learning Algorithms and CIFAR AI Research Chair, HEC Montreal, Montréal, QC H3T 2A7, Canada
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Zhimin Fu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Pengyue Zhang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46037, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, and Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jianying Hu
- IBM Research, Yorktown Heights, New York, NY 10598, USA
| | - Michal Rosen-Zvi
- AI for Accelerated Healthcare and Life Sciences Discovery, IBM Research Labs, Haifa 3498825, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland OH 44106, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| |
Collapse
|
29
|
Qi X, Zhao Y, Qi Z, Hou S, Chen J. Machine Learning Empowering Drug Discovery: Applications, Opportunities and Challenges. Molecules 2024; 29:903. [PMID: 38398653 PMCID: PMC10892089 DOI: 10.3390/molecules29040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Drug discovery plays a critical role in advancing human health by developing new medications and treatments to combat diseases. How to accelerate the pace and reduce the costs of new drug discovery has long been a key concern for the pharmaceutical industry. Fortunately, by leveraging advanced algorithms, computational power and biological big data, artificial intelligence (AI) technology, especially machine learning (ML), holds the promise of making the hunt for new drugs more efficient. Recently, the Transformer-based models that have achieved revolutionary breakthroughs in natural language processing have sparked a new era of their applications in drug discovery. Herein, we introduce the latest applications of ML in drug discovery, highlight the potential of advanced Transformer-based ML models, and discuss the future prospects and challenges in the field.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Zhuang Qi
- School of Software, Shandong University, Jinan 250101, China;
| | - Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China; (Y.Z.); (S.H.); (J.C.)
| |
Collapse
|
30
|
Wang LJ, Ning M, Nayak T, Kasper MJ, Monga SP, Huang Y, Chen Y, Chiu YC. shinyDeepDR: A user-friendly R Shiny app for predicting anti-cancer drug response using deep learning. PATTERNS (NEW YORK, N.Y.) 2024; 5:100894. [PMID: 38370127 PMCID: PMC10873157 DOI: 10.1016/j.patter.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 02/20/2024]
Abstract
Advancing precision oncology requires accurate prediction of treatment response and accessible prediction models. To this end, we present shinyDeepDR, a user-friendly implementation of our innovative deep learning model, DeepDR, for predicting anti-cancer drug sensitivity. The web tool makes DeepDR more accessible to researchers without extensive programming experience. Using shinyDeepDR, users can upload mutation and/or gene expression data from a cancer sample (cell line or tumor) and perform two main functions: "Find Drug," which predicts the sample's response to 265 approved and investigational anti-cancer compounds, and "Find Sample," which searches for cell lines in the Cancer Cell Line Encyclopedia (CCLE) and tumors in The Cancer Genome Atlas (TCGA) with genomics profiles similar to those of the query sample to study potential effective treatments. shinyDeepDR provides an interactive interface to interpret prediction results and to investigate individual compounds. In conclusion, shinyDeepDR is an intuitive and free-to-use web tool for in silico anti-cancer drug screening.
Collapse
Affiliation(s)
- Li-Ju Wang
- Cancer Therapeutics Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Michael Ning
- Cancer Therapeutics Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tapsya Nayak
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Michael J. Kasper
- Cancer Therapeutics Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yufei Huang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yu-Chiao Chiu
- Cancer Therapeutics Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
31
|
Luo H, Zhu C, Wang J, Zhang G, Luo J, Yan C. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network. Front Pharmacol 2024; 15:1337764. [PMID: 38384286 PMCID: PMC10879308 DOI: 10.3389/fphar.2024.1337764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Accurately identifying novel indications for drugs is crucial in drug research and discovery. Traditional drug discovery is costly and time-consuming. Computational drug repositioning can provide an effective strategy for discovering potential drug-disease associations. However, the known experimentally verified drug-disease associations is relatively sparse, which may affect the prediction performance of the computational drug repositioning methods. Moreover, while the existing drug-disease prediction method based on metric learning algorithm has achieved better performance, it simply learns features of drugs and diseases only from the drug-centered perspective, and cannot comprehensively model the latent features of drugs and diseases. In this study, we propose a novel drug repositioning method named RSML-GCN, which applies graph convolutional network and reinforcement symmetric metric learning to predict potential drug-disease associations. RSML-GCN first constructs a drug-disease heterogeneous network by integrating the association and feature information of drugs and diseases. Then, the graph convolutional network (GCN) is applied to complement the drug-disease association information. Finally, reinforcement symmetric metric learning with adaptive margin is designed to learn the latent vector representation of drugs and diseases. Based on the learned latent vector representation, the novel drug-disease associations can be identified by the metric function. Comprehensive experiments on benchmark datasets demonstrated the superior prediction performance of RSML-GCN for drug repositioning.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Chunli Zhu
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Junwei Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| |
Collapse
|
32
|
da Rocha JM, Campos DMDO, Esmaile SC, Menezes GDL, Bezerra KS, da Silva RA, Junior EDDS, Tayyeb JZ, Akash S, Fulco UL, Alqahtani T, Oliveira JIN. Quantum biochemical analysis of the binding interactions between a potential inhibitory drug and the Ebola viral glycoprotein. J Biomol Struct Dyn 2024:1-17. [PMID: 38258414 DOI: 10.1080/07391102.2024.2305314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Ebola virus disease (EVD) causes outbreaks and epidemics in West Africa that persist until today. The envelope glycoprotein of Ebola virus (GP) consists of two subunits, GP1 and GP2, and plays a key role in anchoring or fusing the virus to the host cell in its active form on the virion surface. Toremifene (TOR) is a ligand that mainly acts as an estrogen receptor antagonist; however, a recent study showed a strong and efficient interaction with GP. In this context, we aimed to evaluate the energetic affinity features involved in the interaction between GP and toremifene by computer simulation techniques using the Molecular Fractionation Method with Conjugate Caps (MFCC) scheme and quantum-mechanical (QM) calculations, as well as missense mutations to assess protein stability. We identified ASP522, GLU100, TYR517, THR519, LEU186, LEU515 as the most attractive residues in the EBOV glycoprotein structure that form the binding pocket. We divided toremifene into three regions and evaluated that region i was more important than region iii and region ii for the formation of the TOR-GP1/GP2 complex, which might control the molecular remodeling process of TOR. The mutations that caused more destabilization were ARG134, LEU515, TYR517 and ARG559, while those that caused stabilization were GLU523 and ASP522. TYR517 is a critical residue for the binding of TOR, and is highly conserved among EBOV species. Our results may help to elucidate the mechanism of drug action on the GP protein of the Ebola virus and subsequently develop new pharmacological approaches against EVD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jaerdyson M da Rocha
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel M de O Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Stephany C Esmaile
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gabriela de L Menezes
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Katyanna S Bezerra
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Roosevelt A da Silva
- Core Collaboratives of BioSistemas, Special Unit of Exact Sciences, Federal University of Jataí, Jataí, GO, Brazil
| | - Edilson D da S Junior
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, Bangladesh
| | - Umberto L Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Jonas I N Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
33
|
Ren ZH, Yu CQ, Li LP, You ZH, Li ZW, Zhang SW, Zeng X, Shang YF. SiSGC: A Drug Repositioning Prediction Model Based on Heterogeneous Simplifying Graph Convolution. J Chem Inf Model 2024; 64:238-249. [PMID: 38103039 DOI: 10.1021/acs.jcim.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Drug repositioning plays a key role in disease treatment. With the large-scale chemical data increasing, many computational methods are utilized for drug-disease association prediction. However, most of the existing models neglect the positive influence of non-Euclidean data and multisource information, and there is still a critical issue for graph neural networks regarding how to set the feature diffuse distance. To solve the problems, we proposed SiSGC, which makes full use of the biological knowledge information as initial features and learns the structure information from the constructed heterogeneous graph with the adaptive selection of the information diffuse distance. Then, the structural features are fused with the denoised similarity information and fed to the advanced classifier of CatBoost to make predictions. Three different data sets are used to confirm the robustness and generalization of SiSGC under two splitting strategies. Experiment results demonstrate that the proposed model achieves superior performance compared with the six leading methods and four variants. Our case study on breast neoplasms further indicates that SiSGC is trustworthy and robust yet simple. We also present four drugs for breast cancer treatment with high confidence and further give an explanation for demonstrating the rationality. There is no doubt that SiSGC can be used as a beneficial supplement for drug repositioning.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Li-Ping Li
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shan-Wen Zhang
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Yi-Fan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
34
|
Siddiqui F, Aslam D, Tanveer K, Soudy M. The Role of Artificial Intelligence and Machine Learning in Autoimmune Disorders. STUDIES IN COMPUTATIONAL INTELLIGENCE 2024:61-75. [DOI: 10.1007/978-981-99-9029-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
|
35
|
Liu Y, Sang G, Liu Z, Pan Y, Cheng J, Zhang Y. MPTN: A message-passing transformer network for drug repurposing from knowledge graph. Comput Biol Med 2024; 168:107800. [PMID: 38043469 DOI: 10.1016/j.compbiomed.2023.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Drug repurposing (DR) based on knowledge graphs (KGs) is challenging, which uses knowledge graph reasoning models to predict new therapeutic pathways for existing drugs. With the rapid development of computing technology and the growing availability of validated biomedical data, various knowledge graph-based methods have been widely used to analyze and process complex and novel data to discover new indications for given drugs. However, existing methods need to be improved in extracting semantic information from contextual triples of biomedical entities. In this study, we propose a message-passing transformer network named MPTN based on knowledge graph for drug repurposing. Firstly, CompGCN is used as precoder to jointly aggregate entity and relation embeddings. Then, to fully capture the semantic information of entity context triples, the message propagating transformer module is designed. The module integrates the transformer into the message passing mechanism and incorporates the attention weight information of computing entity context triples into the entity embedding to update the entity embedding. Next, the residual connection is introduced to retain information as much as possible and improve prediction accuracy. Finally, MPTN utilizes the InteractE module as the decoder to obtain heterogeneous feature interactions in entity and relation representations and predict new pathways for drug treatment. Experiments on two datasets show that the model is superior to the existing knowledge graph embedding (KGE) learning methods.
Collapse
Affiliation(s)
- Yuanxin Liu
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Guoming Sang
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Zhi Liu
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yilin Pan
- School of Artificial Intelligence, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Junkai Cheng
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yijia Zhang
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| |
Collapse
|
36
|
Zhao BW, Su XR, Yang Y, Li DX, Li GD, Hu PW, Zhao YG, Hu L. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks. Methods 2023; 220:106-114. [PMID: 37972913 DOI: 10.1016/j.ymeth.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Discovering new indications for existing drugs is a promising development strategy at various stages of drug research and development. However, most of them complete their tasks by constructing a variety of heterogeneous networks without considering available higher-order connectivity patterns in heterogeneous biological information networks, which are believed to be useful for improving the accuracy of new drug discovering. To this end, we propose a computational-based model, called SFRLDDA, for drug-disease association prediction by using semantic graph and function similarity representation learning. Specifically, SFRLDDA first integrates a heterogeneous information network (HIN) by drug-disease, drug-protein, protein-disease associations, and their biological knowledge. Second, different representation learning strategies are applied to obtain the feature representations of drugs and diseases from different perspectives over semantic graph and function similarity graphs constructed, respectively. At last, a Random Forest classifier is incorporated by SFRLDDA to discover potential drug-disease associations (DDAs). Experimental results demonstrate that SFRLDDA yields a best performance when compared with other state-of-the-art models on three benchmark datasets. Moreover, case studies also indicate that the simultaneous consideration of semantic graph and function similarity of drugs and diseases in the HIN allows SFRLDDA to precisely predict DDAs in a more comprehensive manner.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Yue Yang
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Dong-Xu Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Guo-Dong Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Peng-Wei Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Yong-Gang Zhao
- Department of Orthopaedic Surgery (hand and foot trauma), People's Hospital of Dongxihu, Wuhan 420100, China.
| | - Lun Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| |
Collapse
|
37
|
Meng Y, Wang Y, Xu J, Lu C, Tang X, Peng T, Zhang B, Tian G, Yang J. Drug repositioning based on weighted local information augmented graph neural network. Brief Bioinform 2023; 25:bbad431. [PMID: 38019732 PMCID: PMC10686358 DOI: 10.1093/bib/bbad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning. Specifically, DRAGNN firstly incorporates a graph attention mechanism to dynamically allocate attention coefficients to drug and disease heterogeneous nodes, enhancing the effectiveness of target node information collection. To prevent excessive embedding of information in a limited vector space, we omit self-node information aggregation, thereby emphasizing valuable heterogeneous and homogeneous information. Additionally, average pooling in neighbor information aggregation is introduced to enhance local information while maintaining simplicity. A multi-layer perceptron is then employed to generate the final association predictions. The model's effectiveness for drug repositioning is supported by a 10-times 10-fold cross-validation on three benchmark datasets. Further validation is provided through analysis of the predicted associations using multiple authoritative data sources, molecular docking experiments and drug-disease network analysis, laying a solid foundation for future drug discovery.
Collapse
Affiliation(s)
- Yajie Meng
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Yi Wang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan Province 410082, China
| | - Changcheng Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan Province 410082, China
| | - Xianfang Tang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Tao Peng
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Bengong Zhang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Geng Tian
- Geneis Beijing Co., Ltd, No. 31, New North Road, Laiguanying, Chaoyang District, Beijing 100102, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, No. 31, New North Road, Laiguanying, Chaoyang District, Beijing 100102, China
| |
Collapse
|
38
|
Fawaz A, Ferraresi A, Isidoro C. Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making. J Pers Med 2023; 13:1590. [PMID: 38003905 PMCID: PMC10672164 DOI: 10.3390/jpm13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the second major cause of disease-related death worldwide, and its accurate early diagnosis and therapeutic intervention are fundamental for saving the patient's life. Cancer, as a complex and heterogeneous disorder, results from the disruption and alteration of a wide variety of biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites, that eventually emerge as clinical symptoms. Traditionally, diagnosis is based on clinical examination, blood tests for biomarkers, the histopathology of a biopsy, and imaging (MRI, CT, PET, and US). Additionally, omics biotechnologies help to further characterize the genome, metabolome, microbiome traits of the patient that could have an impact on the prognosis and patient's response to the therapy. The integration of all these data relies on gathering of several experts and may require considerable time, and, unfortunately, it is not without the risk of error in the interpretation and therefore in the decision. Systems biology algorithms exploit Artificial Intelligence (AI) combined with omics technologies to perform a rapid and accurate analysis and integration of patient's big data, and support the physician in making diagnosis and tailoring the most appropriate therapeutic intervention. However, AI is not free from possible diagnostic and prognostic errors in the interpretation of images or biochemical-clinical data. Here, we first describe the methods used by systems biology for combining AI with omics and then discuss the potential, challenges, limitations, and critical issues in using AI in cancer research.
Collapse
Affiliation(s)
| | | | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (A.F.); (A.F.)
| |
Collapse
|
39
|
Yu S, Liao B, Zhu W, Peng D, Wu F. Accurate prediction and key protein sequence feature identification of cyclins. Brief Funct Genomics 2023; 22:411-419. [PMID: 37118891 DOI: 10.1093/bfgp/elad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cyclin proteins are a group of proteins that activate the cell cycle by forming complexes with cyclin-dependent kinases. Identifying cyclins correctly can provide key clues to understanding the function of cyclins. However, due to the low similarity between cyclin protein sequences, the advancement of a machine learning-based approach to identify cycles is urgently needed. In this study, cyclin protein sequence features were extracted using the profile-based auto-cross covariance method. Then the features were ranked and selected with maximum relevance-maximum distance (MRMD) 1.0 and MRMD2.0. Finally, the prediction model was assessed through 10-fold cross-validation. The computational experiments showed that the best protein sequence features generated by MRMD1.0 could correctly predict 98.2% of cyclins using the random forest (RF) classifier, whereas seven-dimensional key protein sequence features identified with MRMD2.0 could correctly predict 96.1% of cyclins, which was superior to previous studies on the same dataset both in terms of dimensionality and performance comparisons. Therefore, our work provided a valuable tool for identifying cyclins. The model data can be downloaded from https://github.com/YUshunL/cyclin.
Collapse
Affiliation(s)
- Shaoyou Yu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Bo Liao
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Wen Zhu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Dejun Peng
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| | - Fangxiang Wu
- Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
| |
Collapse
|
40
|
Jin S, Hong Y, Zeng L, Jiang Y, Lin Y, Wei L, Yu Z, Zeng X, Liu X. A general hypergraph learning algorithm for drug multi-task predictions in micro-to-macro biomedical networks. PLoS Comput Biol 2023; 19:e1011597. [PMID: 37956212 PMCID: PMC10681315 DOI: 10.1371/journal.pcbi.1011597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/27/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
The powerful combination of large-scale drug-related interaction networks and deep learning provides new opportunities for accelerating the process of drug discovery. However, chemical structures that play an important role in drug properties and high-order relations that involve a greater number of nodes are not tackled in current biomedical networks. In this study, we present a general hypergraph learning framework, which introduces Drug-Substructures relationship into Molecular interaction Networks to construct the micro-to-macro drug centric heterogeneous network (DSMN), and develop a multi-branches HyperGraph learning model, called HGDrug, for Drug multi-task predictions. HGDrug achieves highly accurate and robust predictions on 4 benchmark tasks (drug-drug, drug-target, drug-disease, and drug-side-effect interactions), outperforming 8 state-of-the-art task specific models and 6 general-purpose conventional models. Experiments analysis verifies the effectiveness and rationality of the HGDrug model architecture as well as the multi-branches setup, and demonstrates that HGDrug is able to capture the relations between drugs associated with the same functional groups. In addition, our proposed drug-substructure interaction networks can help improve the performance of existing network models for drug-related prediction tasks.
Collapse
Affiliation(s)
- Shuting Jin
- School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, China
- School of Informatics, Xiamen University, Xiamen, China
- Department of AIDD, Shanghai Yuyao Biotechnology Co., Ltd., Shanghai, China
| | - Yue Hong
- School of Informatics, Xiamen University, Xiamen, China
| | - Li Zeng
- Department of AIDD, Shanghai Yuyao Biotechnology Co., Ltd., Shanghai, China
| | - Yinghui Jiang
- School of Informatics, Xiamen University, Xiamen, China
| | - Yuan Lin
- School of Economics, Innovation, and Technology, Kristiania University College, Bergen, Norway
| | - Leyi Wei
- School of Software, Shandong University, Shandong, China
| | - Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiangxiang Zeng
- School of Information Science and Engineering, Hunan University, Hunan, China
| | - Xiangrong Liu
- School of Informatics, Xiamen University, Xiamen, China
- Zhejiang Lab, Hangzhou, China
| |
Collapse
|
41
|
Muniyappan S, Rayan AXA, Varrieth GT. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources. J Biomed Inform 2023; 147:104528. [PMID: 37858852 DOI: 10.1016/j.jbi.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
MOTIVATION Drug repurposing (DR) is an imminent approach for identifying novel therapeutic indications for the available drugs and discovering novel drugs for previously untreatable diseases. Nowadays, DR has major attention in the pharmaceutical industry due to the high cost and time of launching new drugs to the market through traditional drug development. DR task majorly depends on genetic information since the drugs revert the modified Gene Expression (GE) of diseases to normal. Many of the existing studies have not considered the genetic importance of predicting the potential candidates. METHOD We proposed a novel multimodal framework that utilizes genetic aspects of drugs and diseases such as genes, pathways, gene signatures, or expression to enhance the performance of DR using various data sources. Firstly, the heterogeneous biological network (HBN) is constructed with three types of nodes namely drug, disease, and gene, and 4 types of edges similarities (drug, gene, and disease), drug-gene, gene-disease, and drug-disease. Next, a modified graph auto-encoder (GAE*) model is applied to learn the representation of drug and disease nodes using the topological structure and edge information. Secondly, the HBN is enhanced with the information extracted from biomedical literature and ontology using a novel semi-supervised pattern embedding-based bootstrapping model and novel DR perspective representation learning respectively to improve the prediction performance. Finally, our proposed system uses a neural network model to generate the probability score of drug-disease pairs. RESULTS We demonstrate the efficiency of the proposed model on various datasets and achieved outstanding performance in 5-fold cross-validation (AUC = 0.99, AUPR = 0.98). Further, we validated the top-ranked potential candidates using pathway analysis and proved that the known and predicted candidates share common genes in the pathways.
Collapse
Affiliation(s)
- Saranya Muniyappan
- Computer Science and Engineering, CEG Campus, Anna University, Chennai, Tamil Nadu, India.
| | | | | |
Collapse
|
42
|
Ghorbanali Z, Zare-Mirakabad F, Salehi N, Akbari M, Masoudi-Nejad A. DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing. BMC Bioinformatics 2023; 24:374. [PMID: 37789314 PMCID: PMC10548718 DOI: 10.1186/s12859-023-05479-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Drug repurposing is an approach that holds promise for identifying new therapeutic uses for existing drugs. Recently, knowledge graphs have emerged as significant tools for addressing the challenges of drug repurposing. However, there are still major issues with constructing and embedding knowledge graphs. RESULTS This study proposes a two-step method called DrugRep-HeSiaGraph to address these challenges. The method integrates the drug-disease knowledge graph with the application of a heterogeneous siamese neural network. In the first step, a drug-disease knowledge graph named DDKG-V1 is constructed by defining new relationship types, and then numerical vector representations for the nodes are created using the distributional learning method. In the second step, a heterogeneous siamese neural network called HeSiaNet is applied to enrich the embedding of drugs and diseases by bringing them closer in a new unified latent space. Then, it predicts potential drug candidates for diseases. DrugRep-HeSiaGraph achieves impressive performance metrics, including an AUC-ROC of 91.16%, an AUC-PR of 90.32%, an accuracy of 84.63%, a BS of 0.119, and an MCC of 69.31%. CONCLUSION We demonstrate the effectiveness of the proposed method in identifying potential drugs for COVID-19 as a case study. In addition, this study shows the role of dipeptidyl peptidase 4 (DPP-4) as a potential receptor for SARS-CoV-2 and the effectiveness of DPP-4 inhibitors in facing COVID-19. This highlights the practical application of the model in addressing real-world challenges in the field of drug repurposing. The code and data for DrugRep-HeSiaGraph are publicly available at https://github.com/CBRC-lab/DrugRep-HeSiaGraph .
Collapse
Affiliation(s)
- Zahra Ghorbanali
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran.
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Akbari
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
43
|
Wang S, Li J, Wang D, Xu D, Jin J, Wang Y. Predicting Drug-Disease Associations Through Similarity Network Fusion and Multi-View Feature Projection Representation. IEEE J Biomed Health Inform 2023; 27:5165-5176. [PMID: 37527303 DOI: 10.1109/jbhi.2023.3300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Predicting drug-disease associations (DDAs) through computational methods has become a prevalent trend in drug development because of their high efficiency and low cost. Existing methods usually focus on constructing heterogeneous networks by collecting multiple data resources to improve prediction ability. However, potential association possibilities of numerous unconfirmed drug-related or disease-related pairs are not sufficiently considered. In this article, we propose a novel computational model to predict new DDAs. First, a heterogeneous network is constructed, including four types of nodes (drugs, targets, cell lines, diseases) and three types of edges (associations, association scores, similarities). Second, an updating and merging-based similarity network fusion method, termed UM-SF, is presented to fuse various similarity networks with diverse weights. Finally, an intermediate layer-mediated multi-view feature projection representation method, termed IM-FP, is proposed to calculate the predicted DDA scores. This method uses multiple association scores to construct multi-view drug features, then projects them into disease space through the intermediate layer, where an intermediate layer similarity constraint is designed to learn the projection matrices. Results of comparative experiments reveal the effectiveness of our innovations. Comparisons with other state-of-the-art models by the 10-fold cross-validation experiment indicate our model's advantage on AUROC and AUPR metrics. Moreover, our proposed model successfully predicted 107 novel high-ranked DDAs.
Collapse
|
44
|
Turanli B. Decoding Systems Biology of Inflammation Signatures in Cancer Pathogenesis: Pan-Cancer Insights from 12 Common Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:483-493. [PMID: 37861711 DOI: 10.1089/omi.2023.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Chronic inflammation is an important contributor to tumorigenesis in many tissues. However, the underlying mechanisms of inflammatory signaling in the tumor microenvironment are not yet fully understood in various cancers. Therefore, this study aimed to uncover the gene expression signatures of inflammation-associated proteins that lead to tumorigenesis, and with an eye to discovery of potential system biomarkers and novel drug candidates in oncology. Gene expression profiles associated with 12 common cancers (e.g., breast invasive carcinoma, colon adenocarcinoma, liver hepatocellular carcinoma, and prostate adenocarcinoma) from The Cancer Genome Atlas were retrieved and mapped to inflammation-related gene sets. Subsequently, the inflammation-associated differentially expressed genes (i-DEGs) were determined. The i-DEGs common in all cancers were proposed as tumor inflammation signatures (TIS) after pan-cancer analysis. A TIS, consisting of 45 proteins, was evaluated as a potential system biomarker based on its prognostic forecasting and secretion profiles in multiple tissues. In addition, i-DEGs for each cancer type were used as queries for drug repurposing. Narciclasine, parthenolide, and homoharringtonine were identified as potential candidates for drug repurposing. Biomarker candidates in relation to inflammation were identified such as KNG1, SPP1, and MIF. Collectively, these findings inform precision diagnostics development to distinguish individual cancer types, and can also pave the way for novel prognostic decision tools and repurposed drugs across multiple cancers. These new findings and hypotheses warrant further research toward precision/personalized medicine in oncology. Pan-cancer analysis of inflammatory mediators can open up new avenues for innovation in cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Türkiye
| |
Collapse
|
45
|
Malik MA, Faraone SV, Michoel T, Haavik J. Use of big data and machine learning algorithms to extract possible treatment targets in neurodevelopmental disorders. Pharmacol Ther 2023; 250:108530. [PMID: 37708996 DOI: 10.1016/j.pharmthera.2023.108530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Neurodevelopmental disorders (NDDs) impact multiple aspects of an individual's functioning, including social interactions, communication, and behaviors. The underlying biological mechanisms of NDDs are not yet fully understood, and pharmacological treatments have been limited in their effectiveness, in part due to the complex nature of these disorders and the heterogeneity of symptoms across individuals. Identifying genetic loci associated with NDDs can help in understanding biological mechanisms and potentially lead to the development of new treatments. However, the polygenic nature of these complex disorders has made identifying new treatment targets from genome-wide association studies (GWAS) challenging. Recent advances in the fields of big data and high-throughput tools have provided radically new insights into the underlying biological mechanism of NDDs. This paper reviews various big data approaches, including classical and more recent techniques like deep learning, which can identify potential treatment targets from GWAS and other omics data, with a particular emphasis on NDDs. We also emphasize the increasing importance of explainable and causal machine learning (ML) methods that can aid in identifying genes, molecular pathways, and more complex biological processes that may be future targets of intervention in these disorders. We conclude that these new developments in genetics and ML hold promise for advancing our understanding of NDDs and identifying novel treatment targets.
Collapse
Affiliation(s)
- Muhammad Ammar Malik
- Computational Biology Unit, Department of Informatics, University of Bergen, PO BOX 7803, 5020 Bergen, Norway
| | - Stephen V Faraone
- Department of Psychiatry, Norton College of Medicine at SUNY Upstate Medical University, 13210, NY, USA
| | - Tom Michoel
- Computational Biology Unit, Department of Informatics, University of Bergen, PO BOX 7803, 5020 Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, PO BOX 7804, 5020 Bergen, Norway; Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, PO BOX 1400, 5021 Bergen, Norway.
| |
Collapse
|
46
|
Ye S, Zhao W, Shen X, Jiang X, He T. An effective multi-task learning framework for drug repurposing based on graph representation learning. Methods 2023; 218:48-56. [PMID: 37516260 DOI: 10.1016/j.ymeth.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
Drug repurposing, which typically applies the procedure of drug-disease associations (DDAs) prediction, is a feasible solution to drug discovery. Compared with traditional methods, drug repurposing can reduce the cost and time for drug development and advance the success rate of drug discovery. Although many methods for drug repurposing have been proposed and the obtained results are relatively acceptable, there is still some room for improving the predictive performance, since those methods fail to consider fully the issue of sparseness in known drug-disease associations. In this paper, we propose a novel multi-task learning framework based on graph representation learning to identify DDAs for drug repurposing. In our proposed framework, a heterogeneous information network is first constructed by combining multiple biological datasets. Then, a module consisting of multiple layers of graph convolutional networks is utilized to learn low-dimensional representations of nodes in the constructed heterogeneous information network. Finally, two types of auxiliary tasks are designed to help to train the target task of DDAs prediction in the multi-task learning framework. Comprehensive experiments are conducted on real data and the results demonstrate the effectiveness of the proposed method for drug repurposing.
Collapse
Affiliation(s)
- Shengwei Ye
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Weizhong Zhao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China.
| | - Xianjun Shen
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| |
Collapse
|
47
|
Tao W, Liu Y, Lin X, Song B, Zeng X. Prediction of multi-relational drug-gene interaction via Dynamic hyperGraph Contrastive Learning. Brief Bioinform 2023; 24:bbad371. [PMID: 37864294 DOI: 10.1093/bib/bbad371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Drug-gene interaction prediction occupies a crucial position in various areas of drug discovery, such as drug repurposing, lead discovery and off-target detection. Previous studies show good performance, but they are limited to exploring the binding interactions and ignoring the other interaction relationships. Graph neural networks have emerged as promising approaches owing to their powerful capability of modeling correlations under drug-gene bipartite graphs. Despite the widespread adoption of graph neural network-based methods, many of them experience performance degradation in situations where high-quality and sufficient training data are unavailable. Unfortunately, in practical drug discovery scenarios, interaction data are often sparse and noisy, which may lead to unsatisfactory results. To undertake the above challenges, we propose a novel Dynamic hyperGraph Contrastive Learning (DGCL) framework that exploits local and global relationships between drugs and genes. Specifically, graph convolutions are adopted to extract explicit local relations among drugs and genes. Meanwhile, the cooperation of dynamic hypergraph structure learning and hypergraph message passing enables the model to aggregate information in a global region. With flexible global-level messages, a self-augmented contrastive learning component is designed to constrain hypergraph structure learning and enhance the discrimination of drug/gene representations. Experiments conducted on three datasets show that DGCL is superior to eight state-of-the-art methods and notably gains a 7.6% performance improvement on the DGIdb dataset. Further analyses verify the robustness of DGCL for alleviating data sparsity and over-smoothing issues.
Collapse
Affiliation(s)
- Wen Tao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Yuansheng Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Xuan Lin
- School of Computer Science, Xiangtan University, Xiangtan, 411105 Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing, Ministry of Education (Xiangtan University), Xiangtan, 411105 Hunan, China
| | - Bosheng Song
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082 Hunan, China
| |
Collapse
|
48
|
Wang Y, Li Z, Rao J, Yang Y, Dai Z. Gene based message passing for drug repurposing. iScience 2023; 26:107663. [PMID: 37670781 PMCID: PMC10475505 DOI: 10.1016/j.isci.2023.107663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
The medicinal effect of a drug acts through a series of genes, and the pathological mechanism of a disease is also related to genes with certain biological functions. However, the complex information between drug or disease and a series of genes is neglected by traditional message passing methods. In this study, we proposed a new framework using two different strategies for gene-drug/disease and drug-disease networks, respectively. We employ long short-term memory (LSTM) network to extract the flow of message from series of genes (gene path) to drug/disease. Incorporating the resulting information of gene paths into drug-disease network, we utilize graph convolutional network (GCN) to predict drug-disease associations. Experimental results showed that our method GeneDR (gene-based drug repurposing) makes better use of the information in gene paths, and performs better in predicting drug-disease associations.
Collapse
Affiliation(s)
- Yuxing Wang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhiyang Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Jiahua Rao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhiming Dai
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| |
Collapse
|
49
|
Grabowska ME, Huang A, Wen Z, Li B, Wei WQ. Drug repurposing for Alzheimer's disease from 2012-2022-a 10-year literature review. Front Pharmacol 2023; 14:1257700. [PMID: 37745051 PMCID: PMC10512468 DOI: 10.3389/fphar.2023.1257700] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Alzheimer's disease (AD) is a debilitating neurodegenerative condition with few treatment options available. Drug repurposing studies have sought to identify existing drugs that could be repositioned to treat AD; however, the effectiveness of drug repurposing for AD remains unclear. This review systematically analyzes the progress made in drug repurposing for AD throughout the last decade, summarizing the suggested drug candidates and analyzing changes in the repurposing strategies used over time. We also examine the different types of data that have been leveraged to validate suggested drug repurposing candidates for AD, which to our knowledge has not been previous investigated, although this information may be especially useful in appraising the potential of suggested drug repurposing candidates. We ultimately hope to gain insight into the suggested drugs representing the most promising repurposing candidates for AD. Methods: We queried the PubMed database for AD drug repurposing studies published between 2012 and 2022. 124 articles were reviewed. We used RxNorm to standardize drug names across the reviewed studies, map drugs to their constituent ingredients, and identify prescribable drugs. We used the Anatomical Therapeutic Chemical (ATC) Classification System to group drugs. Results: 573 unique drugs were proposed for repurposing in AD over the last 10 years. These suggested repurposing candidates included drugs acting on the nervous system (17%), antineoplastic and immunomodulating agents (16%), and drugs acting on the cardiovascular system (12%). Clozapine, a second-generation antipsychotic medication, was the most frequently suggested repurposing candidate (N = 6). 61% (76/124) of the reviewed studies performed a validation, yet only 4% (5/124) used real-world data for validation. Conclusion: A large number of potential drug repurposing candidates for AD has accumulated over the last decade. However, among these drugs, no single drug has emerged as the top candidate, making it difficult to establish research priorities. Validation of drug repurposing hypotheses is inconsistently performed, and real-world data has been critically underutilized for validation. Given the urgent need for new AD therapies, the utility of real-world data in accelerating identification of high-priority candidates for AD repurposing warrants further investigation.
Collapse
Affiliation(s)
- Monika E. Grabowska
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annabelle Huang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
50
|
Yang X, Yang G, Chu J. Self-Supervised Learning for Label Sparsity in Computational Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3245-3256. [PMID: 37028367 DOI: 10.1109/tcbb.2023.3254163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The computational drug repositioning aims to discover new uses for marketed drugs, which can accelerate the drug development process and play an important role in the existing drug discovery system. However, the number of validated drug-disease associations is scarce compared to the number of drugs and diseases in the real world. Too few labeled samples will make the classification model unable to learn effective latent factors of drugs, resulting in poor generalization performance. In this work, we propose a multi-task self-supervised learning framework for computational drug repositioning. The framework tackles label sparsity by learning a better drug representation. Specifically, we take the drug-disease association prediction problem as the main task, and the auxiliary task is to use data augmentation strategies and contrast learning to mine the internal relationships of the original drug features, so as to automatically learn a better drug representation without supervised labels. And through joint training, it is ensured that the auxiliary task can improve the prediction accuracy of the main task. More precisely, the auxiliary task improves drug representation and serving as additional regularization to improve generalization. Furthermore, we design a multi-input decoding network to improve the reconstruction ability of the autoencoder model. We evaluate our model using three real-world datasets. The experimental results demonstrate the effectiveness of the multi-task self-supervised learning framework, and its predictive ability is superior to the state-of-the-art model.
Collapse
|